线性方程组及矩阵的初等变换.
线性代数课件 矩阵的初等变换与线性方程组.
定理 2 方阵 A 可逆的充分必要条件是存在有限个初等矩阵 P1 P2 Pl 使AP1P2 Pl
推论1 方阵A可逆的充分必要条件是A ~ E
推论2 mn矩阵A与B等价的充分必要条件是存在 m阶可逆矩阵 P及n阶可逆矩阵Q 使PAQB 若矩阵A可逆 则矩阵(A E)经初等行变换可化为(E A1)
8
基本题型
求矩阵的秩和极大无关组
基本方法 : 用初等列(行)变换将矩阵变 为列(行)阶梯阵。讨论矩阵的秩.
与求向量组的秩和极大无关x=0 有非零解 R(A)<n.
Ax 0
线 性 方 程 组
求 解
1.化系数矩阵为最简形. 2.找等价的方程组.
3.写通解. Ax=b 有解 R(A)=R(B).
Ax b
求 解
1.把增广矩阵B化为最简形. 2. 找等价的方程组. 3.写通解.
10
定理4 n元线性方程组Axb (1)无解的充分必要条件是R(A)R(A b) (2)有唯一解的充分必要条件是R(A)R(A b)n (3)有无限多解的充分必要条件是R(A)R(A b)n 定理5 线性方程组Axb有解的充分必要条件是R(A)R(A b) 定理6 n元齐次线性方程组Ax0有非零解的充分必要条件是 R(A)n
3
初等矩阵
由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵 初等矩阵都是可逆的 并且 E(i j)1E(i j) E (i ( k )) 1 E (i ( 1 )) E(ij(k))1E(ij(k)) k
• 初等阵与初等变换的关系 • 左乘------行变换 • 右乘------列变换
r
5
解矩阵方程:基本方法是初等变换.
E, X , (2)AX=B 用(A,B)
矩阵的初等变换与线性方程组
.
1 a
1 1
,
r − 2r1 r3 + (a − 2)r2 2 3 a+2 3 2 0 −1 0 −1 a 1 r3 − 3r1 3 a −2 0 0 a − 2 −3 −1 0 0
1 −2
1 −2
x2 = k1 −3 + k2 −1 + 0 1 x 3 0 x4 1
1 . 0 0
其中 k1 , k2 为任意常数.
(II) 当 λ =
第三章
矩阵的初等变换与线性方程组
秩是矩阵的一种内在属性. 矩阵的这种内在属性是与生俱来的, 一个矩阵一旦诞生, 它 的这种内在属性就确定了. 虽然初等变换可以把它们变得面目全非, 但是它们的这个内在 属性是不变的. 等价的矩阵, 看上去各各不同, 但是有一个内在属性是一样的, 那就是它们 的秩.
§3.1
第三章 矩阵的初等变换与线性方程组
min R(A), R(B ) . 其中 A, B 分别为 s × n 和 n × m 矩阵.
(三) 线性方程组有解判别 (1) 一般的方程 Ax = b 的情形.
对 n 元线性方程组 Ax = b, 记 B = (A, b). 注意到 R(B ) 比 R(A) 只多 0 或 1.
是否出现矛盾方程是方程组有解与否的关键; 是否出现自由未知量又是区分有无限多解和有唯 一解的关键. 换成秩的角度去说问题, 就呈现为下面的表达:
n 元线性方程组 Ax = b 有解 ⇐⇒ R(A) = R(B ). 且 n 元线性方程组 Ax = b 无解 ⇐⇒ R(A) = R(B ). (2) 齐次方程组 Ax = 0 的情形. R(A) = R(B ) = n, 有唯一解; R(A) = R(B ) < n, 有无限多解.
