高中数学课下能力提升(二)新人教A版必修4

合集下载

高中数学人教A版选修2-2创新应用课下能力提升(九) Word版含解析

高中数学人教A版选修2-2创新应用课下能力提升(九) Word版含解析

课下能力提升(九)
[学业水平达标练]
题组求曲边梯形的面积
.在求直线=,=,=与曲线=所围成的曲边梯形的面积时,把区间[]等分成个小区间,则第个小区间是( )
.对于由直线=,=和曲线=所围成的曲边梯形,把区间等分,则曲边梯形面积的近似值(取每个区间的左端点)是( )
.求由直线=,=,=和曲线=(-)围成的图形的面积.
题组求变速直线运动的路程
.一物体沿直线运动,其速度()=,这个物体在=到=这段时间内所走的路程为( ) .
.若做变速直线运动的物体()=在≤≤内经过的路程为,求的值.
题组定积分的计算及性质
.下列等式不成立的是( )
.图中阴影部分的面积用定积分表示为( )
(-)
(+)(-)
.=与=的大小关系是( )
.=.=
.>.<
.已知=,=,=,则(+)=.
.用定积分的几何意义计算下列定积分:
[能力提升综合练] .若()=,()=-,则[()+()]=( )
..-.-.
.若()为偶函数,且()=,则等于( ) ....
.定积分(-)等于( )
.-..-.。

高中数学 人教A版必修4 第1章 1.3三角函数的诱导公式(二)

高中数学 人教A版必修4    第1章 1.3三角函数的诱导公式(二)

研一研·问题探究、课堂更高效 (2)诱导公式五的推导:
§1.3(二)
π 问题 1 若 α 为任意角,那么 -α 的终边与角 α 的终边有怎 2 样的对称关系? 本 课 π 时 答 角 α 的终边与 -α 的终边关于直线 y=x 对称. 栏 2 目 π 开 问题 2 设角 α 与单位圆交于点 P(x, y), 则 - 2 关
y.
所以,对任意角 α
sin α .
π 都有:sin2-α=
cos α
π ,cos2-α=
研一研·问题探究、课堂更高效
探究点二 诱导公式六
π ,cos2+α=
§1.3(二)
(1)诱导公式六: π sin2 +α= cos α
本 课 时 栏 目 开 关
填一填·知识要点、记下疑难点
§1.3(二)
2.诱导公式五~六的记忆 π π -α, +α 的三角函数值,等于 α 的异名三角函数值, 2 2 本
课 时 栏 目 开 关
前面加上一个把 α 看成锐角时原函数值的符号, 记忆口诀 为“函数名改变,符号看象限”.
研一研·问题探究、课堂更高效
§1.3(二)
α 与单位圆交于点 P′,写出点 P′的坐标.
答 P′(y,x).
研一研·问题探究、课堂更高效
§1.3(二)
问题 3 根据任意角三角函数的定义,完成下列填空:
本 课 时 栏 目 开 关
sin α= y ,cos α= x ;
π sin2 -α=
x
π ,cos2-α=
§1.3(二)
本 课 时 栏 目 开 关
§1.3(二)
【学习要求】 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化 简与证明问题. 本 课 时 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与 栏 目 个性,培养由特殊到一般的数学推理意识和能力. 开 关 现问题、解决问题的能力.

2017-2018学年高中数学人教A版必修四课下能力提升:(十九) Word版含解析

2017-2018学年高中数学人教A版必修四课下能力提升:(十九) Word版含解析

课下能力提升(十九) [学业水平达标练]题组1 向量数量积的运算 1.下列命题:(1)若a ≠0,a ·b =a ·c ,则b =c ;(2)(a ·b )·c =a·(b ·c )对任意向量a ,b ,c 都成立; (3)对任一向量a ,有a 2=|a |2.其中正确的有( ) A .0个 B .1个 C .2个 D .3个2.已知|b |=3,a 在b 方向上的投影是32,则a ·b 为( )A.92B .3 C .2 D.12A.49B.43 C .-43 D .-49题组2 向量的模5.若非零向量a 与b 的夹角为2π3,|b |=4,(a +2b )·(a -b )=-32,则向量a 的模为( )A .2B .4C .6D .126.已知向量a ,b 的夹角为120°,|a|=1,|b |=3,则|5a -b |=________.7.已知非零向量a ,b ,满足a ⊥b ,且a +2b 与a -2b 的夹角为120°,则|a||b|=________.题组3 两向量的夹角与垂直问题8.若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为( ) A .30° B .60° C .120° D .150°9.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-310.设向量a ,b 满足|a |=1,|b |=1,且|k a +b |=3|a -k b |(k >0).若a 与b 的夹角为60°,则k =________.11.已知|a |=1,a ·b =14,(a +b )·(a -b )=12.(1)求|b |的值;(2)求向量a -b 与a +b 夹角的余弦值.[能力提升综合练]1.已知|a |=3,|b |=5,且a 与b 的夹角θ=45°,则向量a 在向量b 上的投影为( ) A.322B .3C .4D .52.设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b =( ) A .1 B .2 C .3 D .5A .2 3 B.32 C.33D. 35.已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________. 6.已知a ,b 是两个非零向量,同时满足|a |=|b |=|a -b |,求a 与a +b 的夹角. 7.已知a ,b 是非零向量,t 为实数,设u =a +t b . (1)当|u |取最小值时,求实数t 的值; (2)当|u |取最小值时,向量b 与u 是否垂直?答 案[学业水平达标练]1. 解析:选B (1)(2)不正确,(3)正确.2. 解析:选A ∵|a |cos 〈a ,b 〉=32,|b |=3,∴a ·b =|a |·|b |cos 〈a ,b 〉=3×32=92.3.4.5. 解析:选A 由已知得,a 2+a ·b -2b 2=-32,∴|a |2+|a |×4×cos 2π3-2×42=-32.解得|a |=2或|a |=0(舍).6. 解析:|5a -b |=|5a -b |2=(5a -b )2 =25a 2+b 2-10a ·b =25+9-10×1×3×⎝⎛⎭⎫-12=7. 答案:77. 解析:(a +2b )·(a -2b )=a 2-4b 2,∵a ⊥b , ∴|a +2b |=a 2+4b 2,|a -2b |=a 2+4b 2.故cos 120°=(a +2b )·(a -2b )|a +2b ||a -2b |=a 2-4b 2(a 2+4b 2)2=a 2-4b 2a 2+4b 2=-12,得a 2b 2=43,即|a ||b |=233. 答案:2338. 解析:选C 因为(2a +b )·b =2a ·b +b ·b =0,所以a ·b =-12|b |2.设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-12|b |2|b |2=-12,故θ=120°. 9. 解析:选B 由c ⊥d 得c·d =0,即(2a +3b )·(k a -4b )=0,即2k |a |2+(3k -8)a ·b -12|b |2=0,所以2k +(3k -8)×1×1×cos 90°-12=0,即k =6.故选B.10. 解析:∵|k a +b |=3|a -k b |, ∴k 2a 2+b 2+2k a ·b =3(a 2+k 2b 2-2k a ·b ).∴k 2+1+k =3(1+k 2-k ).即k 2-2k +1=0,∴k =1. 答案:111. 解:(1)(a +b )·(a -b )=a 2-b 2=12.∵|a |=1,∴1-|b |2=12,∴|b |=22.(2)∵|a +b |2=a 2+2a ·b +b 2=1+2×14+12=2,|a -b |2=a 2-2a ·b +b 2=1-2×14+12=1,∴|a +b |=2,|a -b |=1. 令a +b 与a -b 的夹角为θ,则cos θ=(a +b )·(a -b )|a +b ||a -b |=122×1=24,即向量a -b 与a +b 夹角的余弦值是24. [能力提升综合练]1. 解析:选A 由已知|a |=3,|b |=5,cos θ=cos 45°=22,而向量a 在向量b 上的投影为|a |cos θ=3×22=322. 2. 解析:选A ∵|a +b |=10, ∴(a +b )2=10, 即a 2+b 2+2a ·b =10.① ∵|a -b |=6,∴(a -b )2=6, 即a 2+b 2-2a ·b =6.②由①②可得a ·b =1,故选A. 3.4.解析:画出图形知△ABC 为直角三角形,且∠ABC =90°,=0+4×5×⎝⎛⎭⎫-45+5×3×⎝⎛⎭⎫-35=-25. 答案:-255. 解析:|α|=1,|β|=2,由α⊥(α-2β),知α·(α-2β)=0,2α·β=1, 所以|2α+β|2=4α2+4α·β+β2=4+2+4=10,故|2α+β|=10. 答案:106. 解:根据|a |=|b |,有|a |2=|b |2,又由|b |=|a -b |,得|b |2=|a |2-2a ·b +|b |2, ∴a ·b =12|a |2.而|a +b |2=|a |2+2a ·b +|b |2=3|a |2, ∴|a +b |=3|a |.设a 与a +b 的夹角为θ. 则cos θ=a ·(a +b )|a ||a +b |=|a |2+12|a |2|a |·3|a |=32.∴θ=30°.7. 解:(1)|u |2=|a +t b |2=(a +t b )·(a +t b )=|b |2t 2+2(a ·b )t +|a |2=|b |2⎝⎛⎭⎫t +a ·b|b |22+|a |2-(a ·b )2|b |2. ∵b 是非零向量,∴|b |≠0,∴当t =-a ·b|b |2时,|u |=|a +t b |的值最小.(2)∵b ·(a +t b )=a ·b +t |b |2=a·b +⎝⎛⎭⎫-a·b|b |2·|b |2=a ·b -a ·b =0, ∴b ⊥(a +t b ),即b ⊥u .。

