2017年数学竞赛初中决赛
2017年全国初中数学联合竞赛(初二决赛)试题参考答案及评分标准.docx
2017 年全国初中数学联合竞赛(初二决赛)试题参考答案及评分标准明:卷,依据本分准. 和填空只 7 分和 0 分两档;解答,格按照本分准定的分档次分,不要再增加其他中档次. 如果考生的解答方法和本解答不同 , 只要思路合理 , 步正确 ,在卷参照本分准划分的档次, 予相的分数 .一、 (本分 42 分,每小7 分 )1、 C2、D3、 A4、 B5、 C6、 B二、填空(本分28 分,每小7 分)7、 238、 75°9、13或填)10、 1625(0.52三、(本共三小,第11 20分,第12、 13 各 25 分,分 70分)11. 已知关于x的方程x21 a 有且有两个解,求数 a 的取范.解:由已知必有 a0 ,由原方程得:x21a( 1);⋯⋯⋯⋯⋯⋯⋯⋯ 5 分若 a1, x 21 a ,此方程(1)有两解,原方程也有两解;⋯⋯10 分若 0a1,此方程(1)的解: x 3 a , x3a , x 1 a , x 1 a ,要使原方程只有两解,四个解中必有两个解相等 . 若x 3 a 3 a ,得 a0 ,此x 1a1 a ,故原方程有两解;若 x3a1a,得 a1(舍去),若 x 3a1a ,得 a1,此方程有三个解,不符合要求;然3a1a, 3 a 1 a 。
故此 a0原方程有两解 .上, a 0 或 a 1原方程有两解.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20 分12. 如 , 已知等腰直角三角形ABC中, B 90 ,D BC的中点, E 段 AC上一点,且EDC ADB .求BE ED的.BD解:点 C 作 BC 的垂交 DE 的延于点F, AF. 易△ ABD ≌△ FCD.∴AD=FD. ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分易四形 ABCF 是正方形,∴ AB=AF.⋯⋯⋯⋯⋯ 10 分易△ ABE ≌△ AFE ,∴ FE=BE. ⋯⋯⋯⋯⋯⋯⋯⋯ 15 分-1-∴ AD=FD=DE+EF= BE +ED.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20 分∴ BE ED AD 5. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 分BD BD13.从的自然数1, 2,⋯, 2017 中可以取出n个不同的数,使所取出的n 个不同的数中任意三个数之和都能被21 整除.求n的最大.解: a 、b、 c 、d是所取出的任意四个数.由意有a b c21m ,a b d21n ,其中,m、n正整数.所以,c d 21( m n) .上式表明,所取出的数中任意两数之差是21的倍数,即所取的每个数除以21 所得的余数相同.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分个余数 k ,于是,a21a1 k , b21b1k , c 21c1 k ,其中, a1、 b1、c1是整数,0k2110 分.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯a b c21(a1b1c1 ) 3k .因a b c 能被21整除,所以,3k能被 21整除,即 k能被 7 整除.因此,k =0,7或14.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15 分当 k0 ,可取21, 42, 63,⋯, 2016 共 96 个数,符合意;当 k7 ,可取7,28, 49,⋯, 2002 共 96 个数,符合意;当 k14 ,可取14, 35, 56,⋯, 2009 共 96 个数,符合意⋯⋯⋯⋯⋯20 分上所述, n 的最大是96.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 分-2-。
2017年全国初中数学联合竞赛(初二年级)试题参考答案及
在 Rt △ EAD 中,有 422 (98 x)2 x2 ,解得 x 58 .
2017 年全国初中数学联合竞赛试题(初二年级)参考答案及评分标准 第 2 页(共 5 页)
二、填空题:(本题满分 28 分,每小题 7 分)
1.使得等式 1 1 a 3 a 成立的实数 a 的值为_______. 【答】 8 . 由所给等式可得 (1 1 a)3 a2 .令 x 1 a ,则 x 0 ,且 a x2 1,于是有 (1 x)3 (x2 1)2 ,
4.已知正整数 a,b, c 满足 a2 6b 3c 9 0 , 6a b2 c 0 ,则 a2 b2 c2 = ( )
A. 424. 【答】C.
B. 430.
C. 441.
D. 460.
由已知等式消去 c 整理得 (a 9)2 3(b 1)2 75 ,所以 3(b 1)2 75 ,又 b 为正整数,解得1 b 6 .
2
2
Байду номын сангаас
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
BE 28, BC 70 , DCE 45 ,则 DE =
()
B
C
A. 56.
B. 58.
C.60.
D. 62.
为 A. 4. 【答】B.
B.3.
C.2.
D.1.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.
2017年全国初中数学联赛试题-含详细解析
2017年全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题(本题满分42分,每小题7分)1. 已知实数a b c ,,满足2133903972a b c a b c ++=++= ,,则32b ca b+=+ ( ) A .2 B .1 C .0 D .1− 2. 已知△ABC 的三边长分别是a ,b ,c ,有以下三个结论:(1) (2)以a 2,b 2,c 2为边长的三角形一定存在;(3)以|a -b |+1,|b -c |+1,|c -a |+1为边长的三角形一定存在. 其中正确结论的个数为( )A .0B .1C .2D .33. 若正整数a ,b ,c 满足a b c ≤≤且()2abc a b c =++,则称(a ,b ,c )为好数组.那么,好数组的个数为( )A .1B .2C .3D .44. 设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180︒,且BC =3,AD =4,AC =5,AB =6,则DOOB=( ) A .109 B .87 C .65 D .435. 设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB的延长线上,满足∠BAF =∠CAE .已知BC =15,BF =6,BD =3,则AE =( ) A .43 B .213 C .214 D .2156. 对于正整数n ,设a n 是最接近n 的整数,则1a 1+1a 2+1a 3+…+1a 200=( )A .1917B .1927C .1937D .1947二、填空题(本题满分28分,每小题7分)7.成立的实数a 的值为______.8. 如图,平行四边形ABCD 中,∠ABC =72︒,AF ⊥BC 于点F ,AF 交BD 于点E ,若DE =2AB ,则∠AED =______.9. 设m ,n 是正整数,且m >n .若9m 与9n 的末两位数字相同,则m -n 的最小值为____.10. 若实数x ,y 满足x 3+y 3+3xy =1,则x 2+ y 2的最小值为______.第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y =ax 2+bx +c (c ≠0)的图象与x 轴有唯一交点,则二次函数y =a 3x 2+b 3x +c 3的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定 2.题目与(A )卷第1题相同. 3.题目与(A )卷第3题相同.4.已知正整数a ,b ,c 满足a 2-6b -3c +9=0,-6a +b 2+c =0,则a 2+b 2+c 2=( ) A .424. B .430. C .441. D .460.5.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180,且BC =3,AD =4,AC =5,AB =6,DOOB=( )A .43B .65C .87D .1096.题目与(A )卷第5题相同.二、填空题(本题满分28分,每小题7分) 1.题目与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,D ,E 分别为线段BC ,OA 的中点,∠ACB =7∠OED ,∠ABC =5∠OED ,则∠OED =______. 3.题目与(A )卷第3题相同. 4.题目与(A )卷第4题相同.第二试(A)一、(本题满分20分)已知实数x ,y 满足x + y =3,1x +y 2+1x 2+y =12,求x 5+y 5的值.二、(本题满分25分)如图,△ABC 中,AB >AC ,∠BAC =45︒,E 是∠BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF ⊥AB .已知AF =1,BF =5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a ,b ),使得a 3=49×3b +8.第二试(B)一、(本题满分20分)已知实数a ,b ,c 满足a ≤b ≤c ,a +b +c =16,a 2+b 2+c 2+14abc = ,求c 的值.二、(本题满分25分)求所有的正整数m ,使得22m -1-2m +1是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,∠OAD =∠OCB ,OA ⊥OD ,OB ⊥OC .求证:AB 2+CD 2=AD 2+BC 2.7。
2017年全国初中数学联合竞赛试题参考答案和评分标准(1)
2017年全国初中数学联合竞赛试题参考答案和评分标准(1)2017年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.已知实数,,abc满足213390abc,3972abc,则32bcab??=()A.2.B.1.C.0.D.1?.【答】B.已知等式可变形为2(2)3(3)90abbc,3(2)(3)72abbc,解得218ab??,318bc??,所以32bcab1.2.已知△ABC的三边长分别是,,abc,有以下三个结论:(1)以,,abc为边长的三角形一定存在;(2)以222,,abc为边长的三角形一定存在;(3)以||1,||1,||1abbcca为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设abc??,则有bca??.(1)因为bca??,所以2bcbca,即22()bca??(),即bca??,故以,,abc为边长的三角形一定存在;(2)以2,3,4abc为边长可以构成三角形,但以2224,9,16abc为边长的三角形不存在;(3)因为abc??,所以||11,||11,||11ababbcbccaac,故三条边中||1ca??大于或等于其余两边,而||1||111abbcabbc()()()()111||1acacca=,故以||1ab??,||1bc??,||1ca??为边长的三角形一定存在.3.若正整数,,abc满足abc??且2()abcabc,则称(,,)abc为好数组.那么,好数组的个数为()A.1.B.2.C.3.D.4.【答】C.若(,,)abc为好数组,则2()6abcabcc,所以6ab?.显然,a只能为1或2.若a=2,由6ab?可得2b?或3,2b?时可得4c?,3b?时可得52c?(不是整数);若a=1,则2(1)bcbc,于是可得(2)(2)6bc,可求得(,,)abc =(1,3,8)或(1,4,2017年全国初中数学联合竞赛试题参考答案及评分标准第1页(共7页)5).综合可知:共有3个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设O是四边形ABCD的对角线AC、BD的交点,若180BADACB,且3BC?,4AD?,5AC?,6AB?,则DOOB=()A.109.B.87.C.65.D.43.【答】A.过B作//BEAD,交AC的延长线于点E,则180ABEBAD ACB??,所以△ABC∽△AEB,所以ACBCABEB?,所以631855ABBCEBAC.再由//BEAD,得4101895DOADOBBE.5.设A是以BC为直径的圆上的一点,ADBC?于点D,点E在线段DC上,点F在CB的延长线上,满足BAFCAE.已知15BC?,6BF?,3BD?,则AE=()A.43.B.213.C.214.D.215.【答】B.如图,因为BAFCAE,所以BAFBAECAEBAE,即90FAEBAC.又因为ADBC?,故2ADDEDFDBDC.而639DFBFBD,15312DCBCBD,所以29312ADDE,所以6AD?,4DE?.从而222264213AEADDE.6.