福建省宁德市2016年中考数学试题(word版,含解析)
【真题】宁德市中考数学试题含答案解析(Word版)
福建省宁德市中考数学试卷(解析版)一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂〕1.(4分)(•宁德)﹣3的绝对值是()A.3 B.C.D.﹣3【考点】15:绝对值.【分析】根据一个负数的绝对值是它的相反数即可求解.【解答】解:﹣3的绝对值是3.故选A.【点评】本题考查了绝对值,如果用字母a表示有理数,则数a 的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.(4分)(•宁德)已知一个几何体的三种视图如图所示,则该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱【考点】U3:由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥.故选C.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.3.(4分)(•宁德)如图,点M在线段AB上,则下列条件不能确定M是AB中点的是()A.BM=AB B.AM+BM=AB C.AM=BM D.AB=2AM【考点】ID:两点间的距离.【分析】直接利用两点之间的距离定义结合线段中点的性质分别分析得出答案.【解答】解:A、当BM=AB时,则M为AB的中点,故此选项错误;B、AM+BM=AB时,无法确定M为AB的中点,符合题意;C、当AM=BM时,则M为AB的中点,故此选项错误;D、当AB=2AM时,则M为AB的中点,故此选项错误;故选:B.【点评】此题主要考查了两点之间,正确把握线段中点的性质是解题关键.4.(4分)(•宁德)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.13【考点】K6:三角形三边关系.【专题】11 :计算题.【分析】根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.【解答】解:∵AB=5,AC=8,∴3<BC<13.故选D.【点评】本题考查了三角形三边的关系:三角形任意两边之和大于第三边.5.(4分)(•宁德)下列计算正确的是()A.﹣5+2=﹣7 B.6÷(﹣2)=﹣3 C.(﹣1)=1 D.﹣20=1【考点】1G:有理数的混合运算;6E:零指数幂.【专题】11 :计算题;511:实数.【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣3,不符合题意;B、原式=﹣3,符合题意;C、原式=﹣1,不符合题意;D、原式=﹣1,不符合题意,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.(4分)(•宁德)如图所示的分式化简,对于所列的每一步运算,依据错误的是()A.①:同分母分式的加减法法则B.②:合并同类项法则C.③:提公因式法 D.④:等式的基本性质【考点】6B:分式的加减法.【分析】根据分式的加减法法则计算即可.【解答】解:①:同分母分式的加减法法则,正确;②:合并同类项法则,正确;③:提公因式法,正确,④:分式的基本性质,故错误;故选D.【点评】此题考查了分式的加减,熟练掌握法则及运算律是解本题的关键.7.(4分)(•宁德)某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为4500元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变【考点】W7:方差;W1:算术平均数.【分析】根据平均数、方差的定义即可解决问题.【解答】解:由题意原来6位员工的月工资平均数为4500元,因为新员工的工资为4500元,所以现在7位员工工资的平均数是4500元,由方差公式可知,7位员工工资的方差变小,故选B.【点评】本题考查方差的定义、平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.(4分)(•宁德)如图,直线ι是一次函数y=kx+b的图象,若点A(3,m)在直线ι上,则m的值是()A.﹣5 B.C.D.7【考点】F8:一次函数图象上点的坐标特征.【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.9.(4分)(•宁德)函数y=x3﹣3x的图象如图所示,则以下关于该函数图象及其性质的描述正确的是()A.函数最大值为2 B.函数图象最低点为(1,﹣2)C.函数图象关于原点对称D.函数图象关于y轴对称【考点】E6:函数的图象;P5:关于x轴、y轴对称的点的坐标;R6:关于原点对称的点的坐标.【专题】532:函数及其图像.【分析】观察函数图象,得出正确的表述即可.【解答】解:观察图形得:函数没有最大值,没有最低点,函数图象关于原点对称,故选C【点评】此题考查了函数的图象,关于x轴、y轴对称的点的坐标,以及关于原点对称的点的坐标,认真观察图形是解本题的关键.10.(4分)(•宁德)如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠CDE=∠BAD D.∠AED=2∠ECD【考点】KH:等腰三角形的性质.【分析】由三角形的外角性质、等腰三角形的性质得出选项A、B、C正确,选项D错误,即可得出答案.【解答】解:∵∠ADB是△ACD的外角,∴∠ADB=∠ACB+∠CAD,选项A正确;∵AD=AE,∴∠ADE=∠AED,选项B正确;∵AB=AC,∴∠B=∠C,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠AED=∠CDE+∠C,∴∠CDE+∠C+∠CDE=∠B+∠BAD,∴∠CDE=∠BAD,选项C正确;∵∠AED=∠ECD+∠CDE,∠ECD≠∠CDE,∴选项D错误;故选:D.【点评】本题考查了等腰三角形的性质、三角形的外角性质;熟练掌握等腰三角形的性质和三角形的外角性质是解决问题的关键.二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.(4分)(•宁德)9月26日,我国自主设计建造的世界最大球面射电望远镜落成启用.该望远镜理论上能接收到13 700 000 000光年以外的电磁信号.数据13 700 000 000光年用科学记数法表示为 1.37×1010光年.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:13 700 000 000=1.37×1010,故答案为:1.37×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(•宁德)一元二次方程x(x+3)=0的根是x=0或﹣3.【考点】A8:解一元二次方程﹣因式分解法.【专题】11 :计算题.【分析】利用分解因式法即可求解.【解答】解:x(x+3)=0,∴x=0或x=﹣3.故答案为:x=0或x=﹣3.【点评】此题主要考查了利用因式分解的方法解一元二次方程,解题的关键是熟练进行分解因式.13.(4分)(•宁德)若矩形的面积为a2+ab,长为a+b,则宽为a.【考点】4H:整式的除法.【分析】根据多项式除以多项式的运算法则计算即可.【解答】解:矩形的宽=(a2+ab)÷(a+b)=a,故答案为:a.【点评】本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.14.(4分)(•宁德)甲、乙两位同学参加物理实验考试,若每人只能从A、B、C、D四个实验中随机抽取一个,则甲、乙两位同学抽到同一实验的概率为.【考点】X6:列表法与树状图法.【专题】11 :计算题;543:概率及其应用.【分析】列表得出所有等可能的情况数,找出甲乙两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DCD AD BD CD DD所有等可能的情况有16种,其中甲乙两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,则P==,故答案为:【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.15.(4分)(•宁德)将边长为2的正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,当α最小时,点A运动的路径长为.【考点】O4:轨迹;R3:旋转对称图形.【分析】根据题意α最小值是60°,然后根据弧长公式即可求得.【解答】解:∵正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,α最小值是60°,∴点A运动的路径长==.故答案为.【点评】本题考查了旋转对称图形,主要考查了学生的理解能力和计算能力,题目是一道比较好的题目,解此题的关键是求出α的最小值.16.(4分)(•宁德)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC 向左平移n个单位,使点C落在该反比例函数图象上,则n的值为2.【考点】G6:反比例函数图象上点的坐标特征;L8:菱形的性质;Q3:坐标与图形变化﹣平移.【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数y=的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.【解答】解:∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数y=的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴y=,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为:2.【点评】本题考查了菱形的性质,平移的性质,用待定系数法求反比例函数的解析式等知识点,能求出C的坐标是解此题的关键.三、解答题(本大题有9小题,共86分.请在答题卞的相应位置作答)17.(8分)(•宁德)化简并求值:x(x﹣2)+(x+1)2,其中x=﹣2.【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题;512:整式.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+x2+2x+1=2x2+1,当x=﹣2时,原式=8+1=9.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(•宁德)已知:不等式≤2+x(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是否是该不等式的解.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)根据不等式的解的定义求解可得.【解答】解:(1)2﹣x≤3(2+x),2﹣x≤6+3x,﹣4x≤4,x≥﹣1,解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥﹣1,而2>﹣1,∴a是不等式的解.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.(8分)(•宁德)如图,E,F为平行四边形ABCD的对角线BD上的两点,AE ⊥BD于点E,CF⊥BD于点F.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,即可证得∠ABE=∠CDF,则可证得△ABE≌△CDF,继而证得结论.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在▱ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.20.(8分)(•宁德)小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.【考点】9A:二元一次方程组的应用.【专题】12 :应用题.【分析】被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意列出方程组,求出方程组的解即可得到结果.【解答】解:被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意得:,解得:,则“五一”前同样的电视每台2500元,空调每台3000元.【点评】此题考查了二元一次方程组的应用,弄清题中的等量关系是解本题的关键.21.(8分)(•宁德)某初中学校组织200位同学参加义务植树活动,每人植树的棵数在5至10之间.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率0.10.20.50.2表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况678910人数363116频率0.10.20.10.40.2根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是9棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是11,正确的数据应该是12(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动200位同学一共植树多少棵?【考点】W4:中位数;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)乙组调查了30人,根据人数和下面的频率可得错误数据为11,应为12;(3)根据样本要具有代表性可得乙同学抽取的样本比较有代表性,再利用样本估计总体的方法计算即可.【解答】解:(1)表1中30位同学植树情况的中位数是9棵,故答案为:9;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是11,正确的数据应该是12;(3)乙同学所抽取的样本能更好反映此次植树活动情况,(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【点评】此题主要考查了抽样调查,以及中位数,关键是掌握中位数定义,掌握抽样调查抽取的样本要具有代表性.22.(10分)(•宁德)如图,在边长为1的正方形组成的5×8方格中,△ABC 的顶点都在格点上.(1)在给定的方格中,以直线AB为对称轴,画出△ABC的轴对称图形△ABD.(2)求sin∠ABD的值.【考点】P7:作图﹣轴对称变换;T7:解直角三角形.【分析】(1)根据格点的特点作出点C关于直线AB的对称点D,连接AD,BD 即可;(2)根据格点的特点可知∠DBC=90°,再由轴对称的性质可知∠ABD=∠ABC=45°,据此可得出结论.【解答】解:(1)如图,△ABD即为所求;(2)由图可知,∠DBC=90°,∵点C与点D关于直线AB的对称,∴∠ABD=∠ABC=45°,∴sin∠ABD=sin45°=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.23.(10分)(•宁德)如图,BF为⊙O的直径,直线AC交⊙O于A,B两点,点D在⊙O上,BD平分∠OBC,DE⊥AC于点E.(1)求证:直线DE是⊙O的切线;(2)若BF=10,sin∠BDE=,求DE的长.【考点】ME:切线的判定与性质;T7:解直角三角形.【分析】(1)先连接OD,根据∠ODB=∠DBE,即可得到OD∥AC,再根据DE⊥AC,可得OD⊥DE,进而得出直线DE是⊙O的切线;(2)先连接DF,根据题意得到∠F=∠BDE,在Rt△BDF中,根据=sinF=sin∠BDE=,可得BD=2,在Rt△BDE中,根据sin∠BDE==,可得BE=2,最后依据勾股定理即可得到DE的长.【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4.【点评】本题主要考查了切线的判定以及解直角三角形的运用,解决问题的关键是作辅助线,构造等腰三角形以及直角三角形,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.24.(13分)(•宁德)在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.【考点】LO:四边形综合题.【分析】(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;(2)先根据垂直的作法即可画出图形,判断出△ADE≌△CBF,得出CF=1,再判断出△AOB∽△DEA,即可得出OB=,即可得出结论;(3)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.【解答】解:(1)如图1,过点D作DE⊥y轴于E,∴∠AED=∠AOB=90°,∴∠ADE+∠DAE=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAE+∠BAO=90°,∴∠ADE=∠BAO,在△ABO和△ADE中,,∴△ABO≌△ADE,∴DE=OA,AE=OB,∵A(0,3),B(m,0),D(n,4),∴OA=3,OB=m,OE=4,DE=n,∴n=3,∴OE=OA+AE=OA+OB=3+m=4,∴m=1;(2)画法:如图2,①过点A画AB的垂线l1,过点B画AB的垂线l2,②过点E(0,4),画y轴的垂线l3交l1于D,③过点D画直线l1的垂线交直线l2于点C,所以,四边形ABCD是所求作的图形,过点C作CF⊥x轴于F,∴∠CBF+∠BCF=90°,∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BAD=90°,∴∠ABO+∠CBF=90°,∴∠BCF=∠ABO,同理:∠ABO=∠DAE,∴∠BCF=∠DAE,在△ADE和△CBF中,,∴△ADE≌△CBF,∴DE=BF=n,AE=CF=1,易证△AOB∽△DEA,∴,∴,∴n=,∴OF=OB+BF=m+,∴C(m+,1);(3)如图3,由矩形的性质可知,BD=AC,∴BD最小时,AC最小,∵B(m,0),D(n,4),∴当BD⊥x轴时,BD有最小值4,此时,m=n,即:AC的最小值为4,连接BD,AC交于点M,过点A作AE⊥BD于E,由矩形的性质可知,DM=BM=BD=2,∵A(0,3),D(n,4),∴DE=1,∴EM=DM﹣DE=1,在Rt△AEM中,根据勾股定理得,AE=,∴m=,即:当m=时,矩形ABCD的对角线AC的长最短为4.【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO ≌△ADE ,解(2)的关键是△ADE ≌△CBF 和△AOB ∽△DEA ,解(3)的关键是作出辅助线,是一道中考常考题.25.(13分)(•宁德)如图,抛物线l :y=(x ﹣h )2﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),将抛物线ι在x 轴下方部分沿轴翻折,x 轴上方的图象保持不变,就组成了函数ƒ的图象. (1)若点A 的坐标为(1,0).①求抛物线l 的表达式,并直接写出当x 为何值时,函数ƒ的值y 随x 的增大而增大;②如图2,若过A 点的直线交函数ƒ的图象于另外两点P ,Q ,且S △ABQ =2S △ABP ,求点P 的坐标;(2)当2<x <3时,若函数f 的值随x 的增大而增大,直接写出h 的取值范围.【考点】HF :二次函数综合题.【分析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数ƒ的值y 随x 的增大而增大(即呈上升趋势)的x 的取值; ②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE=2PD ,证明△PAD ∽△QAE ,则,得AE=2AD ,设AD=a ,根据QE=2FD列方程可求得a 的值,并计算P 的坐标;(2)先令y=0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.【解答】解:(1)①把A (1,0)代入抛物线y=(x ﹣h )2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ =2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了。
2016年中考数学真题试题及答案(word版)
(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
2016年福建中考数学真题卷含答案解析
2016年福州市初中毕业会考高级中等学校招生考试数学试题(含答案全解全析)(满分:150分 时间:120分钟)第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每题3分,满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是( ) A.0.7B.12C.πD.-82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是( )3.如图,直线a,b 被直线c 所截,∠1与∠2的位置关系是( )A.同位角B.内错角C.同旁内角D.对顶角4.下列算式中,结果等于a 6的是( ) A.a 4+a 2B.a 2+a 2+a 2C.a 2·a 3D.a 2·a 2·a 25.不等式组{x +1>0,x -3>0的解集是( )A.x>-1B.x>3C.-1<x<3D.x<36.下列说法中,正确的是( ) A.不可能事件发生的概率为0 B.随机事件发生的概率为12 C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是()A.(-2,1)B.(-2,-1)C.(-1,-2)D.(-1,2)⏜上一点(不与A,B重合),连接9.如图,以O为圆心,1为半径的弧交坐标轴于A,B两点,P是ABOP,设∠POB=α,则点P的坐标是()A.(sin α,sin α)B.(cos α,cos α)C.(cos α,sin α)D.(sin α,cos α)10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10-x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差11.已知点A(-1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()12.下列选项中,能使关于x的一元二次方程ax2-4x+c=0一定有实数根的是()A.a>0B.a=0C.c>0D.c=0第Ⅱ卷(非选择题,共114分)二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2-4=.14.若二次根式√x-1在实数范围内有意义,则x的取值范围是.15.已知四个点的坐标分别是(-1,1),(2,2),(23,32),(-5,-15),从中随机选取一个点,在反比例函数y=1x图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“>”“=”或“<”)17.若x+y=10,xy=1,则x3y+xy3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.(7分)计算:|-1|-√83+(-2 016)0.20.(7分)化简:a-b-(a+b)2a+b.21.(8分)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(10分)福州市2011—2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.⏜中点,连接BM,CM.24.(12分)如图,正方形ABCD内接于☉O,M为AD(1)求证:BM=CM;⏜的长.(2)当☉O的半径为2时,求BM,在AC边上截取AD=BC,连接BD.25.(12分)如图,在△ABC中,AB=AC=1,BC=√5-12(1)通过计算,判断AD2与AC·CD的大小关系;(2)求∠ABD的度数.26.(13分)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.(13分)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围. 答案全解全析:一、选择题1.C 0.7为有限小数,12为分数,-8为整数,都属于有理数,π为无限不循环小数,属于无理数.故选C.2.C 根据俯视图的定义可知选C.3.B ∠1与∠2是内错角.故选B.4.D A.a 4+a 2≠a 6;B.a 2+a 2+a 2=3a 2; C.根据同底数幂的乘法法则,可得a 2·a 3=a 5;D.根据同底数幂的乘法法则,可得a 2·a 2·a 2=a 6.故选D. 5.B {x +1>0,①x -3>0,②解不等式①,得x>-1,解不等式②,得x>3, ∴x>3,故原不等式组的解集是x>3.故选B.6.A A.不可能事件发生的概率为0,所以A 选项正确; B.随机事件发生的概率在0与1之间,所以B 选项错误;C.概率很小的事件不是不可能发生,而是发生的概率较小,所以C 选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D 选项错误.故选A. 7.B 表示互为相反数的点,必须要满足在数轴原点的左、右两侧,且到原点的距离相等.故选B.8.A ∵A(m,n),C(-m,-n), ∴点A 和点C 关于原点对称, ∵四边形ABCD 是平行四边形, ∴点D 和点B 关于原点对称, ∵B(2,-1),∴点D的坐标是(-2,1).故选A.9.C过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sin α=PQOP ,cos α=OQOP,即PQ=sin α,OQ=cos α,∴点P的坐标为(cos α,sin α).故选C.