高一数学(人教A版)必修4能力提升:2-3-1平面向量基本定理

高一数学(人教A版)必修4能力提升:2-3-1平面向量基本定理

能 力 提 升一、选择题1.在四边形ABCD 中 ,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a 、b 不共线 ,那么四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形[答案] C[解析] ∵AD →=AB →+BC →+CD →=a +2b -4a -b -5a -3b =-8a -2b =2(-4a -b )=2BC → ,即AD →=2BC →,∴AD ∥BC 且AD ≠BC ,应选C.2.OA →=a ,OB →=b ,C 为线段AB 上距A 较近的一个三等分点 ,D 为线段CB 上距C 较近的一个三等分点 ,那么用a 、b 表示OD →为( )A.19(4a +5b ) B.116(9a +7b ) C.13(2a +b ) D.14(3a +b )[答案] A[解析] 利用向量加法和减法的几何意义和平面向量根本定理求解.∵OD →=OA →+AD → ,AD →=AC →+CD → =13AB →+13CB →=13AB →+29AB →=59AB →. 而AB →=b -a ,∴AD →=59b -59a ,∴OD →=OA →+AD →=a +(59b -59a )=49a +59b .3.如下列图 ,在平行四边形ABCD 中 ,AC 与BD 交于点O ,E 是线段OD 的中点 ,AE 的延长线与CD 交于点F .假设AC →=a ,BD →=b ,那么AF →=( )A.14a +12bB.13a +23bC.12a +14bD.23a +13b[答案] D[解析] ∵AF →=AC →+CF →=a +23CD →=a +13(b -a )=23a +13b .4.△ABC 中 ,点D 在BC 边上 ,且CD →=2DB → ,CD →=rAB →+sAC →,那么r +s 的值是( )A.23B.43 C .-3 D .0[答案] D[解析] ∵CD →=23CB →=23(AB →-AC →) ∴r =23 s =-23 ∴r +s =0.5.(09·全国Ⅰ文)设非零向量a 、b 、c 满足|a |=|b |=|c | ,a +b =c ,那么a 与b 的夹角为( )A .150°B .120°C .60°D .30°[答案] B[解析] ∵|a |=|b |=|c |≠0 ,且a +b =c∴如下列图就是符合题设条件的向量 ,易知OACB 是菱形 ,△OBC 和△OAC 都是等边三角形.∴a 与b 的夹角为120°.6.(2021~2021·合肥市)如图 ,△ABC 中 ,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,那么(x ,y )为( )A.⎝ ⎛⎭⎪⎪⎫12 12B.⎝ ⎛⎭⎪⎪⎫23 23C.⎝ ⎛⎭⎪⎪⎫13 13 D.⎝ ⎛⎭⎪⎪⎫23 12 [答案] C[解析] 设CF →=λCD → ,∵E 、D 分别为AC 、AB 的中点 ,∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝⎛⎭⎪⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线 ,∴12λ-1-1=1-λ12 ,∴λ=23 ,∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎪⎫12a -b=13a +13b ,故x =13 ,y =13. 二、填空题7.向量a 与b 的夹角为25° ,那么2a 与-32b 的夹角θ=________. [答案] 155°[解析] 作OA →=a ,OB →=b ,那么∠AOB =25° ,如下列图.延长OA 到C ,使OA =AC ,那么OC →=2a . 延长BO 到D ,使OD =32BO ,那么OD →=-32b .那么θ=∠DOA ,又∠DOA +∠AOB =180° ,那么∠DOA =180°-25°=155° ,那么θ=155°.8.e 1、e 2是两个不共线的向量 ,而a =k 2e 1+(1-52k )e 2与b =2e 1+3e 2是两个共线向量 ,那么实数k =________.[答案] -2或13[解析] 由题设知k 22=1-52k 3 ,∴3k 2+5k -2=0. 解得k =-2或13.9.向量a 和向量b 不共线 ,且m +n =a ,m -n =b ,那么m =________ ,n =________.(用a 、b 表示)[答案] a +b 2 a -b2[解析] 解方程组⎩⎪⎨⎪⎧m +n =am -n =b得m =a +b 2 ,n =a -b2 三、解答题10.如图 ,梯形ABCD 中 ,AB ∥CD ,且AB =2CD ,M 、N 分别是DC 和AB 的中点 ,假设AB →=a ,AD →=b ,试用a 、b 表示DC →、BC → ,MN →.[解析] 如下列图 ,连接CN ,那么四边形ANCD 是平行四边形.那么DC →=AN →=12AB →=12a ,BC →=NC →-NB →=AD →-12AB →=b -12a , MN →=CN →-CM →=-AD →-12CD → =-AD →-12⎝ ⎛⎭⎪⎪⎫-12AB →=14a -b .11.|a |=|b |=2 ,且a 与b 的夹角为120° ,求a +b 与a 的夹角 ,a -b 与a 的夹角.[解析] 如图 ,作OA →=a ,OB →=b ,且∠AOB =120° ,以OA ,OB 为邻边作▱OACB ,那么OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b , BC →=OA →=a .因为|a |=|b |=2 ,所以△OAB 为等腰三角形 ,所以∠OAB =30° 即a -b 与a 的夹角为30°.因为|a |=|b | ,所以平行四边形OACB 为菱形 , 所以OC ⊥AB ,所以∠COA =60° , 即a +b 与a 的夹角为60°.12.设M 、N 、P 是△ABC 三边上的点 ,它们使BM →=13BC → ,CN →=13CA → ,AP →=13AB →,假设AB →=a ,AC →=b ,试用a 、b 将MN →、NP →、PM →表示出来.[解析] 如图 ,MN →=CN →-CM →=-13AC →-23CB →=-13AC →-23(AB →-AC →)=13AC →-23AB →=13b -23a .同理可得NP →=13a -23b ,PM →=-MP →=-(MN →+NP →)=13a +13b .。

《成才之路》高一数学(人教A版)必修4能力提升:1-1-1 任意角

《成才之路》高一数学(人教A版)必修4能力提升:1-1-1 任意角

能 力 提 升一、选择题1.给出下列四个命题,其中正确的命题有( )①-75°是第四象限角 ②225°是第三象限角③475°是第二象限角 ④-315°是第一象限角A .1个B .2个C .3个D .4个[答案] D[解析] 由终边相同角的概念知:①②③④都正确,故选D.2.如果角α与x +45°具有同一条终边,角β与x -45°具有同一条终边,则α与β的关系是( )A .α+β=0B .α-β=0C .α+β=k ·360°(k ∈Z )D .α-β=k ·360°+90°(k ∈Z )[答案] D[解析] ∵α=(x +45°)+k ·360°(k ∈Z ),β=(x -45°)+k ·360°(k ∈Z ),∴α-β=k ·360°+90°(k ∈Z ).3.(山东潍坊模块达标)已知α与120°角的终边关于x 轴对称,则α2是( ) A .第二或第四象限角 B .第一或第三象限角C .第三或第四象限角D .第一或第四象限角[答案] A[解析] 由α与120°角的终边关于x 轴对称,可得α=k ·360°-120°,k∈Z,∴α2=k·180°-60°,k∈Z,取k=0,1可确定α2终边在第二或第四象限.4.若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角[答案] A[解析]如图所示,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.5.下列说法中,正确的是()A.第二象限的角是钝角B.第二象限的角必大于第一象限的角C.-150°是第二象限角D.-252°16′,467°44′,1187°44′是终边相同的角[答案] D[解析]第二象限的角中,除包含钝角以外,还包含与钝角相差k·360°(k∈Z)的角,如460°是第二象限的角但不是钝角,故选项A错;460°是第二象限的角,730°是第一象限角,显然460°小于730°,故选项B错;选项C中-150°应为第三象限角,故选项C错;选项D 中三个角相差360°的整数倍,则它们的终边相同.6.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于()A.{-36°,54°}B.{-126°,144°}C.{-126°,-36°,54°,144°}D.{-126°,54°}[答案] C[解析]当k=-1时,α=-126°∈B;当k=0时,α=-36°∈B;当k=1时,α=54°∈B;当k=2时,α=144°∈B.二、填空题7.(2011~2012·黑龙江五校联考)与-2013°终边相同的最小正角是________.[答案]147°8.(2011~2012·镇江高一检测)将分针拨快10分钟,则分针所转过的度数为________.[答案]-60°9.已知角β的终边在图中阴影所表示的范围内(不包括边界),那么β∈________.[答案]{α|n·180°+30°<α<n·180°+150°,n∈Z}[解析]在0°~360°范围内,终边落在阴影内的角α的取值范围为30°<α<150°与210°<α<330°,所以所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k +1)180°+30°<α<(2k+1)180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.三、解答题10.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).[解析](1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z} ={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z} ={α|α=45°+n·180°,n∈Z}.(3)同理,得终边落在直线ON上的角的集合为{β|β=60°+n·180°,n∈Z},故终边落在阴影区域内(含边界)的角的集合为{α|45°+n·180°≤α≤60°+n·180°,n∈Z}.11.如图,已知直线l1:y=33x及直线l2:y=-3x,请表示出终边落在直线l1或l2上的角.[解析]由题意知,终边落在直线l1上的角的集合为M1={α|α=30°+k1·360°,k1∈Z}∪{α|α=210°+k2·360°,k2∈Z}={α|α=30°+k·180°,k∈Z};终边落在直线l2上的角的集合为M2={α|α=120°+k1·360°,k1∈Z}∪{α|α=300°+k2·360°,k2∈Z}={α|α=120°+k·180°,k∈Z}.所以终边落在直线l1或l2上的角的集合为M=M1∪M2={α|α=30°+k·180°,k∈Z}∪{α|α=120°+k·180°,k∈Z}={α|α=30°+2k·90°,k∈Z}∪{α|α=30°+(2k+1)·90°,k∈Z}={α|α=30°+n·90°,n∈Z}.12.在角的集合{α|α=k·90°+45°,k∈Z}中,(1)有几种终边不相同的角?(2)若-360°<α<360°,则α共有多少个?[解析](1)在给定的角的集合中,终边不相同的角共有四种,分别是与45°,135°,-135°,-45°终边相同的角.(2)令-360°<k·90°+45°<360°,得-92<k<72.又∵k∈Z,∴k=-4,-3,-2,-1,0,1,2,3. ∴满足条件的角共有8个.。