对于正整数n,设na是最接近n的整数,则1232001111aaaa()A.1917.B.1927.C.1937.D.1947.【答】A.对于任意自然数k,2211()24kkk不是整数,所以,对于正整数n,12n?一定不是整数.设m是最接近n的整数,则1||2mn??,1m?.易知:当1m?时,1||2mn2211()()mnm??221144mmnmm.于是可知:对确定的正整数m,当正整数n满足221mmnmm时,m是最接近n的整数,即nam?.所以,使得na=m的正整数n的个数为2m.注意到2213131822001414210,因此,12200,,,aaa?中,有:2个1,4个2,6个3,2017年全国初中数学联合竞赛试题参考答案及评分标准第2页(共7页)EOCBADCBFDE8个4,……,26个13,18个14.所以123200111111111191246261812313147aaaa.二、填空题:(本题满分28分,每小题7分)1.使得等式311aa成立的实数a的值为_______.【答】8.由所给等式可得32(11)aa.令1xa??,则0x?,且21ax??,于是有322(1)(1)xx,整理后因式分解得2(3)(1)0xxx,解得10x?,23x?,31x??(舍去),所以1a??或8a?.验证可知:1a??是原方程的增根,8a?是原方程的根.所以,8a?.2.如图,平行四边形ABCD中,72ABC,AFBC?于点F,AF交BD于点E,若2DEAB?,则AED?=_______.【答】66?.取DE的中点M,在Rt△ADE中,有12AMEMDEAB.设AED,则1802AME,18ABM.又ABMAMB,所以180218,解得66.3.设,mn是正整数,且mn?.若9m与9n的末两位数字相同,则mn?的最小值为.【答】10.由题意知,999(91)mnnmn是100的倍数,所以91mn??是100的倍数,所以9mn?的末两位数字是01,显然,mn?是偶数,设2mnt??(t是正整数),则29981mntt.计算可知:281的末两位数字是61,381的末两位数字是41,481的末两位数字是21,581的末两位数字是01.所以t的最小值为5,从而可得mn?的最小值为10.4.若实数,xy满足3331xyxy,则22xy?的最小值为.【答】12.因为333322031()(1)333xyxyxyxyxyxy22(1)[()()(1)(1)]3(1)xyxyxyxyxy2017年全国初中数学联合竞赛试题参考答案及评分标准第3页(共7页)MEFCBDA22(1)(1)xyxyxyxy2221(1)[()(1)(1)]2xyxyxy,所以1xy或1xy??.若1xy,则22xy?=2.若1xy??,则22222111[()()][1()]222xyxyxyxy,当且仅当12xy??时等号成立.所以,22xy?的最小值为12.第一试(B)一、选择题:(本题满分42分,每小题7分)1.已知二次函数2(0)yaxbxcc的图象与x轴有唯一交点,则二次函数3233yaxbxc的图象与x轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数2yaxbxc的图象与x轴有唯一交点,所以2140bac,所以240bac??.故二次函数3233yaxbxc的判别式323363623211()4(4)()1616bacbacbb61516b?0?,所以,二次函数3233yaxbxc的图象与x轴有两个交点.2.题目和解答与(A)卷第1题相同.3.题目和解答与(A)卷第3题相同.4.已知正整数,,abc满足26390abc,260abc,则222abc??=()A.424.B.430.C.441.D.460.【答】C.由已知等式消去c整理得22(9)3(1)75ab,所以23(1)75b??,又b为正整数,所以16b??.若b=1,则2(9)75a??,无正整数解;若b=2,则2(9)72a??,无正整数解;若b=3,则2(9)63a??,无正整数解;若b=4,则2(9)48a??,无正整数解;若b=5,则2(9)27a??,无正整数解;若b=6,则2(9)0a??,解得9a?,此时18c?.2017年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)因此,9a?,b=6,18c?,故222abc=441.5.设O是四边形ABCD的对角线AC、BD的交点,若180BADACB,且3BC?,4AD?,5AC?,6AB?,则DOOB=()A.43.B.65.C.87.D.109.【答】D.解答过程与(A)卷第4题相同.6.题目和解答与(A)卷第5题相同.二、填空题:(本题满分28分,每小题7分)1.题目和解答与(A)卷第1题相同.2.设O是锐角三角形ABC的外心,,DE分别为线段,BCOA的中点,7ACBOED,5ABCOED,则OED?=_________.【答】10?.如图,设OEDx??,则5ABCx??,7ACBx??,DOC??18012BACx,10AOCx??,所以1802AODx,180(1802)ODExxx,所以1122ODOEOAOC,所以60DOC,从而可得10x??.3.题目和解答与(A)卷第3题相同.4.题目和解答与(A)卷第4题相同.第二试(A)一、(本题满分20分)已知实数,xy满足3xy??,221112xyxy,求55xy?的值.解由221112xyxy可得2233222()xyxyxyxyxy.设xyt?,则222()292xyxyxyt,332()[()3]3(93)xyxyxyxyt,代入上式可得22(392)3(93)tttt,解得1t?或3t?.……………………10分当3t?时,3xy?,又3xy??,故,xy是一元二次方程2330mm的两实数根,但易知此方程没有实数根,不合题意.……………………15分当1t?时,1xy?,又3xy??,故,xy是一元二次方程2310mm的两实数根,符合题意.此时552233222()()()(92)[3(93)]3123xyxyxyxyxyttt.……………………20分2017年全国初中数学联合竞赛试题参考答案及评分标准第5页(共7页)DEOBAC二、(本题满分25分)如图,△ABC中,ABAC?,45BAC,E 是BAC?的外角平分线与△ABC的外接圆的交点,点F在AB上且EFAB?.已知1AF?,5BF?,求△ABC的面积.解在FB上取点D,使FD=AF,连接ED并延长,交△ABC的外接圆于点G.由EF⊥AD,AF=FD知△AED是等腰三角形,所以∠AED=1802??∠EAD=∠BAC,……………………10分所以??AGBC?,所以??ACBG?,所以AC=BG (15)分又∠BGE=∠BAE=∠ADE=∠BDG,所以BG=BD,所以AC=BD =5-1=4,……………………20分△ABC的AB边上的高sin4522hAC.所以,△ABC的面积116226222SABh (25)分三、(本题满分25分)求所有的正整数数对(,)ab,使得34938ba.解显然,4938b??为奇数,所以a为奇数.又因为33493849385ba,所以5a?.……………………5分由34938ba可得38493ba,即22(2)(24)73baaa.……………………10分设2(2,24)aaad,则d为奇数.注意到224(2)(4)12aaaa,所以|12d,所以d=1或3.……………………15分若d=1,则有22 27, 243,b aaa或22 23, 247, ba aa均无正整数解.……………………20分若d=3,则有221237,243,baaa?或12223,2437,baaa解得11a?,3b?.所以,满足条件的正整数对只有一个,为(11,3).……………………25分第二试(B)一、(本题满分20分)已知实数,,abc满足abc??,16abc,22211284abcabc,求c的值.解设abx??,aby?,依题意有2212(16)(16)1284xyxyx,整理得21(8)(8)8xyx,所以8x?或8(8)yx??.……………………10分2017年全国初中数学联合竞赛试题参考答案及评分标准第6页(共7页)FEABCD(1)若8x?,则8ab??,此时c=8.(2)若8(8)yx??,即8(8)abab,则(8)(8)0ab,所以8a?或8b?.当8a?时,结合abc??可得24abc,与16abc矛盾.当8b?时,结合abc??及16abc可得0a?,8c?.综合可知:8c?.……………………20分二、(本题满分25分)求所有的正整数m,使得21221mm 是完全平方数.解当m=1时,212211mm是完全平方数.……………………5分当1m?时,设212221mmn(n为正整数).注意到2112112122212(2)221(21)(2)mmmmmm,故可得12122(21)(2)mmn,……………………10分所以22212112(21)(21)(21)mmmmnnn.……………………15分设121mxn,121myn,则xy?,222mxy??,所以,xy均为2的方幂.……………………20分又22myx被4除余数为2,所以,只可能2x?,2my?,故22222mm,解得3m?.综上可知:满足条件的正整数m有两个,分别为1和3.……………………25分三、(本题满分25分)如图,O为四边形ABCD内一点,OADOCB,OAOD?,OBOC?.求证:2222ABCDADBC.证明由题设条件可知90AODBOC,又OADOCB,所以△AOD∽△COB,……………………5分所以ODAOOBCO?,从而OCAOOBOD?.……………………10分又AOCAOBBOCAOBAODDOB,所以△AOC∽△DOB,所以OACODB.……………………15分设AC和BD交于点P,则90APDAOD,所以ACDB?,……………………20分所以222222222222()()()()ABCDAPPBPDPCAPPDPBPCADBC .……………………25分2017年全国初中数学联合竞赛试题参考答案及评分标准第7页(共7页)PDAO CB。
【试题】2017全国初中数学联赛初二卷
【关键字】试题2017年全国初中数学联合竞赛试题初二卷第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数满足,,则的值为().A. 2B. 1C. 0D.2.已知实数满足,,则的值为().A. 125B. 120C. 100D. 813.若正整数满足且,则称为好数组.那么好数组的个数为().A. 4B. 3C. 2D. 14.已知正整数满足,,则的值为().A. 424B. 430C. 441D. 4605.梯形ABCD中,AD∥BC,,,,,则梯形的面积为().A. B. C. D.6.如图,梯形ABCD中,AD∥BC,,点E在AB上,若,,,,则的值为().A. 56B. 58C. 60D. 62二、填空题:(本题满分28 分,每小题7 分)1.使得等式成立的实数的值为________.2.已知△ABC的三个内角满足.用表示中的最小者,则的最大值为________.3.设是两个互质的正整数,且为质数.则的值为________.4.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20 分)设是两个不同的两位数,且是由交换个位数字和十位数字所得,如果是完全平方数,求的值.二、(本题满分25 分)如图,△ABC中,D为BC的中点,平分,平分,,,P为AD与EF的交点.证明:.三、(本题满分25 分)已知是不全相等的正整数,且为有理数,求的最小值.2017年全国初中数学联合竞赛试题初二卷参照答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数满足,,则的值为().A. 2B. 1C. 0D.答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把,看成一个整体变量求解方程.解析:已知等式可变形为,,解得,,所以.2.已知实数满足,,则的值为().A. 125B. 120C. 100D. 81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设,,,则,,,由.则.3.若正整数满足且,则称为好数组.那么好数组的个数为().A. 4B. 3C. 2D. 1答案:B对应讲次:所属知识点:数论思路:先通过且的限定关系确定可能的种类,再通过枚举法一一验证.解析:若为好数组,则,即,显然或.若,则,即,可得或,共个好数组.若,则或,可得;,不是整数舍去,共个好数组.共个好数组.4.已知正整数满足,,则的值为().A. 424B. 430C. 441D. 460答案:C对应讲次:所属知识点:方程思路:由已知等式消去整理后,通过是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得,则,即.当时,均无与之对应的正整数;当时,,符合要求,此时,代入验证满足原方程.因此,,,,则.5.梯形ABCD中,AD∥BC,,,,,则梯形的面积为().A. B. C. D.答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则,则△ABE是等腰三角形,,,经计算可得.所以梯形ABCD的面积为.6.如图,梯形ABCD中,AD∥BC,,点E在AB上,若,,,,则的值为().A. 56B. 58C. 60D. 62答案:B对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt△EAD中去,利用勾股定理求解.