评析熟练掌握锐角三角函数的定义是解本题的关键.10.B由题表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,则总人数为5+15+10=30,故该组数据的众数为14岁,中位数为14+142=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选B.11.C∵点A(-1,m),B(1,m),∴点A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),m+1>m,∴C正确,D错误.故选C.12.D若一元二次方程ax2-4x+c=0有实数根,则Δ=(-4)2-4ac=16-4ac≥0,且a≠0.∴ac≤4,且a≠0.A.若a>0,则当a=1,c=5时,ac=5>4,故此选项错误;B.a=0不符合一元二次方程的定义,故此选项错误;C.若c>0,则当a=1,c=5时,ac=5>4,故此选项错误;D.若c=0,则ac=0≤4,故此选项正确.故选D.评析 本题主要考查一元二次方程根的情况与判别式Δ的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根. 二、填空题 13.答案 (x+2)(x-2) 解析 x 2-4=(x+2)(x-2). 14.答案 x ≥1解析 若二次根式√x -1在实数范围内有意义,则x-1≥0,解得x ≥1. 15.答案 12解析 ∵-1×1=-1,2×2=4,23×32=1,(-5)×(-15)=1, ∴点(23,32),(-5,-15)在反比例函数y=1x 的图象上, ∴随机选取一点,在反比例函数y=1x 图象上的概率是24=12. 16.答案 < 解析 如图.易得r 上<r 下. 17.答案 98解析 x 3y+xy 3=xy(x 2+y 2)=xy[(x+y)2-2xy],将x+y=10,xy=1代入,得原式=1×(102-2×1)=98.18.答案√32解析如图,连接EA,EC,易知E、C、B三点共线.设小菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=√3a,EB=2a,∴∠AEB=90°,∴tan∠ABC=AEBE =√3a2a=√32.三、解答题19.解析原式=1-2+1=0.20.解析原式=a-b-(a+b)=a-b-a-b=-2b.21.证明在△ABC与△ADC中,{AB=AD, BC=DC, AC=AC,∴△ABC≌△ADC(SSS).∴∠BAC=∠DAC.22.解析设甲种票买了x张,则乙种票买了(35-x)张.由题意,得24x+18(35-x)=750.解得x=20.∴35-x=15.答:甲种票买了20张,乙种票买了15张.23.解析(1)7.(2)2014.(3)预测2016年福州市常住人口数大约为757万人.理由如下:从统计图可以看出,福州市常住人口每年增加的数量的众数为7万人,因此预测2016年福州市常住人口数大约为757万人.(答案不唯一,言之有理即可得分)24.解析 (1)证明:∵四边形ABCD 是正方形,∴AB=CD,∴AB⏜=CD ⏜. ∵M 为AD ⏜中点,∴AM ⏜=DM ⏜,∴BM ⏜=CM ⏜,∴BM=CM.(2)连接OM,OB,OC.∵BM ⏜=CM ⏜,∴∠BOM=∠COM.∵正方形ABCD 内接于☉O,∴∠BOC=360°4=90°.∴∠BOM=135°.由弧长公式,得BM ⏜的长l=135×2×π180=32π. 25.解析 (1)∵AD=BC=√5-12, ∴AD 2=(√5-12)2=3-√52.∵AC=1,∴CD=1-√5-12=3-√52, ∴AD 2=AC ·CD.(2)∵AD 2=AC ·CD,AD=BC,∴BC 2=AC ·CD,即BC AC =CD BC .又∠C=∠C,∴△ABC ∽△BDC.∴AB BD =AC BC .又AB=AC,∴BD=BC=AD.∴∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°.解得x=36°.∴∠ABD=36°.评析本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△ABC∽△BDC是解题的关键.26.解析(1)由折叠可知△ANM≌△ADM,∴∠MAN=∠DAM.∵AN平分∠MAB,∴∠MAN=∠NAB.∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°.∴∠DAM=30°,=√3.∴DM=AD·tan∠DAM=3×√33(2)如图,延长MN交AB的延长线于点Q.∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ.由折叠可知△ANM ≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1.∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=1+x.在Rt △ANQ 中,AQ 2=AN 2+NQ 2,∴(x+1)2=32+x 2.解得x=4.∴NQ=4,AQ=5.∵AB=4,AQ=5,∴S △NAB =45S △NAQ =45×12AN ·NQ=245.(3)如图,过点A 作AH ⊥BF 于点H,则△ABH ∽△BFC.∴BH AH =CF BC .∵AH ≤AN=3,AB=4,∴当点N,H 重合(即AH=AN)时,DF 最大.(AH 最大,BH 最小,CF 最小,DF 最大)此时点M,F 重合,B,N,M 三点共线,△ABH ≌△BFC(如图).∴CF=BH=√AB2-AH2=√42-32=√7,∴DF的最大值为4-√7.评析本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识.本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.解析根据题意,抛物线的解析式可化为y=a(x-h)2+k(a≠0).(1)∵h=1,k=2,∴y=a(x-1)2+2,∵该抛物线经过原点,∴a+2=0,解得a=-2,∴y=-2(x-1)2+2,即y=-2x2+4x.(2)∵抛物线y=tx2(t≠0)经过点A(h,k),∴k=th2.∴y=a(x-h)2+k可化为y=a(x-h)2+th2.∵抛物线y=a(x-h)2+th2(a≠0)经过原点,∴ah2+th2=0.∵h≠0,∴a=-t.(3)∵点A(h,k)在抛物线y=x2-x上,∴k=h2-h.∴y=a(x-h)2+k可化为y=a(x-h)2+h2-h.∵抛物线y=a(x-h)2+h2-h(a≠0)经过原点,∴ah 2+h 2-h=0.∵h ≠0,∴a=1ℎ-1. 分两类讨论:①当-2≤h<0时,由反比例函数性质可知1ℎ≤-12, ∴a ≤-32; ②当0<h<1时,由反比例函数性质可知1ℎ>1, ∴a>0.综上所述,a 的取值范围是a ≤-32或a>0.评析 本题考查二次函数等知识,解题的关键是学会用参数解决问题,题目比较难,参数比较多,第三个问题要注意讨论,属于中考压轴题.。
【真题】宁德市中考数学试题含答案解析(版)
【真题】宁德市中考数学试题含答案解析(版)宁德市中考数学试题含答案解析一、选择题1. 某工厂用两种型号的机器加工产品,分别为A型和B型。
若只使用A型机器,加工一件产品需要12小时;若只使用B型机器,加工一件产品需要16小时;若同时使用A型和B型机器,加工一件产品需要8小时。
那么,在同样的条件下,同时使用2台A型机器和3台B型机器,加工3件产品需要多少小时?A. 33B. 24C. 22D. 15答案:B解析:设同时使用2台A型机器和3台B型机器加工3件产品需要的时间为t。
根据题意,可列出方程:2×12t + 16t = 3×8解得,t = 2因此,同时使用2台A型机器和3台B型机器,加工3件产品需要24小时。
2. 卡卡在超市购买了若干只眼睛彩球,其中3只是不同颜色的,其余的是红色的。
每只彩球塞在同样大小的盒子里。
已知卡卡用这些盒子可以摆出2个边长为6厘米的正方形,每个正方形上的盒子数量一样。
在这些彩球中,红色彩球的只数是蓝色彩球的2倍。
那么,红色彩球的总只数是多少?A. 36B. 30C. 18D. 12答案:A解析:设红色彩球的只数为x,则蓝色彩球的只数为2x。
根据题意,可列出方程:x + 2x + 3 = 12解得,x = 3因此,红色彩球的总只数为3 + 2×3 = 9 + 6 = 15.3. 小明投篮,在3分钟内射入2个篮球,这2个篮球的出手次序相同。
小明每次投篮有命中的可能性是80%,没有命中的可能性是20%。
在这次投篮中,最早投进的篮球与最后投进的篮球之间,连续的没有命中的次数正好是1次。
请问,在这3分钟内,小明一共进行了多少次投篮?A. 14B. 13C. 12D. 10答案:B解析:设连续没有命中的次数为n,则投进第一个篮球前有n次没有命中。
根据题意,可列出方程:0.2×0.8^n = 0.2^n–1×0.2×0.8化简得 4 = 5×0.8^n解得,n = 1因此,在这3分钟内,小明一共进行了2 + 2×1 + 1 = 5次投篮。
宁德市福鼎市南片区2016届九年级上期中数学试卷含答案解析
5.根据下列表格的对应值,判断方程 ax2+bx+c=0(a≠0,a、b、c 为常数)一个解的范围
是(
)
x
3.23
3.24
3.25
3.26
ax2+bx+c
Байду номын сангаас
﹣ 0.06
﹣ 0.02
0.03
0.09
A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26
6.据有关实验测定,当气温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒 适,则这个气温约为( ) A.18.5℃ B.21.2℃ C.22.9℃ D.26.8℃
2015-2016 学年福建省宁德市福鼎市南片区九年级(上)期中数 学试卷
一、选择题(共 10 小题,每小题 4 分,满分 40 分;每小题只有一个正确的选项.) 1.如图,在矩形 ABCD 中,AB=2,∠AOB=60°,则 OB 的长为( )
A.1 B.2 C.3 D.4
2.一元二次方程 ax2+bx+c=0(a≠0)有两个不相等的实数根,下列选项中正确的是( ) A.b2﹣ 4ac>0B.b2﹣ 4ac=0 C.b2﹣ 4ac<0D.b2﹣ 4ac≥0
7.已知:如图,在△ABC 中,∠ADE=∠C,则下列等式成立的是(
)
19.网格图中每个方格都是边长为 1 的正方形.若 A,B,C,D,E,F 都是格点,试说明
△ABC∽△DEF.
20.某地区 2013 年投入教育经费 2500 万元,2015 年投入教育经费 3025 万元. (1)求 2013 年至 2015 年该地区投入教育经费的年平均增长率; (2)根据(1)所得的年平均增长率,预计 2016 年该地区将投入教育经费多少万元. 21.在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区 别. (1)随机地从箱子里取出 1 个球,则取出红球的概率是多少? (2)随机地从箱子里取出 1 个球,放回搅匀再取第二个球,请你用画树状图或列表的方法 表示所有等可能的结果,并求两次取出相同颜色球的概率. 22.如图,已知 AD∥BC,AB∥DC,DE⊥AB,DF⊥BC,垂足分别是 E,F,并且 DE=DF.求证: (1)∠A=∠C; (2)四边形 ABCD 是菱形.
中考试题模拟试卷 (3).docx
2016年福建省宁德市中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2的倒数是()A.﹣2 B.2 C.D.﹣2.如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a4.在下列调查中,适宜采用普查的是()A.了解某校九(1)班学生视力情况B.调查2016年央视春晚的收视率C.检测一批电灯泡的使用寿命D.了解我市中学生课余上网时间5.如图,下列几何体的左视图不是矩形的是()A. B. C.D.6.计算的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.17.某商场利用摸奖开展促销活动,中奖率为,则下列说法正确的是()A.若摸奖三次,则至少中奖一次B.若连续摸奖两次,则不会都中奖C.若只摸奖一次,则也有可能中奖D.若连续摸奖两次都不中奖,则第三次一定中奖8.如图,四边形ABCD的对角线AC,BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD为矩形的是()A.AB=CD B.OA=OC,OB=OD C.AC⊥BD D.AB∥CD,AD=BC9.如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是()A.(一,2)B.(二,4)C.(三,2)D.(四,4)10.某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程:.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划每天铺设管道的长度 D.原计划施工的天数二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.计算:|﹣3|+=______.12.分解因式:3x2﹣6x=______.13.“十二五”期间,我市累计新增城镇就业人口147 000人,147 000用科学记数法表示为______.14.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是______.15.如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成50°角,则拉线AC的长为______米(精确到0.1米).16.如图,已知矩形ABCD中,AB=4,AD=3,P是以CD为直径的半圆上的一个动点,连接BP,则BP 的最大值是______.三、解答题(本大题有9小题,共86分.请在答题卡的相应位置作答)17.化简:(a+3)2﹣a(a+2).18.求不等式组的整数解.19.如图,M为正方形ABCD边AB上一点,DN⊥DM交BC的延长线于点N.求证:AM=CN.20.某校九年级共有四个班,各班人数比例如图1所示.在一次数学考试中,四个班的平均成绩如图2所示.(1)四个班平均成绩的中位数是______;(2)下列说法:①3班85分以上人数最少;②1,3两班的平均分差距最小;③本次考试年段成绩最高的学生在4班.其中正确的是______(填序号);(3)若用公式(m,n分别表示各班平均成绩)分别计算1,2两班和3,4两班的平均成绩,哪两班的计算结果会与实际平均成绩相同,请说明理由.21.(10分)(2016•宁德模拟)如图,已知△ABC中,∠ABC=∠ACB,以点B为圆心,BC长为半径的弧分别交AC,AB于点D,E,连接BD,ED.(1)写出图中所有的等腰三角形;(2)若∠AED=114°,求∠ABD和∠ACB的度数.22.(10分)(2016•宁德模拟)如图1,在矩形ABCD中,动点P从点A出发,沿A→D→C→B的路径运动.设点P运动的路程为x,△PAB的面积为y.图2反映的是点P在A→D→C运动过程中,y与x的函数关系.请根据图象回答以下问题:(1)矩形ABCD的边AD=______,AB=______;(2)写出点P在C→B运动过程中y与x的函数关系式,并在图2中补全函数图象.23.(10分)(2016•宁德模拟)如图,已知△ABC,以AB为直径的⊙O交AC于点D,∠CBD=∠A.(1)求证:BC为⊙O的切线;(2)若E为中点,BD=6,,求BE的长.24.(12分)(2016•宁德模拟)如图,直线y1=kx+2与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线y2=ax2﹣4ax+c(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.(1)当m=5时,①求抛物线的关系式;②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=;(2)若PQ长的最大值为16,试讨论关于x的一元二次方程ax2﹣4ax﹣kx=h的解的个数与h的取值范围的关系.25.(14分)(2016•宁德模拟)我们把有一组邻边相等,一组对边平行但不相等的四边形称作“准菱形”.(1)证明“准菱形”性质:“准菱形”的一条对角线平分一个内角.(要求:根据图1写出已知,求证,证明)已知:______求证:______证明:∵AB=AD,∴∠ABD=∠BDA,又∵AD∥BC,∴∠DBC=∠BDA.∴∠ABD=∠DBC.即BD平分∠ABC(2)已知,在△ABC中,∠A=90°,AB=3,AC=4.若点D,E分别在边BC,AC上,且四边形ABDE 为“准菱形”.请在下列给出的△ABC中(图2),作出满足条件的所有“准菱形”ABDE,并写出相应DE的长.(所给△ABC不一定都用,不够可添)2016年福建省宁德市中考数学模拟试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2的倒数是()A.﹣2 B.2 C.D.﹣【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣2的倒数是﹣,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A.B.C.D.【考点】平行线的性质.【分析】先判断出∠1与∠2是内错角,然后根据平行线的性质即可得出答案.【解答】解:∵∠1与∠2,∴能直接利用“两直线平行,内错角相等”判定∠1=∠2的是B,故选B.【点评】本题考查了平行线的性质,两直线平行内错角相等、同位角相等,同胖内角互补,是需要同学们熟练记忆的内容.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.【点评】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.4.在下列调查中,适宜采用普查的是()A.了解某校九(1)班学生视力情况B.调查2016年央视春晚的收视率C.检测一批电灯泡的使用寿命D.了解我市中学生课余上网时间【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了解某校九(1)班学生视力情况适宜采用普查的方式;调查2016年央视春晚的收视率适宜抽样调查;检测一批电灯泡的使用寿命适宜抽样调查;了解我市中学生课余上网时间适宜抽样调查,故选:A.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.如图,下列几何体的左视图不是矩形的是()A. B. C.D.【考点】简单几何体的三视图.【分析】根据左视图是从物体左面看所得到的图形,分别得出四个几何体的左视图,即可解答.【解答】解:A、圆柱的左视图是矩形,不符合题意;B、圆锥的左视图是等腰三角形,符合题意;C、三棱柱的左视图是矩形,不符合题意;D、长方体的左视图是矩形,不符合题意.故选:B.【点评】本题主要考查简单几何体的三视图;考查了学生的空间想象能力,属于基础题.6.计算的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.1【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==x+1.故选C.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.某商场利用摸奖开展促销活动,中奖率为,则下列说法正确的是()A.若摸奖三次,则至少中奖一次B.若连续摸奖两次,则不会都中奖C.若只摸奖一次,则也有可能中奖D.若连续摸奖两次都不中奖,则第三次一定中奖【考点】概率的意义.【分析】直接利用概率的意义分析得出答案.【解答】解:A、若摸奖三次,则至少中奖一次,不一定发生,故此选项错误;B、若连续摸奖两次,则不会都中奖,有可能发生,故此选项错误;C、某商场利用摸奖开展促销活动,中奖率为,若只摸奖一次,则也有可能中奖,正确;D、若连续摸奖两次都不中奖,则第三次一定中奖,不一定发生,故此选项错误.故选:C.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.8.如图,四边形ABCD的对角线AC,BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD为矩形的是()A.AB=CD B.OA=OC,OB=OD C.AC⊥BD D.AB∥CD,AD=BC【考点】矩形的判定.【分析】根据矩形的判定方法,一一判断即可解决问题.【解答】解:A、由AB=DC,AC=BD无法判断四边形ABCD是矩形.故错误B、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故正确C、由AC⊥BD,AC=BD无法判断四边形ABCD是矩形,故错误.D、由AB∥CD,AC=BD无法判断四边形ABCD是矩形,故错误.故选B.【点评】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形,属于中考常考题型.9.如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是()A.(一,2)B.(二,4)C.(三,2)D.(四,4)【考点】轴对称图形.【分析】根据轴对称图形的概念、结合图形解答即可.【解答】解:如图,把(二,4)位置的S正方形涂黑,则整个图案构成一个以直线AB为轴的轴对称图形,故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.10.某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程:.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划每天铺设管道的长度 D.原计划施工的天数【考点】由实际问题抽象出分式方程.【分析】小宇所列方程是依据相等关系:原计划所用时间﹣实际所用时间=6,可知方程中未知数x所表示的量.【解答】解:设原计划每天铺设管道x米,则实际每天铺设管道(1+10%)x,根据题意,可列方程:﹣=6,∴小宇所列方程中未知数x所表示的量是原计划每天铺设管道的长度,故选:C.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.计算:|﹣3|+=5.【考点】负整数指数幂.【分析】首先根据负数的绝对值是它的相反数,求出|﹣3|的值是多少;然后根据负整数指数幂的运算方法,求出的值是多少;最后把它们相加,求出算式|﹣3|+的值是多少即可.【解答】解:|﹣3|+=3+2=5.故答案为:5.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.12.分解因式:3x2﹣6x=3x(x﹣2).【考点】因式分解-运用公式法.【分析】首先确定公因式为3x,然后提取公因式3x,进行分解.【解答】解:3x2﹣6x=3x(x﹣2).故答案为:3x(x﹣2).【点评】此题考查的是因式分解﹣提公因式法,解答此题的关键是先确定公因式3x.13.“十二五”期间,我市累计新增城镇就业人口147 000人,147 000用科学记数法表示为 1.47×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:147 000=1.47×105.故答案为:1.47×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.14.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是.【考点】几何概率.【分析】根据几何概率的定义,分别求出两圆中阴影部分所占的面积,即可求出停止后指针都落在阴影区域内的概率.【解答】解:指针指向甲中阴影的概率是,指针指向乙中阴影的概率是,停止后指针都落在阴影区域内的概率是×=.故答案为:.【点评】此题考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.15.如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成50°角,则拉线AC的长为 6.5米(精确到0.1米).【考点】解直角三角形的应用.【分析】在Rt△ADC中,根据sin50°=,计算即可.【解答】解:在Rt△ADC中,∵∠ADC=90°,CD=5,∠CAD=50°,∴sin50°=,∴AC==≈6.5.故答案为6.5【点评】本题考查锐角三角函数等知识,解题的关键是记住锐角三角函数的定义,属于基础题,中考常考题型.16.如图,已知矩形ABCD中,AB=4,AD=3,P是以CD为直径的半圆上的一个动点,连接BP,则BP的最大值是+2.【考点】几何问题的最值.【分析】将以CD为直径的⊙O补充完整,由点B在⊙O外可得出当点B、O、P三点共线时BP最大,根据矩形以及圆的性质可得出OC、OP的长度,再利用勾股定理即可求出OB的长度,进而即可得出BP的最大值.【解答】解:将以CD为直径的⊙O补充完整,如图所示.∵点B在⊙O外,∴当点B、O、P三点共线时,BP的值最大.∵CD为⊙O的直径,CD=AB=4,∴OC=OP=2.在Rt△BOC中,BC=3,OC=2,∴OB==,∴此时BP=BO+OP=+2.故答案为: +2.【点评】本题考查了矩形的性质以及勾股定理,解题的关键是找出BP最大时点P的位置.本题属于基础题,难度不大,解决该题型题目时,寻找出取最值时点的位置是关键.三、解答题(本大题有9小题,共86分.请在答题卡的相应位置作答)17.化简:(a+3)2﹣a(a+2).【考点】单项式乘多项式;完全平方公式.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:原式=a2+6a+9﹣a2﹣2a=4a+9.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.求不等式组的整数解.【考点】一元一次不等式组的整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出整数解.【解答】解:,解不等式①,得x<1,解不等式②,得x≥﹣4,在同一数轴上表示不等式①②的解集,如图∴原不等式组的解集为﹣4≤x<1,则原不等式组的整数解为﹣4,﹣3,﹣2,﹣1,0.