高中数学 人教A版必修4 第2章 2.5.1平面几何中的向量方法

高中数学 人教A版必修4    第2章 2.5.1平面几何中的向量方法
本 课 时 栏 目 开 关
2.5.1
2.5.1
平面几何中的向量方法
本 课 时 栏 目 开 关
【学习要求】 1.经历用向量方法解决某些简单的平面几何问题及其它一些实际 问题的过程. 2.体会向量是一种处理几何问题的有力工具. 3.培养运算能力、分析和解决实际问题的能力. 【学法指导】 由于向量涉及共线、夹角、垂直、长度等基本问题,而这些问题 正是平面几何研究的对象,因此可以用向量来处理平面几何问题. 用向量方法解决平面几何问题的“三步曲”: ①建立平面几何与向量的联系,用向量表示问题中涉及的几何元 素,将平面几何问题转化为向量问题; ②通过向量运算,研究几何元素之间的关系; ③把运算结果“翻译”成几何关系.
研一研·问题探究、课堂更高效
2.5.1
探究点三
平面向量在几何中的应用
用向量法处理有关直线平行、垂直、线段相等、点共线、线 共点以及角度等问题时有独到之处,且解法思路清晰、简洁 直观.其基本方法是:
当 v1⊥v2,即 v1· v2=1+k1k2=0 时,l1⊥l2,夹角为直角;当 k1k2≠-1 时,v1· v2≠0,直线 l1 与 l2 的夹角为 θ(0° <θ<90° ).不 难推导利用 k1、k2 表示 cos θ 的夹角公式: |1+k1k2| |v1· v2 | cos θ= = 2 2. |v1||v2| 1+k1· 1+k2
填一填·知识要点、记下疑难点
2.5.1
1.向量方法在几何中的应用
本 课 时 栏 目 开 关
(1)证明线段平行问题,包括相似问题,常用向量平行 (共
a=λb ⇔ x1y2-x2y1=0 线)的等价条件:a∥b(b≠0)⇔_____
.
(2)证明垂直问题,如证明四边形是矩形、正方形等,常用

数学(人教A版)必修4课件:1-4-3 正切函数的性质与图象

数学(人教A版)必修4课件:1-4-3 正切函数的性质与图象

3π 7π 解得2kπ+ 4 ≤x≤2kπ+ 4 ,k∈Z, 5π π ∴当k=-1时,- 4 ≤x≤-4.
3π π 3π π ∴原函数在区间- 4 ,4上的单调减区间为- 4 ,-4.
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
新课引入
∴当cosx=-1时,即x=2kπ+π(k∈Z)时,函数取得最大 值.
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
π 3π π y=sinx-4在- 4 ,4上的单调递减区间.
4.求函数
[解析]
π π 3π 由2kπ+ ≤x- ≤2kπ+ ,k∈Z, 2 4 2
kπ [拓展](1)正切函数图象的对称中心是 2 ,0 (k∈Z),不存
在对称轴. π (2)直线x= +kπ(k∈Z)称为正切曲线的渐近线,正切曲线 2 无限接近渐近线. π (3)函数y=Atan(ωx+φ)+b的周期是T=|ω|.
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
课前自主预习
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
温故知新 1.下列函数在区间[0,π]上是单调函数的是( A.y=sinx C.y=sin2x B.y=cos2x D.y=cosx )
[答案]
D
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
[解析] 递减函数.
结合函数 y=cosx 的图象可知其在[0,π]上为单调
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4

【人教A版高一数学必修4《三角函数》知识与能力提升练习】1.5函数y= Asin(ωx+φ)的图象(二)

【人教A版高一数学必修4《三角函数》知识与能力提升练习】1.5函数y= Asin(ωx+φ)的图象(二)