矩阵的初等变换与线性方程组
第三章 矩阵的初等变换与线性方程组说明与要求:上一章已经介绍了求解线性方程组的克莱姆法则.虽然克莱姆法则在理论上具有重要的意义,但是利用它求解线性方程组,要受到一定的限制.首先,它要求线性方程组中方程的个数与未知量的个数相等,其次还要求方程组的系数行列式不等于零.即使方程组具备上述条件,在求解时,也需计算n +1个n 阶行列式.由此可见,应用克莱姆法则只能求解一些较为特殊的线性方程组且计算量较大.本章讨论一般的n 元线性方程组的求解问题.一般的线性方程组的形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (I)方程的个数m 与未知量的个数n 不一定相等,当m =n 时,系数行列式也有可能等于零.因此不能用克莱姆法则求解.对于线性方程组(I ),需要研究以下三个问题:(1)怎样判断线性方程组是否有解?即它有解的充分必要条件是什么? (2)方程组有解时,它究竟有多少个解及如何去求解? (3)当方程组的解不唯一时,解与解之间的关系如何? 目的与要求:掌握矩阵的初等变换,能用初等变换化矩阵为行阶梯形、行最简形和标准型。
理解矩阵的秩概念、掌握用初等变换求矩阵的秩。
了解初等矩阵的概念,掌握用初等变换求逆矩阵的方法。
掌握用初等变换求解线性方程组。
本章重点:矩阵的初等变换;解线性方程组;秩;线性方程组解的判定. 。
本章难点:秩;线性方程组解的判定.§3.1 矩阵的初等变换在本章的§2.3节中给出了矩阵可逆的充分必要条件,并同时给出了求逆矩阵的一种方法——伴随矩阵法.但是利用伴随矩阵法求逆矩阵,当矩阵的阶数较高时计算量是很大的.这一节将介绍求逆矩阵的另一种方法——初等变换法.为此我们先介绍初等矩阵的概念,并建立矩阵的初等变换与矩阵乘法的联系.一. 初等变换定义下面三种变换称为矩阵的初等行变换:1.互换两行(记);2.以数乘以某一行(记);3.把某一行的倍加到另一行上(记)。
矩阵的初等变换与线性方程组
第三章 矩阵的初等变换与线性方程组本章的重点是研究矩阵更深层的性质——秩,它是矩阵理论的核心概念,是由德国数学家佛洛本纽斯在1879年首先提出的。
为了研究矩阵秩的概念,首先要介绍一个重要的工具———矩阵的初等变换概念,它不仅解决了求矩阵秩的问题,还是帮助求解线性方程组、求逆阵、判定向量组相关性等的有力工具,然后我们将应用秩理论解决方程组的求解问题,最后还要将初等变换概念在理论层次上加以提炼,即介绍初等方阵的概念。
§1 矩阵的初等变换矩阵的初等变换是矩阵之间的一种十分重要的变换,是从实际问题的解决中抽象得到的。
一、引例求解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=+-+=+--979634226442224321432143214321x x x x x x x x x x x x x x x x(1)(1) )(1B )(2B)(3B ⎪⎪⎩⎪⎪⎨⎧=-==+-=+-+00304244324321x x x x x x x x )(4B 问题10共采取了几种变换将(1)变为)(4B 的?(三种:(ⅰ) 交换方程的次序;(ⅱ) 用数)0(≠k 乘某方程; (ⅲ) 将某方程的k 倍加到另一方程上。
且这三种变换都可以看成是只对方程组的系数和常数项进行的)20在这三种变换下,(1)与)(4B 是否同解?即这三种变换是否都可逆? (都可逆,即同解变换) 30采取这三种变换的目的是为了将(1)变为什么形状以便得到解? (阶梯形。
其寓意:方程④表明方程组有一个多余的方程; 将③代入②得32x x =,表明3x (或2x )可任意取值,称之为自由未知量,其余的未知量称为非自由未知量,当某层的阶宽多于一个未知量时,就必有自由未知量,一般我们取每层阶梯的第一个未知量为非自由未知量,由于一旦确定下自由未知量,任给自由未知量一组数值,就可得到方程组的一个解,所以我们特别重视自由未知量)40 由于(1)与其增广矩阵)(b A B =构成一一对应,那这三种变换在矩阵中对应的效果是什么?⎝⎛=B ⎪⎪⎪⎪⎭⎫ ⎝⎛------97963211322111241211 ⎪⎪⎪⎪⎭⎫⎝⎛-------34330635500222041211⎪⎪⎪⎪⎭⎫⎝⎛----310620000111041211 5000310000111041211B =⎪⎪⎪⎪⎭⎫ ⎝⎛---. 对于矩阵的行只作了三种变换,也就是说,为解线性方程组对方程组作变换,就相当于对其增广矩阵的行作同类变换,下面给出这三种对矩阵的行作的变换在矩阵中的正式定义:②-③ ③-2① ④-3① ①②③④①↔ ② ③ ÷③↔④ ④-2③ ③↔④ ④-2③ ①②③④②-③ ③-2①④-3① ②÷ 2③+5② ④-3②二、初等变换1、定义1 以下三种变换称为矩阵的初等行变换:(ⅰ) 对调两行(对调i 、j 两行记作:j i r r ↔);(ⅱ) 以数k ≠0乘某行中的所有元素(第i 行乘k 记作:k r i ⨯);(ⅲ) 将某行所有元素的倍加到另一行对应元素上去(将第j 行的k 倍加到第i 行记作:j i r k r +)。
矩阵初等变换与线性方程组
特别地,当B=b为列向量时,有
R A R A ,bR A 1
2 .R A B R A R B
3 .R A B m in R A ,R B
4 .若 A m n B n l 0若 R A R B n
C
k m
C
k n
个
(二)最高阶非零子式,矩阵的秩
如果矩,而所有 r 1 阶子式(如果存在的
话)的值全等于0,则称 D r 为矩阵A的一
个最高阶非零子式,其阶数 r 称为矩阵A
的秩,记作 R A .