【点评】此题考查了一元一次不等式的整数解,求出不等式组的解集是解本题的关键.19.如图,M为正方形ABCD边AB上一点,DN⊥DM交BC的延长线于点N.求证:AM=CN.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质得出AD=CD,∠A=∠ADC=∠BCD=90°,求出∠1=∠3,根据ASA推出△ADM ≌△DCN即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠A=∠ADC=∠BCD=90°,∴∠DCN=90°,∴∠DCN=∠A,∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,在△ADM和△DCN中,,∴△ADM≌△DCN,∴AM=CN.【点评】本题考查了正方形的性质,全等三角形的性质和判定的应用,能求出△ADM≌△DCN是解此题的关键.20.某校九年级共有四个班,各班人数比例如图1所示.在一次数学考试中,四个班的平均成绩如图2所示.(1)四个班平均成绩的中位数是69;(2)下列说法:①3班85分以上人数最少;②1,3两班的平均分差距最小;③本次考试年段成绩最高的学生在4班.其中正确的是②(填序号);(3)若用公式(m,n分别表示各班平均成绩)分别计算1,2两班和3,4两班的平均成绩,哪两班的计算结果会与实际平均成绩相同,请说明理由.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)根据图2中数据结合中位数定义求解可得;(2)由图2中数据可知;(3)分别根据题意计算方法和加权平均数的计算方法计算后比较可得.【解答】解:(1)四个班平均成绩的中位数是=69,故答案为:69;(2)根据四个班的平均成绩无法判断85分以上人数、年级成绩最高的学生,故①③错误,1,3两班的平均分差距最小,为2分,故②正确,故答案为:②;(3)1、2两班平均成绩为=69,设总人数为n,则1、2两班实际平均成绩为,∴1、2两班的计算结果与实际平均成绩不相同;3、4两班的平均成绩为=69.5,3、4两班实际平均成绩=69.5,∴3、4两班的计算结果与实际平均成绩相同.【点评】本题主要考查条形统计图和中位数、平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.21.(10分)(2016•宁德模拟)如图,已知△ABC中,∠ABC=∠ACB,以点B为圆心,BC长为半径的弧分别交AC,AB于点D,E,连接BD,ED.(1)写出图中所有的等腰三角形;(2)若∠AED=114°,求∠ABD和∠ACB的度数.【考点】等腰三角形的判定.【分析】(1)根据等腰三角形的判定,两底角相等或两条边相等的三角形是等腰三角形,即可找出图中所有的等腰三角形;(2)根据邻补角的性质可求得∠BED=66°,在△BED中可求得∠ABD=180°﹣2∠BED=48°,设∠ACB=x°,则∠ABC=∠ACB=x°,求得∠A=180°﹣2x°,又根据三角形外角的性质得出∠BDC=∠A+∠ABD,则x=180﹣2x+48,求得∠ACB=76°.【解答】解:(1)∵∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;∵BE=BD=BC,∴△BCD,△BED是等腰三角形;∴图中所有的等腰三角形有:△ABC,△BCD,△BED;(2)解:∵∠AED=114°,∴∠BED=180°﹣∠AED=66°.∵BD=BE,∴∠BDE=∠BED=66°.∴∠ABD=180°﹣66°×2=48°.解法一:设∠ACB=x°,∴∠ABC=∠ACB=x°.∴∠A=180°﹣2x°.∵BC=BD,∴∠BDC=∠ACB=x°.又∵∠BDC为△ABD的外角,∴∠BDC=∠A+∠ABD.∴x=180﹣2x+48,解得:x=76.∴∠ACB=76°.(10分)解法二:设∠ACB=x°,∴∠ABC=∠ACB=x°.∴∠DBC=x°﹣48°.∵BC=BD,∴∠BDC=∠ACB=x°.又∵∠DBC+∠BCD+∠BDC=180°,∴x﹣48+x+x=180,解得:x=76.∴∠ACB=76°.【点评】此题考查了等腰三角形的判定与性质,三角形内角和定理,三角形外角的性质,难度一般.22.(10分)(2016•宁德模拟)如图1,在矩形ABCD中,动点P从点A出发,沿A→D→C→B的路径运动.设点P运动的路程为x,△PAB的面积为y.图2反映的是点P在A→D→C运动过程中,y与x的函数关系.请根据图象回答以下问题:(1)矩形ABCD的边AD=2,AB=4;(2)写出点P在C→B运动过程中y与x的函数关系式,并在图2中补全函数图象.【考点】四边形综合题.【分析】(1)根据题意,结合图形确定出矩形ABCD的边AD与AB即可;(2)根据题意表示出PB的长,由AB为底,PB为高,表示出三角形APB面积,确定出y与x的函数关系式,作出相应的图象,如图2所示.【解答】解:(1)根据题意得:矩形ABCD的边AD=2,AB=4;故答案为:2;4;(2)当点P在C→B运动过程中,PB=8﹣x,=×4×(8﹣x),即y=﹣2x+16(6≤x≤8),∴y=S△APB正确作出图象,如图所示:【点评】此题属于四边形综合题,涉及的知识有:矩形的性质,三角形的面积,函数及其图象,弄清题中动点P的运动轨迹是解本题的关键.23.(10分)(2016•宁德模拟)如图,已知△ABC,以AB为直径的⊙O交AC于点D,∠CBD=∠A.(1)求证:BC为⊙O的切线;(2)若E为中点,BD=6,,求BE的长.【考点】切线的判定.【分析】(1)由圆周角定理和已知条件证出∠CBD+∠ABD=90°.得出∠ABC=90°,即可得出结论.(2)连接AE.由圆周角定理得出∠BAD=∠BED,得出.求出直径AB=10.证出AE=BE.得出△AEB是等腰直角三角形.得出∠BAE=45°,由三角函数即可得出结果.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°.∴∠A+∠ABD=90°.又∵∠A=∠CBD,∴∠CBD+∠ABD=90°.∴∠ABC=90°.∴AB⊥BC.又∵AB是⊙O的直径,∴BC为⊙O的切线.(2)解:连接AE.如图所示:∵AB是⊙O的直径,∴∠AEB=∠ADB=90°.∵∠BAD=∠BED,∴.∴在Rt△ABD中,.∵BD=6,∴AB=10.∵E为中点,∴AE=BE.∴△AEB是等腰直角三角形.∴∠BAE=45°.∴.【点评】本题考查了切线的判定定理、圆周角定理、三角函数、等腰直角三角形的判定与性质等知识;熟练掌握切线的判定,由三角函数求出直径是解决问题(2)的关键.24.(12分)(2016•宁德模拟)如图,直线y1=kx+2与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线y2=ax2﹣4ax+c(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.(1)当m=5时,①求抛物线的关系式;②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=;(2)若PQ长的最大值为16,试讨论关于x的一元二次方程ax2﹣4ax﹣kx=h的解的个数与h的取值范围的关系.【考点】二次函数综合题.【分析】(1)①有m=5得到A点坐标,再把A点坐标代入直线解析式求出k得到y1=﹣x+2,接着计算自变量为0时对应的函数值可得B点坐标,然后把A点和B点坐标代入y2=ax2﹣4ax+c得到a和c的方程组,再解方程组求出a、c即可得到抛物线解析式;②利用二次函数图象上点的坐标特征和一次函数图象上点的坐标特征,设点P的坐标为(x,﹣x+2),Q(x,﹣x2+x+2),则可表示出PQ=﹣x2+2x,然后利用PQ=得到﹣x2+2x=,然后解方程即可;(2)设P(x,kx+2),则Q(x,ax2﹣4ax+2),PQ的长用l表示,则易得l=ax2﹣(4a+k)x,再利用PQ长的最大值为16大致画出l与x的二次函数图象,由于一元二次方程ax2﹣4ax﹣kx=h的解的情况可看作为二次函数l=ax2﹣4ax﹣kx与直线l=h的交点个数,则利用函数图象可判断当h=16时,一元二次方程ax2﹣4ax﹣kx=h有两个相等的实数解;当h>16时,一元二次方程ax2﹣4ax﹣kx=h没有实数解;当0<h <16时,一元二次方程ax2﹣4ax﹣kx=h有两个解.【解答】解:(1)①∵m=5,∴点A的坐标为(5,0),把A(5,0)代入y1=kx+2得5k+2=0,解得k=﹣,∴直线解析式为y1=﹣x+2,当x=0时,y1=2,∴点B的坐标为(0,2).将A(5,0),B(0,2)代入,得,解得,∴抛物线的表达式为y=﹣x2+x+2;②设点P的坐标为(x,﹣x+2),则Q(x,﹣x2+x+2),∴PQ=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,而PQ=,∴﹣x2+2x=,解得:x1=1,x2=4,∴当x=1或x=4时,PQ=;(2)设P(x,kx+2),则Q(x,ax2﹣4ax+2),PQ的长用l表示,∴l=ax2﹣4ax+2﹣(kx+2)=ax2﹣(4a+k)x,∵PQ长的最大值为16,如图,当h=16时,一元二次方程ax2﹣4ax﹣kx=h有两个相等的实数解;当h>16时,一元二次方程ax2﹣4ax﹣kx=h没有实数解;当0<h<16时,一元二次方程ax2﹣4ax﹣kx=h有两个解.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和一次函数图象上点的坐标特征;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用直线与抛物线的交点个数判断方程解得情况.25.(14分)(2016•宁德模拟)我们把有一组邻边相等,一组对边平行但不相等的四边形称作“准菱形”.(1)证明“准菱形”性质:“准菱形”的一条对角线平分一个内角.(要求:根据图1写出已知,求证,证明)已知:如图,“准菱形”ABCD中,AB=AD,AD∥BC,(AD≠BC)求证:BD平分∠ABC.证明:∵AB=AD,∴∠ABD=∠BDA,又∵AD∥BC,∴∠DBC=∠BDA.∴∠ABD=∠DBC.即BD平分∠ABC(2)已知,在△ABC中,∠A=90°,AB=3,AC=4.若点D,E分别在边BC,AC上,且四边形ABDE 为“准菱形”.请在下列给出的△ABC中(图2),作出满足条件的所有“准菱形”ABDE,并写出相应DE的长.(所给△ABC不一定都用,不够可添)【考点】四边形综合题.【分析】(1)根据准菱形的定义写出已知,结合图形写出求证,利用平行线的性质定理进行证明;(2)分AE=AB,DE∥AB、BA=BD,DE∥AB、EA=ED,DE∥AB、DE=BD,DE∥AB四种情况,利用相似三角形的判定定理和性质定理计算即可.【解答】解:(1)已知:如图,“准菱形”ABCD中,AB=AD,AD∥BC,(AD≠BC).求证:BD平分∠ABC.证明:∵AB=AD,∴∠ABD=∠BDA,又∵AD∥BC,∴∠DBC=∠BDA.∴∠ABD=∠DBC.即BD平分∠ABC;故答案为:如图,“准菱形”ABCD中,AB=AD,AD∥BC,(AD≠BC);BD平分∠ABC;∵AB=AD,∴∠ABD=∠BDA,又∵AD∥BC,∴∠DBC=∠BDA.∴∠ABD=∠DBC.即BD平分∠ABC;(2)可以作出如下四种图形,∵∠A=90°,AB=3,AC=4,∴BC=5,如图2,当AE=AB,DE∥AB时,=,即=,解得,DE=;如图3,当BA=BD,DE∥AB时,=,即=,解得,DE=;如图4,当EA=ED,DE∥AB时,=,即=,解得,DE=;如图5,当DE=BD,DE∥AB时,=,即=,解得,DE=.【点评】本题考查的是新定义、相似三角形的判定和性质,正确理解准菱形的定义、灵活运用相似三角形的判定定理和性质定理是解题的关键,在解答时注意分情况讨论思想是灵活运用.初中数学试卷鼎尚图文**整理制作。
福建省宁德市2016年中考数学试题(word版-含解析)
建省宁德市2016年中考数学试题(word版-含解析)2016年福建省宁德市中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B铅笔在答题卡的相应位置填涂)1.2的相反数是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.a+a2=a3B.a2•a3=a6 C.a5÷a3=a2D.(a2)3=a5 3.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为()A.0.47×108 B.4.7×107C.47×107 D.4.7×106 4.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.85.下列分解因式正确的是()A.﹣ma﹣m=﹣m(a﹣1) B.a2﹣1=(a﹣1)2C.a2﹣6a+9=(a﹣3)2D.a2+3a+9=(a+3)26.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④7.如图,⊙O的半径为3,点A,B,C,D在⊙O上,∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,则的长为()A. B. C.2πD.8.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a﹣5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= °.12.一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是分.13.方程=的解是.14.已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1y2(填“>”,“<”或“=”).15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是.三、解答题(本大题共9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.计算: +(π﹣3)0﹣2cos30°.18.解不等式﹣1≤,并把解集在数轴上表示出来.19.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.20.(8分)某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a,b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.组别分数段(x)频数A 0≤x<60 2B 60≤x<70 5C 70≤x<80 17D 80≤x<90 aE 90≤x≤100b21.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;(2)在方格中画出△ACD关于直线AD对称的△AED;(3)直接写出AB与DE的交点P到线段BE的距离.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.问甲、乙两人各带了多少钱?23.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.24.已知正方形ABCD,点E在直线CD上.(1)若F是直线BC上一点,且AF⊥AE,求证:AF=AE;(请利用图1所给的图形加以证明)(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;(3)若点G在直线BC上,且AG平分∠BAE,探索线段BG、DE、AE之间的数量关系,并说明理由.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.2016年福建省宁德市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B铅笔在答题卡的相应位置填涂)1.2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.【点评】本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.2.下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分析得出答案.【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a5÷a3=a2,正确;D、(a2)3=a6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、幂的乘方运算等知识,正确应用相关运算法则是解题关键.3.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为()A.0.47×108 B.4.7×107C.47×107 D.4.7×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:47 000 000用科学记数法表示为 4.7×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.8【考点】概率公式.【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【解答】解:袋中球的总个数是:2÷=8(个).故选D.【点评】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.5.下列分解因式正确的是()A.﹣ma﹣m=﹣m(a﹣1) B.a2﹣1=(a﹣1)2C.a2﹣6a+9=(a﹣3)2D.a2+3a+9=(a+3)2【考点】提公因式法与公式法的综合运用.【分析】利用提取公因式或者公式法即可求出答案.【解答】解:(A)原式=﹣m(a+1),故A错误;(B)原式=(a+1)(a﹣1),故B错误;(C)原式=(a﹣3)2,故C正确;(D)该多项式不能因式分解,故D错误,故选(C)【点评】本题考查因式分解,注意应用公式法时,要严格按照公式进行分解.6.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④【考点】简单组合体的三视图.【分析】根据题意得到原几何体的主视图,结合主视图选择.【解答】解:原几何体的主视图是:.故取走的正方体是①.故选:A.【点评】本题考查了简单组合体的三视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.如图,⊙O的半径为3,点A,B,C,D在⊙O上,∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,则的长为()A. B. C.2πD.【考点】弧长的计算.【分析】根据题意可得∠AOD=150°,然后再利用弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)进行计算.【解答】解:∵∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,∴∠AOD=120°+30°=150°,∴==,故选:B.【点评】此题主要考查了弧长计算,关键是掌握弧长计算公式.8.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形【考点】菱形的判定.【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【解答】解:如图所示;∵将△ABC延底边BC翻折得到△DBC,∴AB=BD,AC=CD,∵AB=AC,∴AB=BD=CD=AC,∴四边形ABDC是菱形;故选B.【点评】本题考查了菱形的判定和翻折变换的应用,解此题的关键是求出AB=BD=CD=AC,题目比较典型,难度不大.9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a﹣5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④【考点】一元一次方程的应用.【专题】计算题;应用题;一次方程(组)及应用.【分析】先假定一个方框中的数为a,再根据日历上的数据规律写出其他方框中的数,相加是否得5a﹣5,即可作出判断.【解答】解:解法一:设中间位置的数为A,则①位置数为:A﹣7,④位置为:A+7,左②位置为:A﹣1,右③位置为:A+1,其和为5A=5a﹣5,∴a=A+1,即a为③位置的数;解法二:A、若方框①表示的数为a,则②a+6,③a+8,④a+14,A:a+7,则这5个数的和:a+a+8+a+6+a+14+a+7=5a+35,所以方框①表示的数不是a,B、若方框②表示的数为a,则①a﹣6,③a+2,④a+8,A:a+1,则这5个数的和:a+a﹣6+a+2+a+8+a+1=5a+5,所以方框②表示的数不是a,C、若方框③表示的数为a,则①a﹣8,②a﹣2,④a+6,A:a﹣1,则这5个数的和:a+a﹣8+a﹣2+a+6+a﹣1=5a﹣5,所以方框③表示的数是a,D、若方框④表示的数为a,则①a﹣14,③a﹣6,②a﹣8,A:a﹣7,则这5个数的和:a+a﹣14+a﹣6+a﹣8+a﹣7=5a﹣35,所以方框④表示的数不是a,故选C.【点评】本题是日历上的数,明确日历上的规律是关键:上下两数的差为7,左右两数的差为1;解答时要细心表示方框中的数,容易书写错误.10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.【考点】数轴.【专题】数形结合.【分析】根据平均数为0可判断三个数中一定有一个正数和一个负数,讨论:若第三个数为负数,根据绝对值的意义得到两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离,然后利用此特征对各选项进行判断.【解答】解:因为三个数a、b、c的平均数是0,所以三个数中一定有一个正数和一个负数,若第三个数为负数,则两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离.故选D.【点评】本题考查了数轴:记住数轴的三要素:原点,单位长度,正方向.二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= 37 °.【考点】相似三角形的性质.【分析】根据相似三角形的对应角相等,可得答案.【解答】解:由△ADE∽△ABC,若∠ADE=37°,得∠B=∠ADE=37°,故答案为:37.【点评】本题考查了相似三角形的性质,熟记相似三角形的性质是解题关键.12.一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是9.1 分.【考点】中位数.【分析】先把数据按从小到大排列,然后根据中位数的定义求解.【解答】解:数据按从小到大排列为:8.7分,8.9分,9.1分,9.3分,9.3分的中位数为9.1分.故答案为9.1.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.方程=的解是x=1 .【考点】解分式方程.【专题】计算题.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,据此求出方程=的解是多少即可.【解答】解:去分母得:x+1=2x,解得x=1,经检验x=1是分式方程的解,∴方程=的解是x=1.故答案为:x=1.【点评】此题主要考查了解分式方程,要熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1>y2(填“>”,“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】先确定k的值为2,得在每一分支上,y随x 的增大而减小,通过判断x的大小来确定y的值.【解答】解:∵k=2>0,∴在每一分支上,y随x 的增大而减小,∵1<2,∴y1>y2,故答案为:>.【点评】本题考查了反比例函数的增减性,当k>0时,在每一分支上,y随x 的增大而减小;当k<0时,在每一分支上,y随x 的增大而增大;本题也可以将x的值代入计算求出对应y的值来判断大小关系.15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为108 °.【考点】多边形内角与外角.【专题】计算题;正多边形与圆.【分析】所求角即为正五边形的内角,利用多边形的内角和定理求出即可.【解答】解:∵正五边形的内角和为(5﹣2)×180°=540°,∴∠1=540°÷5=108°,故答案为:108【点评】此题考查了多边形的内角和外角,熟练掌握多边形的内角和定理是解本题的关键.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是≤l<13..【考点】旋转的性质;勾股定理;图形的剪拼.【分析】如图,连接DE,作AH⊥BC于H.首先证明GF=DE=,要求四边形MNFG周长的取值范围,只要求出MG的最大值和最小值即可.【解答】解:如图,连接DE,作AH⊥BC于H.在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵•AB•AC=•BC•AH,∴AH=,∵AD=DB,AE=EC,∴DE∥CB,DE=BC=,∵DG∥EF,∴四边形DGFE是平行四边形,∴GF=DE=,由题意MN∥BC,GM∥FN,∴四边形MNFG是平行四边形,∴当MG=NF=AH时,可得四边形MNFG周长的最小值=2×+2×=,当G与B重合时可得周长的最大值为13,∵G不与B重合,∴≤l<13.故答案为≤l<13.【点评】本题考查旋转变换、勾股定理、平行四边形的性质、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会取特殊点解决问题,属于中考常考题型.三、解答题(本大题共9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.计算: +(π﹣3)0﹣2cos30°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂的意义和特殊角的三角函数值得到原式=2+1﹣2×,然后进行乘法运算后合并即可.