解析:作CF⊥AD,交AD的延长线于点F,将△CDF绕点C逆时针旋转至△CGB,则ABCF 为正方形,可得△ECG≌△ECD,.设,则,.在Rt△EAD中,有,解得.二、填空题:(本题满分28 分,每小题7 分)1.使得等式成立的实数的值为________.答案:8对应讲次:所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得.令,则,代入整理可得,解得,舍负,即或,验证可得.2.已知△ABC的三个内角满足.用表示中的最小者,则的最大值为________.答案:对应讲次:所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况.解析:,,又当时,可以取到.则的最大值为.3.设是两个互质的正整数,且为质数.则的值为________.答案:7对应讲次:所属知识点:数论思路:因为是质数,只能拆成1和p,另一方面通过、a、b两两互质来拆分的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为互质,所以、a、b两两互质,因为质数,所以可得,,不是质数舍;可得,,,符合题意.则.4.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.答案:34对应讲次:所属知识点:数论思路:考虑满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为,考虑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由可知,存在数列和为34的情况.第二试一、(本题满分20 分)设是两个不同的两位数,且是由交换个位数字和十位数字所得,如果是完全平方数,求的值.答案:对应讲次:所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数设为,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果.解析:设,则,由不同得,. ………5分由是完全平方数,则,,可得,………10分也是完全平方数,所以或. ………15分若,则,;若,则没有正整数解.因此,,. ………20分二、(本题满分25 分)如图,△ABC中,D为BC的中点,平分,平分,,,P为AD与EF的交点.证明:.对应讲次:所属知识点:平面几何思路:因为、都在△DEF中,所以想办法推出其性质,比较容易得出,此时若能得出,则自然可以得到结论.解析:由平分,平分,可得. ………5分由得BE∥DF,则. ………10分又,,则△BED≌△DFC,. ………15分得四边形BDFE是平行四边形,,. ………20分又△EDF是直角三角形,. ………25分三、(本题满分25 分)已知是不全相等的正整数,且为有理数,求的最小值.答案:3对应讲次:所属知识点:数论思路:通过是正整数,可以把有理部分和无理部分分离考虑.注意到,可以通过分母有理化来实现分离,再利用互不相等,从最小正整数开始讨论即可得出最小值.解析:,由是有理数,可得.………10分. ………15分不妨设,若,,因为,则,取等号当且仅当时.………20分若,因为,则.所以的最小值为3,当,,时. ………25分此文档是由网络收集并进行重新排版整理.word可编辑版本!。
2017年全国初中数学联赛初二试题及参考答案(详解版)
2017年全国初中数学联合竞赛试题(初二)第一试一、选择题(本题满分 42 分,每小题 7 分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++的值为( ) A .2 B . 1 C . 0 D .1- 2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则()()()222135a b c +++++的值为( )A . 125B . 120C . 100D . 813.若正整数,,a b c 满足a b c ≤≤且()2abc a b c =++,则称(),,a b c 为好数组.那么好数组的个数为( )A . 4B . 3C . 2D . 14.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++的值为( ) A .424 B . 430 C . 441 D . 4605.梯形ABCD 中,AD ∥BC ,3AB =,4BC =,2CD =,1AD =,则梯形的面积为( ) ABC. D.6.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,点E 在AB 上,若42AE =,28BE =,70BC =,45DCE ∠=︒,则DE 的值为( )A . 56B . 58C . 60D . 62二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.8.已知ABC 的三个内角满足100A B C <<<︒.用θ表示100,,C C B B A ︒---中的最小者,则θ的最大值为________.9.设,a b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分 20 分)设,A B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果22A B -是完全平方数,求A 的值.二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点.证明:2EF PD =.三、(本题满分 25 分)已知,,a b c 是不全相等的正整数,求222a b c a b c ++++的最小值.2017年全国初中数学联合竞赛试题 初二卷参考答案第一试一、选择题(本题满分 42 分,每小题 7 分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++的值为( ) A .2 B . 1 C . 0 D .1- 【答案】B【思路】因为所求分式的特点可以想到把2a b +,3b c +看成一个整体变量求解方程. 【解析】已知等式可变形为()()223390a b b c +++=,()()32372a b b c +++=,解得218a b +=,318b c +=,所以312b ca b+=+. 2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则()()()222135a b c +++++的值为( )A . 125B . 120C . 100D . 81 【答案】C 【思路】换元法【解析】设1x a =+,3y b =+,5z c =+,则10x y z ++=,1110x y z++=, 0xy xz yz ∴++=,由()()22222100x y z x y z xy xz yz ++=++-++=.则()()()222135100a b c +++++=.3.若正整数,,a b c 满足a b c ≤≤且()2abc a b c =++,则称(),,a b c 为好数组.那么好数组的个数为( )A . 4B . 3C . 2D . 1 【答案】B【思路】先通过a b c ≤≤且()2abc a b c =++的限定关系确定可能的种类,再通过枚举法一一验证.【解析】若(),,a b c 为好数组,则()26abc a b c c =++≤,即6ab ≤,显然1a =或2. 若1a =,则()21bc b c =++,即()()226b c --=,可得()(),,1,3,8a b c =或()1,4,5,共2个好数组.若2a =,则2b =或3,可得2,4b c ==;53,2b c ==,不是整数舍去,共1个好数组. 共3个好数组()()()(),,1,3,8,1,4,5,2,2,4a b c =.4.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++的值为( ) A .424 B . 430 C . 441 D . 460 【答案】C【思路】由已知等式消去c 整理后,通过,a b 是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.【解析】联立方程可得()()2293175a b -+-=,则()23175b -≤,即16b ≤≤. 当1,2,3,4,5b =时,均无与之对应的正整数a ;当6b =时,9a =,符合要求,此时18c =,代入验证满足原方程. 因此,9a =,6b =,18c =,则222441a b c ++=.5.梯形ABCD 中,AD ∥BC ,3AB =,4BC =,2CD =,1AD =,则梯形的面积为( ) ABC. D.【答案】A【思路】通过作平行四边形把边长关系转化到一个三角形中来.【解析】作AE ∥DC ,AH ⊥BC ,则ADCE 是平行四边形,则3BE BC CE BC AD AB =-=-==, 则ABE 是等腰三角形,3BE AB ==,2AE =,经计算可得AH =. 所以梯形ABCD 的面积为()1142⨯+. 6.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,点E 在AB 上,若42AE =,28BE =,70BC =,45DCE ∠=︒,则DE 的值为( )A . 56B . 58C . 60D . 62【答案】B【思路】补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.【解析】作CF △AD ,交AD 的延长线于点F ,将CDF 绕点C 逆时针旋转90︒至CGB ,则ABCF 为正方形,可得ECG △ECD ,EG ED ∴=. 设DE x =,则28DF BG x ==-,98AD x =-. 在RtEAD 中,有()2224298x x +-=,解得58x =.二、填空题:(本题满分 28 分,每小题 7 分) 7.=a 的值为________. 【答案】8【思路】通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.【解析】易得(321a =.令x ,则0x ≥,代入整理可得()()2310x x x -+=,解得1230,3,1x x x ===-,舍负,即1a =-或8,验证可得8a =.8.已知△ABC 的三个内角满足100A B C <<<︒.用θ表示100,,C C B B A ︒---中的最小者,则θ的最大值为________. 【答案】20︒【思路】一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况.【解析】100C θ≤︒-,C B θ≤-,B A θ≤-()()()131002206C C B B A θ∴≤︒-+-+-=︒⎡⎤⎣⎦ 又当40,60,80A B C =︒=︒=︒时,20θ=︒可以取到. 则θ的最大值为20︒.9.设,a b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.【答案】7【思路】因为p 是质数,只能拆成1和p ,另一方面通过a b +、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.【解析】因为,a b 互质,所以a b +、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得1a b ==,4p =,不是质数舍; 381ab p a b⎧=⎪⎨=⎪+⎩可得7a =,1b =,7p =,符合题意. 则7p =.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 【答案】34【思路】考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.【解析】设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34. 由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设,A B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果22A B -是完全平方数,求A 的值.【思路】对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a b +,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果.【解析】设()101,9,,A a b a b a b N =+≤≤∈,则10B b a =+,由,A B 不同得a b ≠,()()()()22221010911A B a b b a a b a b -=+-+=⨯⨯+-.由22A B -是完全平方数,则a b >,()()11|a b a b +-,可得11a b +=,a b -也是完全平方数,所以1a b -=或4.若1a b -=,则6a =,5b =; 若4a b -=,则没有正整数解. 因此6a =,5b =,65A =.二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点.证明:2EF PD =.【思路】因为EF 、PD 都在DEF 中,所以想办法推出其性质,比较容易得出90EDF ∠=︒,此时若能得出EP PD =,则自然可以得到结论.【解析】由DE 平分ADB ∠,DF 平分ADC ∠,可得90EDF ∠=︒. 由BE DE ⊥得BE △DF ,则EBD FDC ∠=∠.又BD DC =,90BED DFC ∠=∠=︒,则BED △DFC ,BE DF =. 得四边形BDFE 是平行四边形,PED EDB EDP ∠=∠=∠,EP PD =. 又△EDF 是直角三角形,2EF PD ∴=.三、(本题满分 25 分)已知,,a b c 是不全相等的正整数,求222a b c a b c ++++的最小值.【思路】通过,,a b c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用,,a b c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b c b c +--+-==--可得2b ac =.()()22222a c ba b c a c b a b c a c b+-++==+-++++.不妨设a c <,若1a =,2c b =,因为a b ≠,则()113a c b b b +-=+-≥,取等号当且仅当2b =时.若2a ≥,因为1c b ≠≠,则()1243a c b a b b a +-=+-≥+≥>.所以222a b c a b c++++的最小值为3,当1a =,2b =,4c =时.。