例1、求矩阵A 和B的秩
其中
1
A
2
4
2 3 7
3
5
等行变换把它变成行阶梯形矩阵和行最 简形矩阵)
(三)矩阵A的等价标准形矩阵
特点:矩阵A的等价标准形矩阵的左上
角是一个单位矩阵,其余元素全为零,
对于mn矩阵A,总可经过初等变
换(行变换和列变换)把它化为等价标准
形
C
Er 0
0
0
mn
其中 r 是行阶梯形矩阵中非零行的
行数。
0 2 1
例1、设
阵E,即 A E
(三)推论: 可逆矩阵A可表示为有 限个初 等矩阵的乘积。
六、初等变换的应用
(一)求可逆矩阵A的逆矩阵 A 1
r
1 .若 A E E ,X , 则 A 可 逆 , 且 X A 1 行 变 换
2.若 E A 列 变 C 换 E X ,则 A 可 逆 ,且 XA 1
矩阵初等变换与线性方程组
§3-1矩阵的初等变换
一、矩阵的初等变换的定义
(一)初等行(列)变换
第2章_矩阵的初等变换与线性方程组
解
3 − 7 r2 + r1 1 4 r3 − 3r1 r1 ↔ r3 A → − 1 − 3 − 17 4 → 3 2 6 9
3 − 7 3 − 7 1 4 1 4 r3 +10r2 0 1 − 14 − 3 → 0 1 − 14 − 3 0 0 − 143 0 0 − 10 − 3 30
= = = =
B
3 − 7 1 4 即为行阶梯形矩阵。 B = 0 1 − 14 − 3 即为行阶梯形矩阵。 0 0 − 143 0
特点: 特点: (1) 可划出一条阶梯线,线的下方全为零; 可划出一条阶梯线,线的下方全为零; (2) 每个台阶只有一行,阶梯数即是非零行 每个台阶只有一行, 的行数, 的行数,阶梯线的竖线后面的第一个元 素为非零元,即非零行的非零首元。 素为非零元,即非零行的非零首元。
1 0 0 5 称为行最简形矩阵 行最简形矩阵。 → 0 1 0 − 3 = C 称为行最简形矩阵。 0 0 1 0
r2 + 14 r3 r1 − 59 r3
在具备行阶梯形矩阵特点的同时, 在具备行阶梯形矩阵特点的同时,非零行的 特点: 特点: 非零首元为1,且其所在列的其他元素全为 。 非零首元为 ,且其所在列的其他元素全为0。
将方程组的消元过程与增广矩阵的变换过程 消元过程与增广矩阵的 解 将方程组的消元过程与增广矩阵的变换过程 进行对比。 进行对比。
x1 + 2 x 2 + 3 x 3 2 x1 − x2 + 2 x3 x + 3x 2 1 = −7 = −8 =7
1 2 3 − 7 2 − 1 2 − 8 1 3 0 7
矩阵的初等变换与线性方程组12页
矩阵的初等变换与线性方程组12页1. 初等变换的定义初等变换是指对一个矩阵进行以下三种操作:交换矩阵的两行;将某一行乘以一个非零数;将某一行加上另一行的若干倍。
2. 线性方程组与矩阵对于一个线性方程组,可以将其表示为矩阵乘向量的形式,即A*x=b,其中A为系数矩阵,x为未知向量,b为常数向量。
3. 初等变换与线性方程组通过初等变换可以将一个线性方程组转化为与之等价的线性方程组,这一性质可以通过矩阵的等价变换得到。
4. 高斯消元法高斯消元法是一种使用初等变换求解线性方程组的经典方法。
通过对系数矩阵进行初等变换,将其转化为一个上三角矩阵,即可逐步求解未知向量。
5. 求解线性方程组的基本思路求解线性方程组的基本思路是,对系数矩阵进行初等变换,将其转化为一个上三角矩阵,然后通过回带求解未知向量。
如果系数矩阵不可逆,那么方程组可能无解或者有无穷多解。
6. 矩阵求逆的基本方法矩阵求逆也可以通过对系数矩阵进行初等变换得到。
具体方法是利用矩阵的增广形式构造一个方阵,然后对该方阵进行初等变换,将其转化为一个单位矩阵。
最终得到的矩阵就是原矩阵的逆矩阵。
7. 线性方程组的解的存在唯一性定理线性方程组的解的存在唯一性定理指出,对于一个线性方程组,只有当系数矩阵满秩时,才存在唯一解。
如果系数矩阵不满秩,那么方程组可能无解或者有无穷多解。
8. 向量空间与子空间向量空间是指满足一定运算法则的向量集合。
子空间是指一个向量空间的子集,且满足加法和数乘运算的封闭性。
9. 基和维数基是指一个向量空间中的一组线性无关的向量集合。
维数是指一个向量空间中的基向量个数。
10. 极大线性无关组和极大线性无关组成基极大线性无关组是指在一个向量集合中,能够选出一组线性无关的向量,并且在该向量集合中没有其他向量能够加入这组向量。
这组向量就是该向量集合的极大线性无关组。
极大线性无关组可以通过初等变换得到线性无关的基向量。
矩阵的初等变换与线性方程组
42 94
B1
1 2 4 3
1 1 6 6
2 1 2 9
1 1 2 7
24 94
显然 交换B的第1行与第2行即得B1
2021/4/9
3
首页
上页
返回
下页
结束
❖方程组的同解变换与增广矩阵的关系 在解线性方程组的过程中 我们可以把一个方程变为另一
个同解的方程 这种变换过程称为同解变换 同解变换有 交换两个方程的位置 把某个方程乘以一个
112
1 0 2
0 1 0
100
552
0 1 1
112
2021/4/9
18
首页
上页
返回
下页
结束
❖定理1(初等矩阵在矩阵乘法中的作用 ) 设A是一个mn矩阵 对A施行一次初等行变换 相当于在
A的左边乘以相应的m阶初等矩阵 对A施行一次初等列变换 相当于在A的右边乘以相应的n 阶初等矩阵
❖定理2(矩阵可逆的充要条件) 方阵A可逆的充分必要条件是存在有限个初等矩阵P1 P2
94
r
01
1 1
2 1
1 1
04
00
0 0
0 0
1 0
03
r
0001
0 1 0 0
1 1 0 0
0 0 1 0
0433
❖行最简形矩阵与线性方程组的解
因为有上述等价关系 所以有同解线性方程组
2x1 x2 x3 x4 2 x1
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
2021/4/9
2
首页
上页
返回
下页
结束
第三章 矩阵的初等变换与线性方程组
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
4 4 9
①②
①②
x1 x2 2x3 x4 4
423xxx111
x2 6x2 6x2
x3 2x3 9x3
x4 2x4 7 x4
一个同解的方程 这种变换过程称为同解变换. 同解变换有 交换两个方程的位置 把某个方程乘以一个
非零数 某个方程的非零倍加到另一个方程上.