【解答】解:原式=2+1﹣2×=2+1﹣=+1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解不等式﹣1≤,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】利用解一元一次不等式的方法解出不等式的解集,再将其表示在数轴上即可得出结论.【解答】解:不等式两边同时×6得:3x﹣6≤14﹣2x,移项得:5x≤20,解得:x≤4.将其在数轴上表示出来如图所示.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.19.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【考点】全等三角形的判定与性质.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理SAS证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(SAS),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.20.某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a,b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.组别分数段(x)频数A 0≤x<60 2B 60≤x<70 5C 70≤x<80 17D 80≤x<90 aE 90≤x≤100b【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据数据总数=代入计算,求出九年2班学生的人数;(2)a是D组的频数=百分比×总数;b是E组的频数=50﹣各组频数;(3)先计算优秀的百分比,再与80000相乘即可;(4)取的样本不足以代表全市总中学的总体情况.【解答】解:(1)17÷34%=50(人),答:九年2班学生的人数为50人;(2)a=24%×50=12,b=50﹣2﹣5﹣17﹣12=14,(3)E:14÷50=28%,(28%+24%)×80000=52×800=41600(人),答:估计该市本次测试成绩达到优秀的人数为41600人;(4)全市参加本次测试的中学生中,成绩达到优秀有56 320人;而样本中估计该市本次测试成绩达到优秀的人数为41600人,原因是:小明对第三中学九年2班全体学生的测试成绩取的样本不足以代表全市总中学的总体情况,所以会出现较大偏差.【点评】此题考查了数据的收集与整理,根据频数分布表和扇形统计图可以将大量数据分类,结果清晰,一目了然地表达出来,熟练掌握公式是做好本题的关键:数据总数=,各组频数和=总数据;属于基础题,比较简单.21.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;(2)在方格中画出△ACD关于直线AD对称的△AED;(3)直接写出AB与DE的交点P到线段BE的距离.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)、(2)根据题意作出图象;(3)建立坐标系,求出直线AB、DE所在直线解析式,再求出两直线交点坐标可得.【解答】解:(1)如图所示,将线段AB沿AC方向平移即可;(2)如图所示,△AED即为所求;(3)建立如图所示坐标系,设AB所在直线解析式为y=kx+b,将A(0,2)、B(4,0)代入,得:,解得:,∴AB所在直线解析式为y=﹣x+2,设DE所在直线解析式为y=mx+n,将点D(5,2)、E(1,0)代入,得:,解得:,∴DE所在直线解析式为y=x﹣,根据题意,,解得:,∴点E的坐标为(,),故AB与DE的交点P到线段BE的距离.【点评】本题主要考查平移变换和轴对称变换及两直线相交问题,建立坐标系后待定系数求函数解析式是解题的关键.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.问甲、乙两人各带了多少钱?【考点】二元一次方程组的应用.【分析】设甲原有x元钱,乙原有y元钱,根据题意可得,甲的钱+乙的钱的一半=48元,乙的钱+甲所有钱的=48元,据此列方程组,求解即可.【解答】解:设甲原有x元钱,乙原有y元钱,根据题意,得,解得:,答:甲、乙两人各带了36元和24元钱.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.【考点】切线的判定;圆周角定理;解直角三角形.【分析】(1)要证CE是⊙O的切线,只要证明∠OCE=90°,根据,∠CDB=45°,CE∥AB可以求得∠OCE=90°,从而可以解答本题;(2)要求⊙O的直径,根据CE∥AB,cos∠CED=,BD=6,可以求得AB的长,本题得以解决.【解答】(1)证明:连接BC、CO,如右图所示,∵AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°,∴∠COB=2∠CDB=90°,∵CE∥AB,∴∠COB+∠OCE=180°,∴∠OCE=90°,即CE是⊙O的切线;(2)连接AD,如右上图所示,∵CE∥AB,∴∠CED=∠ABD,∵cos∠CED=,BD=6,AB是⊙O的直径,∴∠ADB=90°,cos∠ABD=,∴,∴AB=18,即⊙O的直径是18.【点评】本题考查切线的判定、圆周角定理、解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.已知正方形ABCD,点E在直线CD上.(1)若F是直线BC上一点,且AF⊥AE,求证:AF=AE;(请利用图1所给的图形加以证明)(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;(3)若点G在直线BC上,且AG平分∠BAE,探索线段BG、DE、AE之间的数量关系,并说明理由.【考点】四边形综合题.【专题】压轴题.【分析】(1)如图1,利用ASA证明△ABF≌△ADE,可以直接得出AE=AF;(2)如图2所示,如果AF=AE时,AE与AF不一定垂直;(3)分三种情况:①当E在线段CD上时,满足AE=BG+DE,如图3,作辅助线,利用(1)的结论得:△ABF≌△ADE,得AE=AF,DE=BF,再证明AF=FG,利用等量代换和线段的和得出结论.②当E在CD的延长线上时,满足BG=DE+AE,③当E 在DC的延长线上时,满足AE=DE+BG;同理分别得出相应结论.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠BAD=90°,∴∠ABF=∠ADC=90°,∠DAE+∠BAE=90°,∵AE⊥AF,∴∠EAF=90°,∴∠FAB+∠BAE=90°,∴∠DAE=∠BAF,∴△ABF≌△ADE,∴AE=AF;(2)若F是直线BC上一点,且AF=AE,则AF⊥AE;如图2所示,当AF=AE时,则AF与AE不一定垂直,所以“若F是直线BC上一点,且AF=AE,则AF⊥AE“是假命题;(3)分三种情况:①当E在线段CD上时,满足AE=BG+DE,理由是:如图3,过A作AF⊥AE,与直线CB交于点F,由(1)得:△ABF≌△ADE,∴AE=AF,DE=BF,∴FG=BF+BG=BG+DE,∵AG平分∠BAE,∴∠BAG=∠EAG,∵∠BAF=∠DAE,∴∠BAF+∠BAG=∠EAG+∠DAE,∴∠FAG=∠DAG,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=BG+DE.②当E在CD的延长线上时,满足BG=DE+AE,理由是:如图4,过A作AF⊥AE,与直线CB交于点F,由(1)得:△ABF≌△ADE,∴AE=AF,DE=BF,∠BAF=∠DAE,∵AG平分∠BAE,∴∠BAG=∠EAG,∴∠BAG﹣∠BAF=∠EAG﹣∠DAE,∴∠FAG=∠GAD,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=AF,∴BG=BF+FG=DE+AE;③当E在DC的延长线上时,满足AE=DE+BG,理由是:如图5,过A作AF⊥AE,与直线CB交于点F,同理得:△ABF≌△ADE,∴AE=AF,DE=BF,∴FG=BF+BG=BG+DE,∵AG平分∠BAE,∴∠BAG=∠EAG,∵∠BAF=∠DAE,∴∠BAF+∠BAG=∠EAG+∠DAE∴∠FAG=∠DAG,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=BG+DE.【点评】本题是四边形的综合题,考查了正方形、全等三角形的性质和判定;正方形的各边相等且每个角都等于90°,在全等的证明中常利用同角的余角相等证明两个角相等,这一方法要熟练掌握;对于第三问中线段的和差问题,常利用全等三角形对应边相等作等量代换,得出结论.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.【考点】二次函数综合题.【分析】(1)先根据抛物线的解析式求出抛物线与y轴的交点A的坐标,再根据点A,B到直线x=2的距离相等,求出点B的横坐标为4,因为B也在抛物线上,当x=4代入抛物线的解析式求出y的值,即是点B的坐标,再利用待定系数法求直线l2的表达式;(2)根据平移规律写出直线l3表达式,计算出直线l3与直线x=2的交点坐标(2,﹣1.5),根据二次函数和直线l3的解析式列方程组求出C、D两点的坐标,由中点坐标公式计算CD的中点坐标,恰好与直线l3与直线x=2的交点重合,所以直线x=2平分线段CD;(3)先设M(x1,y1),N(x2,y2),根据M、N是抛物线和直线y=3x+m的交点,列方程组得:x1+x2=﹣,由中点坐标公式列式可得结论.【解答】解:(1)当x=0时,y=3,∴A(0,3),∴A到直线x=2的距离为2,∵点A,B到直线x=2的距离相等,∴B到直线x=2的距离为2,∴B的横坐标为4,当x=4时,y=﹣×42+4+3=﹣1,。
福建中考数学试题及答案解析
福建中考数学试题及答案解析一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -2B. 0C. 1.5D. π答案:B解析:正整数是指大于0的整数,选项B中的0不是正整数,因此正确答案应为选项C,即1.5。
2. 已知一个三角形的两边长分别为3cm和4cm,第三边长x的取值范围是?A. 1cm < x < 7cmB. 0cm < x < 7cmC. 1cm < x < 10cmD. 0cm < x < 10cm答案:A解析:根据三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边。
因此,第三边x的取值范围为1cm < x < 7cm。
3. 计算下列表达式的值:(-3)^2A. 9B. -9C. 3D. -3答案:A解析:负数的偶数次幂结果为正数,因此(-3)^2 = 9。
4. 一个圆的半径为5cm,其面积是多少?A. 25π cm^2B. 50π cm^2C. 75π cm^2D. 100π cm^2答案:B解析:圆的面积公式为A = πr^2,将半径r=5cm代入公式,得到面积A = π(5cm)^2 = 25π cm^2。
5. 若a和b互为相反数,则a+b的值为?A. 0B. 1C. -1D. 无法确定答案:A解析:相反数是指两个数的和为0,因此若a和b互为相反数,则a+b=0。
6. 下列哪个函数是一次函数?A. y = 2x^2B. y = 3x + 4C. y = 5/xD. y = x^3 - 2答案:B解析:一次函数的一般形式为y = kx + b,其中k和b为常数,且k≠0。
选项B中的函数y = 3x + 4符合一次函数的定义。
7. 已知一个等腰三角形的底边长为6cm,腰长为5cm,其周长是多少?A. 16cmB. 21cmC. 26cmD. 无法确定答案:B解析:等腰三角形的两腰相等,因此周长为底边长加上两倍的腰长,即6cm + 2*5cm = 21cm。
往年年福建省宁德市中考数学真题及答案
往年年福建省宁德市中考数学真题及答案(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;2.抛物线2y ax bx c =++的顶点坐标是(2b a-,244ac b a -).一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.-5的相反数是A .15B .-15C .-5D .52.下列运算正确的是A .326a a a ⨯=B .633)(a a =C .628a a a =÷D .3532)(b a b a =3.下列图形中,不是正方体表面展开图的是A .B .C .D . 4.下列事件是必然事件的是A .任取两个正整数,其和大于1B .抛掷1枚硬币,落地时正面朝上C .在足球比赛中,弱队战胜强队D .小明在本次数学考试中得150分5.把不等式组24063x x -≥⎧⎨->⎩的解集表示在数轴上,正确的是A .B .C .D .6.如图,在△ABC 中,D,E 分别是边AB ,AC 的中点,∠B =70°,现将△ADE 沿DE 翻折,点A 的对应点为M ,则∠BDM 的大小是 A .70° B .40° C .30°D .20°第6题图AMED BC7.9的算术平方根是A .3±B .3C.D8.如图,用尺规作图:“过点C 作CN ∥OA ”,其作图依据是A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角相等,两直线平行D .同旁内角互补,两直线平行9.如图,在边长为1的正方形网格中,从A 1,A 2,A 3中任选一点A n (n =1,2,3),从 B 1,B 2,B 3,B 4中任选一点B m (m =1,2,3,4),与点O 组成Rt △A n B m O ,则O B A m n ∠tan =1的概率是A .112 B.16 C .14 D .1310.如图,已知等边△ABC ,AB =2,点D 在AB 上,点F 在AC 的延长线上,BD =CF , DE ⊥BC 于E , FG ⊥BC 于G , DF 交BC 于点P ,则下列结论:①BE =CG ,②△EDP ≌△GFP ,③∠EDP =60°,④EP =1中,一定正确的是 A .①③ B .②④ C .①②③ D .①②④二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡...的相应位置) 11.若∠A =30°,则∠A 的补角是_______°.12.若正多边形的一个外角为40°,则这个正多边形是_______边形.13.国务院《节能减排“十二五”规划》中明确指出:至2015年,全国二氧化硫排放总量控制在20 900 000吨.数据20 900 000用科学记数法表示是_____________. 14.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:169x .=甲,169x .=乙,200006S .=甲,200315S .=乙,则这两名运动员中______的成绩更稳定.15.如图,在边长为1的正方形网格中,若一段圆弧恰好经过四个格点,则该圆弧所在圆的圆心是图中的点 .B OA M DN EC第8题图第9题图OA 1A 2 A 3B 1B 2 B 3 B 4 第10题图AD B PFCGE第15题图16.方程321x x =-的解是 . 17.如图是一款可折叠的木制宝宝画板.已知AB =AC =67cm,BC =30cm,则∠ABC 的大小约为_____°(结果保留到1°).18.如图,P 是抛物线22y x x =-++在第一象限上的点,过点P 分别向x 轴和y 轴引垂线,垂足分别为A ,B ,则四边形OAPB 周长的最大值为 .三、解答题(本大题有8小题,共86分.请在答题卡...的相应位置作答) 19.(本题满分14分)(1)计算:201sin 30212-︒++()(-); (2)计算:21422---a a a .第17题图BCAB P OxyA第18题图20.(本题满分8分)某校在校内为见义勇为基金会开展了一次捐款活动,学生会随机调查了部分学生的捐款金额,绘制了如下统计图1和统计图2,请根据相关信息,解答下列问题:(1)直接写出样本中学生捐款金额的众数和中位数,及统计图1中“15元”部分扇形圆心角的度数;(2)求本次被调查学生的人均捐款金额;(3)若随机调查该校一名学生,估计该生捐款金额不低于20元的概率.21.(本题满分8分)如图,在梯形ABCD 中,AD ∥BC ,点E 是BC 的中点,连接AC ,DE ,AC =AB ,DE ∥AB .求证:四边形AECD 是矩形.ABCDE图1 图2学生捐款金额扇形统计图学生捐款金额条形统计图22.(本题满分10分)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分..按第二阶梯电价收费.以下是张磊家往年年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?23.(本题满分10分)如图,已知□ABCD ,∠B =45 ,以AD 为直径的⊙O 经过点C . (1)求证:直线BC 是⊙O 的切线;(2)若AB =22,求图中阴影部分的面积(结果保留π). .ADO24.(本题满分10分)如图,点A 在双曲线xky =(k ≠0)上,过点A 作AB ⊥x 轴于点B (1,0),且△AOB 的面积为1.(1)求k 的值;(2)将△AOB 绕点O 逆时针旋转90︒,得到△A ′OB ′,请在图中画出△A ′OB ′,并直接写出点A ′,B ′的坐标;(3)连接A ′B ,求直线A ′B 的表达式.25.(本题满分13分)如图,在Rt △ABC 中,∠BAC=90︒,AB =AC ,在BC 的同侧作任意Rt △DBC ,∠BDC =90︒. (1)若CD =2BD ,M 是CD 中点(如图1),求证:△ADB ≌△AMC ; 下面是小明的证明过程,请你将它补充完整: 证明:设AB 与CD 相交于点O ,∵∠BDC =90°,∠BAC =90°, ∴∠DOB +∠DBO =∠AOC +∠ACO =90°. ∵∠DOB =∠AOC , ∴∠DBO =∠ ① . ∵M 是DC 的中点,∴CM =12CD = ② . 又∵AB =AC ,∴△ADB ≌△AMC .(2)若CD <BD (如图2),在BD 上是否存在一点N ,使得△ADN 是以DN 为斜边的等腰直角三角形?若存在,请在图2中确定点N 的位置,并加以证明;若不存在,请说明理由;(3)当CD ≠BD 时,线段AD,BD 与CD 满足怎样的数量关系?请直接写出.图2ABCD O图1ABD MO26.(本题满分13分)如图,已知抛物线831612++-=x x y 与x 轴交于A ,B 两点,与y 轴交于C 点. (1)求A ,B ,C 三点坐标及该抛物线的对称轴;(2)若点E 在x 轴上,点P (x ,y )是抛物线在第一象限上的点,△APC ≌△APE ,求E ,P 两点坐标;(3)在抛物线对称轴上是否存在点M ,使得∠AMC 是钝角.若存在,求出点M 的纵坐标n 的取值范围;若不存在,请说明理由.参考答案⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分)1.D 2.C 3.A 4.A 5.A 6.B 7.B 8.B 9.C 10.D 二、填空题:(本大题有8小题,每小题3分,满分24分) 11.150 12.九 13.72.0910⨯ 14.甲15.C 16.3x = 17.77 18.6 三、解答题(本大题共8小题,共86分.请在答题卡...的相应位置作答) 19.(本题满分14分) (1)解:原式=21+4+1 …………6分 = 112…………7分 (2)解:原式=21422---a a a ()()()()222222-++--+=a a a a a a …………4分 ()()2222-+--=a a a a …………5分()()222-+-=a a a …………6分21+=a …………7分 20.(本题满分8分)(1)众数10元,中位数 15元,圆心角 72︒ . …………3分 (2)解法一:58%1032%1520%2024%3016%⨯+⨯+⨯+⨯+⨯ …………5分 =16.2元答:人均捐款金额为16.2元. …………6分解法二:5410161510201230850⨯+⨯+⨯+⨯+⨯ …………5分=16.2元答:人均捐款金额为16.2元. …………6分 (3)P (不低于20元)=12850+=25. 答:在该校随机调查一个学生捐款金额不低于20元的概率为25. …………8分21.(本题满分8分)证明:∵AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. …………2分∴AD = BE . ∵点E 是BC 的中点,∴EC =BE = AD . …………4分 ∴四边形AECD 是平行四边形. …………5分∵AB =AC ,点E 是BC 的中点,∴AE ⊥BC ,即∠AEC = 90°. …………7分 ∴□AECD 是矩形. …………8分(证法2:由四边形ABED 是平行四边形得DE =AB =AC ,∴□AECD 是矩形.) 22.(本题满分10分) 解:设第一阶梯电价每度x 元,第二阶梯电价每度y 元,由题意可得: ……1分2002011220065139x y x y +=⎧⎨+=⎩, …………7分解得0.50.6x y =⎧⎨=⎩. …………9分答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元. …………10分23.(本题满分10分) 证明:(1)连结OC .∵四边形ABCD 是平行四边形, ∴45D B ∠=∠=︒. ∵OC = OD ,∴︒=∠=∠45D OCD ,∴︒=∠90DOC . (或290AOC D ∠=∠=︒.) …………3分 ∵AD ∥BC ,∴︒=∠=∠90DOC OCB ,∴直线BC 是⊙O 的切线. …………5分 (2)在Rt △DOC 中,CD = AB =22,︒=∠45D ,A BCDEADO∴OC = CD sin D ∠=22sin ︒45=2, …………7分 ∴AD =2OC =4.S 阴影部分=S □ABCD -S Rt △COD - S 扇形AOC=4×2-21×2×2-22×41π=6-π.(或S 阴影部分=S 梯形AOCB - S 扇形AOC .)答:阴影部分的面积为(6-π). …………10分24.(本题满分10分)(1)解法一:由题意得OB =1,∵1AOB S ∆=,AB ⊥x 轴,由112OB AB =,得AB =2, ∴点A 的坐标为A (1,2) .将A 代入xky =得,k =2. …………3分 解法二:根据S △AOB =112k =,点A 在第一象限,得k =2. …………3分 (2)画图(略); …………5分A ′(-2,1),B ′(0,1) . …………7分(3)设直线A ′B 的表达式y kx b =+(k 0≠),∵A ′(-2,1),B (1,0) ,∴210k b k b -+=⎧⎨+=⎩,解得1313k b ⎧=-⎪⎪⎨⎪=⎪⎩. …………9分∴直线A ′B 的表达式1133y x =-+. …………10分 25.(本题满分13分)(1)证明:①∠ACO (或∠ACM ) ;②BD ; …………4分 (2)解法一:存在.在BD 上截取BN =CD , …………5分同(1)可证得∠ACD =∠ABN .∵AC =AB ,∴△ACD ≌△ABN , …………6分 ∴AD =AN ,∠CAD =∠BAN , ∴∠CAD +∠NAC =∠BAN +∠NAC ,即∠DAN =∠BAC =90°. …………8分ABCDON∴△AND 为等腰直角三角形. …………9分 解法二:存在.过点A 作AN ⊥AD 交BD 于点N ,则∠DAN =90°,…………5分同(1)可证得∠ABN =∠ACD . ∵∠BAC =90°,∴∠CAD +∠CAN =∠BAN +∠CAN =90°,∴∠BAN =∠CAD . …………7分 ∵AB =AC ,∴△ABN ≌△ACD . …………8分 ∴AN =AD ,∴△AND 为等腰直角三角形. …………9分 (3)①当CD >BD 时,CD =BD +2AD ; …………11分②当CD <BD 时,BD =CD +2AD . …………13分 26.(本题满分13分) 解:(1)把x=0代入831612++-=x x y , 得y =8,∴C (0,8). …………1分 由2118063=x x -++,得x =-6,或x =8.∴点A 坐标为(-6,0),点B 坐标为(8,0). …………3分 ∴抛物线的对称轴方程是直线x =1. …………4分(2)如图1,连接AP 交OC 于F 点,设F (0,t ),连接EF ,由题意可得AC =10, ∵△APC ≌△APE ,∴AE =AC =10,AP 平分∠CAE .∴OE =10-6=4,点E 坐标为(4,0).……5分 ∵AP 平分∠CAE ,∴由对称性得EF = CF =8-t . 在Rt △EOF 中,222EF OF OE =+,∴()22284t t -=+,解得t =3.∴点F 坐标为(0,3). ……7分设直线AF 的表达式y kx b =+(k 0≠), 将点A (-6,0),F (0,3)代入,解得123k b ⎧=⎪⎨⎪=⎩, ∴直线AF 的表达式132y x =+ .图1由213211863y x y x x ⎧=+⎪⎪⎨⎪=-++⎪⎩,解得5112x y =⎧⎪⎨=⎪⎩或60x y =-⎧⎨=⎩(不符合题意,舍去). ∴P (5,112),E (4,0). …………10分,注:解法二:如图2,连CE 交AP 于K ,由AC =AE ,AP平分∠CAE 得K 为CE 中点,坐标为(2,4),则可求得直线AP 的表达式,以下相同;解法三:如图3,过点F 作FG ⊥AC ,由AP 平分∠CAE ,得AG =AO =6,证△AOC ∽△FGC ,由CG CFCO CA=,得F (0,3),以下相同;解法四:如图3,过点F 作FG ⊥AC ,设OF =FG =x ,CF =8- x ,在Rt △CGF 中由勾股定理得F (0,3)以下相同;解法五:如图4,用以上方法求出F (0,3)后,可过点P 作PH ⊥AB ,证△AOF ∽△AHP ,由12PH OF AH AO ==,设P 为(2y -6,y ),代入抛物线得出P (5,112),E (4,0); (3) 解法一:如图5,以AC 为直径画⊙I ,交对称轴l 于S ,T ,作IQ ⊥l 于Q ,IQ 交y 轴于J ,易得I 为(-3,4),∴IQ =4,IS =5; …………11分 在Rt △SIQ 中由勾股定理得SQ =4∴S ,T 的坐标分别为(1,7)和(1,1),……12分 当M 介于S 1和S 2之间时,延长AM 交⊙I 于L ,∠ALC =90︒, ∠AMC >∠ALC ,∴∠AMC 是钝角,∴1<n <7.……13分 注:解法二:如图6,对称轴l 交x 轴D 点,设点S 在对称轴l上,且∠ASC =90°,过C 作CN ⊥l 于N ,连接SC ,AS ,则有CN =1,AD =7,设SD =m ,则SN =8-m . ………11分由△ADS ∽△SNC ,解得:m =1或m=7.经检验符合题意,得S 1和S 2的纵坐标分别为7和1……12分 当M 介于S 1和S 2之间时,∠AMC 是钝角,∴当∠AMC 是钝角时n 的取值范围是1<n <7. ……13分图6。