2017年全国初中数学联赛
2017年全国初中数学联赛(初二决赛)试卷(3月26日上午8:45---11:15)一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选或错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、六位朋友一起去吃饭,实行AA 制,即大家均摊费用。
因为小王忘了带钱,所以其他人每人多付了5元钱,则这顿饭共花费 ( )A.90元B.120元C.150元D.180元x-m <02、若关于x 的不等式组 9-2x <1,的整数解共有5个,则实数m 的取值范围为( )A.8≤m <9B.8<m ≤9C.9≤m < 10D.9<m ≤103、如图,在矩形ABCD 中,AB=2,AD=3,E 是AB 边的中点,F 是BC 边上的动点,将△EFB 沿EF 所在直线折叠得到△EFB ′,连接DB ′,则DB ′的最小值为 ( ) A.10-1 B.3 C.13-1 D.24、已知三角形的三条边长为a ,b ,13,且a ,b 为整数,a <b <13,则(a ,b)的组数共有 ( )A.26组B.30组C.36组 D49组5、已知△ABC 中,AB=210,BC=6,CA=2,点M 是BC 的中点,过点B 作AM 延长线的垂线,垂足为D.则BD= ( ) A.1 B.313 C.13136 D.13 6、已知非零实数x 、y 、z 满足x 2+20171+y =y 2+20171+z =z 2+20171+x ,则zx yz xy z y x ++++222的值为( )A.1或3B.1或-3C.-1或3D.-1或-3二、填空题(本题满分28分,每小题7分)本题共有4个小题,要求直接将答案写在横线上。
7、已知a=321+,b=321-,则2a 2-5ab+2b 2的值为 . 8、如图,梯形ABCD 中,AD ∥BC ,AC 、BD 相交于M ,且AB=AC ,AB ⊥AC ,BC=BD ,那么∠AMB 的度数为 .9、从0,1,2,3,4,5这六个数字中任选两个不同的数字组成一个两位数,则这个两位数为偶数的概率为 .10、如图,已知在Rt △ABC 中,∠C=90°,AC=BC=10,点D 、E 在线段BC 上,且CD=2,BE=5,点P ,Q 分别是线段AC 、AB 上的动点,则四边形PQED 周长的最小值为 .11、已知关于x 的方程12--x =a 有且仅有两个解,求实数a 的取值范围.四、解答题(本题满分25分)12、如图,已知等腰直角三角形ABC 中,∠B=90°,D 为BC 的中点,E 为线段AC 上一点,且∠EDC=∠ADB.求BDED BE +的值.13、从连续的自然数1,2,……,2017中可以取出n个不同的数,使所取的这n个不同的数中任意三个数之和都能被21整除.求正整数n的最大值.。
2017年全国初中数学联合竞赛试题含答案
2017 年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则3b+c=()a +2bA. 2.B. 1.C. 0.D.-1.【答】B.已知等式可变形为 2( a+ 2b) + 3(3b+c ) = 90 , 3( a+ 2b) + (3b+c ) = 72 ,解得a+2b=18,3b+c=18 ,所以3b+c=1.a +2b2.已知△ABC的三边长分别是a,b,c,有以下三个结论:(1)以a,b,c为边长的三角形一定存在;(2)以 a 2, b 2, c2为边长的三角形一定存在;(3)以 | a-b | +1,| b-c | +1,| c-a | +1 为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设 a ≥ b ≥ c ,则有 b + c > a .(1)因为 b + c > a ,所以 b + c +222b +c > a ,故以a,b,c为bc > a ,即( b + c ) >( a),即边长的三角形一定存在;(2)以 a =2, b =3, c =4为边长可以构成三角形,但以 a 2= 4, b2= 9, c2=16 为边长的三角形不存在;(3)因为 a ≥ b ≥ c ,所以| a - b |+1= a - b +1,| b - c |+1= b - c +1,| c - a |+1= a - c +1,故三条边中| c - a |+1大于或等于其余两边,而(| a-b | +1)+(| b-c | +1)=(a-b+ 1)+(b-c+1)=a-c+ 1 + 1 >a -c+ 1 =| c-a | +1 ,故以 | a-b | +1 , | b-c | +1 , | c-a | +1 为边长的三角形一定存在.3.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么,好数组的个数为()A. 1.B.2.C.3.D.4.【答】C.若( a, b, c) 为好数组,则abc= 2( a+b+c ) ≤ 6c,所以ab≤6.显然,a只能为1或2.若a =2,由ab≤6可得b=2或3,b=2时可得c=4,b=3时可得c=52(不是整数);若a =1,则bc=2(1+b+c),于是可得(b-2)(c-2)=6,可求得(a,b,c)=(1,3,8)或(1,4,5).综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 ∠BAD + ∠ACB = 180︒,且 BC = 3,AD = 4 ,AC = 5 , AB = 6 ,则 DO = ( )OB10 8 64A..B..C..D..D9 7 5 3E【答】A.C过 B 作 BE // AD ,交 AC 的延长线于点 E ,则 ∠ABE = 180︒ - ∠BAD= ∠ACB ,所以△ ABC ∽△ AEB ,所以AC = BC ,所以4O3AB EBAB ⋅ BC6 ⨯318BEB = = = .A6AC 5 5再由 BE // AD ,得 DO = AD = 4 = 10 .BEOB 18 955.设 A 是以 BC 为直径的圆上的一点,AD ⊥ BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足 ∠BAF = ∠CAE .已知 BC =15 , BF = 6 , BD = 3 ,则 AE = ( )AA. 4 3 .B. 2 13 .C. 2 14 .D. 2 15 .【答】B.FBDEC如图,因为 ∠BAF = ∠CAE ,所以 ∠BAF + ∠BAE = ∠CAE + ∠BAE ,即 6 3∠FAE = ∠BAC = 90︒ .又因为 AD ⊥ BC ,故 AD 2 = DE ⋅ DF = DB ⋅ DC .而 DF = BF + BD = 6 + 3 = 9 ,DC = BC - BD = 15 - 3 =12 ,所以 AD 2 = DE ⋅ 9 = 3 ⋅ 12 ,所以 AD = 6 ,DE= 4 . 从而 AE = AD 2 + DE 2 = 62 + 42 = 213 .6.对于正整数 n ,设 a 是最接近的整数,则 1 + 1 + 1 + +1 = ( n)na 1 a 2 a 3a200A. 191 .B. 192 .C. 193 .D. 194 .777 7 【答】A.对于任意自然数 k , ( k +1 )2 = k 2 + k + 1不是整数,所以,对于正整数 n ,- 1 一定不是整数.n24 2的整数,则| m - |< 1 , m ≥1.设 m 是最接近 nn2易知:当 m ≥1时,| m - |< 1 ⇔ ( m - 1 ) 2 < n < ( m + 1 )2⇔ m 2 - m + 1 < n < m 2 + m + 1 .n 2 2 24 4 于是可知:对确定的正整数 m ,当正整数 n 满足 m 2 - m + 1 ≤ n ≤ m 2+ m 时,m 是最接近的整数,n 即 a n = m .所以,使得 a n = m 的正整数 n 的个数为 2m .注意到132 + 13 = 182 < 200 < 14 2 + 14 = 210 ,因此, a , a , ,8 个 4,……,26 个 13,18 个 14.所以1+1+1+ +1= 2 ⨯1+ 4 ⨯1+ 6 ⨯1+ + 26 ⨯1+ 18⨯1=191.a a a a12313147 123200二、填空题:(本题满分 28 分,每小题 7 分)1.使得等式 1 + 1+a=3a 成立的实数 a 的值为_______.【答】 8 .由所给等式可得 (1 + 1 +a )3=a2.令 x =1+a,则 x ≥0,且a=x2-1,于是有(1+ x )3=( x2-1)2,整理后因式分解得x ( x -3)( x +1)2=0,解得 x= 0 ,x= 3 ,x= -1 (舍去),所以a= -1或a=8.123验证可知: a = -1是原方程的增根, a =8是原方程的根.所以, a =8.2.如图,平行四边形ABCD中,∠ABC=72︒,AF⊥BC于点F, AFM交 BD 于点 E ,若 DE =2AB ,则∠AED =_______.【答】 66︒.BE 取 DE 的中点 M ,在Rt△ ADE中,有 AM = EM =1DE = AB .2设∠AED =α,则∠AME =180︒ -2α,∠ABM =α-18︒.又∠ABM = ∠AMB ,所以180︒ -2α=α-18︒,解得α=66︒.3.设m,n是正整数,且m>n.若9m与9n的末两位数字相同,则m-n的最小值为.【答】10.由题意知,9m- 9n= 9n⋅ (9m-n-1) 是100的倍数,所以9m-n-1是100的倍数,所以9m-n的末两位数字是 01,显然,m-n是偶数,设m-n=2t(t是正整数),则9m-n=92t=81t .计算可知: 812的末两位数字是61, 813的末两位数字是41, 814的末两位数字是21, 815的末两位数字是 01.所以 t 的最小值为5,从而可得 m - n 的最小值为10.4.若实数 x, y 满足 x 3+ y 3+3 xy =1,则 x 2+ y2的最小值为.1【答】2 .因为0= x 3+ y 3+3 xy -1=( x + y )3+(-1)3-3 x 2 y -3 xy 2+3xy=( x+y- 1)( x2+y2-xy+x+y+1) =12(x+y-1)[(x-y)2+(x+1)2+(y+1)2],所以 x = y = -1或x+y=1.若x = y = -1,则 x 2+ y2=2.若x + y =1,则x2+y2=12[(x+y)2+(x-y)2]=12[1+(x-y)2]≥12,当且仅当x=y=12时等号成立.所以, x 2+ y2的最小值为12.第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.已知二次函数y=ax2+bx+c(c≠0)的图象与x轴有唯一交点,则二次函数y=a3x2+b3x+c3的图象与 x 轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数 y = ax 2+ bx + c 的图象与 x 轴有唯一交点,所以∆1=b2-4ac=0,所以b2=4ac≠0.故二次函数 y = a 3 x 2+ b3 x + c3的判别式∆2=(b3)2-4a3c3=b6-161(4ac)3=b6-161(b2)3=1615b6>0 ,所以,二次函数y=a3x2+b3x+c3的图象与x轴有两个交点.2.题目和解答与(A)卷第 1 题相同.3.题目和解答与(A)卷第 3 题相同.4.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2=()A. 424.B. 430.C. 441.D. 460.【答】C.由已知等式消去 c 整理得( a -9)2+3(b -1)2=75,所以3(b -1)2≤75,又b为正整数,所以1≤b≤6.