函数y= Asin(ωx+φ)的图象(二)(45分钟70分)一、选择题(每小题5分,共40分)1.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的简图时,列表如下:则有( )A.A=0,ω=,φ=0B.A=2,ω=3,φ=C.A=2,ω=3,φ=-D.A=1,ω=3,φ=-2.已知函数y=Asin(ωx+φ)(A>0,ω>0)的振幅为,周期为,初相是,则该函数的解析式是( )A.y=B.y=C.y=D.y=3.(2018·厦门高一检测)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ<)的图象如图所示,f(0)=-,则A的值是( )A.1B.C.D.2【补偿训练】(2018·长春高一检测)已知函数y=sin(ωx+φ)的部分图象如图所示,则点P(ω,φ)的坐标为( )A. B. C. D.4.(2018·北京高一检测)f(x)=Asin(ωx+φ)的图象如图所示.为了得到f(x)的图象,则只要将g(x)=sin2x的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度5.(2018·普宁高一检测)设函数f(x)=sin,则下列结论正确的是( )A.f(x)的图象关于直线x=对称B.f(x)的图象关于点对称C.f(x)的最小正周期为π,且在上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象6.函数f(x)=sin的图象的一条对称轴是( )A.x=-B.x=C.x=-D.x=【补偿训练】函数y=2sin图象的两相邻对称轴之间的距离是( )A. B.π C. D.7.(2018·石家庄高二检测)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)满足f(-x)=f(x),其图象与直线y=2的某两个交点横坐标为分别为x1,x2,且|x1-x2|的最小值为π,则( )A.ω=,φ=B.ω=2,φ=C.ω=,φ=D.ω=2,φ=8.(2018·大庆高一检测)若函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2014)+f(2015)+f(2016)的值为( )A. B.0 C.+2 D.不确定【延伸探究】本题条件不变,试求f(x)的对称轴及单调递增区间.二、填空题(每小题5分,共10分)9.(2018·淄博高二检测)已知函数f(x)=Msin(ωx+φ)的部分图象如图所示,其中A,B两点之间的距离为5,那么f(-1)= .10.关于函数f(x)=2sin的结论:①f(x)的最小正周期是π;②f(x)在区间上单调递增;③函数f(x)的图象关于点成中心对称图形;④将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合;其中成立的结论序号为.三、解答题(每小题10分,共20分)11.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若φ∈.(1)试求这条曲线的函数解析式.(2)用“五点法”画出(1)中函数在[0,π]上的图象.12.(2018·湖北高考)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.【能力挑战题】已知函数f(x)=Asin(ωx+φ)在一个周期内的图象如图所示.(1)求函数的解析式.(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围以及这两个根的和.函数y= Asin(ωx+φ)的图象(二)(答案解析)(45分钟70分)一、选择题(每小题5分,共40分)1.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的简图时,列表如下:则有( )A.A=0,ω=,φ=0B.A=2,ω=3,φ=C.A=2,ω=3,φ=-D.A=1,ω=3,φ=-【解析】选C.由表可知A=2,又=-=,所以T=,故ω=3,又3×+φ=0,所以φ=-.2.已知函数y=Asin(ωx+φ)(A>0,ω>0)的振幅为,周期为,初相是,则该函数的解析式是( )A.y=B.y=C.y=D.y=【解析】选C.由T==,所以ω=3.A=,φ=,所以y=.3.(2018·厦门高一检测)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ<)的图象如图所示,f(0)=-,则A的值是( )A.1B.C.D.2【解析】选C.由T=2=π,所以ω===2,所以f(x)=Asin,将代入得Asin=0,即φ=kπ-,k∈Z,取k=0,得φ=-,则f(x)=Asin,因为f(0)=-,所以f(0)=Asin=-A=-,所以A=.【补偿训练】(2018·长春高一检测)已知函数y=sin(ωx+φ)的部分图象如图所示,则点P(ω,φ)的坐标为( )A. B. C. D.【解析】选B.因为=-=,所以T=π,因此ω===2.又因为f=-1,即2×π+φ=+2kπ(k∈Z),所以φ=+2kπ(k∈Z).又因为0<φ≤,所以φ=,故P.4.(2018·北京高一检测)f(x)=Asin(ωx+φ)的图象如图所示.为了得到f(x)的图象,则只要将g(x)=sin2x的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【解析】选C.由图象可知A=1,T=4×=π,所以ω=2.又f()=1,所以2×+φ=+2kπ,故φ=,因此f(x)=sin,g(x)=sin2x y=sin2=sin.故选C.【误区警示】解答本题易出现选D的错误,导致出现这种错误的原因是对平移规律掌握的不准确,即y=sin是y=sin2x图象向左平移个单位而不是个单位.5.(2018·普宁高一检测)设函数f(x)=sin,则下列结论正确的是( )A.f(x)的图象关于直线x=对称B.f(x)的图象关于点对称C.f(x)的最小正周期为π,且在上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象【解析】选C.A中f=sin≠±1,所以x=不是对称轴;B中f=sin=1,所以不是对称点;C中f(x)的周期T==π,x∈时,2x+∈,函数是增函数;D中把f(x)的图象向右平移个单位得y=f=sin=sin2x为奇函数.6.函数f(x)=sin的图象的一条对称轴是( )A.x=-B.x=C.x=-D.x=【解析】选C.由x-=+kπ(k∈Z)得,x=+kπ(k∈Z).当k=-1时,x=-是其一条对称轴.【补偿训练】函数y=2sin图象的两相邻对称轴之间的距离是( ) A. B.π C. D.【解析】选D.函数图象的两相邻对称轴之间的距离等于,即=×=.7.(2018·石家庄高二检测)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)满足f(-x)=f(x),其图象与直线y=2的某两个交点横坐标为分别为x1,x2,且|x1-x2|的最小值为π,则( )A.ω=,φ=B.ω=2,φ=C.ω=,φ=D.ω=2,φ=【解析】选D.因为已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π),所以函数f(x)的最大值为2,又函数图象与直线y=2的某两个交点横坐标分别为x1,x2,且|x1-x2|的最小值为π,所以函数有周期T==π,所以ω=2,又因为f(-x)=f(x),所以函数f(x)为偶函数,所以φ=,故选D.8.(2018·大庆高一检测)若函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2014)+f(2015)+f(2016)的值为( )A. B.0 C.+2 D.不确定【解析】选B.由图可知T=8,A=2,φ=0,所以ω==,所以f(x)=2sin x,经计算知f(1)+f(2)+…+f(8)=0,所以原式=252×0=0.【延伸探究】本题条件不变,试求f(x)的对称轴及单调递增区间.【解析】由例题解析可知f(x)=2sin x,令x=+kπ(k∈Z),得对称轴为x=2+4k(k∈Z).令-+2kπ≤x≤+2kπ(k∈Z),得-2+8k≤x≤2+8k(k∈Z),所以单调递增区间为[-2+8k,2+8k](k∈Z).二、填空题(每小题5分,共10分)9.(2018·淄博高二检测)已知函数f(x)=Msin(ωx+φ)的部分图象如图所示,其中A,B两点之间的距离为5,那么f(-1)= .【解析】由图象可得A=2,2sinφ=1,即sinφ=,再由0≤φ≤π,结合图象可得φ=,又A,B两点之间的距离为5,可得25=16+,所以,ω=.故函数f(x)=2sin,故f(-1)=2sin=2.答案:210.关于函数f(x)=2sin的结论:①f(x)的最小正周期是π;②f(x)在区间上单调递增;③函数f(x)的图象关于点成中心对称图形;④将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合;其中成立的结论序号为.【解析】因为f(x)=2sin,所以①f(x)的最小正周期==π,正确;②因为x∈,所以∈,故函数f(x)在区间上单调递增,正确;③因为f=2sin≠0,所以函数f(x)的图象关于点不成中心对称图形,故不正确;④将函数f(x)的图象向左平移个单位后得到g(x)=f=2sin(2x+π)=-2sin2x,故将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合,正确.综上可知:正确的为①②④.答案:①②④三、解答题(每小题10分,共20分)11.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若φ∈.(1)试求这条曲线的函数解析式.(2)用“五点法”画出(1)中函数在[0,π]上的图象.【解析】(1)由题意知A=,T=4×=π,ω==2,所以y=sin(2x+φ).又因为sin=1,所以+φ=2kπ+,k∈Z,所以φ=2k π+,k ∈Z, 又因为φ∈,所以φ=,所以y=sin.(2)列出x,y 的对应值表:-π ππ2x+0π y描点、连线,如图所示:12.(2018·湖北高考)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.【解题指南】(1)根据已知表格中的数据可得方程组解之可得函数f(x)的解析式,进而可补全其表格.(2)由(1)并结合函数图象平移的性质可得函数g(x)的解析式,进而求出其图象的对称中心坐标,取出其距离原点O最近的对称中心即可.【解析】(1)根据表中已知数据可得:A=5,ω+φ=,ω+φ=,解得ω=2,φ=-.函数解析式为f(x)=5sin.数据补全如表:π(2)由(1)知f(x)=5sin,因此g(x)=5sin=5sin.因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+=kπ,k∈Z,解得x=-,k∈Z.即y=g(x)图象的对称中心为,k∈Z,其中离原点O最近的对称中心为.【能力挑战题】已知函数f(x)=Asin(ωx+φ)在一个周期内的图象如图所示.(1)求函数的解析式.(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围以及这两个根的和.【解析】(1)观察图象,得A=2,T=×=π,所以ω==2,所以f(x)=2sin(2x+φ).因为函数经过点,2sin=2,即sin=1.又因为|φ|<,所以φ=,所以函数的解析式为f(x)=2sin.(2)因为0<x<π,所以f(x)=m的根的情况,相当于求f(x)=2sin与g(x)=m的交点个数情况,且0<x<π,所以在同一坐标系中画出y=2sin和y=m,m∈R的图象.由图可知,当-2<m<1或1<m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根,所以m的取值范围为-2<m<1或1<m<2;当-2<m<1时,此时两交点关于直线x=对称,两根和为,当1<m<2时,此时两交点关于直线x=对称,两根和为.。

高中数学 人教A版必修4 第2章 2.2.1向量的加法运算及其几何意义

高中数学 人教A版必修4    第2章 2.2.1向量的加法运算及其几何意义

2.2.1
问题 2
想一想,|a+b|与|a|和|b|之间的大小关系如何?
|a|+|b| a, b 同向, 当 a 与 b 同向共线时, a+b 与____ 且|a+b|=_______.
本 课 时 栏 目 开 关
a 的方向相同, 当 a 与 b 反向共线时,若|a|>|b|,则 a+b 与__
|a|-|b| ;若|a|<|b|,则 a+b 与__ b 的方向相同,且 且|a+b|=_______ |b|-|a| |a+b|=_______.
填一填·知识要点、记下疑难点
2.2.1
1.向量的加法法则
本 课 时 栏 目 开 关
(1)三角形法则 如图所示,已知非零向量 a,b,在平面内任取
→ → → AC 一点 A,作AB=a,BC=b,则向量____叫做 a 与 b 的和(或
→ → → a + b 和向量), 记作_____, 即 a+b=AB+BC=_____. AC 上述求两个 向量和的作图法则,叫做向量求和的三角形法则.
本 课 时 栏 目 开 关
2.2.1
2.2.1
【学习要求】
向量加法运算及其几何意义
本 1.理解并掌握加法的概念,了解向量加法的物理意义及其几何 课 时 意义. 栏 目 开 2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运 关
用这两个法则作两个向量的加法运算.
3.了解向量加法的交换律和结合律,并能依几何意义作图解释加 法运算律的合理性.
a a =__. 0 +__ 对于零向量与任一向量 a 的和有 a+0=__
填一填·知识要点、记下疑难点
2.2.1
(2)平行四边形法则 如图所示,已知两个不共线向量 a,b,作 → → OA=a,OB=b,则 O、A、B 三点不共线,

高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4

高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4

2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。

新教材人教版高中数学必修第二册 第八章 立体几何初步(章末知识梳理与能力提升 )