2016年宁德市初中毕业班质量检测数学试卷含答案
2016年莆田市初中毕业班质量检查试卷数学参考答案一、精心选一选:(本大题共10小题,每小题4分,共40分)1. C2.D3.C4.B5.B6. A7.B8. A9. C 10.D二、细心填一填:(共6小题,每小题4分,满分24分)11.51.0510⨯ 12. 80° 13. 4x =14. 1315. 3 16. -1<a <1 三、耐心做一做:(共10小题,满分86分)17.解:原式412-+= ………………………………………………… 6分1-= .……………………………………………………… 8分(注:13182;11;()44-=-==,每个各2分) 18.解:原式 2)1()1)(1(21--+⋅+-=x x x x x =12x x ++ . …… …………………………………………… 5分 当3x =-时,原式 =3132-+-+=2. …………………………………………… 8分 (注:21231+-=+-x x x ,22)1(12-=+-x x x ,)1)(1(12-+=-x x x ,每个各1分) 19. 解法一:联立方程组⎩⎨⎧-=+=+.12,0y x y x …………………………………2分 解得:⎩⎨⎧-==.1,1y x ……………………………………………………… 5分∴ 12=+=y x k ……………………………………………………… 8分解法二:⎩⎨⎧-=+=+②12①,2y x k y x①+②,得3()1x y k +=-. ………………………………………………5分∵0x y +=,…………………………………………………………… 7分∴1k =. ………………………………………………………………… 8分20. 解:(1)10; ……………………………………………………… 2分(2)0.9; ……………………………………………………… 5分(3) 44% .……………………………………………………… 8分21. 解:过C 点作CD ⊥AB 于D ,……………………………………… 1分∵∠CBD=∠CAB+∠ACB ,∴∠ACB =30º,∴∠ACB =∠CAB .…………………………………………………… 3分∴BC=AB =10. …………………………………………………………5分在Rt △BCD 中,Sin60º=BCCD ,……………………………6分∴352310=⨯=CD (m).……………… 8分 因此C 点离地面的高度为35m.22.解:∵2=AC AF AP ,∴AF AC AC AP=,∵∠FAC=∠CAP ,∴△AFC ∽△ACP .………………………3分∴∠P=∠FCA ,∵∠FCA =∠B .∴∠P =∠B ,…………………………… 4分∵AB 是⊙O 的直径,∴∠AFB =90°,∴∠AEP =90°,………………………… 5分∴直径AB ⊥CD ,∴CE =142CD =,………………………6分 ∴822=-=CE AC AE ,连接OC ,设⊙O 的半径为r ,则8OE r =-,在Rt △COE 中, ∴222(8)4r r -+=,解得:5r =,∴⊙O 的半径为5. ……………………… 8分23.解:(1)甲车的速度为:40÷0.5=80(km/h ); ………………………… 2分设乙车的速度为x km/h,则2(x -80)=40,广告C B A D解得x =100(km/h). ……………………………………………… 4分(2) b = 350÷100=3.5; ………………………………………… 6分a =350-80×(3.5+0.5)=30. ………………………………… 8分24.解:(1)∵A (1, 2),∴B (-1, -2), …………………………………………………… 1分 设直线BC 的解析式为111(0)y k x b k =+≠,则1111212k b k b +=⎧⎨-+=-⎩ , 解得1111k b =⎧⎨=-⎩ , ∴1y x =-. 当0x =时,1y =-, ∴F (0,-1).………………………………2分 设直线CA 的解析式为222(0)y k x b k =+≠,则2222212k b k b +=⎧⎨+=⎩ , 解得2213k b =-⎧⎨=⎩ , ∴3y x =-+. 当0x =时,3y =, ∴E (0,3).…………………………………3分 过点C 作CG ⊥EF , ∴EG=GF =2 , ∴CE=CF . ………………4分(2) ①当点P 在点A 的上方时,∠PAC +∠PBC=180°; ……………… 6分 ②当点P 在点A 的下方时,∠PAC =∠PBC . ……………………… 8分25. (1)解: 在正方形ABCD 中,过点O 作OM ∥AB 交CE 于点M ,∵OA=OC ,∴CM=ME .…………………………………… 1分∴ AE=2OM=2OF .∴OM=OF , ………………………………… 2分∴BFOF BE OM =. ∴BF=BE =x , ∴OF=OM=21x -.………………………… 3分 ∵AB=1,∴OB=22, ∴2221=-+x x , ∴12-=x . …………………………… 5分(2)解:过点P 作PG ⊥AB 交AB 延长线于点G ,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG .又PE=EC ,∠EGP=∠CBE=90° ,∴△EPG ≌△CEB .……………………… 7分∴EB=PG=x ,∴AE =x -1,∴x x S ⋅-⋅=)1(21…………………………………………………… 8分 =x x 21212+- 81)21(212+--=x (0<x <1). ∵021<-, ∴当x=21时S 的值最大,最大值为81.……………10分 26. 解:(1)令x=0,则04)2(942=+--x , 解得:5,121=-=x x ,∴ A (-1,0),B (5,0),C (2,4),过点P 作PQ ⊥AD 于点Q ,则由对称性可知:PA=PD ,∴△P AD 是等腰三角形.…………………………………………………1分设D (m -5 ,0),则Q (24m -,0), ∴P (24m -,4912+-m ). ………………………………………2分 若△PAD 是直角三角形,则△PAD 是等腰直角三角形,且∠APD=90º.∴AD=2PQ . ………………………………………………………3分 ∴)491(21)5(2+-=+-m m ,整理得:018922=--m m ,……………………………………… 4分解得:0231<-=m (舍去),62=m .…………………………… 5分 当m=6时,P (-1,0)与点A 重合,故舍去.∴△PAD 不能为直角三角形.………………………………………… 6分(2) 由(1)知:△PAD 是等腰三角形.连接AC ,则∠CAD <∠PAD =∠PDA .∵ CE ∥AD ,∴∠FCA =∠CAD <∠PAD =∠PDA .∴以A 、C 、F 为顶点的三角形与△PAD 相似,只存在△CAF ∽△PAD 这一种情况 . …………………………………………………………………………7分∴1==PDPA CF CA , ∴CA=CF .过点C 作CM ⊥x 轴于点M ,则点M (2,0),∴5A 22=+=CM AM C ,∴CF=5,∴F (-3,4).…………………………………………………8分过点A 作AN ⊥CF 于点N ,则点N (-1,0),解法一: ∴224tan ===∠FN AN AFC .……………………………………………9分 ∵∠AFC =∠PDA ,∴2tan =∠PDA . ∴224)5(4912=---+-=mm m QD PQ .…………………………………………10分 整理得:01892=+-m m ,解得:6,321==m m . ……………………………………………11分当m=6时,P (-1,0),与点A 重合,故舍去.∴m=3. …………………………………………………………………12分解法二:过点A 作AG ⊥PD 于点G ,则∠APG=∠ACN , ∴34tan tan ==∠=∠AN CN ACN APG .………………………………9分 设PG=3x ,则AG=4x , ∴x PG AG P 5A 22=+=,∴DG=5x -3x=2x , ∴x AG DG D 52A 22=+=. ∵AG PD PQ AD ⋅=⋅2121, ∴AD x PQ ==52. …………………………………………… 10分 ∴154912+-=+-m m , 整理得:01892=+-m m ,解得:6,321==m m . …………………………………………… 11分 以下同解法一.。
福建省宁德市中考数学试卷
福建省宁德市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·安丘模拟) ()的倒数是()A .B . 8C . ﹣8D . ﹣12. (2分)下列说法中正确的是()A . 无理数的相反数也是无理数B . 无理数就是带根号的数C . 平行四边形既是中心对称图形,又是轴对称图形D . 无限小数都是无理数。
3. (2分) 1纳米=0.000 000 001米,则2.5纳米应表示为()米.A . 2.5×10﹣8B . 2.5×10﹣9C . 2.5×10﹣10D . 2.5×1094. (2分)设(a+b)2=(a﹣b)2+A,则A=()A . 2abB . 4abC . abD . ﹣4ab5. (2分) 2016年1月5日,河北外国语学院举行“我说我校训”大学生演讲比赛,参赛选手共有12名.梦梦根据比赛中七位评委所给的某位参赛选手的分数制作了如下表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()众数中位数平均数方差9.29.19.10.2A . 众数B . 中位数D . 方差6. (2分)(2017·广东模拟) 如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于()A . 30°B . 45°C . 55°D . 60°7. (2分)(2017·梁子湖模拟) 如图,一次函数y=kx+b与反比例函数y= (x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于点C,与y轴交于点D,下列结论:①一次函数解析式为y=﹣2x+8;②AD=BC;③kx+b ﹣<0的解集为0<x<1或x>3;④△AOB的面积是8,其中正确结论的个数是()A . 4个B . 3个C . 2个D . 1个8. (2分) (2017九上·十堰期末) 二次函数y=ax2+bx+c(a≠0)和正比例函数y= x的图象如图所示,则方程ax2+(b-)x+c=0(a≠0)的两根之和()A . 小于0B . 等于0D . 不能确定二、填空题 (共10题;共10分)9. (1分)(2017·海陵模拟) 计算: =________.10. (1分) (2016九上·太原期末) 一个不透明的袋子中有1个白球、3个黄球和2个红球,这些球除颜色外都相同.将袋子中的球搅拌均匀,从中一次随机摸出两个球都是黄球的概率为________.11. (1分)函数y=中自变量x的取值范围是________ .12. (1分) (2018九上·汨罗期中) 在反比例函数的图象上的图象在二、四象限,则的取值范围是________.13. (1分) (2017九下·六盘水开学考) 如图,EF为△ABC的中位线,△ABC的周长为12cm,则△AEF的周长为________cm.14. (1分)计算:12﹣22+32﹣42+…+992﹣1002=________ .15. (1分) (2017八上·满洲里期末) 如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为________度.16. (1分)(2017·夏津模拟) 如图,∠ACB=60°,直径为4cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是________ cm.17. (1分)(2017·郑州模拟) 如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为________.18. (1分)(2017·武汉模拟) 已知OM⊥ON,斜边长为4的等腰直角△ABC的斜边AC在射线上,顶点C与O 重合,若点A沿NO方向向O运动,△ABC的顶点C随之沿OM方向运动,点A移动到点O为止,则直角顶点B运动的路径长是________.三、解答题 (共10题;共97分)19. (10分)(2017·山西模拟) 计算下列各题(1)计算:(﹣1)3﹣()﹣2× +6×|﹣ |(2)化简并求值:()÷ ,其中a=1,b=2.20. (10分)综合题。
福建省宁德市中考数学试卷(含答案)
福建省宁德市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确选项)1..2015的相反数是()A.B.﹣C.2015 D.﹣20152..2014年我国国内生产总值约为636000亿元,数字636000用科学记数法表示为()A.63.6×104B.0.636×106C.6.36×105D.6.36×1063..下列计算正确的是()A.a2•a3=a5B.a2+a3=a5C.(a3)2=a5D.a3÷a2=14..如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°5..下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落6..有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>07..一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定8..如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5D.5.59..一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7C.6D.510..如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(22014,22014)B.(22015,22015)C.(22014,22015)D.(22015,22014)二、填空题(本大题共6小题,每小题4分,共24分)11..不等式2x+1>3的解集是.12..如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD=度.13..一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是.14..一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是.15..二次函数y=x2﹣4x﹣3的顶点坐标是(,).16..如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB 于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.三、解答题(本大题共9小题,共86分)17.计算:|﹣3|﹣(5﹣π)0+.18.化简:•.19.为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)此次被调查的学生共人;(2)补全条形统计图;(3)扇形统计图中,艺术类部分所对应的圆心角为度;(4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有人.20.如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.21.为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?22.图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).24.已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A 的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.25.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP=度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.2018年福建省宁德市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确选项)1..2015的相反数是()A.B.﹣C.2015 D.﹣2015考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2015的相反数是:﹣2015,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2..2014年我国国内生产总值约为636000亿元,数字636000用科学记数法表示为()A.63.6×104B.0.636×106C.6.36×105D.6.36×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将636000亿用科学记数法表示为:6.36×105亿元.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3..下列计算正确的是()A.a2•a3=a5B.a2+a3=a5C.(a3)2=a5D.a3÷a2=1考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:直接利用同底数幂的乘法运算法则和幂的乘方运算以及同底数幂的除法运算法则分别计算得出即可.解答:解:A、a2•a3=a5,正确;B、a2+a3无法计算,故此选项错误;C、(a3)2=a6,故此选项错误;D、a3÷a2=a,故此选项错误.故选:A.点评:此题主要考查了同底数幂的乘法运算和幂的乘方运算以及同底数幂的除法运算等知识,正确掌握运算法则是解题关键.4..如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°考点:平移的性质;平行线的性质.分析:根据平移的性质得出l1∥l2,进而得出∠2的度数.解答:解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故选:B.点评:此题主要考查了平移的性质以及平行线的性质,根据已知得出l1∥l2是解题关键.5..下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落考点:随机事件.分析:必然事件是指一定会发生的事件.解答:解:A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、在同一条直线上的三条线段不能组成三角形,故B错误;C、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,故C错误;D、抛出的篮球会下落是必然事件.故选:D.点评:本题主要考查的是必然事件和随机事件,掌握随机事件和必然事件的概念是解题的关键.6.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>0考点:数轴.分析:根据a,b两数在数轴的位置依次判断所给选项的正误即可.解答:解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,正确,符合题意;C、a•b<0,错误,不符合题意;D、<0,错误,不符合题意;故选B.点评:考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.7..一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定考点:根的判别式.分析:先求出△的值,再判断出其符号即可.解答:解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选B.点评:本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.8..如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5D.5.5考点:平行线分线段成比例.分析:直接根据平行线分线段成比例定理即可得出结论.解答:解:∵直线a∥b∥c,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选B.点评:本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.9..一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7C.6D.5考点:多边形内角与外角.分析:根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.解答:解:360°÷60°=6.故这个多边形是六边形.故选C.点评:本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.10..如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(22014,22014)B.(22015,22015)C.(22014,22015)D.(22015,22014)考点:一次函数图象上点的坐标特征;等腰直角三角形.专题:规律型.分析:根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B2015的坐标.解答:解:∵OA1=1,∴点A1的坐标为(1,0),∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1),∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2=,∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得,B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B2015的坐标是(22014,22014).故选A.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题4分,共24分)11..不等式2x+1>3的解集是x>1.考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,2x>3﹣1,合并同类项得,2x>2,把x的系数化为1得,x>1.故答案为:x>1.点评:本题考查的是在解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12..如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD=60度.考点:旋转的性质.分析:根据旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角,依此即可求解.解答:解:∵将△ABC绕点A按顺时针方向旋转60°得△ADE,∴∠BAD=60度.故答案为:60.点评:本题考查了旋转的性质,主要利用了旋转角的确定,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.13..一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是120.考点:中位数.分析:根据中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,进行求解即可.解答:解:按大小顺序排列为:100,100,120,125,135,中间一个数为120,这组数据的中位数为120,故答案为120.点评:本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.14..一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得两次摸出小球的数字和为偶数的情况,再利用概率公式即可求得答案.解答:解:如图所示,∵共有4种结果,两次摸出小球的数字和为偶数的有2次,∴两次摸出小球的数字和为偶数的概率==.故答案为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15..二次函数y=x2﹣4x﹣3的顶点坐标是(2,﹣7).考点:二次函数的性质.分析:先把y=x2﹣4x﹣3进行配方得到抛物线的顶点式y=(x﹣2)2﹣7,根据二次函数的性质即可得到其顶点坐标.解答:解:∵y=x2﹣4x﹣3=x2﹣4x+4﹣7=(x﹣2)2﹣7,∴二次函数y=x2﹣4x+7的顶点坐标为(2,﹣7).故答案为(2,﹣7).点评:本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式是解题的关键.16..如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB 于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=3.