若b =1,则( a -9)2=75,无正整数解;若b =2,则( a -9)2=72,无正整数解;若b =3,则( a -9)2=63,无正整数解;若b =4,则( a -9)2=48,无正整数解;若b =5,则( a -9)2=27,无正整数解;若b =6,则( a -9)2=0,解得a=9,此时c=18.因此, a =9,b=6, c =18,故a2+b2+c2==441.5.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+ ∠ACB=180︒,且BC=3,AD=4,AC =5, AB =6,则DO=()OBA.4.B.6.C.8.D.10.3579【答】D.解答过程与(A)卷第 4 题相同.6.题目和解答与(A)卷第 5 题相同.二、填空题:(本题满分 28 分,每小题 7 分)1.题目和解答与(A)卷第 1 题相同.2 .设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠ACB=7∠OED,∠ABC =5∠OED ,则∠OED =_________.A 【答】10︒.如图,设∠OED = x ,则∠A B =C5,x ∠ACB =7x ,∠DOC= ∠BAC =180︒ -12x ,∠AOC =10x ,所以∠AOD =180︒ -2x ,∠ODE =180︒ - x -(180︒ -2 x)= x ,所以OD=OE=1OA =1OC ,所22B 以∠DOC =60︒,从而可得 x =10︒.3.题目和解答与(A)卷第 3 题相同.4.题目和解答与(A)卷第 4 题相同.EODC第二试(A)一、(本题满分20分)已知实数 x, y 满足x+y=3,1+1=1,求 x 5+ y5的值. x+ y 2x 2+ y2解由1+1=1可得 2( x+y+x2+ y 2)= x 3+ y 3+ x 2 y 2+ xy . x + y 2x 2+ y2设xy = t ,则 x 2+ y 2=( x + y )2-2xy =9-2t , x 3+ y 3=( x + y )[( x + y )2-3 xy ]=3(9-3t ),代入上式可得 2(3 + 9 - 2t ) = 3(9 - 3t ) +t2+t,解得t=1或t=3.……………………10分当 t =3时,xy=3,又x+y=3,故x,y是一元二次方程m2-3m+3=0的两实数根,但易知此方程没有实数根,不合题意.……………………15分当 t =1时,xy=1,又x+y=3,故x,y是一元二次方程m2-3m+1=0的两实数根,符合题意.此时x 5+ y 5=( x 2+ y 2)( x 3+ y 3)-( x + y ) x 2 y 2=(9-2t )⋅[3(9-3t )]-3t 2=123.……………………20分二(、本题满分 25 分)如图,△ ABC 中,AB > AC ,∠BAC = 45︒ ,E 是 ∠BAC的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB . 已知 AF =1, BF = 5,求△ ABC 的面积.解 在 FB 上取点 D ,使 FD =AF ,连接 ED 并延长,交△ ABC 的外接圆于点 G.由 EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =180︒ - 2 ∠EAD =∠BAC , ……………………10 分EAFDCGB……………………15 分 所以 AG = BC ,所以 AC = BG ,所以 AC =BG. 又∠BGE =∠BAE =∠ADE =∠BDG ,所以 BG =BD ,所以 AC =BD =5-1=4, ……………………20 分△ ABC 的 AB 边上的高 h = AC sin 45︒ = 2 2 .所以,△ ABC 的面积 S = 1 ⋅ AB ⋅ h = 1 ⨯ 6 ⨯ 2 = 6 .2 2 ……………………25 分22三、(本题满分 25 分)求所有的正整数数对 ( a , b ) ,使得 a 3 = 49 ⨯ 3b +8 . 解 显然, 49 ⨯ 3b +8 为奇数,所以 a 为奇数.又因为 a 3 = 49 ⨯ 3b + 8 ≥ 49 ⨯ 3 + 8 > 53 ,所以 a > 5 .……………………5 分由 a 3 = 49 ⨯ 3b +8 可得 a 3 - 8 = 49 ⨯3b ,即 ( a - 2)( a 2 + 2a + 4) = 7 2 ⨯3b . ……………………10 分设 ( a - 2, a 2 + 2a + 4) = d ,则 d 为奇数.注意到 a 2 + 2a + 4 = ( a - 2)( a + 4) +12 ,所以 d | 12 ,所以 d=1 或 3. ……………………15 分⎧a - 2 = 7 2,⎧a - 2 = 3b,均无正整数解.……………………20 分若 d =1,则有 ⎨a 2 + 2 a + 4 或 ⎨a 2 + 2 a + 4 = 7 2 ⎪ = 3b ,⎪ , ⎩⎩⎧a - 2 = 3 ⨯7 2, ⎧a - 2 = 3b -1,解得 a =11, b = 3 . 若 d =3,则有 ⎨ 2 + 2 a + 4 b -1或 ⎨ 2 + 2 a + 4 = 3 ⨯7 2 ⎪ a = 3 , ⎪ a ,⎩⎩所以,满足条件的正整数对只有一个,为(11,3).……………………25 分第二试 (B )一、(本题满分 20 分)已知实数 a , b , c 满足 a ≤ b ≤ c , a + b + c =16 , a 2 + b 2 + c 2 +14 abc =128 ,求 c 的值.解 设 a + b = x , ab = y ,依题意有 x 2 - 2 y + (16 - x ) 2 +14 y (16 - x ) =128 ,整理得( x - 8) 2 = 1y ( x -8) ,8所以 x = 8 或 y = 8( x -8) .……………………10 分(1)若 x =8,则 a + b =8,此时 c =8.(2)若 y =8( x -8),即 ab =8( a + b -8),则( a -8)(b -8)=0,所以a=8或b=8.当a =8时,结合 a ≤ b ≤ c 可得 a + b + c ≥24,与 a + b + c =16矛盾.当b =8时,结合 a ≤ b ≤ c 及 a + b + c =16可得 a =0, c =8.综合可知: c =8.……………………20分二、(本题满分 25 分)求所有的正整数m,使得22m-1-2m+1是完全平方数.解当 m =1时,22m-1-2m+1=1是完全平方数.……………………5分当 m >1时,设22m-1-2m+1=n2( n 为正整数).注意到 22m-1- 2m+ 1 = 2 ⋅ (2m-1 ) 2- 2 ⋅ 2 m-1+ 1 = (2 m-1- 1) 2+ (2 m-1 )2,故可得(2 m-1- 1) 2+ (2 m-1 )2=n2,……………………10分所以 22m-2=n2- (2m-1- 1) 2= ( n+ 2 m-1- 1)( n- 2 m-1+1) .……………………15分设 x = n -2m-1+1, y = n +2m-1-1,则x<y, xy =22m-2,所以x,y均为2的方幂.……………………20分又 y - x =2m-2被4除余数为2,所以,只可能x=2, y =2m,故2⨯2m=22m-2,解得m=3.综上可知:满足条件的正整数 m 有两个,分别为1和3.……………………25分三、(本题满分 25 分)如图,O为四边形ABCD内一点,∠OAD= ∠OCB,DOA ⊥ OD , OB ⊥ OC .求证:AB2+CD2=AD2+BC2.AOP 证明由题设条件可知∠AOD = ∠BOC =90︒,又∠OAD =∠OCB,所以△ AOD ∽△ COB ,……………………5分OD AO OC AOB所以OB=CO,从而OB=OD .……………………10分C 又∠AOC = ∠AOB + ∠BOC = ∠AOB + ∠AOD = ∠DOB ,所以△ AOC ∽ △ DOB ,所以∠OAC = ∠ODB .……………………15分设AC 和BD交于点P,则∠APD = ∠AOD =90︒,所以 AC ⊥ DB ,……………………20分所以 AB 2+ CD 2=( AP 2+ PB 2)+( PD 2+ PC 2)=( AP 2+ PD 2)+( PB 2+ PC 2)= AD 2+ BC2.……………………25分。
2017全国初中数学联赛初一试题及答案
省市县(区)学校姓名考号(密封装订线内不要答题)得分 评卷人得分评卷人)题答要不内线订装封密()题答要不内线订装封密(90745154100,,=∴⎪⎩⎪⎨⎧=+=+x y x y x y x 则道做错道设做对10.已知: a =1×2+2×3+3×4+!+99×100, b =2×4+3×5+4×6+!+100×102则b a −=_________.【解析】: −15147a −b =−3×2−3×3−3×4−!−3×100=−3×(2+3+!+100) −3×99×51=−1514711.小华为了备战2017年全国初中数学联赛,做了100道模拟选择题,估分时把对的20%估为错的,把错的20%估为对的,这样得到74道是正确的,那么小华真正做对道.【解析】: 12.若 a ,b ,c ,d 都是自然数,满足 a 3=b 2,c 4=d 3,且 a −d =33,则 b −c =______.【解析】4849或335设 a 3=b 2=p 6,c 4=d 3=q 12,所以 a =p 2,d =q 4.所以 33=p 2−q 4=(p −q 2)(p +q 2),得 p +q 2=33,p −q 2=1或 p +q 2=11,p −q 2=3所以 p =17,q =4或 p =7,q =2,所以 b −c =p 3−q 3=4849或 335.三、解答题(本题满分20分)如图,一个九宫格内有八个正方形滑块,分别标有数字1, 2, 3, 4, 5, 6, 7, 8. 现在滑动九宫格中的滑块,例如:依次将滑块 2下移一格,滑块 1右移一格,滑块 8上移 1格,滑块 2左移一格,可以得到图2.图1 图2图3 图4(1)是否可以经过若干次滑动,使得图1变为图3的情形?若可以,请指出操作方法;若不能,说明理由.(2)是否可以经过若干次滑动,使得图1变为图4的情形?若可以,请指出操作方法;若不能,说明理由.【解析】:(1)可以,先将滑块8移至空白处,其它滑块从7至1依次顺时针滑动一格,再重复一次该操作得到下图.再将8上移一格.即可得到图2.……………………(10分)(2)不能将某个滑块移入中间空格处,然后移动外围的7个滑块,再将中间的滑块移至外围。
2017年全国初中数学竞赛试题及答案
“《数学周报》杯”2017年全国初中数学竞赛 (天津赛区)试题参考答案及评分标准一、选择题(共5小题,每小题7分,满分35分) (1)设x =(1)(2)(3)x x x x +++的值为( ). (A )0 (B )1(C )﹣1(D )2【答】C . 解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-(2)已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为( ).(A )111(B )0 (C )5 (D )5411【答】D .解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125xy z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. (3)若1x >,0y >,且满足3yy xxy x x y==,,则x y +的值为( ). (A )1 (B )2(C )92(D )112【答】C .解:由题设可知1y yx -=,于是 341y y x yx x -==,所以411y -=.故12y =,从而4=x .于是92x y +=.(4)设333311111232011S =++++,则4S 的整数部分等于( ). (A )4 (B )5(C )6(D )7【答】A .解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.(5)点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 【答】C .解:如图,连接DE ,设1DEF S S ∆'=, 则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >. 二、填空题(共5小题,每小题7分,共35分)(6)两条直角边长分别是整数a b ,(其中2011b <),斜边长是1b +的直角三角形的个数为 .【答】31.解:由勾股定理,得 12)1(222+=-+=b b b a .因为b 是整数,2011<b ,所以2a 第(5)题是1到4023之间的奇数,而且是完全平方数,这样的数共有31个,即2223 5 63,,,.因此a 一定是3,5,…,63,故满足条件的直角三角形的个数为31.(7)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16. 解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=.(8)若y =a ,最小值为b ,则22a b +的值为 . 【答】32. 解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.