例如
2x1 x2 x3 x4 2
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
的线性方程组都是同解的 其中行最简形矩阵所对应的线性
方程组是最简单的 而且是最容易求解的.
首页
上页
返回
下页
结束
§3.2 初等矩阵
矩阵的初等变换是矩阵的一种最基本的运算 这有着广泛的应用.
首页
上页
返回
下页
结束
初等矩阵
例如
由单位矩阵E经过一次初等变 换得到的矩阵称为初等矩阵.
E(i j)表示对调单位矩阵E的第 i j两行(列)得到的初等矩阵.
第3章 矩阵的初等变换与线性方程组
天
津
师 范
§3.1 矩阵的初等变换
大
学 计 算
§3.2 初等矩阵
机
与 信
§3.3 矩阵的秩
息
工 程 学
§3.4 线性方程组的解
院
郑 陶 然
§3.1 矩阵的初等变换
矩阵的初等变换是矩阵的一种十分重要的运 算 它在解线性方程组、求逆阵及矩阵理论的探讨 中都可起重要的作用.
第三章矩阵的初等变换与线性方程组
r2r3
12 00
3 45 002
0.5×r2
12 00
3 40 001
0 0 0 0 0 r1+(-5)r2 0 0 0 0 0
例:继续将A的行简化阶梯形化为标准形。
1 2 3 4 0 1 0 0 0 0
A 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
结论:任意矩阵Am×n总是与一个行阶梯形矩阵或行 简化阶梯形矩阵等价,也与一个标准形矩阵等价。
转例
注:矩阵A的行阶梯形矩阵中非零行的数目, 称为A的秩R(A)。
➢矩阵在作初等变换后其秩不改变,即 若A→B,则R(A)=R(B)。
➢矩阵秩的性质: (1)0 R( Amn ) min{ m, n}
(2)R( A) R( AT )
转例
3.1 线性方程组的增广矩阵
线性方程组的一般形式为
a11x1a12x2 a1nxn b1 a21x1a22x2 a2nxn b2
———
2 10 -2 -2 1 -9 3 7 3 8 -1 1
r1+r4×(-2)
———
0 14 -4 -8 1 -9 3 7 3 8 -1 1
1 -2 1 3
1 -2 1 3
1.2 初等矩阵 初等矩阵一定是方阵
定义:对单位矩阵E作一次初等变换后,得 到的矩阵称为初等矩阵。
初等矩阵有如下三种类型(对应于三种变 换),分别记作P ( i,j ),P (i[k]),P (i,j[k]) 。
对上式现右乘A-1,得 Ps Ps-1 P2 P1 AA-1 EA-1
则有 Ps Ps-1 P2 P1 E A-1 表明,通过有限次的初等行变换,将可逆矩 阵A化为E的同时,单位矩阵E则化为A-1 。
第三章知识点总结矩阵的初等变换与线性方程组
第三章知识点总结矩阵的初等变换与线性方程组第三章主要介绍了矩阵的初等变换与线性方程组的关系,以及利用矩阵的初等变换来求解线性方程组的方法。
一、矩阵的初等变换1.矩阵的初等变换包括三种操作:互换两行、用一些非零标量乘以其中一行、将其中一行的若干倍加到另一行上。
2.初等变换的性质:初等变换保持矩阵的秩不变;有逆变换;多次初等变换的结果等于这些变换分别作用于单位矩阵的结果的乘积。
二、线性方程组的解1.线性方程组可用矩阵表示为AX=B,其中A为系数矩阵,X为未知向量,B为常数列。
2.系数矩阵A的秩等于增广矩阵(A,B)的秩,即r(A)=r(A,B)。
3.齐次线性方程组与非齐次线性方程组:-齐次线性方程组为AX=0,其中0为零向量。
它总有零解,即使有非零解也有无穷多个。
-非齐次线性方程组为AX=B,其中B不为零向量。
它只有唯一解或无解两种可能。
4.矩阵的秩和线性方程组解的关系:r(A)=n,即系数矩阵A的秩等于未知数的个数,则线性方程组只有唯一解;r(A)<n,则线性方程组有无穷多解或无解。
三、求解线性方程组的方法1.初等变换法:-将线性方程组的系数矩阵A和常数列B增广为(A,B)的增广矩阵。
-利用初等变换将增广矩阵化为行简化形式。
-根据化简后的增广矩阵,确定线性方程组的解。
2.矩阵的逆法:-若系数矩阵A可逆,则可将AX=B两边同时左乘A的逆矩阵A-1,得到X=A-1B。
-利用矩阵的逆可以直接求解线性方程组的解。
3.克拉默法则:-若系数矩阵A可逆,则线性方程组AX=B的解可以表示为Xi=,Ai,/,A,其中Ai是将系数矩阵A的第i列替换为常数列B后所得到的矩阵,A,是系数矩阵A的行列式。