考点:反比例函数系数k的几何意义.分析:连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3,在求出△OCE的面积,即可得出k的值.解答:解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCB的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.点评:本题考查了矩形的性质、三角形面积的计算、反比例函数的图象与解析式的求法;熟练掌握矩形的性质和反比例函数解析式的求法是解决问题的关键.三、解答题(本大题共9小题,共86分)17.计算:|﹣3|﹣(5﹣π)0+.考点:实数的运算;零指数幂.分析:先根据绝对值,零指数幂,二次根式的性质求出每一部分的值,再代入求出即可.解答:解:原式=3﹣1+5=7.点评:本题考查了绝对值,零指数幂,二次根式的性质的应用,能求出每一部分的值是解此题的关键,难度适中.18.化简:•.考点:分式的乘除法.分析:先把分子分母分解因式,进一步约分计算得出答案即可.解答:解:原式=:•=.点评:此题考查分式的乘除法,把分子分母因式分解约分是解决问题的关键.19.为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)此次被调查的学生共40人;(2)补全条形统计图;(3)扇形统计图中,艺术类部分所对应的圆心角为72度;(4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有300人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据条形图可知喜欢“社科类”的有5人,根据在扇形图中占12.5%可得出调查学生数;(2)根据条形图可知喜欢“文学类”的有12人,即可补全条形统计图;(3)计算出喜欢“艺术类”的人数,根据总人数可求出它在扇形图中所占比例;(4)用该年级的总人数乘以“文史类”的学生所占比例,即可求出喜欢的学生人数.解答:解:(1)5÷12.5%=40(人)答:此次被调查的学生共40人;(2)40﹣5﹣10﹣8﹣5=12(人)(3)8÷40=20%360°×20%=72°答:扇形统计图中,艺术类部分所对应的圆心角为72度;(4)1200×=300(人)答:若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有300人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.考点:平行四边形的判定;勾股定理.专题:作图题.分析:(1)过A点作AB∥CD,切AB=CD,即可得到平行四边形ABCD,如图;(2)根据一组对边平行且相等的四边形是平行四边形进行证明.解答:(1)解:如图,四边形ABCD为平行四边形;(2)证明:∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形.点评:本题考查了平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.21.为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?考点:一元一次方程的应用.分析:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x﹣2个,根据题意得出方程2x﹣2+x+5=57,解得即可.解答:解:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x﹣2个,根据题意得:2x﹣2+x+5=57,解得:x=18,∴2x﹣2=34,答:亚洲和欧洲的意向创始成员国各有34个和18个.点评:本题考查了一元一次方程的应用,根据题意找准相等关系是解题的关键.22.图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).考点:圆锥的计算;圆柱的计算;作图-三视图.专题:计算题.分析:(1)根据图2,画出俯视图即可;(2)连接EO1,如图所示,由EO1﹣OO1求出EO的长,由BC=AD,O为AD中点,求出OA的长,在直角三角形AOE中,利用锐角三角函数定义求出tan∠EAO的值,即可确定出∠EAO的度数.解答:解:(1)画出俯视图,如图所示:(2)连接EO1,如图所示:∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO===,则∠EAO≈26.6°.点评:此题考查了圆锥的计算,圆柱的计算,以及作图﹣三视图,俯视图即为几何体从上方看的视图.23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).考点:切线的判定;弧长的计算.分析:(1)根据圆周角定理可得∠ACB=90°,进而可得∠CBA+∠CAB=90°,由∠EAC=∠B可得∠CAE+∠BAC=90°,从而可得直线AE是⊙O的切线;(2)连接CO,计算出AO长,再利用圆周角定理可得∠AOC的度数,然后利用弧长公式可得答案.解答:解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠C BA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.点评:此题主要考查了切线的判定和弧长计算,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).24.已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A 的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.考点:二次函数综合题.分析:(1)直接将A,C点坐标代入抛物线解析式求出即可;(2)首先求出B点坐标,进而利用待定系数法求出直线BC的解析式,进而利用CO,BO 的长求出∠ABC的度数;(3)利用∠ACB=∠PAB,结合相似三角形的判定与性质得出BP的长,进而得出P点坐标.解答:解:(1)将点A的坐标(﹣1,0),点C的坐标(0,﹣3)代入抛物线解析式得:,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)得:0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故B点坐标为:(3,0),设直线BC的解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣3,∵B(3,0),C(0,﹣3),∴BO=OC=3,∴∠ABC=45°;(3)过点P作PD⊥x轴于点D,∵∠ACB=∠PAB,∠ABC=∠PBA,∴△ABP∽△CBA,∴=,∵BO=OC=3,∴BC=3,∵A(﹣1,0),B(3,0),∴AB=4,∴=,解得:BP=,由题意可得:PD∥OC,则△BDP∽△BOC,故==,则==,解得:DP=BD=,∴DO=,则P(,﹣).点评:此题主要考查了相似三角形的判定与性质以及待定系数法求一次函数和二次函数解析式等知识,熟练应用相似三角形的判定方法得出△ABP∽△CBA是解题关键.25.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP=30度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.考点:四边形综合题.分析:(1)根据直角三角形的中线等于斜边上的一半,即可得解;(2)延长MN交DC的延长线于点E,证明△MNB≌△ENC,进而得解;(3)NC和PN不可能相等,所以只需分PN=PC和PC=NC两种情况进行讨论即可.解答:解:(1)∵MP⊥AB交边CD于点P,∠B=60°,点P与点C重合,∴∠NPM=30°,∠BMP=90°,∵N是BC的中点,∴MN=PN,∴∠NMP=∠NPM=30°;(2)如图1,延长MN交DC的延长线于点E,∵四边形ABCD是菱形,∴AB∥DC,∴∠BMN=∠E,∵点N是线段BC的中点,∴BN=CN,在△MNB和△ENC中,,∴△MNB≌△ENC,∴MN=EN,即点N是线段ME的中点,∵MP⊥AB交边CD于点P,∴MP⊥DE,∴∠MPE=90°,∴PN=MN=ME;(3)如图2∵四边形ABCD是菱形,∴AB=BC,又M,N分别是边AB,BC的中点,∴MB=NB,∴∠BMN=∠BNM,由(2)知:△MNB≌△ENC,∴∠BMN=∠BNM=∠E=∠NCE,又∵PN=MN=NE,∴∠NPE=∠E,设∠BMN=∠BNM=∠E=∠NCE=∠NPE=x°,则∠NCP=2x°,∠NPC=x°,①若PN=PC,则∠PNC=∠NCP=2x°,在△PNC中,2x+2x+x=180,解得:x=36,∴∠B=∠PNC+∠NPC=2x°+x°=36°×3=108°,②若PC=NC,则∠PNC=∠NPC=x°,在△PNC中,2x+x+x=180,解得:x=45,∴∠B=∠PNC+∠NPC=x°+x°=45°+45°=90°.点评:本题主要考查了菱形的性质,以及直角三角形的性质,正确作出辅助线是解题的关键,有很强的综合性,要注意对等腰三角形进行分类讨论,注意认真总结.。
福建省宁德市中考数学试卷
福建省宁德市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·苍南期中) 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A .B .C .D .2. (2分)下面四个立体图形中,三视图完全相同的是()A .B .C .D .3. (2分)下列式子一定成立的是()A . a+2a2=3a3B . a2•a3=a6C . (a3)2=a6D . a6÷a2=a34. (2分) (2017七上·灵武期末) 在下列调查中,适宜采用普查的是()A . 了解我省中学生的视力情况B . 了解九(1)班学生校服的尺码情况C . 检测一批电灯泡的使用寿命D . 调查台州《600全民新闻》栏目的收视率5. (2分)分式的值为0,则x的取值为()A . x=-3B . x=3C . x=-3或x=3D . x为任何实数6. (2分)(2018·定兴模拟) 某小组同学在一周内参加家务劳动时间与人数情况如表所示:劳动时间(小时)234人数321下列关于“劳动时间”这组数据叙述正确的是()A . 中位数是2B . 众数是2C . 平均数是3D . 方差是07. (2分)如图,若AB∥CD,则∠α=150°,∠β=80°,则∠γ=()A . 40°B . 50°C . 60°D . 30°8. (2分)如图,直线y=kx+b交坐标轴于两点,则不等式kx+b<0的解集是()A . x>-2B . x>3C . x<-2D . x<39. (2分)cos30°=()A .B .C .D .10. (2分)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A . h=mB . k=nC . k>nD . h>0 , k>0二、填空题 (共8题;共8分)11. (1分)把多项式ax2+2axy+ay2分解因式的结果是________.12. (1分)把﹣2360000用科学记数法表示________.13. (1分)任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于________.14. (1分)(2011·泰州) 点P(﹣3,2)关于x轴对称的点P′的坐标是________.15. (1分)(2018·奉贤模拟) 已知△ABC,AB=AC,BC=8,点D、E分别在边BC、AB上,将△ABC沿着直线DE翻折,点B落在边AC上的点M处,且AC=4AM,设BD=m,那么∠ACB的正切值是________.(用含m的代数式表示)16. (1分) (2017八上·临洮期中) 如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC 于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,则MN的长为________ cm.17. (1分) (2019九上·普陀期中) 如图,已知△ 中,,,点、分别在边、上,,,那么的长是________.18. (1分)(2017·济宁模拟) 如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB 于点E,则AD的长为________.三、解答题 (共8题;共92分)19. (5分) (2017八下·安岳期中) 先化简:,再从-2<a<3的范围内选取一个你最喜欢的整数代入求值.20. (16分)(2018·齐齐哈尔) 初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有________人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?21. (15分)(2017·邢台模拟) 根据题意计算与解答(1)计算(x﹣y)2﹣(x﹣2y)(x+y)(2)若关于x,y的二元一次方程组的解满足x+y>﹣,求出满足条件的m的所有正整数值.(3)若关于x的方程 + =3的解为正数,求m的取值范围.22. (10分)(2017·开封模拟) 如图,一次函数y=kx+2的图象与反比例函数y= 的图象交于点P,P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4, = .(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围.23. (15分)(2016·郓城模拟) 如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠F GD的值.24. (6分) (2018九上·南召期中) 某水果店出售一种水果,经过市场估算,若每个售价为元时,每周可卖出个.经过市场调查,如果每个水果每降价元,每周可多卖出个,若设每个水果的售价为元.(1)则这一周可卖出这种水果为________ 个(用含的代数式表示);(2)若该周销售这种水果的收入为元,那么每个水果的售价应为多少元?25. (10分)如图,在△ABC中,BD⊥AC于点D,CE丄AB于点E,点M,N分别是BC,DE的中点,连接EM、DM.(1)求证:EM=DM;(2)猜想MN与ED的位置关系,并说明理由.26. (15分)(2011·盐城) 已知二次函数y=﹣ x2﹣x+ .(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共92分)19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
福建省宁德市中考数学试题含答案
福建省宁德市中考数学试题含答案Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】2017年福建省宁德市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂〕1.(4分)﹣3的绝对值是()A.3 B.C.D.﹣32.(4分)已知一个几何体的三种视图如图所示,则该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱3.(4分)如图,点M在线段AB上,则下列条件不能确定M是AB中点的是()A.BM=AB B.AM+BM=AB C.AM=BM D.AB=2AM4.(4分)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.135.(4分)下列计算正确的是()A.﹣5+2=﹣7 B.6÷(﹣2)=﹣3 C.(﹣1)2017=1 D.﹣20=1 6.(4分)如图所示的分式化简,对于所列的每一步运算,依据错误的是()A.①:同分母分式的加减法法则 B.②:合并同类项法则C.③:提公因式法 D.④:等式的基本性质7.(4分)某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为4500元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大 B.平均数不变,方差变小C.平均数不变,方差不变 D.平均数变小,方差不变8.(4分)如图,直线ι是一次函数y=kx+b的图象,若点A(3,m)在直线ι上,则m的值是()A.﹣5 B.C.D.79.(4分)函数y=x3﹣3x的图象如图所示,则以下关于该函数图象及其性质的描述正确的是()A.函数最大值为2 B.函数图象最低点为(1,﹣2)C.函数图象关于原点对称 D.函数图象关于y轴对称10.(4分)如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠CDE=∠BAD D.∠AED=2∠ECD二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.(4分)2016年9月26日,我国自主设计建造的世界最大球面射电望远镜落成启用.该望远镜理论上能接收到13 700 000 000光年以外的电磁信号.数据13 700 000 000光年用科学记数法表示为光年.12.(4分)一元二次方程x(x+3)=0的根是.13.(4分)若矩形的面积为a2+ab,长为a+b,则宽为.14.(4分)甲、乙两位同学参加物理实验考试,若每人只能从A、B、C、D四个实验中随机抽取一个,则甲、乙两位同学抽到同一实验的概率为.15.(4分)将边长为2的正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,当α最小时,点A运动的路径长为.16.(4分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为.三、解答题(本大题有9小题,共86分.请在答题卞的相应位置作答)17.(8分)化简并求值:x(x﹣2)+(x+1)2,其中x=﹣2.18.(8分)已知:不等式≤2+x(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是否是该不等式的解.19.(8分)如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.20.(8分)小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.21.(8分)某初中学校组织200位同学参加义务植树活动,每人植树的棵数在5至10之间.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况678910人数363116频率根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是,正确的数据应该是(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动200位同学一共植树多少棵22.(10分)如图,在边长为1的正方形组成的5×8方格中,△ABC的顶点都在格点上.(1)在给定的方格中,以直线AB为对称轴,画出△ABC的轴对称图形△ABD.(2)求sin∠ABD的值.23.(10分)如图,BF为⊙O的直径,直线AC交⊙O于A,B两点,点D在⊙O 上,BD平分∠OBC,DE⊥AC于点E.(1)求证:直线DE是⊙O的切线;(2)若 BF=10,sin∠BDE=,求DE的长.24.(13分)在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.25.(13分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A 在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数的值y随x的增大而增大;②如图2,若过A点的直线交函数的图象于另外两点P,Q,且S△ABQ =2S△ABP,求点P的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.2017年福建省宁德市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂〕1.(4分)(2017宁德)﹣3的绝对值是()A.3 B.C.D.﹣3【考点】15:绝对值.【分析】根据一个负数的绝对值是它的相反数即可求解.【解答】解:﹣3的绝对值是3.故选A.【点评】本题考查了绝对值,如果用字母a表示有理数,则数a 的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.(4分)(2017宁德)已知一个几何体的三种视图如图所示,则该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱【考点】U3:由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥.故选C.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.3.(4分)(2017宁德)如图,点M在线段AB上,则下列条件不能确定M是AB中点的是()A.BM=AB B.AM+BM=AB C.AM=BM D.AB=2AM【考点】ID:两点间的距离.【分析】直接利用两点之间的距离定义结合线段中点的性质分别分析得出答案.【解答】解:A、当BM=AB时,则M为AB的中点,故此选项错误;B、AM+BM=AB时,无法确定M为AB的中点,符合题意;C、当AM=BM时,则M为AB的中点,故此选项错误;D、当AB=2AM时,则M为AB的中点,故此选项错误;故选:B.【点评】此题主要考查了两点之间,正确把握线段中点的性质是解题关键.4.(4分)(2017宁德)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.13【考点】K6:三角形三边关系.【专题】11 :计算题.【分析】根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.【解答】解:∵AB=5,AC=8,∴3<BC<13.故选D.【点评】本题考查了三角形三边的关系:三角形任意两边之和大于第三边.5.(4分)(2017宁德)下列计算正确的是()A.﹣5+2=﹣7 B.6÷(﹣2)=﹣3 C.(﹣1)2017=1 D.﹣20=1【考点】1G:有理数的混合运算;6E:零指数幂.【专题】11 :计算题;511:实数.【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣3,不符合题意;B、原式=﹣3,符合题意;C、原式=﹣1,不符合题意;D、原式=﹣1,不符合题意,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.(4分)(2017宁德)如图所示的分式化简,对于所列的每一步运算,依据错误的是()A.①:同分母分式的加减法法则 B.②:合并同类项法则C.③:提公因式法 D.④:等式的基本性质【考点】6B:分式的加减法.【分析】根据分式的加减法法则计算即可.【解答】解:①:同分母分式的加减法法则,正确;②:合并同类项法则,正确;③:提公因式法,正确,④:分式的基本性质,故错误;故选D.【点评】此题考查了分式的加减,熟练掌握法则及运算律是解本题的关键.7.(4分)(2017宁德)某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为4500元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大 B.平均数不变,方差变小C.平均数不变,方差不变 D.平均数变小,方差不变【考点】W7:方差;W1:算术平均数.【分析】根据平均数、方差的定义即可解决问题.【解答】解:由题意原来6位员工的月工资平均数为4500元,因为新员工的工资为4500元,所以现在7位员工工资的平均数是4500元,由方差公式可知,7位员工工资的方差变小,故选B.【点评】本题考查方差的定义、平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.(4分)(2017宁德)如图,直线ι是一次函数y=kx+b的图象,若点A (3,m)在直线ι上,则m的值是()A.﹣5 B.C.D.7【考点】F8:一次函数图象上点的坐标特征.【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.9.(4分)(2017宁德)函数y=x3﹣3x的图象如图所示,则以下关于该函数图象及其性质的描述正确的是()A.函数最大值为2 B.函数图象最低点为(1,﹣2)C.函数图象关于原点对称 D.函数图象关于y轴对称【考点】E6:函数的图象;P5:关于x轴、y轴对称的点的坐标;R6:关于原点对称的点的坐标.【专题】532:函数及其图像.【分析】观察函数图象,得出正确的表述即可.【解答】解:观察图形得:函数没有最大值,没有最低点,函数图象关于原点对称,故选C【点评】此题考查了函数的图象,关于x轴、y轴对称的点的坐标,以及关于原点对称的点的坐标,认真观察图形是解本题的关键.10.(4分)(2017宁德)如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠CDE=∠BAD D.∠AED=2∠ECD【考点】KH:等腰三角形的性质.【分析】由三角形的外角性质、等腰三角形的性质得出选项A、B、C正确,选项D错误,即可得出答案.【解答】解:∵∠ADB是△ACD的外角,∴∠ADB=∠ACB+∠CAD,选项A正确;∵AD=AE,∴∠ADE=∠AED,选项B正确;∵AB=AC,∴∠B=∠C,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠AED=∠CDE+∠C,∴∠CDE+∠C+∠CDE=∠B+∠BAD,∴∠CDE=∠BAD,选项C正确;∵∠AED=∠ECD+∠CDE,∠ECD≠∠CDE,∴选项D错误;故选:D.【点评】本题考查了等腰三角形的性质、三角形的外角性质;熟练掌握等腰三角形的性质和三角形的外角性质是解决问题的关键.