新教材人教版高中数学必修第二册 第八章 立体几何初步(章末知识梳理与能力提升 )

l3 d2
(1)
第二十页,共二十六页。
又因为f∝Sl,故
bl ∝dl32
(2)
由生物学角度可以假定,经过长期进化,对每种动物而言
b l
应为一个常数,即
l3∝d2
(3)
又由d2∝S,f∝Sl,故
f∝l4
(4)
第二十一页,共二十六页。
即体重与躯干长度的 4 次方成正比. 反思总结:在此模型的构成过程中,有两点值得注意. 首 先,此模型的建立,只用到简单的比例法,非常简便易懂, 但更重要的是大胆地把动物的躯干与弹性梁作类比,从而可 以借用弹性力学的结果;其次使用该模型时,要注意其条件. 在建立此模型时,我们把四足动物的躯干视为圆柱体,也就 是说,对于那些躯干的形状与圆柱体相去甚远的四足动物, 该模型就不适用了,比如乌龟.
第十七页,共二十六页。
[应用问题与数学建模] ——动物的身长与体重
问题描述:四足动物的躯干与其体重之间有什么关系?此 问题有一定的实际意义. 比如在生猪收购站,工作人员希望能 从生猪的身长估计出它的体重.
问题分析:如果对此问题陷入复杂的生理结构的研究,将 会得出复杂的模型,而失去使用价值. 在这里我们用类比的方 法借助于弹性力学的结果,建立一个粗略的几何模型.
[答案] C
第二十五页,共二十六页。
[ 学习方法指导] 为了直观的解决此题,可同桌相互 配合解决,过程是这样的:同桌两同学每人拿一本书,打 开就得到了两个平面且摆成如图所示的模型.
由于&⊥β而&绕 L 可来回转动.但两个面始终保持垂直.所以这两个二
面角不会相等也不会互补,并且学生也易于理解了. 布鲁纳说:“最好的学习动机是学生对所学材料有内在的兴趣.”如果我

人教A版高中数学选择性必修第二册精品课件 第4章 数列 习题课——数列求和

人教A版高中数学选择性必修第二册精品课件 第4章 数列 习题课——数列求和
n
[nx
-(n+1)x
+1],
2
(1-)
(+1)
,
2
= 1,
∴Sn= 0, = 0,

+1

[
-(
+
1)
+ 1], ≠ 0, ≠ 1.
2
(1-)
若若已知数列{(2n-1)an-1}(a≠0,n∈N*),求它的前n项和Sn.
解:当 a=1 时,数列变成 1,3,5,7,…,(2n-1),…,则
2.什么情况下可以用错位相减法求和?
提示:当一个数列的各项是由一个等差数列和一个等比数列的对应项之
积构成时可以用错位相减法求和.
3.已知数列{an}的前n项和为Sn,且an=n·2n,则Sn=
解析:∵an=n·2n,
∴Sn=1×21+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1.②
( 1 + )
(-1)
Sn=
=na1+
d
2
2
等比数列{an}的前 n 项和公式是 Sn=
;
1 , = 1,
1 (1- )
,
1-
.
≠1
2.是不是所有的数列求和都可以直接用这两个公式求解?
提示:不是.
3.将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和
的目的的方法叫做裂项相消法.
解:设数列的第 n 项为 an,则 an=1+2+2 +…+2
2
1-2