-克拉默法则可以用来求解二元线性方程组和三元线性方程组的解。
综上所述,矩阵的初等变换与线性方程组有着密切的关系。
利用矩阵的初等变换可以简化线性方程组的求解过程,而线性方程组的解与系数矩阵的秩有关。
在求解线性方程组时,可以通过初等变换法、矩阵的逆法或克拉默法则来得到方程组的解。
第三章矩阵的初等变换与线性方程组
0 0 1
0
0
2
类型二、含参数线性方程组解的讨论
2010年期末考题 课后题16
四、(12分)设有线性方程组:
x1x1xx22
x3 x3
1
x1
x2
x3
2
问 取何值式时,此方程(1)有唯一解,(2) 无解,(3) 有无限
多解?并在有无限多解时求其通解。
答案:(1) 1且 -2有唯一解;(2) -2无解; (3) 1有无限多解,
x1 1 1 1
x2 c1 1 c2 0 0
x
3
0
1 0
2011年选考题
四.(12分)当c, d取何值时,线性方程组
x1 x2 x3 x4 x5 1
3xx2 122xx3 22xx34
x4 3x5 6x5 3
c
5 x1 4 x2 3 x3 3 x4 x5 d
并在有无穷多解时求其通解。
答案:(1) 1或 10,有唯一解, (2) 10,
2 2 1
(3)
1,
通解c 1
1
c 2
0
0
0 1 0
类型三、判断线性方程组的解
2009年期末考题
4. 设B是数域K上的n阶可逆矩阵,对应K中任意n个数b1,…,bn,
x1 b1
线性方程组B
2x2 x3
x1
x2
2x3
2
当 取何值时有解?并求出它的通解。
1 1
答案:(1)=
1,通解c
1
0
1 0
1 2
(2)
2,
通解c
1
2
1 0
课后题18
设 (2 )x1 2 x2 2 x3 1
第三章 矩阵的初等变换与线性方程组
X1+5X2- 9X3-8X4=0
解:对增广矩阵B进行初等行变换化为最简形
B=
而得:X1= X3 X4+
X2= X3 X4
X3=X3
X4= X4
进而 =C1 +C2 + (其中C1,C2∈R)
例4:设有线性方程组:
(1+λ)X1+X2+X3=0
X1+(1+λ)X2+X3=3
…..
Xr=-br1Xr+1-…--br.n-rXn+dr
令自由未知数Xr+1=c,….Xn=Cn-r即得
= =C1 +…+C1 +
其中C1…Cn-r为任意常数
例2:求解齐次线性方程组:
X1+2X2+2X3+X4=0
2X1+X2-2X3-2X4=0
X1- X2- 4X3-3X4=0
解:对系数矩阵A施行初等行变换化为最简行矩阵
规定零矩阵的秩为0
设AB=0,若A为列满秩矩阵,则B=0,R(B)=0
非零子式
K阶子式
矩阵A=(aij)m*n的任意k个行和k个列的交点上的k2个元素按原顺序排列成k阶行列式
称为A的K阶子式(其中k=1,2,…,min{m,n})
矩阵的秩:矩阵A中存在(至少一个)R阶子式不为0,而所有r+1阶子式全为零(若存在),则称矩阵的秩为r,记为r(A)=r,即非零子式的最高阶数
三、线性方程组的解:
定理:对于n元线性方程组AX=b
i.无解的充要条件:R(A)<R(A,b);
ii.有唯一解的充要条件是R(A)=R(A,b)=n;
第三章 矩阵的初等变换与线性方程组
~ ~ ~
1 1 2 −1 2 −3 3 6 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0
−2 1 −1 1 1 −1 −9 7 −2 −1 0 0 −1 −1 0 0
4 2 2 9 1 4 1 0 2 −6 1 −3 0 4 0 3 1 −3 0 0
显然, 把B的第2行乘以(−2)加到第1行即得B3.
2 −1 −1 1 2 1 1 −2 1 4 B = 4 −6 2 −2 4 3 6 −9 7 9
0 −3 3 −1 −6 1 1 −2 1 4 B3 = 4 −6 2 −2 4 3 6 −9 7 9
1 1 −2 1 4 2 −1 −1 1 2 B2 = 2 −3 1 −1 2 3 6 −9 7 9
第三章 矩阵的初等变换与线性方程组
方程组的同解变换与增广矩阵的关系
在解线性方程组的过程中, 我们可以把一个方程变为另一个同 解的方程, 这种变换过程称为同解变换. 同解变换有: 交换两个方程的位置, 把某个方程乘以一个非零数, 某个方程的非零倍加到另一个方程上.