二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.(4分)(2017宁德)2016年9月26日,我国自主设计建造的世界最大球面射电望远镜落成启用.该望远镜理论上能接收到13 700 000 000光年以外的电磁信号.数据13 700 000 000光年用科学记数法表示为×1010光年.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:13 700 000 000=×1010,故答案为:×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(2017宁德)一元二次方程x(x+3)=0的根是x=0或﹣3 .【考点】A8:解一元二次方程﹣因式分解法.【专题】11 :计算题.【分析】利用分解因式法即可求解.【解答】解:x(x+3)=0,∴x=0或x=﹣3.故答案为:x=0或x=﹣3.【点评】此题主要考查了利用因式分解的方法解一元二次方程,解题的关键是熟练进行分解因式.13.(4分)(2017宁德)若矩形的面积为a2+ab,长为a+b,则宽为 a .【考点】4H:整式的除法.【分析】根据多项式除以多项式的运算法则计算即可.【解答】解:矩形的宽=(a2+ab)÷(a+b)=a,故答案为:a.【点评】本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.14.(4分)(2017宁德)甲、乙两位同学参加物理实验考试,若每人只能从A、B、C、D四个实验中随机抽取一个,则甲、乙两位同学抽到同一实验的概率为.【考点】X6:列表法与树状图法.【专题】11 :计算题;543:概率及其应用.【分析】列表得出所有等可能的情况数,找出甲乙两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DCD AD BD CD DD所有等可能的情况有16种,其中甲乙两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,则P==,故答案为:【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.15.(4分)(2017宁德)将边长为2的正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,当α最小时,点A运动的路径长为.【考点】O4:轨迹;R3:旋转对称图形.【分析】根据题意α最小值是60°,然后根据弧长公式即可求得.【解答】解:∵正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,α最小值是60°,∴点A运动的路径长==.故答案为.【点评】本题考查了旋转对称图形,主要考查了学生的理解能力和计算能力,题目是一道比较好的题目,解此题的关键是求出α的最小值.16.(4分)(2017宁德)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为2 .【考点】G6:反比例函数图象上点的坐标特征;L8:菱形的性质;Q3:坐标与图形变化﹣平移.【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数y=的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.【解答】解:∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数y=的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴y=,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为:2.【点评】本题考查了菱形的性质,平移的性质,用待定系数法求反比例函数的解析式等知识点,能求出C的坐标是解此题的关键.三、解答题(本大题有9小题,共86分.请在答题卞的相应位置作答)17.(8分)(2017宁德)化简并求值:x(x﹣2)+(x+1)2,其中x=﹣2.【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题;512:整式.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+x2+2x+1=2x2+1,当x=﹣2时,原式=8+1=9.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2017宁德)已知:不等式≤2+x(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是否是该不等式的解.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)根据不等式的解的定义求解可得.【解答】解:(1)2﹣x≤3(2+x),2﹣x≤6+3x,﹣4x≤4,x≥﹣1,解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥﹣1,而2>﹣1,∴a是不等式的解.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.(8分)(2017宁德)如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,即可证得∠ABE=∠CDF,则可证得△ABE≌△CDF,继而证得结论.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.20.(8分)(2017宁德)小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.【考点】9A:二元一次方程组的应用.【专题】12 :应用题.【分析】被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意列出方程组,求出方程组的解即可得到结果.【解答】解:被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意得:,解得:,则“五一”前同样的电视每台2500元,空调每台3000元.【点评】此题考查了二元一次方程组的应用,弄清题中的等量关系是解本题的关键.21.(8分)(2017宁德)某初中学校组织200位同学参加义务植树活动,每人植树的棵数在5至10之间.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况678910人数363116频率根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是9 棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是11 ,正确的数据应该是12(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动200位同学一共植树多少棵【考点】W4:中位数;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)乙组调查了30人,根据人数和下面的频率可得错误数据为11,应为12;(3)根据样本要具有代表性可得乙同学抽取的样本比较有代表性,再利用样本估计总体的方法计算即可.【解答】解:(1)表1中30位同学植树情况的中位数是9棵,故答案为:9;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是 11,正确的数据应该是12;(3)乙同学所抽取的样本能更好反映此次植树活动情况,(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【点评】此题主要考查了抽样调查,以及中位数,关键是掌握中位数定义,掌握抽样调查抽取的样本要具有代表性.22.(10分)(2017宁德)如图,在边长为1的正方形组成的5×8方格中,△ABC的顶点都在格点上.(1)在给定的方格中,以直线AB为对称轴,画出△ABC的轴对称图形△ABD.(2)求sin∠ABD的值.【考点】P7:作图﹣轴对称变换;T7:解直角三角形.【分析】(1)根据格点的特点作出点C关于直线AB的对称点D,连接AD,BD 即可;(2)根据格点的特点可知∠DBC=90°,再由轴对称的性质可知∠ABD=∠ABC=45°,据此可得出结论.【解答】解:(1)如图,△ABD即为所求;(2)由图可知,∠DBC=90°,∵点C与点D关于直线AB的对称,∴∠ABD=∠ABC=45°,∴sin∠ABD=sin45°=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.23.(10分)(2017宁德)如图,BF为⊙O的直径,直线AC交⊙O于A,B两点,点D在⊙O上,BD平分∠OBC,DE⊥AC于点E.(1)求证:直线DE是⊙O的切线;(2)若 BF=10,sin∠BDE=,求DE的长.【考点】ME:切线的判定与性质;T7:解直角三角形.【分析】(1)先连接OD,根据∠ODB=∠DBE,即可得到OD∥AC,再根据DE⊥AC,可得OD⊥DE,进而得出直线DE是⊙O的切线;(2)先连接DF,根据题意得到∠F=∠BDE,在Rt△BDF中,根据=sinF=sin ∠BDE=,可得BD=2,在Rt△BDE中,根据sin∠BDE==,可得BE=2,最后依据勾股定理即可得到DE的长.【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4.【点评】本题主要考查了切线的判定以及解直角三角形的运用,解决问题的关键是作辅助线,构造等腰三角形以及直角三角形,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.24.(13分)(2017宁德)在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.【考点】LO:四边形综合题.【分析】(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;(2)先根据垂直的作法即可画出图形,判断出△ADE≌△CBF,得出CF=1,再判断出△AOB∽△DEA,即可得出OB=,即可得出结论;(3)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.【解答】解:(1)如图1,过点D作DE⊥y轴于E,∴∠AED=∠AOB=90°,∴∠ADE+∠DAE=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAE+∠BAO=90°,∴∠ADE=∠BAO,在△ABO和△ADE中,,∴△ABO≌△ADE,∴DE=OA,AE=OB,∵A(0,3),B(m,0),D(n,4),∴OA=3,OB=m,OE=4,DE=n,∴n=3,∴OE=OA+AE=OA+OB=3+m=4,∴m=1;(2)画法:如图2,①过点A画AB的垂线l1,过点B画AB的垂线l2,②过点E(0,4),画y轴的垂线l3交l1于D,③过点D画直线l1的垂线交直线l2于点C,所以,四边形ABCD是所求作的图形,过点C作CF⊥x轴于F,∴∠CBF+∠BCF=90°,∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BAD=90°,∴∠ABO+∠CBF=90°,∴∠BCF=∠ABO,同理:∠ABO=∠DAE,∴∠BCF=∠DAE,在△ADE和△CBF中,,∴△ADE≌△CBF,∴DE=BF=n,AE=CF=1,易证△AOB∽△DEA,∴,∴,∴n=,∴OF=OB+BF=m+,∴C(m+,1);(3)如图3,由矩形的性质可知,BD=AC,∴BD最小时,AC最小,∵B(m,0),D(n,4),∴当BD⊥x轴时,BD有最小值4,此时,m=n,即:AC的最小值为4,连接BD,AC交于点M,过点A作AE⊥BD于E,由矩形的性质可知,DM=BM=BD=2,∵A(0,3),D(n,4),∴DE=1,∴EM=DM﹣DE=1,在Rt△AEM中,根据勾股定理得,AE=,∴m=,即:当m=时,矩形ABCD的对角线AC的长最短为4.【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO≌△ADE,解(2)的关键是△ADE≌△CBF和△AOB∽△DEA,解(3)的关键是作出辅助线,是一道中考常考题.25.(13分)(2017宁德)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数的值y随x的增大而增大;②如图2,若过A点的直线交函数的图象于另外两点P,Q,且S△ABQ =2S△ABP,求点P的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.【考点】HF:二次函数综合题.【分析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数的值y随x的增大而增大(即呈上升趋势)的x的取值;②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ =2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.【解答】解:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ =2S△ABP,∴ABQE=2×ABPD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了。
福建省宁德市中考试题(word版含答案)
福建省宁德市中考试题(word版含答案)福建省宁德市中考试题(word版含答案)一、选择题1. 下列各组数中,有理数的是()A. -3,-2,-1B. 0.5,1.5,2.5C. 1,π,√3D. 0,1,22. 已知直线m的斜率为-2,经过点(3,4),则直线m的方程是()A. y = 2x + 10B. y = -2x - 2C. y = 2x - 2D. y = -2x + 103. 化简:|2x-3| + |3-2x| = ()A. 0B. 1C. 3D. 64. 某数的百分之一是这个数的百分之几?()A. 1%B. 10%C. 100%D. 1000%5. 小明的体重是小华的2/3,小华的体重是小红的3/4,那么小明的体重是小红的()A. 1/2B. 1/3C. 1/4D. 1/66. (3x + 4) - (2x - 1) = ( )A. x + 5B. x - 5C. 5x - 5D. -5x - 57. 一个长方形的长是宽的3倍,周长是36cm,那么长方形的长和宽各是多少cm?()A. 6cm,18cmB. 9cm,27cmC. 12cm,36cmD. 15cm,45cm8. 下列各组数中,互质的是()A. 8,12B. 10,15C. 12,16D. 15,209. 小明从家到学校的路程是8km,他以每小时5km的速度骑自行车,那么他骑自行车到学校需要()A. 1小时B. 1.5小时C. 2小时D. 2.5小时10. 下列各组数中,最小的数是()A. -5,-3,-1B. 0.5,1,1.5C. 1,π,√3D. 0,1,2二、填空题1. 60%用小数表示是_______。
2. 15%用分数表示是_______。
3. 1/3用百分数表示是_______%。
4. 一个数的百分之一是这个数的_______%。
5. 判断下列各组数中有理数的是:-2,0.5,-1/3,2/3。
三、解答题1. 将下列各组数按从小到大的顺序排列:-2,-1,0,1,2。
福建省宁德市中考数学试卷
福建省宁德市中考数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共12分)1. (1分)(2017·信阳模拟) 计算:|﹣5|﹣ =________.2. (1分)一个数与﹣0.5的积是1,则这个数是________.3. (1分)若x2+(m﹣2)x+9是一个完全平方式,则m的值是________4. (1分)分式有意义的条件是________5. (1分)(2019·蒙自模拟) 已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为________.6. (1分)(2018·江油模拟) 如图,直线m∥n,∠A=50°,∠2=30°,则∠1等于________.7. (1分)(2017·锡山模拟) 体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是S甲2=6.4,乙同学的方差是S乙2=8.2,那么这两名同学跳高成绩比较稳定的是________同学.8. (1分)已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是________9. (1分)(2012·河池) 从纸上剪下一个圆和一个扇形的纸片(如图),圆的半径为2,扇形的圆心角等于120°.若用它们恰好围成一个圆锥模型,则此扇形的半径为________.10. (1分) (2017八下·江都期中) 如图,△COD是由△AOB绕点O按顺时针方向旋转40°后得到的图形,点C恰好在边AB上.若∠AOD=100°,则∠D的度数是________°.11. (1分)(2018·杭州) 某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是________。
2016年中考数学真题及答案解析
2016年中考数学真题及答案解析一. 选择题1. 如果a 与3互为倒数,那么a 是( ) A. 3- B. 3 C. 13-D. 132. 下列单项式中,与2a b 是同类项的是( )A. 22a bB. 22a b C. 2ab D. 3ab3. 如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+ 4. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男 生该周参加篮球运动次数的平均数是( )A. 3次B. 3.5次C. 4次D. 4.5次5. 已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =,AD b =, 那么向量AC 用向量a 、b 表示为( ) A.12a b + B. 12a b - C. 12a b -+ D. 12a b -- 6. 如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外, 那么⊙D 的半径长r 的取值范围是( )A. 14r <<B. 24r <<C. 18r <<D. 28r <<二. 填空题7. 计算:3a a ÷= 8. 函数32y x =-的定义域是9. 2=的解是10. 如果12a =,3b =-,那么代数式2a b +的值为 11. 不等式组2510x x <⎧⎨-<⎩的解集是12. 如果关于x 的方程230x x k -+=有两个相等的实数根,那么实数k 的值是13. 已知反比例函数ky x=(0k ≠),如果在这个函数图像所在的每一个象限内,y 的值 随着x 的值增大而减小,那么k 的取值范围是14. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋅⋅⋅、6点的标记,掷 一次骰子,向上的一面出现的点数是3的倍数的概率是15. 在ABC ∆中,点D 、E 分别是AB 、AC 的中点,那么ADE ∆的面积与ABC ∆的面积的比是16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是17. 如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为 60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为米(精确到1 1.73≈)18. 如图,矩形ABCD 中,2BC =,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分 别落在点A '、C '处,如果点A '、C '、B 在同一条直线上,那么tan ABA '∠的值为三. 解答题19. 计算:12211|4()3---;20. 解方程:214124x x -=--;21. 如图,在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,点D 在边AC 上,且2AD CD =, DE AB ⊥,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)ECB ∠的余切值;22. 某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续 搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如 图,线段OG 表示A 种机器人的搬运量A y (千克)与时间x (时)的函数图像,线段EF 表 示B 种机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解 答下列问题:(1)求B y 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时, 那么B 种机器人比A 种机器人多搬运了多少千克?23. 已知,如图,⊙O 是ABC ∆的外接圆,AB AC =,点D 在边BC 上,AE ∥BC ,AE BD =;(1)求证:AD CE =;(2)如果点G 在线段DC 上(不与点D 重合),且AG AD =,求证:四边形AGCE 是平行四边形;24. 如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B , 与y 轴交于点C ,且5OC OB =,抛物线的顶点为D ; (1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E 的坐标;25. 如图所示,梯形ABCD 中,AB ∥DC ,90B ∠=︒,15AD =,16AB =,12BC =, 点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且AGE DAB ∠=∠;(1)求线段CD 的长;(2)如果AEG ∆是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE x =,DF y =,求y 关于x 的函 数解析式,并写出x 的取值范围;参考答案一. 选择题1. D2. A3. C4. C5. A6. B二. 填空题7. 2a 8. 2x ≠ 9. 5x = 10. 2- 11. 1x < 12.94 13. 0k > 14. 13 15. 1416. 600017. 208 18. 12三. 解答题19. 解:原式1296=--= 20. 解:去分母,得2244x x +-=-; 移项、整理得220x x --=;经检验:12x =是增根,舍去;21x =-是原方程的根; 所以,原方程的根是1x =-;21. 解(1)∵2AD CD =,3AC = ∴2AD = 在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,∴45A ∠=︒,AB =;∵DE AB ⊥ ∴90AED ∠=︒,45ADE A ∠=∠=︒,∴cos 45AE AD =⋅︒=∴BE AB AE =-=BE 的长是 (2)过点E 作EH BC ⊥,垂足为点H ; 在Rt BEH ∆中,90EHB ∠=︒,45B ∠=︒,∴cos452EH BH EB ==⋅︒=,又3BC =, ∴1CH =; 在Rt ECH ∆中,1cot 2CH ECB EH ∠==,即ECB ∠的余切值是12; 22. 解:(1)设B y 关于x 的函数解析式为1B y k x b =+(10k ≠),由线段EF 过点(1,0)E 和点(3,180)P ,得1103180k b k b +=⎧⎨+=⎩,解得19090k b =⎧⎨=-⎩,所以B y 关于x 的函数解析式为9090B y x =-(16x ≤≤); (2)设A y 关于x 的函数解析式为2A y k x =(20k ≠), 由题意,得21803k =,即260k = ∴60A y x =; 当5x =时,560300A y =⨯=(千克), 当6x =时,90690450B y =⨯-=(千克), 450300150-=(千克);答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克23. 证明:(1)在⊙O 中,∵AB AC = ∴AB AC = ∴B ACB ∠=∠; ∵AE ∥BC ∴EAC ACB ∠=∠ ∴B EAC ∠=∠; 又∵BD AE = ∴ABD ∆≌CAE ∆ ∴AD CE =; (2)联结AO 并延长,交边BC 于点H ,∵AB AC =,OA 是半径 ∴AH BC ⊥ ∴BH CH =;∵AD AG = ∴DH HG = ∴BH DH CH GH -=-,即BD CG =; ∵BD AE = ∴CG AE =;又∵CG ∥AE ∴四边形AGCE 是平行四边形;24. 解:(1)∵抛物线25y ax bx =+-与y 轴交于点C ∴(0,5)C - ∴5OC =; ∵5OC OB = ∴1OB =;又点B 在x 轴的负半轴上 ∴(1,0)B -; ∵抛物线经过点(4,5)A -和点(1,0)B -, ∴1645550a b a b +-=-⎧⎨--=⎩,解得14a b =⎧⎨=-⎩;∴这条抛物线的表达式为245y x x =--;(2)由245y x x =--,得顶点D 的坐标是(2,9)-; 联结AC ,∵点A 的坐标是(4,5)-,点C 的坐标是(0,5)-,又145102ABC S ∆=⨯⨯=,14482ACD S ∆=⨯⨯=; ∴18ABC ACD ABCD S S S ∆∆=+=四边形;(3)过点C 作CH AB ⊥,垂足为点H ;∵1102ABC S AB CH ∆=⨯⨯=,AB = ∴CH =;在Rt BCH ∆中,90BHC ∠=︒,BC =BH ==∴2tan 3CH CBH BH ∠==;在Rt BOE ∆中,90BOE ∠=︒,tan BOBEO EO∠=; ∵BEO ABC ∠=∠ ∴23BO EO =,得32EO = ∴点E 的坐标为3(0,)2;25. 解:(1)过点D 作DH AB ⊥,垂足为点H ;在Rt DAH ∆中,90AHD ∠=︒,15AD =,12DH =;∴9AH ==;又∵16AB = ∴7CD BH AB AH ==-=;(2)∵AEG DEA ∠=∠,又AGE DAE ∠=∠ ∴AEG ∆∽DEA ∆; 由AEG ∆是以EG 为腰的等腰三角形,可得DEA ∆是以AE 为腰的等腰三角形; ① 若AE AD =,∵15AD = ∴15AE =;② 若AE DE =,过点E 作EQ AD ⊥,垂足为Q ∴11522AQ AD == 在Rt DAH ∆中,90AHD ∠=︒,3cos 5AH DAH AD ∠==; 在Rt AEQ ∆中,90AQE ∠=︒,3cos 5AQ QAE AE ∠== ∴252AE =; 综上所述:当AEG ∆是以EG 为腰的等腰三角形时,线段AE 的长为15或252;(3)在Rt DHE ∆中,90DHE ∠=︒,DE ==∵AEG ∆∽DEA ∆ ∴AE EGDE AE =∴2EG =∴2DG =∵DF ∥AE ∴DF DG AE EG =,222212(9)y x x xx +--=; ∴22518x y x -=,x 的取值范围为2592x <<;。