2019-2020年高中数学 1.4.3 正切函数的性质与图象备课资料 新人教A版必修4

2019-2020年高中数学 1.4.3 正切函数的性质与图象备课资料 新人教A版必修4

2019-2020年高中数学 1.4.3 正切函数的性质与图象备课资料新人教A版必修4一、函数f(x)±g(x)最小正周期的求法若f(x)和g(x)是三角函数,求f(x)±g(x)的最小正周期没有统一的方法,往往因题而异,现介绍几种方法:(一)定义法例1 求函数y=|sinx|+|cosx|的最小正周期.解:∵y=|sinx|+|cosx|=|-sinx|+|cosx|=|cos(x+)|+|sin(x+)|=|sin(x+)|+|cos(x+)|,对定义域内的每一个x,当x增加到x+时,函数值重复出现,因此函数的最小正周期是. (二)公式法这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正、余弦函数求最小正周期的公式为T=,正、余切函数T=.例2 求函数y=-tanx的最小正周期.解:y=-tanx==2,∴T=.(三)最小公倍数法设f(x)与g(x)是定义在公共集合上的两个三角周期函数,T1、T2分别是它们的周期,且T1≠T2,则f(x)±g(x)的最小正周期是T1、T2的最小公倍数,分数的最小公倍数=例3 求函数y=sin3x+cos5x的最小正周期.解:设sin3x、cos5x的最小正周期分别为T1、T2,则T1=,T2=,所以y=sin3x+cos5x的最小正周期T==2π.例4 求y=sin3x+tanx的最小正周期.解:∵sin3x与tanx的最小正周期是与,其最小公倍数是=10π,∴y=sin3x+tanx的最小正周期是10π.(四)图象法例5 求y=|cosx|的最小正周期.解:由y=|cosx|的图象,可知y=|cosx|的周期T=π.(设计者:张云全)2019-2020年高中数学 1.4.3 正切函数的性质与图象教案新人教A版必修4教学分析本节课的背景是:这之前我们已经用了三节课的时间学习了正弦函数和余弦函数的性质.函数的研究具有其本身固有的特征和特有的研究方式.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后再从代数的角度对性质作出严格表述.但对正切函数,教科书换了一个新的角度,采取了先根据已有的知识(如正切函数的定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.这样处理,主要是为了给学生提供研究数学问题更多的视角,在性质的指导下可以更加有效地作图、研究图象,加强了理性思考的成分,并使数形结合的思想体现得更加全面.教师要在学生探究活动过程中引导学生体会这种解决问题的方法.通过多媒体教学,让学生通过对图象的动态观察,对知识点的理解更加直观、形象.以提高学生的学习兴趣,提高课题教学质量.从学生的实际情况为教学出发点,通过各种数学思想的渗透,合理运用各种教学课件,逐步培养学生养成学会通过对图象的观察来整理相应的知识点的能力,学会运用数学思想解决实际问题的能力.这样既加强了类比这一重要数学思想的培养,也有利于学生综合运用能力的提高,有利于学生把新旧知识前后联系,融会贯通,提高教学效果.由于学生已经有了研究正弦函数、余弦函数的图象与性质的经验,这种经验完全可以迁移到对正切函数性质的研究中,因此,我们可以通过“探究”提出,引导学生根据前面的经验研究正切函数的性质,让学生深刻领悟这种迁移与类比的学习方法.三维目标1.通过对正切函数的性质的研究,注重培养学生类比思想的养成,以及培养学生综合运用新旧知识的能力.学会通过对图象的观察来整理相应的知识点,学会运用数学思想解决实际问题的能力.2.在学习了正弦函数、余弦函数的图象与性质的基础上,运用类比的方法,学习正切函数的图象与性质,从而培养学生的类比思维能力.3.通过正切函数图象的教学,培养学生欣赏(中心)对称美的能力,激发学生热爱科学、努力学好数学的信心.重点难点教学重点:正切函数的性质与图象的简单应用.教学难点:正切函数性质的深刻理解及其简单应用.课时安排1课时教学过程导入新课思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.推进新课新知探究提出问题①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?②我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?你能类比“五点法”也用几个字总结出作正切简图的方法吗?活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性.(1)周期性由诱导公式tan(x+π)=tanx,x∈R,x≠+kπ,k∈Z可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性.(2)奇偶性由诱导公式tan(-x)=-tanx,x∈R,x≠+kπ,k∈Z可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(,0)k∈Z.(3)单调性通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(,)内是增函数,又由正切函数的周期性可知,正切函数在开区间(+kπ,+kπ),k∈Z内都是增函数.(4)定义域根据正切函数的定义tanα=,显然,当角α的终边落在y轴上任意一点时,都有x=0,这时正切函数是没有意义的;又因为终边落在y轴上的所有角可表示为kπ+,k∈Z,所以正切函数的定义域是{α|α≠kπ+,k∈Z},而不是{α≠+2kπ,k∈Z},这个问题不少初学者很不理解,在解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域由多媒体课件演示正切线的变化规律,从正切线知,当x大于且无限接近时,正切线AT 向Oy轴的负方向无限延伸;当x小于且无限接近时,正切线AT向Oy轴的正方向无限延伸.因此,tanx在(,)内可以取任意实数,但没有最大值、最小值.因此,正切函数的值域是实数集R.问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出[-,]内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-,)的图象为好.这时条件成熟,教师引导学生来作正切函数的图象,如图2.根据正切函数的周期性,把图2向左、右扩展,得到正切函数y=tanx,x∈R,且x≠+kπ(k∈Z)的图象,我们称正切曲线,如图3.图2 图3问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x∈(,)的简图.学生可看出有三个点很关键:(,-1),(0,0),(,1),还有两条竖线.因此,画正切函数简图的方法就是:先描三点(,-1),(0,0),(,1),再画两条平行线x=,x=,然后连线.教师要让学生动手画一画,这对今后解题很有帮助.讨论结果:①略.②正切线是AT.③略.④能,“三点两线”法.提出问题①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质.②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x=+kπ,k∈Z所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y轴方向看,上下无限延伸,得到它的哪一性质——值域为R;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是(+kπ,+kπ),k∈Z,没有减区间.它的图象是关于原点对称的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(,0),k∈Z.问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性.讨论结果:①略.②略.应用示例例1 比较大小.(1)tan138°与tan143°;(2)tan()与tan().活动:利用三角函数的单调性比较两个同名三角函数值的大小,可以先利用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.教师可放手让学生自己去探究完成,由学生类比正弦、余弦函数值的大小比较,学生不难解决,主要是训练学生巩固本节所学的基础知识,加强类比思想的运用.解:(1)∵y=tanx在90°<x<180°上为增函数,∴由138°<143°,得tan138°<tan143°.(2)∵tan()=-tan=-tan(3π+)=-tan,tan()=-tan=-tan(3π+)=-tan.又0<<<,而y=tanx在(0, )上是增函数,∴tan<tan.∴-tan>-tan,即tan()>tan().点评:不要求学生强记正切函数的性质,只要记住正切函数的图象或正切线即可.例2 用图象求函数y=的定义域.活动:如图4,本例的目的是让学生熟悉运用正切曲线来解题.不足之处在于本例可以通过三角函数线来解决,教师在引导学生探究活动中,也应以两种方法提出解决方案,但要有侧重点,应体现函数图象应用的重要性.图4 图5解:由tanx-≥0,得tanx≥,利用图4知,所求定义域为[kπ+,kπ+)(k∈Z).点评:先在一个周期内得出x的取值范围,然后再加周期即可,亦可利用单位圆求解,如图5.本节的重点是正切线,但在今后解题时,学生哪种熟练就用哪种.变式训练根据正切函数的图象,写出使下列不等式成立的x的集合.(1)1+tanx≥0;(2)tanx+3<0.解:(1)tanx≥-1,∴x∈[kπ-,kπ+),k∈Z;(2)x∈[kπ-,kπ-),k∈Z.例3 求函数y=tan(x+)的定义域、周期和单调区间.活动:类比正弦、余弦函数,本例应用的是换元法,由于在研究正弦、余弦函数的类似问题时已经用过换元法,所以这里也就不用再介绍换元法,可以直接将x+作为一个整体.教师可让学生自己类比地探究,只是提醒学生注意定义域.解:函数的自变量x应满足x+≠kπ+,k∈Z,即x≠2k+,k∈Z.所以函数的定义域是{x|x≠2k+,k∈Z}.由于f(x)=tan(x+)=tan(x++π)=tan[(x+2)+ ]=f(x+2),因此,函数的周期为2.由-+kπ<x+<+kπ,k∈Z,解得+2k<x<+2k,k∈Z.因此,函数的单调递增区间是(+2k,+2k),k∈Z.点评:同y=Asin(ωx+φ)(ω>0)的周期性的研究一样,这里可引导学生探究y=Atan(ωx+φ)(ω>0)的周期T=.变式训练求函数y=tan(x+)的定义域,值域,单调区间,周期性.解:由x+≠kπ+,k∈Z可知,定义域为{x|x∈R且x≠kπ+,k∈Z}.值域为R.由x+∈(kπ-,kπ+),k∈Z可得,在x∈(kπ-,kπ+)上是增函数.周期是π,也可看作由y=tanx的图象向左平移个单位得到,其周期仍然是π.例4 把tan1,tan2,tan3,tan4按照由小到大的顺序排列,并说明理由.活动:引导学生利用函数y=tanx的单调性探究解题方法.也可利用单位圆中的正切线探究解题方法.但要提醒学生注意本节中活动的结论:正切函数在定义域内的每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.学生可能的错解有: 错解1:∵函数y=tanx是增函数,又1<2<3<4,∴tan1<tan2<ta n3<tan4.错解2:∵2和3的终边在第二象限,∴tan2,tan3都是负数.∵1和4的终边分别在第一和第三象限,∴tan1,tan4都是正数.又∵函数y=tanx是增函数,且2<3,1<4,∴tan2<tan3<tan1<tan4.教师可放手让学生自己探究问题的解法.发现错解后不要直接纠正,立即给出正确解法,可再让学生讨论分析找出错的原因.图6解法一:∵函数y=tanx在区间(,)上是单调递增函数,且tan1=tan(π+1),又<2<3<4<π+1<,∴tan2<tan3<tan4<tan1.解法二:如图6,1,2,3,4的正切函数线分别是AT1,AT2,AT3,AT4,∴tan2<tan3<tan4<tan1.点评:本例重在让学生澄清正切函数单调性问题,这属于学生易错点.把正切函数y=tanx的单调性简单地说成“在定义域内是增函数”是不对的.知能训练课本本节练习1—5.解答:1.在x轴上任取一点O1,以O1为圆心,单位长为半径作圆,作垂直于x轴的直径,将⊙O1分成左右两个半圆,过右半圆与x轴的交点作⊙O1的切线,然后从圆心O1引7条射线把右半圆分成8等份,并与切线相交,得到对应于,,,0,,,等角的正切线.相应地,再把x轴上从到这一段分成8等份.把角x的正切线向右平行移动,使它的起点与x轴上的点x重合,再把这些正切线的终点用光滑的曲线连结起来,就得到函数y=tanx,x∈(,)的图象.点评:可类比正弦函数图象的作法.2.(1){x|kπ<x<+kπ,k∈Z};(2){x|x=kπ,k∈Z};(3){x|+kπ<x<kπ,k∈Z}.点评:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.3.x≠+,k∈Z.点评:可用换元法.4.(1) ;(2)2π.点评:可根据函数图象得解,也可直接由函数y=Atan(ωx+φ),x∈R的周期T=得解.5.(1)不是.例如0<π,但tan0=tanπ=0.(2)不会.因为对于任何区间A来说,如果A不含有+kπ(k∈Z)这样的数,那么函数y=tanx,x∈A是增函数;如果A至少含有一个+kπ(k∈Z)这样的数,那么在直线x=+kπ两侧的图象都是上升的(随自变量由小到大).点评:理解正切函数的单调性.课堂小结1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质,并在此基础上得到图象,最后用图象又验证了函数的性质.2.(教师点拨)本节研究的过程是由数及形,又由形及数相结合,也是我们研究函数的基本方法,特别是又运用了类比的方法、数形结合的方法、化归的方法.请同学们课后思考总结:这种多角度观察、探究问题的方法对我们今后学习有什么指导意义?作业课本习题1.4 A组6、8、9.设计感想1.本教案的设计背景刚刚学完正弦函数、余弦函数的图象与性质.因此教案的设计主线是始终抓住类比思想这条主线,让学生在巩固原有知识的基础上,通过类比,由学生自己来对新知识进行分析、探究、猜想、证明,使新旧知识点有机地结合在一起,学生对新知识也较易接受.2.本教案设计的学习程序是:温故(相关知识准备)→新的学习对象与旧知识的联系→类比探究→解决问题→应用成果→归纳总结→进一步的发散思考→探索提高.。

高中数学(新课标人教A版)必修4_第一章三角函数精品课件_1[1].4三角函数的图象与性质(3课时)

高中数学(新课标人教A版)必修4_第一章三角函数精品课件_1[1].4三角函数的图象与性质(3课时)
1.4.1
正弦、余弦函数的 图象
1.4.1正弦、余弦函数的图象
复习 回顾
三角函数 正弦函数
sin=MP
cos=OM tan=AT
y
三角函数线 正弦线MP
余弦函数
正切函数
余弦线OM
正切线AT
P
T

-1
O
M
A(1,0)
x
பைடு நூலகம்
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象? 途径:利用单位圆中正弦、余弦线来解决。
y=sinx
y=cosx
2 3 4 5 6 x
六.对称轴和对称点:
y sin x的对称轴: x k

2
, 对称点: ( k ,0);
y co s x的对称轴: x k , 对称点: ( k

2
,0);
七. y sin x和y cos x的图像性质的研究思想 : (1)充分利用图像- - - -数形结合的思想
应用提升 练习1:试着画出 y | tan x | 和y tan | x |
并讨论它们的单调性,周期性和奇偶性. 练习2.如果、 ( , )且 tan cot , 2
那么必有( ) A. 3 C. 2 B. 3 D. 2
y 1
2

o -1
2

3 2
2
x
y=sinx x[0,2] y=sinx xR
y
1
正弦曲 线
2
-4
-3
-2
-
o
-1
3
4
5
6
x
如何由正弦函数图像得y 到余弦函数图像?