例如
0 1 0 E3(1 2) =1 0 0 , 0 0 1
1 0 0 E3(2(3)) =0 3 0 0 0 1
1 0 0 E(31 2)) =0 1 0 ( 2 0 1
第三章 矩阵的初等变换与线性方程组
初等矩阵
由单位矩阵E经过一次初等变换得 到的矩阵称为初等矩阵. E(i, j)表示对调单位矩阵E的第i, j两 行(列)得到的初等矩阵. E(i(k))表示用非零数k乘单位矩阵E 的第i行(列)得到初等矩阵. E(ij(k))表示把单位矩阵E的第j行的k 倍加到第i行上, 或把单位矩阵E的第i列的 k倍加到第j列上得到初等矩阵.
知识点总结矩阵的初等变换与线性方程组
知识点总结矩阵的初等变换与线性方程组矩阵的初等变换是线性代数中的一个重要概念,常用于解线性方程组。
这篇文章将对矩阵的初等变换及其与线性方程组的关系进行详细阐述。
一、矩阵的初等变换的定义和种类矩阵的初等变换是指对矩阵进行的三种基本操作:交换两行,用数乘一个非零常数乘以其中一行,以及把一行的倍数加到另一行上去。
这三种操作都可以表示为可逆矩阵的乘积,因此初等变换不改变矩阵的行秩和行空间。
三种初等变换可以分别表示为:1. 交换两行:用一个单位矩阵的行交换矩阵作用于原矩阵,例如将第i行与第j行交换可以表示为Pij * A,其中Pij为单位矩阵的行交换矩阵。
2.用数乘一个非零常数乘以其中一行:用一个对角矩阵作用于原矩阵,例如将第i行乘以非零常数k可以表示为Di(k)*A,其中Di(k)为对角矩阵。
3. 把一行的倍数加到另一行上去:用一个单位矩阵与其中一倍数的矩阵的和作用于原矩阵,例如将第j行的k倍加到第i行可以表示为Lij(k) * A,其中Lij(k)为单位矩阵与其中一倍数的矩阵的和。
二、矩阵的初等变换和线性方程组的关系解线性方程组的过程中,我们常用到矩阵的初等变换来简化方程组的形式,从而更容易找到方程组的解。
下面以一个简单的线性方程组为例进行说明。
假设有一个线性方程组:a1*x1+a2*x2=b1c1*x1+c2*x2=b2将该线性方程组表示为矩阵形式:A*X=B其中A为系数矩阵,X为未知数向量,B为常数向量。
我们可以通过矩阵的初等变换来简化系数矩阵A,从而简化方程组的求解过程。
1.交换两行:通过交换方程组的两个方程,可以改变线性方程组的次序,从而改变系数矩阵A的排列顺序。
这样做有时可以使系数矩阵更容易进行进一步的变换和求解。
2.用数乘一个非零常数乘以其中一行:通过将一些方程的系数乘以一个常数k,可以改变该方程的形式。
这样做可以使一些系数简化为1,从而更容易求解。
如果系数k为0,则可以直接删除该方程。
3.把一行的倍数加到另一行上去:通过将一些方程的系数与另一个方程相加,可以使两个方程中的一些系数为0,从而进一步简化系数矩阵A。
线性代数课件_第3章_矩阵的初等变换与线性方程组
-13-
定理 (等价标准形定理 等价标准形定理) 等价标准形定理 用初等变换必能将矩阵化为如下等价标准形 等价标准形( 用初等变换必能将矩阵化为如下等价标准形(也称 相抵标准形): 相抵标准形):Er Fra bibliotek O O
等价标准形是唯一的。 等价标准形是唯一的。
-14-
例2
(接例1) 接例 )
1 2 1 1 1 2 1 1 4 6 2 2 3 6 9 7
1 0 0 0
0 2 0 1 1 0 0 0 1 0 0 0
0 0 0 0
1 2 0 1 0 0 1 2 0 0 0 0 0 0 0 0
-10-
只用初等行变换必能将矩阵化为阶梯形, 定理 只用初等行变换必能将矩阵化为阶梯形, 从而再化为最简阶梯形。阶梯形不唯一,最简阶梯形 从而再化为最简阶梯形。阶梯形不唯一, 唯一。 唯一。
-8-
在 m × n 的矩阵集合 R 中的一个等价关系? 中的一个等价关系
m×n
A r 中, 如果
B ,
具有行相抵的关系,问行相抵是不是 行相抵的关系 则称 A 与 B 具有行相抵的关系 问行相抵是不是 R m × n
Gauss消元法的思想又可表述为 在与方程组增 消元法的思想又可表述为, 消元法的思想又可表述为 广矩阵行相抵的矩阵中,找一个最简单的 找一个最简单的,然后求解 广矩阵行相抵的矩阵中,找一个最简单的,然后求解 这个最简单的矩阵所对应的方程组. 这个最简单的矩阵所对应的方程组 以后我们把这个最简单的矩阵叫做(行 最简阶 以后我们把这个最简单的矩阵叫做 行)最简阶 梯形矩阵. 梯形矩阵