【中考数学试题及答案】福建中考数学试题及答案2016
【中考数学试题及答案】福建中考数学试题及答案2016
成功者永远不会放弃,放弃者永远不会成功。不要最后一秒钟,绝不放弃!福建中考数学试题及答案频道的小编会及时为广大考生提供2016年福建中考数学试题及答案,有需要的考生可以在考题公布后刷新本页面(按ctrl F5),希望对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年福建省宁德市中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B 铅笔在答题卡的相应位置填涂)1.2的相反数是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a53.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为()A.0.47×108B.4.7×107C.47×107D.4.7×1064.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.85.下列分解因式正确的是()A.﹣ma﹣m=﹣m(a﹣1)B.a2﹣1=(a﹣1)2C.a2﹣6a+9=(a﹣3)2D.a2+3a+9=(a+3)2 6.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④7.如图,⊙O的半径为3,点A,B,C,D在⊙O上,∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,则的长为()A. B. C.2πD.8.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a﹣5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= °.12.一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是分.13.方程=的解是.14.已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1y2(填“>”,“<”或“=”).15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是.三、解答题(本大题共9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.计算: +(π﹣3)0﹣2cos30°.18.解不等式﹣1≤,并把解集在数轴上表示出来.19.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.20.(8分)某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a,b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.组别分数段(x)频数A 0≤x<60 2B 60≤x<70 5C 70≤x<80 17D 80≤x<90 aE 90≤x≤100 b21.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;(2)在方格中画出△ACD关于直线AD对称的△AED;(3)直接写出AB与DE的交点P到线段BE的距离.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.问甲、乙两人各带了多少钱?23.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.24.已知正方形ABCD,点E在直线CD上.(1)若F是直线BC上一点,且AF⊥AE,求证:AF=AE;(请利用图1所给的图形加以证明)(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;(3)若点G在直线BC上,且AG平分∠BAE,探索线段BG、DE、AE之间的数量关系,并说明理由.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.2016年福建省宁德市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B 铅笔在答题卡的相应位置填涂)1.2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.【点评】本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.2.下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分析得出答案.【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a5÷a3=a2,正确;D、(a2)3=a6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、幂的乘方运算等知识,正确应用相关运算法则是解题关键.3.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为()A.0.47×108B.4.7×107C.47×107D.4.7×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:47 000 000用科学记数法表示为4.7×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.8【考点】概率公式.【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【解答】解:袋中球的总个数是:2÷=8(个).故选D.【点评】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.5.下列分解因式正确的是()A.﹣ma﹣m=﹣m(a﹣1)B.a2﹣1=(a﹣1)2C.a2﹣6a+9=(a﹣3)2D.a2+3a+9=(a+3)2【考点】提公因式法与公式法的综合运用.【分析】利用提取公因式或者公式法即可求出答案.【解答】解:(A)原式=﹣m(a+1),故A错误;(B)原式=(a+1)(a﹣1),故B错误;(C)原式=(a﹣3)2,故C正确;(D)该多项式不能因式分解,故D错误,故选(C)【点评】本题考查因式分解,注意应用公式法时,要严格按照公式进行分解.6.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④【考点】简单组合体的三视图.【分析】根据题意得到原几何体的主视图,结合主视图选择.【解答】解:原几何体的主视图是:.故取走的正方体是①.故选:A.【点评】本题考查了简单组合体的三视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.如图,⊙O的半径为3,点A,B,C,D在⊙O上,∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,则的长为()A. B. C.2πD.【考点】弧长的计算.【分析】根据题意可得∠AOD=150°,然后再利用弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)进行计算.【解答】解:∵∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,∴∠AOD=120°+30°=150°,∴==,故选:B.【点评】此题主要考查了弧长计算,关键是掌握弧长计算公式.8.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形【考点】菱形的判定.【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【解答】解:如图所示;∵将△ABC延底边BC翻折得到△DBC,∴AB=BD,AC=CD,∵AB=AC,∴AB=BD=CD=AC,∴四边形ABDC是菱形;故选B.【点评】本题考查了菱形的判定和翻折变换的应用,解此题的关键是求出AB=BD=CD=AC,题目比较典型,难度不大.9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a﹣5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④【考点】一元一次方程的应用.【专题】计算题;应用题;一次方程(组)及应用.【分析】先假定一个方框中的数为a,再根据日历上的数据规律写出其他方框中的数,相加是否得5a﹣5,即可作出判断.【解答】解:解法一:设中间位置的数为A,则①位置数为:A﹣7,④位置为:A+7,左②位置为:A﹣1,右③位置为:A+1,其和为5A=5a﹣5,∴a=A+1,即a为③位置的数;解法二:A、若方框①表示的数为a,则②a+6,③a+8,④a+14,A:a+7,则这5个数的和:a+a+8+a+6+a+14+a+7=5a+35,所以方框①表示的数不是a,B、若方框②表示的数为a,则①a﹣6,③a+2,④a+8,A:a+1,则这5个数的和:a+a﹣6+a+2+a+8+a+1=5a+5,所以方框②表示的数不是a,C、若方框③表示的数为a,则①a﹣8,②a﹣2,④a+6,A:a﹣1,则这5个数的和:a+a﹣8+a﹣2+a+6+a﹣1=5a﹣5,所以方框③表示的数是a,D、若方框④表示的数为a,则①a﹣14,③a﹣6,②a﹣8,A:a﹣7,则这5个数的和:a+a﹣14+a﹣6+a﹣8+a﹣7=5a﹣35,所以方框④表示的数不是a,故选C.【点评】本题是日历上的数,明确日历上的规律是关键:上下两数的差为7,左右两数的差为1;解答时要细心表示方框中的数,容易书写错误.10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.【考点】数轴.【专题】数形结合.【分析】根据平均数为0可判断三个数中一定有一个正数和一个负数,讨论:若第三个数为负数,根据绝对值的意义得到两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离,然后利用此特征对各选项进行判断.【解答】解:因为三个数a、b、c的平均数是0,所以三个数中一定有一个正数和一个负数,若第三个数为负数,则两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离.故选D.【点评】本题考查了数轴:记住数轴的三要素:原点,单位长度,正方向.二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= 37 °.【考点】相似三角形的性质.【分析】根据相似三角形的对应角相等,可得答案.【解答】解:由△ADE∽△ABC,若∠ADE=37°,得∠B=∠ADE=37°,故答案为:37.【点评】本题考查了相似三角形的性质,熟记相似三角形的性质是解题关键.12.一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是9.1 分.【考点】中位数.【分析】先把数据按从小到大排列,然后根据中位数的定义求解.【解答】解:数据按从小到大排列为:8.7分,8.9分,9.1分,9.3分,9.3分的中位数为9.1分.故答案为9.1.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.方程=的解是x=1 .【考点】解分式方程.【专题】计算题.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,据此求出方程=的解是多少即可.【解答】解:去分母得:x+1=2x,解得x=1,经检验x=1是分式方程的解,∴方程=的解是x=1.故答案为:x=1.【点评】此题主要考查了解分式方程,要熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1>y2(填“>”,“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】先确定k的值为2,得在每一分支上,y随x 的增大而减小,通过判断x的大小来确定y 的值.【解答】解:∵k=2>0,∴在每一分支上,y随x 的增大而减小,∵1<2,∴y1>y2,故答案为:>.【点评】本题考查了反比例函数的增减性,当k>0时,在每一分支上,y随x 的增大而减小;当k <0时,在每一分支上,y随x 的增大而增大;本题也可以将x的值代入计算求出对应y的值来判断大小关系.15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为108 °.【考点】多边形内角与外角.【专题】计算题;正多边形与圆.【分析】所求角即为正五边形的内角,利用多边形的内角和定理求出即可.【解答】解:∵正五边形的内角和为(5﹣2)×180°=540°,∴∠1=540°÷5=108°,故答案为:108【点评】此题考查了多边形的内角和外角,熟练掌握多边形的内角和定理是解本题的关键.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是≤l<13..【考点】旋转的性质;勾股定理;图形的剪拼.【分析】如图,连接DE,作AH⊥BC于H.首先证明GF=DE=,要求四边形MNFG周长的取值范围,只要求出MG的最大值和最小值即可.【解答】解:如图,连接DE,作AH⊥BC于H.在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵•AB•AC=•BC•AH,∴AH=,∵AD=DB,AE=EC,∴DE∥CB,DE=BC=,∵DG∥EF,∴四边形DGFE是平行四边形,∴GF=DE=,由题意MN∥BC,GM∥FN,∴四边形MNFG是平行四边形,∴当MG=NF=AH时,可得四边形MNFG周长的最小值=2×+2×=,当G与B重合时可得周长的最大值为13,∵G不与B重合,∴≤l<13.故答案为≤l<13.【点评】本题考查旋转变换、勾股定理、平行四边形的性质、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会取特殊点解决问题,属于中考常考题型.三、解答题(本大题共9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.计算: +(π﹣3)0﹣2cos30°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂的意义和特殊角的三角函数值得到原式=2+1﹣2×,然后进行乘法运算后合并即可.【解答】解:原式=2+1﹣2×=2+1﹣=+1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解不等式﹣1≤,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】利用解一元一次不等式的方法解出不等式的解集,再将其表示在数轴上即可得出结论.【解答】解:不等式两边同时×6得:3x﹣6≤14﹣2x,移项得:5x≤20,解得:x≤4.将其在数轴上表示出来如图所示.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.19.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【考点】全等三角形的判定与性质.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理SAS证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(SAS),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.20.某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a,b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.组别分数段(x)频数A 0≤x<60 2B 60≤x<70 5C 70≤x<80 17D 80≤x<90 aE 90≤x≤100 b【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据数据总数=代入计算,求出九年2班学生的人数;(2)a是D组的频数=百分比×总数;b是E组的频数=50﹣各组频数;(3)先计算优秀的百分比,再与80000相乘即可;(4)取的样本不足以代表全市总中学的总体情况.【解答】解:(1)17÷34%=50(人),答:九年2班学生的人数为50人;(2)a=24%×50=12,b=50﹣2﹣5﹣17﹣12=14,(3)E:14÷50=28%,(28%+24%)×80000=52×800=41600(人),答:估计该市本次测试成绩达到优秀的人数为41600人;(4)全市参加本次测试的中学生中,成绩达到优秀有56 320人;而样本中估计该市本次测试成绩达到优秀的人数为41600人,原因是:小明对第三中学九年2班全体学生的测试成绩取的样本不足以代表全市总中学的总体情况,所以会出现较大偏差.【点评】此题考查了数据的收集与整理,根据频数分布表和扇形统计图可以将大量数据分类,结果清晰,一目了然地表达出来,熟练掌握公式是做好本题的关键:数据总数=,各组频数和=总数据;属于基础题,比较简单.21.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;(2)在方格中画出△ACD关于直线AD对称的△AED;(3)直接写出AB与DE的交点P到线段BE的距离.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)、(2)根据题意作出图象;(3)建立坐标系,求出直线AB、DE所在直线解析式,再求出两直线交点坐标可得.【解答】解:(1)如图所示,将线段AB沿AC方向平移即可;(2)如图所示,△AED即为所求;(3)建立如图所示坐标系,设AB所在直线解析式为y=kx+b,将A(0,2)、B(4,0)代入,得:,解得:,∴AB所在直线解析式为y=﹣x+2,设DE所在直线解析式为y=mx+n,将点D(5,2)、E(1,0)代入,得:,解得:,∴DE所在直线解析式为y=x﹣,根据题意,,解得:,∴点E的坐标为(,),故AB与DE的交点P到线段BE的距离.【点评】本题主要考查平移变换和轴对称变换及两直线相交问题,建立坐标系后待定系数求函数解析式是解题的关键.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.问甲、乙两人各带了多少钱?【考点】二元一次方程组的应用.【分析】设甲原有x元钱,乙原有y元钱,根据题意可得,甲的钱+乙的钱的一半=48元,乙的钱+甲所有钱的=48元,据此列方程组,求解即可.【解答】解:设甲原有x元钱,乙原有y元钱,根据题意,得,解得:,答:甲、乙两人各带了36元和24元钱.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.【考点】切线的判定;圆周角定理;解直角三角形.【分析】(1)要证CE是⊙O的切线,只要证明∠OCE=90°,根据,∠CDB=45°,CE∥AB可以求得∠OCE=90°,从而可以解答本题;(2)要求⊙O的直径,根据CE∥AB,cos∠CED=,BD=6,可以求得AB的长,本题得以解决.【解答】(1)证明:连接BC、CO,如右图所示,∵AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°,∴∠COB=2∠CDB=90°,∵CE∥AB,∴∠COB+∠OCE=180°,∴∠OCE=90°,即CE是⊙O的切线;(2)连接AD,如右上图所示,∵CE∥AB,∴∠CED=∠ABD,∵cos∠CED=,BD=6,AB是⊙O的直径,∴∠ADB=90°,cos∠ABD=,∴,∴AB=18,即⊙O的直径是18.【点评】本题考查切线的判定、圆周角定理、解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.已知正方形ABCD,点E在直线CD上.(1)若F是直线BC上一点,且AF⊥AE,求证:AF=AE;(请利用图1所给的图形加以证明)(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;(3)若点G在直线BC上,且AG平分∠BAE,探索线段BG、DE、AE之间的数量关系,并说明理由.【考点】四边形综合题.【专题】压轴题.【分析】(1)如图1,利用ASA证明△ABF≌△ADE,可以直接得出AE=AF;(2)如图2所示,如果AF=AE时,AE与AF不一定垂直;(3)分三种情况:①当E在线段CD上时,满足AE=BG+DE,如图3,作辅助线,利用(1)的结论得:△ABF≌△ADE,得AE=AF,DE=BF,再证明AF=FG,利用等量代换和线段的和得出结论.②当E在CD的延长线上时,满足BG=DE+AE,③当E在DC的延长线上时,满足AE=DE+BG;同理分别得出相应结论.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠BAD=90°,∴∠ABF=∠ADC=90°,∠DAE+∠BAE=90°,∵AE⊥AF,∴∠EAF=90°,∴∠FAB+∠BAE=90°,∴∠DAE=∠BAF,∴△ABF≌△ADE,∴AE=AF;(2)若F是直线BC上一点,且AF=AE,则AF⊥AE;如图2所示,当AF=AE时,则AF与AE不一定垂直,所以“若F是直线BC上一点,且AF=AE,则AF ⊥AE“是假命题;(3)分三种情况:①当E在线段CD上时,满足AE=BG+DE,理由是:如图3,过A作AF⊥AE,与直线CB交于点F,由(1)得:△ABF≌△ADE,∴AE=AF,DE=BF,∴FG=BF+BG=BG+DE,∵AG平分∠BAE,∴∠BAG=∠EAG,∵∠BAF=∠DAE,∴∠BAF+∠BAG=∠EAG+∠DAE,∴∠FAG=∠DAG,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AE=FG=BG+DE.②当E在CD的延长线上时,满足BG=DE+AE,理由是:如图4,过A作AF⊥AE,与直线CB交于点F,由(1)得:△ABF≌△ADE,∴AE=AF,DE=BF,∠BAF=∠DAE,∵AG平分∠BAE,∴∠BAG=∠EAG,∴∠BAG﹣∠BAF=∠EAG﹣∠DAE,∴∠FAG=∠GAD,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=AF,∴BG=BF+FG=DE+AE;③当E在DC的延长线上时,满足AE=DE+BG,理由是:如图5,过A作AF⊥AE,与直线CB交于点F,同理得:△ABF≌△ADE,∴AE=AF,DE=BF,∴FG=BF+BG=BG+DE,∵AG平分∠BAE,∴∠BAG=∠EAG,∵∠BAF=∠DAE,∴∠BAF+∠BAG=∠EAG+∠DAE∴∠FAG=∠DAG,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AE=FG=BG+DE.【点评】本题是四边形的综合题,考查了正方形、全等三角形的性质和判定;正方形的各边相等且每个角都等于90°,在全等的证明中常利用同角的余角相等证明两个角相等,这一方法要熟练掌握;对于第三问中线段的和差问题,常利用全等三角形对应边相等作等量代换,得出结论.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.【考点】二次函数综合题.【分析】(1)先根据抛物线的解析式求出抛物线与y轴的交点A的坐标,再根据点A,B到直线x=2的距离相等,求出点B的横坐标为4,因为B也在抛物线上,当x=4代入抛物线的解析式求出y的值,即是点B的坐标,再利用待定系数法求直线l2的表达式;(2)根据平移规律写出直线l3表达式,计算出直线l3与直线x=2的交点坐标(2,﹣1.5),根据二次函数和直线l3的解析式列方程组求出C、D两点的坐标,由中点坐标公式计算CD的中点坐标,恰好与直线l3与直线x=2的交点重合,所以直线x=2平分线段CD;(3)先设M(x1,y1),N(x2,y2),根据M、N是抛物线和直线y=3x+m的交点,列方程组得:x1+x2=﹣,由中点坐标公式列式可得结论.【解答】解:(1)当x=0时,y=3,∴A(0,3),∴A到直线x=2的距离为2,∵点A,B到直线x=2的距离相等,∴B到直线x=2的距离为2,∴B的横坐标为4,当x=4时,y=﹣×42+4+3=﹣1,∴B(4,﹣1),把A(0,3)和B(4,﹣1)代入y=kx+b中得:,解得:,∴直线l2的表达式为:y=﹣x+3;(2)直线x=2平分线段CD,理由是:直线l3表达式为:y=﹣x+3﹣=﹣x+0.5,当x=2时,y=﹣2+0.5=﹣1.5,。