高中数学 人教A版必修4 第2章 2.2.2向量的减法运算及其几何意义

高中数学 人教A版必修4    第2章 2.2.2向量的减法运算及其几何意义

→ → → OA=a,OB=b,则BA=a-b;
研一研·问题探究、课堂更高效
2.2.2
③若 a 与 b 反向,在给定的直线 l 上作出差向量 a-b:
本 课 时 栏 目 开 关
→ → → OA=a,OB=b,则BA=a-b.
研一研·问题探究、的作图,探究|a-b|与|a|,|b|之间的大小关系:
仍是零向量
研一研·问题探究、课堂更高效
2.2.2
对比项 对 比
本 课 时 栏 目 开 关
实数的减法
向量的减法
(3)互为相反数的 (3) 两个相反向量的和是 和是零
零向量
内 容
(4)实数的减法:减 (4)向量的减法:减去一个 去一个数等于加上 向量相当于 加上这个向量 这个数的相反数
的相反向量
根据相反向量的含义,完成下列结论: → → (1)-AB=___ a; BA ;(2)-(-a)=__
填一填·知识要点、记下疑难点
2.2.2
3.向量减法的平行四边形法则 → → 以向量AB=a,AD=b 为邻边作 平行四边形ABCD ,则
本 课 时 栏 目 开 关
→ → 对角线的向量BD=b-a,DB=a-b. 4.向量减法的三角形法则 → → → 在平面内任取一点 O,作OA=a,OB=b,则BA=a-b, 即 a-b 表示从向量 b 的终点指向向量 a 的终点的向量.
本 课 时 栏 目 开 关
请你利用平行四边形法则作出差向量 a-b.
解 利用平行四边形法则. → → 在平面内任取一点 O,作OA=a,OB=b,
→ → → 作OC=-b,以OA,OC为邻边作平行四 → 边形 OAEC,则OE=a-b.
研一研·问题探究、课堂更高效

高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4

高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4
(1)字母表示下的运算. 利用|a|2=a2,将向量的模的运算转化为向量与 向量的数量积的问题.
(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.

cos
θ
= |aa|·|bb|

-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.

推荐-高中数学人教A版必修4课件2.2.3向量数乘运算及其几何意义

推荐-高中数学人教A版必修4课件2.2.3向量数乘运算及其几何意义

一二三四
首页
Z 自主预 习I ZHU YU XI
H合作学习 EZUO XUEXI
D当堂检测 ANGTANG JIANCE
3.关于共线向量定理的说明: (1)定理中,向量a为非零向量,即定理不包含0与0共线的情况. (2)条件a≠0是必须的.否则当a=0,b≠0时,虽然b与a共线,但不存在 实数λ,使得b=λa;当a=0,b=0时,λ可以是任意实数. (3)要证明向量a,b共线,只需证明存在实数λ,使得b=λa即可. (4)若b=λa(λ∈R),则a与b共线. (5)由本性质定理知,若向量 ������������=λ������������,则������������, ������������共线.又������������, ������������有 公共点A,从而A,B,C三点共线,这是证明三点共线的重要方法.
首页
Z 自主预 习I ZHU YU XI
H合作学习 EZUO XUEXI
D当堂检测 ANGTANG JIANCE
探究一
探究二
探究三
思维辨析
探究二
共线向量定理及其应用
【例2】已知非零向量e1,e2不共线,且向量ke1-4e2与3e1-ke2共线, 求实数k的值.
解:因为向量ke1-4e2与3e1-ke2共线,所以存在实数λ,使得ke1-
2.2.3 向量数乘运算及其几何意义
-1-
首页
Z 自主预 习I ZHU YU XI
H合作学习 EZUO XUEXI
D当堂检测 ANGTANG JIANCE
课标阐释
1.理解向量数乘的定义及几何意 义. 2.掌握向量数乘的运算律,能够用 已知向量表示未知向量. 3.掌握共线向量定理,会判断或证 明两个向量共线.

高中数学第二章平面向量同步练习02新人教A版必修4

高中数学第二章平面向量同步练习02新人教A版必修4

高中数学第二章平面向量同步练习02新人教A版必修4平面向量同步练习§2.2. 1 向量加减运算及几何意义班级___________姓名____________学号____________得分____________一、选择题1.化简PM PN MN所得的结果是()MPA.B.NP C.0 D.MN2.设OA a,OB b且|a|=| b|=6,∠AOB=120 ,则|a-b|等于()0013.飞机从甲地按南偏东10方向飞行2022年km到达乙地,再从乙地按北偏西70方向飞行2022年km到达丙A.36 B.12 C.6 D.63.a,b为非零向量,且|a+ b|=| a|+| b|,则()A.a与b方向相同B.a = b C.a =-4.在平行四边形ABCD中,若| BC BA | | BC ABb D.a与b方向相反|,则必有()A.ABCD为菱形B.ABCD为矩形C .ABCD 为正方形D.以上皆错5.已知正方形ABCD边长为1,AB=a,BC=b,AC=c,则|a+b+c|等于()A.0 B.3 C.22*6.设( AB CD ) ( BC DA D.2) a,而b是一非零向量,则下列个结论:(1) a与b共线;(2)a + b = a;(3) a + b = b;(4)| a + b||a |+|b|中正确的是()A.(1) (2) B.(3) (4) C.(2) (4) D.(1) (3) 二、填空题7.在平行四边形ABCD中,AB a,AD b,则CA __________,BD_______.8.在a =“向北走20km”,b =“向西走20km”,则a +b9.若| AB | 8,| AC | 5,则| BC表示______________.|的取值范围为_____________.*10.一艘船从A点出发以23km/h的速度向垂直于河岸的方向行驶,而船实际行驶速度的大小为4km/h,则河水的流速的大小为___________.三、解答题11.如图,O是平行四边形ABCD外一点,用OA 、OB 、OC 表示OD.12.如图,在任意四边形ABCD中,E、F分别为AD、BC的中点,求证:AB DC EF EF .地,那么丙地在甲地的什么方向?丙地距离甲地多远?*14.点D、E、F分别是△ABC求证:(1)AB 三边AB、BC、CA上的中点,BE AC CE;(2)EA FBDC 0.§2. 2. 2 向量数乘运算及其几何意义班级___________姓名____________学号____________得分____________一、选择题1.已知向量a= e1-2 e2,b=2 e1+e2, 其中e1、e2不共线,则a+b 与c=6 e1-2 e2的关系为(A.不共线B.共线C.相等D.无法确定2.已知向量e1、e2不共线,实数(3x-4y)e1+(2x-3y)e2 =6e1+3e2 ,则x-y的值等于()A.3 B.-3 C.0 D.2)平面向量同步练习3.若AB=3a, CD =-5a ,且| AD | | BC |,则四边形ABCD是()A.平行四边形B.菱形C.等腰梯形D.不等腰梯形4.AD、BE分别为△ABC的边BC、AC上的中线,且AD =a , BE =b ,那么BC 为()A.__-__3a+3b B.3a-3b C.3a-3b D.-3a+3b5.已知向量a ,b是两非零向量,在下列四个条件中,能使a ,b共线的条件是()①2a -3b=4e且a+2b= -3e②存在相异实数λ ,μ,使λa -μb=0 ③xa+yb=0 (其中实数x, y满足x+y=0) ④已知梯形ABCD,其中AB=a ,CD=bA.①② B.①③ C.② D.③④*6.已知△ABC三个顶点A、B、C及平面内一点P,若PA PB PC AB ,则()A.P在△ABC 内部B.P在△ABC 外部C.P在AB边所在直线上D.P在线段BC上二、填空题7.若|a|=3,b与a方向相反,且|b|=5,则a= b8.已知向量e1 ,e2不共线,若λe1-e2与e1-λe2共线,则实数λ= 9.a,b是两个不共线的向量,且AB=2a+kb , CB =a+3b , CD =2a-b ,若A、B、D三点共线,则实数k的值可为*10.已知四边形ABCD中,AB =a-2c, CD =5a+6b-8c对角线AC、BD的中点为E、F,则向量EF三、解答题11.计算:⑴(-7)×6a=⑵4(a+b)-3(a-b)-8a= ⑶(5a-4b+c)-2(3a-2b+c)=12.如图,设AM是△ABC的中线,AB=a , AC=b ,求AM13.设两个非零向量a与b不共线,⑴若AB =a+b ,BC =2a+8b ,CD=3(a-b) ,求证:A、B、D三点共线; ⑵试确定实数k,使ka+b和a +kb共线.*14.设OA ,OB 不共线,P点在AB上,求证:OP =λOA +μOB且λ+μ=1(λ, μ∈R).§2. 3. 1平面向量基本定理及坐标表示(1)班级___________姓名____________学号____________得分____________一、选择题1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是()A.e1=(0,0), e2 =(1,-2) ; B.e1=(-1,2),e2 =(5,7); C.e1=(3,5),e2 =(6,10); D.e1=(2,-3) ,e2 =(1, 324)2.已知向量a、b,且AB=a+2b , BC = -5a+6b , CD =7a-2b,则一定共线的三点是()A.A、B、D B.A、B、C C.B、C 、D D.A、C、D3.如果e1、e2是平面α内两个不共线的向量,那么在下列各说法中错误的有()①λe1+μe2(λ, μ∈R)可以表示平面α内的所有向量;②对于平面α中的任一向量a,使a=λe1+μe2的λ, μ有无数多对;③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数k,使λ2e1+μ2e2=k(λ1e1+μ1e2);④若实数λ, μ使λe1+μe2=0,则λ=μ=0.平面向量同步练习A.①② B.②③ C.③④ D.仅②4.过△ABC的重心任作一直线分别交AB、AC于点D、E,若AD =x AB , AE =y AC ,xy≠0,则11x y的值为()A.4 B.3 C.2 D.15.若向量a=(1,1),b=(1,-1) ,c=(-2,4) ,则c= ( ) A.-a+3b B.3a-b C.a-3b D.-3a+b*6.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C(x, y)满足OC=αOA +βOB ,其中α,β∈R且α+β=1,则x, y所满足的关系式为()A.3x+2y-11=0 B.(x-1)2+(y-2)2=5 C.2x-y=0 D.x+2y-5=0二、填空题7.作用于原点的两力F1 =(1,1) ,F2 =(2,3) ,为使得它们平衡,需加力F3= ;8.若A(2,3),B(x, 4),C(3,y),且AB=2 AC ,则x= ,y= ;9.已知A(2,3),B(1,4)且1 2AB =(sinα,cosβ), α,β∈(- 2,2),则α+β=*10.已知a=(1,2) ,b=(-3,2),若ka+b与a-3b平行,则实数k的值为三、解答题11.已知向量b与向量a=(5,-12)的方向相反,且|b|=26,求b12.如果向量AB=i-2j , BC =i+mj ,其中i、j分别是x轴、y轴正方向上的单位向量,试确定实数m的值使A、B、C三点共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课下能力提升(二)
[学业水平达标练]
题组1 弧度的概念
1.下列叙述中正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧 C .1弧度是1度的弧与1度的角之和
D .1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 2.与角-π
6终边相同的角是( )
A.
5π6 B.π3 C.11π6 D.2π3
3.角-29
12π的终边所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 题组2 角度与弧度的换算 4.下列转化结果错误的是( ) A .60°化成弧度是π
3
B .-10
3π化成度是-600°
C .-150°化成弧度是-7