a11 = a 21 a 31
a12
a 22 a 32
a13 1 0 0 a 23 0 1 0 a 33 0 0 k
矩阵的初等变换与线性方程组求解
矩阵的初等变换与线性方程组求解矩阵在数学中扮演着重要的角色,它们被广泛用于各个领域的问题求解。
在矩阵中,初等变换是一种常用的工具,用于改变矩阵的形式,进而帮助我们解决线性方程组的求解问题。
本文将详细介绍矩阵的初等变换的概念和操作,以及如何利用初等变换来求解线性方程组。
一、初等变换的概念初等变换是指在满足一定规则下对矩阵进行的一系列基本操作。
根据初等变换的不同类型,可以将其划分为三类:交换两行或列、某行或列乘以非零常数、某行或列乘以非零常数后加到另一行或列上。
通过这些操作,我们可以改变矩阵的行列式、秩、高斯消元等性质,从而为线性方程组的求解提供便利。
二、初等变换的操作1. 交换两行或列:通过交换矩阵中任意两行或两列的位置,可以改变矩阵的行列式和秩,但不改变方程组的解。
2. 某行或列乘以非零常数:将矩阵中某一行或列的所有元素乘以一个非零常数,可以改变矩阵的行列式和秩,但不改变方程组的解。
3. 某行或列乘以非零常数后加到另一行或列上:将矩阵中某一行或列的所有元素乘以一个非零常数,并加到另一行或列上,可以改变矩阵的行列式和秩,但不改变方程组的解。
三、利用初等变换,我们可以将线性方程组的系数矩阵通过一系列操作,转化为特殊形式的矩阵。
这个特殊形式的矩阵通常被称为行简化阶梯形矩阵或行最简矩阵。
行简化阶梯形矩阵的主对角线上的元素全为1,并且每个主对角线上方的元素全为0。
得到行简化阶梯形矩阵后,就可以利用高斯消元法等技巧,快速求解线性方程组的解。
通过矩阵变换的过程,我们可以发现行简化阶梯形矩阵的解可以直接得到,而不需要进行繁琐的计算。
四、实例分析为了更好地理解矩阵的初等变换与线性方程组求解的过程,我们来看一个具体的例子。
考虑以下线性方程组:x + y + z = 62x + 3y + 4z = 174x + 5y + 6z = 28将其转化为矩阵形式:( 1 1 1 | 6 )( 2 3 4 | 17 )( 4 5 6 | 28 )接下来,我们利用初等变换将矩阵转化为行简化阶梯形矩阵。
矩阵的初等变换与线性方程组
B
1 4
1 6
2 2
1 2
4 4
3 6 9 7 9
1 1 2 1 4
r1 r2 r3 2
2 2 3
1 3
6
1 1
9
1 1
7
2 2
B1
9
r2 r3 1 1 2 1 4
r3 2r1 r4 3r1
0 0 0
2 5
3
2 5
3
2 3
4
0 6
B2
3
r2 2 r3 5r2
0 1 0 A 0
0 1
1 1 0 6
2 5
3 4
,
求
A
.
0 0 1 0 0 1 7 8 9
解
设
B
1 6
2 5
3 4
,
则有
E(1,2)AE(1,3(1)) B ,
7 8 9
即 A E(1,2)1 BE(1,3(1))1 E(1,2)BE(1,3(1))
1 B 6
2 5
3 6 r1r2
E(ij(k))1 E(ij(k))
定理 初等矩阵均可逆,且其逆是同类型的初等矩阵
如
0 1
1 0
0 0
1
0 1
1 0
0 0
E(1,2) 1 E(1,2)
0 0 1 0 0 1
E(i, j)1 E(i, j)
1 0
0
0 1 0
0
1
0
- 2
1
0
0
0 1 0
0
0 -1
2
3、定义3 如果矩阵A经有限次初等变换变成矩 阵B,就称矩阵A与B等价,记作A ~ B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、预备知识 1. 线性方程组的矩阵形式,上三角矩阵,初等
变换、向量组的线性相关性等知识。
2.本实验所用Matlab命令提示:
(1)ai=A(i,:); %选择A第i行做一个行向量
(2)aj=A(:,j); %选择A第j列做一个列向量
(3)a1*a2’;
%两个行向量a1与a2的内积
(4)A([i,j],:)=A([j,i],:); %让A第i行与第j行
(2)假设下一个生产周期计划总产量甲为 260吨,乙为110(m3),那么可提供给市场的商品 量各是多少?