(9)如图,双曲线xy 2=(x >0)与矩形OABC 的边CB , BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 .【答】32. 解:如图,设点B 的坐标为a b (,),则点F 的坐标为2b a (,).因为点F 在双曲线2y x=上,所以 4.ab = 又点E 在双曲线上,且纵坐标为b ,所以点E 的坐标为2(,)b b.于是11212222221312.22OEF OEC FBEOFBC S S S S b b b a b a b b ab ∆∆∆=--=+-⨯⨯-⨯⨯-=+-=梯形()()() (10)如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .【答】84.解:如图,设BC =a ,AC =b , 则22235a b +==1225. ① 又Rt △AFE ∽Rt △ACB , 所以FE AF CB AC =,即1212b a b-=, 故12()a b ab +=. ②由①②得 2222122524a b a b ab a b +=++=++()(),解得a +b =49(另一个解-25舍去),所以 493584a b c ++=+=. 三、解答题(共4题,每题20分,共80分)(11)已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得 ()()11a a αβαβ+=-++=,, ………………………………5分两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=,第(10)题第(9)题所以,2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,………………………………10分解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(), 所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29. ………………………………………………20分 (12)如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.证明:如图,延长AP 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为AB 为⊙1O 的直径,所以∠ADB =∠90=︒BDQ .…………5分 故BQ 为⊙2O 的直径.于是CQ BC BH HQ ⊥⊥,. ……………………………………………………10分 又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. ………………………………………………15分 所以点P 为CH 的中点. ………………………………………………20分 (13) 如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. (Ⅰ)求证:∠ABP =∠ABQ ; (Ⅱ)若点A 的坐标为(0,1), 且∠PBQ =60º,试求所有满足条件的 直线PQ 的函数解析式.解:(Ⅰ)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是,222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- …………5分又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ .故∠ABP =∠ABQ . …………………………………………………………10分(Ⅱ)解法一 设PC a =,DQ b =,不妨设a ≥b >0, 由(Ⅰ)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以 AC 2-,AD =2. 因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD=,即a b .所以a b +=.由(Ⅰ)中32P Q x x t =-,即32ab -=-,所以32ab a b =+=,于是,可求得2==a b将b =代入223y x =,得到点Q ,12). …………………15分再将点Q 的坐标代入1y kx =+,求得=k所以直线PQ 的函数解析式为1y x =+. 根据对称性知,所求直线PQ 的函数解析式为1y x =+,或1y =+. ………………20分 解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(Ⅰ)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由(Ⅰ),得3322P Q x x t =-=-,32P Q x x k +=.若Q x =代入上式得P x = 从而2()3P Q k x x =+=.同理,若Q x =可得2P x =-从而2()3P Q k x x =+.所以,直线PQ 的函数解析式为1y =+,或1y x =+. ………………………………………20分 (14)已知0122011i a i >=,, , , ,且122011a a a <<<,证明:122011a a a ,,,中一定存在两个数i j a a i j <,(),使得(1)(1)2010i j j i a a a a ++-<.证明:令20101 2 20111i ix i a ==+,,,,, ……………………………………5分 则20112010102010x x x <<<<<. …………………………………10分故一定存在1≤k ≤2017, 使得11k k x x +-<,从而120102010111k k a a +-<++. …………………………………15分即 11(1)(1)2010k k k k a a a a ++++-<. …………………………………………20分。
2017年全国初中数学竞赛试题参考答案(1)
2006年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为 A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入 题后的括号里•不填、多填或错填得零分)1 •在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从 10解:因为4和9的最小公倍数为36, 19+ 36 = 55,所以第二次同时经过这两种设施是在55千米处.故选C . 2.已知 m h 一2,n =1 - . 2,且 (7m 2 -14ma)(3n 2 -6n - 7) =8,贝U a 的值等于()(A )— 5 ( B ) 5 ( C )— 9 (D ) 9答:C .解:由已知可得 m 2-2m=1,n 2 -2n =1 .又2 2(7m -14m a)(3n _6n _7) =8,所以 7 • a 3-7 =8,解得a = -9 .故选C .3. Rt △ ABC 的三个顶点A , B , C 均在抛物线y = x 2 上,并且斜边AB 平行于x 轴.若 斜边上的高为h ,则()(A ) h ::1 ( B ) h =1(C ) 1 :: h 2( D ) h 2答:B .解:设点A 的坐标为(a,a 2),点C 的坐标为(c,c 2) ( c £ a ),则点B 的坐标为(-a,a 2), 由勾股定理,得2 /、2 / 2 2、2AC 二(c -a) (c -a ),千米处开始,每隔9千米经过一个速度监控仪.刚好在 种设施,那么第二次同时经过这两种设施的千米数是(19千米处第一次同时经过这两 ).(A ) 36答:C .(D) 90(B ) 37 (C ) 552( 、2 / 2 2、2BC 二(c a) (c-a ),2 2 2AC BC 二 AB ,由于a 2 c 2,所以a 2 -c 2 =1,故斜边AB 上高h = a 2 -c 2 = 1 .故选B . 4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其 中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其 中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了 34个六十二边形和一些多边形纸片,则至少要剪的刀数是()(A ) 2004 (B ) 2005(C ) 2006(D ) 2007答:B .解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分 的内角和增加360°.于是,剪过k 次后,可得(k + 1)个多边形,这些多边形的内角 和为(k + 1)x 360°.因为这(k + 1)个多边形中有34个六十二边形,它们的内角和为34X ( 62- 2)x 180° =34x 60x 180°,其余多边形有(k + 1)- 34= k — 33 (个),而这些多边形的内角和不少于(k — 33)x 180°.所以(k + 1)x 360°> 34x 60x 180° + ( k — 33)x 180 解得 k > 2005.当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1 个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三 角形和1个六边形……如此下去,剪了 58刀后,得到58个三角形和1个六十二边形.再 取出33个三角形,在每个三角形上剪一刀,又可得到 33个三角形和33个四边形,对 这33个四边形,按上述正方形的剪法,再各剪 58刀,便得到33个六十二边形和33x 58个三角形.于是共剪了所以/ 2 2 x 2(a -c )二 a 2 - c 258 + 33+ 33x 58= 2005 (刀).故选B.5. 如图,正方形ABCD内接于。
2017年全国初中数学联赛初二卷和详解
2017年全国初中数学联合竞赛试题初二卷第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-12.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.813.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.14.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.4605.梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.6.如图,梯形ABCD中,AD∥BC,∠A=90°,点E在AB上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE的值为().A.56B.58C.60D.62二、填空题:(本题满分28分,每小题7分)7.=a的值为________.8.已知△ABC的三个内角满足A<B<C<100°.用θ表示100°-C,C-B,B-A中的最小者,则θ的最大值为________.9.设a,b是两个互质的正整数,且38abpa b=+为质数.则p的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得AH =所以梯形ABCD 的面积为()1142⨯+=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。
2017年杨浦区初中数学竞赛获奖名单
68
二等奖
2
吉翔
男
兰生复旦
9
68
二等奖
3
许馨月
女
兰生复旦
9
68
二等奖
4
陶思博
男
兰生复旦
9
68
二等奖
5
张赟喆
男
兰生复旦
9
66
二等奖
6
张真歌
女
杨浦实验
9
66
二等奖
7
伍俊霖
男
兰生复旦
9
66
二等奖
8
王金典
男
兰生复旦
9
65
二等奖
9
李远
男
存志学校
9
65
二等奖
10
诸皓庭
男
兰生复旦
9
65
二等奖
11
楼修逸
男
上外双语
女
复旦二附中
9
46
三等奖
28
刘雨晖
男
兰生复旦
9
45
三等奖
29
貟易
男
兰生复旦
9
45
三等奖
30
刘仕轩
男
上外双语
9
45
三等奖
31
习宇飞
男
上外双语
9
44
三等奖
32
袁田
男
兰生复旦
9
44
三等奖
33
陆嘉骐
男
杨浦实验
9
44
三等奖
34
孙彬焱
男
兰生复旦
9
43
三等奖
35
关帅
男
2008—2017年全国初中数学竞赛试题含答案