D.
π
12
化成度是15° 5.把角-690°化为2k π+α(0≤α<2π,k ∈Z )的形式为________. 6.已知角α=2 010°.
(1)将α改写成θ+2k π(k ∈Z ,0≤θ<2π)的形式,并指出α是第几象限角; (2)在区间[-5π,0)上找出与α终边相同的角; (3)在区间[0,5π)上找出与α终边相同的角. 题组3 扇形的弧长公式和面积公式的应用
7.在半径为10的圆中,240°的圆心角所对的弧长为( ) A.
403π B.203π C.2003D.4003
π
8.若扇形的面积为3π
8,半径为1,则扇形的圆心角为( )
A.
3π2 B.3π4 C.3π8 D.3π16
9.一个扇形的面积为1,周长为4,则圆心角的弧度数为________. 10.如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.
[能力提升综合练]
1.角α的终边落在区间⎝ ⎛⎭⎪⎫-3π,-5π2内,则角α所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为( ) A.
1
sin 0.5
B .sin 0.5
C .2sin 0.5
D .tan 0.5
3.圆弧长度等于其所在圆内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A.
π3 B.2π
3
C. 3 D .2 4.集合P ={α|2k π≤α≤(2k +1)π,k ∈Z },Q ={α|-4≤α≤4},则P ∩Q =( ) A .∅
B .{α|-4≤α≤-π,或0≤α≤π}
C .{α|-4≤α≤4}
D .{α|0≤α≤π}
5.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A ,B ,C 的弧度数分别为________. 6.若角α的终边与8π5角的终边相同,则在[0,2π]上,终边与α
4角的终边相同的角
是________.
7.已知α=-800°.
(1)把α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限角;
(2)求γ,使γ与α的终边相同,且γ∈⎝ ⎛⎭
⎪⎫-π2,π2.
8.如图所示,已知一长为3dm ,宽为1 dm 的长方体木块在桌面上做无滑动的翻滚,翻滚到第四次时被一小木板挡住,使木块底面与桌面成30°的角.求点A 走过的路径长及
走过的弧所在扇形的总面积.
答 案
[学业水平达标练]
1. 解析:选D 由弧度的定义知,选项D 正确.
2. 解析:选C 与角-π6终边相同的角的集合为{α|α=-π
6+2k π,k ∈Z },当k =1
时,α=-π6+2π=11π
6
,故选C.
3. 解析:选D -2912π=-4π+1912π,19
12
π的终边位于第四象限,故选D.
4. 解析:选C 对于A ,60°=60×π180=π3;对于B ,-10π3=-10
3×180°=-600°;
对于C ,-150°=-150×π180=-56π;对于D ,π12=1
12
×180°=15°.
5. 解析:法一:-690°=-⎝ ⎛⎭⎪⎫690×π180=-236π.
∵-236π=-4π+π6,∴-690°=-4π+π
6
.
法二:-690°=-2×360°+30°,则-690°=-4π+π6.
答案:-4π+π
6
6. 解析:(1)2 010°=2 010×π180=67π6=5×2π+7π
6.
又π<7π6<3π2,角α与角7π
6的终边相同,故α是第三象限角.
(2)与α终边相同的角可以写为β=7π
6
+2k π(k ∈Z ).
又-5π≤β<0,∴k =-3,-2,-1.当k =-3时,β=-29π
6;当k =-2时,β
=-17π6;当k =-1时,β=-5π6
.
(3)与α终边相同的角可以写为γ=7π
6
+2k π(k ∈Z ).
又0≤γ<5π,∴k =0,1.当k =0时,γ=7π6;当k =1时,γ=19π
6.
7. 解析:选A 240°=240180π=43π,∴弧长l =43π×10=40
3
π,选A.
8. 解析:选B S 扇形=12lR =12(αR )·R =12αR 2
,由题中条件可知S 扇形=3π8,R =1,从
而α=2S 扇形R 2=3π
41=3π
4
,故选B.
9. 解析:设扇形的半径为R ,弧长为l ,则2R +l =4. 根据扇形面积公式S =12lR ,得1=1
2
l ·R .
联立⎩⎪⎨⎪⎧2R +l =4,12l ·R =1.解得R =1,l =2,∴α=l R =2
1=2.
答案:2
10. 解:∵120°=120180π=2
3π,
∴l =6×2
3π=4π,
∴AB ︵
的长为4π.
∵S 扇形OAB =12lr =1
2
×4π×6=12π,如图所示,
有S △OAB =1
2×AB ×OD (D 为AB 中点)
=1
2×2×6cos 30°×3=9 3. ∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9 3. ∴弓形ACB 的面积为12π-9 3.
[能力提升综合练]
1. 解析:选C -3π的终边在x 轴的非正半轴上,-5π
2
的终边在y 轴的非正半轴上,故角α为第三象限角.
2. 解析:选A 连接圆心与弦的中点,则弦心距、弦长的一半、半径构成一个直角三角形.弦长的一半为1,弦所对的圆心角也为1,
所以圆的半径为1
sin 0.5

所以该圆心角所对的弧长为1×1sin 0.5=1
sin 0.5
,故选A.
3. 解析:选C 如图,设圆的半径为R ,则圆的内接正三角形的边长为3R ,所以圆弧长度为3R 的圆心角的弧度数α=
3R
R
= 3.
4. 解析:选B 如图,在k ≥1或k ≤-2时,[2k π,(2k +1)π]∩[-4,4]为空集,分别取k =-1,0,于是A ∩B ={α|-4≤α≤-π,或0≤α≤π}.
5. 解析:A +B +C =π,又A ∶B ∶C =3∶5∶7,所以A =π5,B =π3,C =7π
15.
答案:π5,π3,7π
15
6. 解析:由题意,得α=8π
5
+2k π, ∴α4=2π5+k π
2
(k ∈Z ). 令k =0,1,2,3,得α4=2π5,9π10,7π5,19π10.
答案:2π5,9π10,7π5,19π
10
7. 解:(1)∵-800°=-3×360°+280°,280°=14π
9
, ∴α=-800°=14π
9+(-3)×2π.
∵α与14π9
角终边相同,∴α是第四象限角.
(2)∵与α终边相同的角可写为2k π+14π
9,k ∈Z 的形式,而γ与α的终边相同,
∴γ=2k π+14π9,k ∈Z .又γ∈⎝ ⎛⎭⎪⎫-π2,π2, ∴-π2<2k π+14π9<π
2
,k ∈Z ,解得k =-1,
∴γ=-2π+14π9=-4π
9
.
8. 解:AA 1︵所在的圆半径是2 dm ,圆心角为π2;A 1A 2︵所在的圆半径是1 dm ,圆心角为π
2

A 2A 3所在的圆半径是3dm ,圆心角为π3,所以点A 走过的路径长是三段圆弧之和,即2×
π2
+1×π2+3×π3=(9+23)π
6
(dm).
三段圆弧所在扇形的总面积是12×π×2+12×π2×1+12×3π3×3=7π4
(dm 2).。

相关文档
最新文档