考虑在下一个生产周期内,设备和技术条件 不变,这决定了生产甲、乙单位产品时对原材 料的消耗量不变。
我们用甲、乙两种产品的总产品量分别去除 表的第一、二列所得的比值。表示甲、乙两种 产品各生产单位产品量时对甲、乙产品的消耗 量。而对原材料的消耗量不变说明在下一个生 产周期内这样的比值仍然适用。
由M1得: a2 2a1 0a3,
a4 1.5a1 0.5a3,
a5 32.5a1 0.5a3
六、上机练习 1、做出实验内容(3)中A的行向量组:a1、a2; 2、做出实验内容(3)中A的列向量组:b1、b2; 3、求a1与a2的内积A1; 4、完成以下初等变换:将A的一、二行互换,
再将其第一行乘以1/0.14,再将其第一行 的0.8倍加至第二行;
5、求下列非齐次方程组的通解:(矩阵及增广 矩阵的秩,矩阵阶梯形的行最简形式)
互换
(5)A(i,:)=K*A(i,:);
%让K乘以A的第i行
(6)A(i,:)=A(i,:)+K*A(j,:);%让A第i行加上第j
行K倍
(7)Poly(A);
%求矩阵A的特征多
项式
四、 实验内容与要求
1
、若当
y1 y2
85 50
时,计
x1 x2
0.8 0.14
1.25 1 85 0.75 50
A=[5 -1 -1 -1;-1 10 -1 -1;-1 -1 5 -1;-1 1 -1 10];
D=det(A) b=[-4;12;8;34]; x=A\b
(3)运行结果如下: D = 2112 x= 1 2 3 4
(4)计算过程:
将向量按列写成矩阵,可以求出行的最简形式
并回答所有问题
M=[1 -2 3 0 -1;-2 4 -4 1 3;-5 10 -17 -1 4]
生产状况 甲 乙
消耗状况 甲 乙 商品量 总产量
50(吨)125(吨) 75(吨) 250(吨) 35(m3) 25(m3) 40(m3) 100(m3)
(1)假设在下一个生产周期内,设备和技术 条件不变,商品需求量增加。其中甲增到85吨, 乙增到50(m3) 。应如何计划甲、乙两种产品的 总产量才能满足市场需求?
五、 操作提示 (1)计算过程:
A=[0.8 -1.25;-0.14 0.75]; B=[85;50]; X1=inv(A)*B
(1)计算结果: x1 = 297.0588 122.1176
(即甲增到85吨,乙增到50(m3)时,计划总产量 甲、乙两种产品分别为297.0588与122.1176,才 能满足市场需求。)
(2)计算过程: A=[0.8 -1.25;-0.14 0.75]; C=[260;110]; X2=A*C
(2)计算结果: X2 = 70.5000 46.1000
(结果表明,虽然计划总产量都增加了,由于增产 比例不当,在下一个生产周期内甲产品可提供的商 品量反而比原来75吨少了4.5吨。)
.8x1 1.25x2 0.14x1 0.75x2
y1 y
2
写成矩阵形式 或
y1 y2
0.8 0.14
x1 x2
0.8 0.14
01.7.255
x1 x2
1.25 0.75
1
y1 y2
二、实验目的 学会用Matlab软件实施初等变换将矩阵化为
上三角矩阵;能根据由软件求得的非齐次线性方 程组增广矩阵的阶梯形的行最简形式写出线性方 程组的通解。
3.求线性方程组
5x1 x2 x3 x4 4
x1x110xx2 25xx33
x4 x4
12 8
x1 x2 x3 10x4 34
4.已知向量组M:
a1 (1 2 5),a2 (2 4 10),a3 (3 4 17),
a4 (0 1 1),a5 (1 3 4)
求:(1)向量组M的秩; (2)判断M的相关性; (3)写出M的一个极大无关组; (4)将其余向量用极大无关组线性表示
若设下一个生产周期内甲、乙产品的总产品 量和可提供的商品量分别为x1,x2和y1 ,y2,则可 得下表。
消耗比值
生产状况 甲 乙
由于
因此有
甲 乙 商品量 总产量
0.2 1.25 y1
x1
0.14 0.25 y2
x2
消耗量+商品量=总产量
00.1.24xx11
1.25x2 0.25x2
y1 y2
,可得下一个生产周期内甲产品的计划总产量和 乙产品的计划总产量,且扣除消耗掉的产品量后 的商品量才能满足市场的需求;
2.若当
x1 x2
260 110
时,比原来
x1 x2
120500
的计划总产量增加了,由于增产比例不当,
通过计算
y1 y2
0.8 0.14
01.7.255 121600
,可知下一个生产周期内甲产品可提供的商品 量反而比原来减少了4.5吨。
M1=rref(M)
(4)计算结果: M=
化为阶梯形 的最简形式
1 -2 3 0 -1
-2 4 -4 1 3
-5 10 -17 -1 4
M1 =
1.0000 -2.0000 0
-1.5000 -2.5000
0
0
1.0000 0.5000 0.5000
0
0
0
0
0
因M1非零行行数为2,向量组M的秩2;因为秩2 小于个数5,故M为线性相关向量组;又行最简形 式中单位向量对应的a1,a3为一个极大无关组;
实验2
线性方程组及矩阵的初等变换 (Matlab)
一 、问题
考虑投入产出问题
假设某企业生产甲、乙两种产品,在生产过 程中,甲、乙两种产品的产品量,可提供的商品 量及互相提供消耗的数量关系统计如下表(表中 第一列的两个数分别表示生产250吨甲产品时甲 产品和乙产品的消耗量,第二列的两个数分别表 示生产100m3乙产品时甲产品和乙产品的消耗量)