“《数学周报》杯”2008年全国初中数学竞赛试题班级__________学号__________姓名______________得分______________一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里.不填、多填或错填都得0分)1.已知实数x ,y 满足:4x 4-2x 2=3,y 4+y 2=3,则4x4+y 4的值为( )(A )7 (B )1+132(C )7+132(D )52.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数y =x 2+mx +n 的图象与x 轴有两个不同交点的概率是( )(A )512(B )49(C )1736(D )123.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可确定的不同直线最少有 ( )(A )6条(B )8条(C )10条(D )124.已知AB 是半径为1的圆O 的一条弦,且AB =a <1.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB =AB =a ,DC 的延长线交圆O 于点E ,则AE 的长为 ( )(A )52a (B )1(C )32(D )a5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有 ( ) (A )2种(B )3种(C )4种(D )5种二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u *v =uv +v .若关于x 的方程x *(a *x )=-14有两个不同的实数根,则满足条件的实数a 的取值范围是_______.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_____分钟. 8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为______.9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为______.10.关于x ,y 的方程x 2+y 2=208(x -y )的所有正整数解为________.三、解答题(共4题,每题15分,满分60分)11.在直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴的正半轴分别交FMD BA于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△OAB面积的最小值.12.是否存在质数p,q,使得关于x的一元二次方程px2-qx+p=0有有理数根?13.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.14.从1,2,…,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值.简答:一. 选择题 ACBBD ;二. 填空题 6. a > 0 或 a <-1; 7. 4; 8. 9; 9.163; 10. x =48, x =160,y =32; y =32. 三.解答题:11. (1)k =2b -b 22(b +3),b > 2; (2)当 b =2+10, k =-1时,△OAB 面积的最小值为7+210; 12. 存在满足题设条件的质数p ,q . 当p =2,q =5时,方程2x 2-5x + 2=0 的两根为 x 1=12, x 2=2. 它们都是有理数; 13. 存在满足条件的三角形. △ABC 的边 a =6,b =4,c =5,且∠A =2∠B ,证明略. 14. n 的最小值是5,证明略.中国教育学会中学数学教学专业委员会“《数学周报》杯”2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足 2242(3)42a b a b a -++-=,则a b +等于( ). (A )-1 (B )0 (C )1 (D )2 【答】C .解:由题设知a ≥3,所以,题设的等式为22(3)0b a b +-=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA=a ,OB =OC =OD =1,则a 等于( ).(A)(B(C )1 (D )2【答】A .解:因为△BOC ∽ △ABC ,所以BO BCAB AC=,即11aa a =+, 所以, 210a a --=.由0a >,解得a =. 3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组322ax by x y +=⎧⎨+=⎩,只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )3613 【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y 看作x 的函数,函数的图像如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )32【答】B .解:根据图像可得BC =4,CD =5,DA =5,进而求得AB =8,故S △ABC =12×8×4=16.5.关于x ,y 的方程22229x xy y ++=的整数解(x ,y )的组数为( ). (A )2组 (B )3组 (C )4组 (D )无穷多组 【答】C .解:可将原方程视为关于x 的二次方程,将其变形为 22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数. 由 2224(229)7116y y y ∆=--=-+≥0, 解得 2y ≤11616.577≈.于是 2y0 1 4 9 16 ∆11610988534显然,只有216y =时,4∆=是完全平方数,符合要求. 当4y =时,原方程为2430x x ++=,此时121,3x x =-=-; 当y =-4时,原方程为2430x x -+=,此时341,3x x ==. 所以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩ 二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、(第4题)图1 图2后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km.分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kxky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得()()250003000k x y k x y k +++=, 则 237501150003000x y +==+.7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AHAB的值为 .解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EFA 中,90EFA FHA ∠=∠=︒,FAH EAF ∠=∠所以 Rt △FHA ∽Rt △EFA ,AH AF AF AE=.而AF AB =,所以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .【答】 10.解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.(第7题)又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=.由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】6027. 解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 . 故由勾股定理逆定理知△ACB 为直角三角形,且90ACB ∠=︒.作EF ⊥BC ,垂足为F .设EF =x ,由1452ECF ACB ∠=∠=︒,得CF =x ,于是BF =20-x .由于EF ∥AC ,所以EF BFAC BC =, 即 201520x x-=,解得607x =.所以60227CE x ==.10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 . 【答】2-.解:设报3的人心里想的数是x ,则报5的人心里想的数应是8x -.于是报7的人心里想的数是 12(8)4x x --=+,报9的人心里想的数是16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+,报3的人心里想的数是4(8)4x x -+=--.所以4x x =--, 解得2x =-.三、解答题(共4题,每题20分,共80分)(第9题)(第10题)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x . (1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值. 解:(1)联立2y x =与c x t y --=)12(,消去y 得二次方程2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以2221212121[()()]2c x x x x x x ==+-+=221[(21)(23)]2t t t --+-=21(364)2t t -+. ②………………5分把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③………………10分t 的取值应满足2221223t t x x +-=+≥0, ④且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0, ⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 22-≤t ≤22+所以,t 的取值范围为2t ≤2+⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在22-≤t ≤22+2t =-时,2min 3211162(21)2224c -=--+=. ………………20分12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和. 解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-.………………5分因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分 又02009a <<,所以0110k =,,,.因此,满足条件的所有可能的正整数a 的和为11+192(1+2+…+10)=10571. ………………20分13.如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明. ………………5分 因为FCD EAB ∠=∠,所以Rt △FCD ∽ Rt △EAB .于是可得CDDF BE AB=⋅. 同理可得 CEEG AD AB=⋅.………………10分又因为tan AD BEACB CD CE∠==,所以有BE CD AD CE ⋅=⋅,于是可得 DF EG =. ………………20分解法2:结论是DF EG =.下面给出证明.……………… 5分(第13A 题)连接DE ,因为90ADB AEB ∠=∠=︒,所以A ,B ,D ,E 四点共圆,故CED ABC ∠=∠.又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠. ………………15分 所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .………………20分14.n 个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<=;且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =,,,.即 12()1n ii a a a a b n +++-=-.于是,对于任意的1≤i j <≤n ,都有1j i i j a a b b n --=-,从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故 312251n -⨯. ………………10分由于 ()()()112211n n n n n a a a a a a a ----=-+-++-≥()()()2111(1)n n n n -+-++-=-,所以,2(1)n -≤2008,于是n ≤45.结合312251n -⨯,所以,n ≤9. ………………15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………………20分中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.若20 10a b b c==,,则a bb c ++的值为( ). (A )1121 (B )2111 (C )11021 (D )21011解:D 由题设得12012101111110a ab bc b c b +++===+++. 代数式变形,同除b2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4 解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++=的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.方程思想,未达定理;要解一元二次不等式3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =23BC =422-CD =2,则AD 边的长为( ).(A )6(B )64(C )64+ (D )622+ 解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE 6CF =22DF =6于是 EF =4+6.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD 222(46)(6)(224)=++=+226+(第3题)(第3题)勾股定理、涉及双重二次根式的化简,补全图形法4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭ (取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4 解:B由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2. 高斯函数;找规律。
2017年全国初中数学联合竞赛决赛(初三第1试B卷)
2017年全国初中数学联合竞赛决赛(初三)试题第一试(B )(3月26日上午8﹕30——9﹕30)(本试两个大题共10个小题,全卷满分70分.)一、选择题(本题满分42分,每小题7分)1.已知二次函数2y ax bx c =++(0)c ≠的图象与x 轴有唯一交点,则二次函数3233y a x b x c =++的图象与x 轴的交点个数为()A.0B.1C.2D.不确定2.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b c a b ++=() A.2 B.1 C.0 D.1-3.若正整数,,a b c 满足a b c ≤≤且2()abc a b c =++,则称(,,)a b c 为好数组.那么,好数组的个数为()A.1 B2 C3D4 4.已知正整数,,a b c 满足226390,60,a b c a b c --+=-++=则222a b c ++=()A.424B.430C.441D.4605.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =, 则DO OB=( ) A.43 B.65 C.87 D.1096设A 是以BC 为直径的圆上的一点,AD BC ⊥于点D ,点E 在线段DC 上,点F 在CB 的延长线上,满足BAF CAE ∠=∠.已知15BC =,6BF =,3BD =,则AE =()A. B. C. D.二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.=成立的实数a 的值为_______2.设O 为锐角三角形ABC 的外心,,D E 分别为线段,BC OA 的中点,7,ACB OED ∠=∠5,ABC OED ∠=∠则OED ∠=_______3.设,m n 是正整数,且m n >.若9m 与9n的末两位数字相同,则m n -的最小值为4若实数,x y 满足3331x y xy ++=,则22x y +的最小值为_______第二试(B )(3月26日上午9﹕50——11﹕20)考生注意:本试共三个大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)已知实数,,a b c 满足a b c ≤≤,16a b c ++=,22211284a b c abc +++=,求c 的值.二、(本题满分25分)求所有的正整数m ,使得21221m m --+是完全平方数.三、(本题满分25分) 如图,O 为四边形ABCD 内一点,OAD OCB ∠=∠,OA OD ⊥,OB OC ⊥.求证:2222AB CD AD BC +=+.B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3分 8分 10 分 12 分 1分
2分 (2) ∵A , B 所对应的数分别是-8, 7, M, N 所对应的数分别是 m, m + 3.∴A N = (m + 3)-(-8) = m + 11 , BM = 7 - m . 3分 有 m + 11 ≤ 0, ①当 m ≤ -11 时, 7 - m > 0. 得-m - 11 = 2 (7 - m) , 解得 m = 25. ∴A N = m + 11 = -m - 11, BM = 7 - m = 7 - m.由 A N = 2BM, 舍去. ∵m ≤ -11, ∴m = 25 不合题意, 5分 有 m + 11 > 0, ②当-11 < m ≤ 7 时, 7 - m ≥ 0.∴A N = m + 11 = m + 11, BM = 7 - m = 7 - m.由 A N 得 m + 11 = 2 (7 - m) , 解得 m = 1. = 2BM, 7分 有 m + 11 > 0, ③当 m > 7 时, 7 - m < 0.∴A N = m + 11 = m + 11, BM = 7 - m = m - 7.由 A N = 2BM, 得 m + 11 = 2 (m - 7) , 解得 m = 25. 9分 综上所述: 当 m = 1 或 m = 25 时, 10 分 A N = 2BM. (3) PQ 的值不发生改变. 11 分 设 P, Q 表示的数为 a, b .∵ 点 P 为 A N 的中点, ∴ A P = NP. 点 A, , ①当点 N 在点 A 右侧时, N 表示的数分别为-8, m + 3.∴A P = a -(-8) NP =(m + 3)- a, ∴a -(-8)= (m + 3)- a, 解得 a = m - 5 .同理可得, b = m + 7 .∴PQ = b - a = m + 7 - m - 5 = 6. 13 分 2 2 2 2 同理可得, ②当点 N 在点 A 左侧时, PQ = 6. 14 分 恒为 6. ∴PQ 是值不发生改变, 15 分 六、 马到成功 (本大题总计 15 分) 因此当只裁剪长为 0.8 m 的用料时, 最多可剪 7 根; 20.(1) ①6 ÷ 0.8 = 7……0.4, 1分 (6 - 2.5)÷ 0.8 = 4……0.3, 因此当先剪下 1 根 2.5 m 的用料时, 余下部分最多能剪 0.8 m 长的用料 4 根; ② 2分 (6 - 2.5 × 2)÷ 0.8 = 1……0.2, 因此当先剪下 2 根 2.5 m 的用料时, 余下部分最多能剪 0.8 m 长的用 料 1 ③ 根. 3分 故答案为 7, , 4 1. (2) 设用方法②剪 x 根, 方法③裁剪 y 根 6 m 长的钢管, 4分 x + 2y = 32, x = 24, 由题意, 得 解得 6分 4x + y = 100. y = 4. 答: 用方法②剪 24 根, 方法③剪 4 根 6 m 长的钢管. 7分 (3) 设方法①裁剪 m 根, 方法③裁剪 n 根 6 m 长的钢管, 8分 7m + n = 100, m = 12, 由题意, 得 解得 10 分 2n = 32. n = 16. ∴m + n = 28.∵x + y = 24 + 4 = 28, ∴ m + n = x + y. 11 分 设方法①裁剪 a 根, 方法②裁剪 b 根 6 m 长的钢管, 12 分 , , 7a + 4b = 100 a = -4 由题意, 得 解得 (无意义) 14 分 b = 32. b = 32. 所需要 6 m 长的钢管与 (2) 中根数相同. 15 分 ∴ 方法①与方法③联合,
《2017 年组》 参考答案
一、 画龙点睛 (本大题共 8 道小题, 每小题 3 分, 总计 24 分) 8 1. 22 2. -4 3. 117 4. 5. 1 000 000 6. -2 7. -9 996 8. 1 9 二、 一锤定音 (本大题共 4 道小题, 每小题 3 分, 总计 12 分) 9. D 10. A 11. B 12. D 三、 妙笔生花 (本大题共 4 道小题, 总计 30 分) 13 题 6 分, 14 题 7 分, 15 题 8 分, 16 题 9 分, ( ) 方案一: 乘 人的车 辆与乘 人的车 辆, 13. 1 8 4 4 1 方案二: 乘 8 人的车 3 辆与乘 4 人的车 3 辆, 方案三: 乘 8 人的车 2 辆与乘 4 人的车 5 辆, 方案四: 乘 8 人的车 1 辆与乘 4 人的车 7 辆, 方案五: 乘 8 人的车 0 辆与乘 4 人的车 9 辆. (注: 写出一个方案给 1 分, 满分 3 分) (2) 租乘 8 人的车 4 辆与乘 4 人的车 1 辆费用最少. 合情说理. 14. 由已知条件可知 a × 75 + b × 7 - 8 = 8, 所以 a × 75 + b × 7 = 16. a x5 + b x + 8 当 x = -7 时, 2 2 1 5 = - (a × 7 + b × 7)+ 8 2 = - 1 × 16 + 8 2 = 0. 知 m2 - 1 = 0, 且 m - 1 ≠ 0, 15. 由题意, 所以 m = -1. 所以原方程化为 2x + 8 = 0. 解得 x = -4. 所以 2 005 (-m + x) (x + 2m)+ 9m = 36 081. 则发给第一名 (1 x + 1 ) 个; 16. 设这些乒乓球共有 x 个, 2 2 发给第二名 (x - 1 x - 1 )× 1 + 1 =( 12 x + 12 ) 个; 2 2 2 2 2 2 发给第三名 ( 13 x + 13 ) 个; 2 2 发给第四名 ( 14 x + 14 ) 个; 2 2 发给第五名 ( 15 x + 15 ) 个. 2 2 由 ( 1 + 12 + 13 + 14 + 15 ) (x + 1)= x, 2 2 2 2 2 解得 x = 31. 答:这些乒乓球共有 31 个. 四、 一鼓作气 (本大题共 2 道小题, 总计 24 分) 17 题 12 分, 18 题 12 分, {x}+[x]+ 2 {x}= 3 [x] 17. 因为原方程可以转化为 . 所以 3 {x}= 2 [x] . 1 2 . 所以 {x}= 0, , 3 3 当 {x}= 0 时, [x]= 0, 所以 x = 0. - 1 -
3分 5分 6分 1分 3分 4分 5分 7分 2分 3分 4分 6分 8分 1分 2分 3分 4分 5分 7分 8分 9分 2分 3分 5分 7分 6分
当 {x}= 1 时, [x]= 1, 无解. ……………………………………………………………………………… 9 分 2 3 当 {x}= 2 时, [x]= 2, 所以 [x]= 1, 所以 x = 1 2 . 2 11 分 3 3 所以原方程的解为 x = 0 或 1 2 . 12 分 3 (1) 和图 (2) 可知 a + b = 2 × 3 = 6, 18. 由图 ① b + c = 2 × 2 = 4, ②c + d = 2 × 1 = 2, ③ d + e = 2 × 3 = 6, ④e + a = 2 × 1 = 2, ⑤ 2分 所以① + ② + ③ + ④ + ⑤ = 2 (a + b + c + d + e)= 20, 4分 所以 a + b + c + d + e = 10.⑥ 5分 把②④代入⑥得 a + 4 + 6 = 10, 7分 解得 a = 0. 8分 进而求得 b = 6, c = -2, d = 4, e = 2. 11 分
1分 3分 4分 5分
6分 7分
9分 10 分 12 分 14 分 15 分 1分 3分 5分 7分 13 分 15 分 9分
8分
《2017 年全国中学生数学能力竞赛 (决赛) 试题 八年级 (初二) 组》 参考答案
一、 画龙点睛 (本大题共 8 道小题, 每小题 3 分, 总计 24 分) 4 7 ; 3. 16 4. 65° 5. 20 6. 2 001 000 7. 2 692 8. 510 1. 4 2. 9 3 二、 一锤定音 (本大题共 4 道小题, 每小题 3 分, 总计 12 分) 9. D 10. C 11. A 12. C 三、 妙笔生花 (本大题共 4 道小题, 总计 30 分) 13 题 6 分, 14 题 7 分, 15 题 8 分, 16 题 9 分, 则 19 991 997 = a - 1, 13. 设 a = 19 991 998, 19 991 999 = a + 1. 2 a2 原式 = = a2 = 1 . 2 2 (a - 1) +(a + 1) - 2 2a 2 设 男生 有 人, 女生 有 人 14. x y . x - 1 = y, 由题意, 得 (y - 1) x=2 . x = 4, 解得 y = 3. 则 x + y = 7. 答: 这群学生共有 7 人. 15. 如图所示.
⎧ ⏐ ⏐ ⏐ ⏐ ⎨ ⏐ ⏐ ⏐ ⏐ ⎩
2分 5分 7分 8分 9分
依此类推, 调换方法共有: (种) ; 9 + 8 + 7 + … + 1 = 45 由于 10 个字母中, 有两个字母相同, 因此当相同字母调换时, 不会出现错误. 因此出现错误的种数应该是: (种) 45 - 1 = 44 . 18.(1) ∵A M∥BN, ∴∠A + ∠A BN = 180°.∵∠A = 60°, ∴∠A BN = 120°. 1 ∵BC, BD 分别平分∠A BP 和∠PBN,∴∠CBP = ∠A BP, ∠DBP = 1 ∠PBN, ∴∠CBD = 1 ∠A BN = 60°. 2 2 2 3分 (2) 不变化, ∠A PB = 2∠A DB. 4分 证明: ∵A M∥BN, ∴∠A PB = ∠PBN, ∠A DB = ∠DBN. 5分 - 3 -