实用高等数学-第3章 极限与连续

合集下载

高数函数极限与连续

高数函数极限与连续
表示方法
通常用符号"lim(x->x0) f(x) = f(x0)"表示函数f(x)在点x0处连 续。
间断点类型及判定方法
第一类间断点
左右极限都存在,包括可去间断 点(左右极限相等但不等于函数 值)和跳跃间断点(左右极限不 相等)。
第二类间断点
左右极限至少有一个不存在,包 括无穷间断点(极限为无穷大) 和震荡间断点(极限震荡不存 在)。
高数函数极限与连续
contents
目录
• 函数极限概念与性质 • 数列极限与收敛性判断 • 函数连续性概念与性质 • 闭区间上连续函数性质研究 • 极限与连续在实际问题中应用 • 总结回顾与拓展延伸
01 函数极限概念与性质
函数极限定义及表示方法
函数极限的定义
设函数f(x)在点x0的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数 ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x0|<δ时,对应的函 数值f(x)都满足不等式|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x0时的极限。
数列极限的符号表示
若数列{an}的极限为a,则记作lim(n→∞)an=a。
收敛数列性质与判定定理
1 2 3
收敛数列的有界性
收敛数列一定是有界数列,但反之不一定成立。
收敛数列的保号性
若数列收敛于a,且a>0(或a<0),则存在正 整数N,使得当n>N时,数列的通项an也大于0 (或小于0)。
判定定理
洛必达法则
对于0/0型或∞/∞型的未定式极限,可通过 求导后求极限来解决。
因式分解法
通过因式分解简化数列的通项表达式,进而 求极限。

函数的连续性及极限的应用

函数的连续性及极限的应用

函数的连续性1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义,0lim x x →f (x )存在,且limx x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续.2..函数f (x )在点x =x 0处连续必须满足下面三个条件.(1)函数f (x )在点x =x 0处有定义; (2)0lim x x →f (x )存在;(3)0lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点的函数值.如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算:①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)•g(x),)()(x g x f (g(x)≠0)也在点x 0处连续。

②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。

4.函数f (x )在(a ,b )内连续的定义:如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数.f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ),在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义:如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有+→ax lim f (x )=f (a ),在右端点x =b 处有-→bx lim f (x )=f (b ),就说函数f (x )在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上的连续函数. 6. 最大值最小值定理如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。

高数上册函数极限与连续课件

高数上册函数极限与连续课件

定积分及其应用
定积分的概念与性质
定积分的定义
定积分是积分的一种,是 函数在区间上积分和的极限。
定积分的性质
包括线性性质、区间可加 性、常数倍性质、比较性 质等。
定积分的几何意义
定积分在几何上表示曲线 与x轴所夹的面积。
定积分的计算方法
微积分基本定理
微积分基本定理是计算定积分的 基础,它将定积分转化为不定积
高数上册函数极限与 连续课件
• 函数的概念与性质 • 极限的概念与性质 • 连续函数 • 导数的概念与性质 • 原函数与不定积分 • 定积分及其应用
目录
函数的概念与性质
函数的性质(奇偶性、周期性、单调性等)
奇偶性
如果对于函数f(x),对于定义域内的任意x,都有f(-x)=f(x),则称f(x)为偶函数;如果对于 函数f(x),对于定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数。
原函数与不定积分
原函数的概念与性 质
总结词
理解原函数的概念和性质是学习高数的重要基础。
详细描述
原函数是指一个函数的导数等于另一个函数,即如果存在一个函数F(x),使得F'(x)=f(x),则称F(x)为f(x)的原函数。 原函数具有一些重要的性质,例如,如果F(x)是f(x)的原函数,则F(x)+C(C为常数)也是f(x)的原函数。
唯一性
若函数在某点的极限存在, 则该极限值是唯一的。
有界性
若函数在某点的极限存在, 则该点的函数值是有界的。
局部保号性
若函数在某点的极限大于 0,则该点的函数值也大 于0;反之亦然。
无穷小量与无穷大量
无穷小量
在自变量趋近某一值时,函数值趋近于0的量。

关于大学高等数学函数极限和连续

关于大学高等数学函数极限和连续

第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=fx, x ∈D定义域: Df, 值域: Zf.2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: Fx,y= 04.反函数: y=fx → x=φy=f -1y y=f -1 x定理:如果函数: y=fx, Df=X, Zf=Y 是严格单调增加或减少的; 则它必定存在反函数:y=f -1x, Df -1=Y, Zf -1=X且也是严格单调增加或减少的;㈡ 函数的几何特性1.函数的单调性: y=fx,x ∈D,x 1、x 2∈D 当x 1<x 2时,若fx 1≤fx 2,则称fx 在D 内单调增加 ;若fx 1≥fx 2,则称fx 在D 内单调减少 ;若fx 1<fx 2,则称fx 在D 内严格单调增加 ;若fx 1>fx 2,则称fx 在D 内严格单调减少 ;2.函数的奇偶性:Df 关于原点对称 偶函数:f-x=fx 奇函数:f-x=-fx3.函数的周期性:周期函数:fx+T=fx, x ∈-∞,+∞ 周期:T ——最小的正数4.函数的有界性: |fx|≤M , x ∈a,b ㈢ 基本初等函数1.常数函数: y=c , c 为常数2.幂函数: y=x n , n 为实数3.指数函数: y=a x , a >0、a ≠14.对数函数: y=log a x ,a >0、a ≠15.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=fu , u=φxy=f φx , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算加、减、乘、除和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限; 或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:AxfxfAxfxxxxxx==⇔=+-→→→)(lim)(lim)(lim㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量;X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量;3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlimc为常数,则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量; 定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ n=1、2、3…且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 点x 0除外有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o 0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续;在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续;a + 0b - x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点;间断点有三种情况:1o)(x f在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→;两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在;可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义;2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在;无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值;fx0 a b xm-M0 ab x2.有界定理:) (xf在],[ba上连续⇒)(x f在],[b a上一定有界;3.介值定理:) (xf在],[ba上连续⇒在),(b a内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤y yCfx0 a ξm0 a ξ1 ξ2 b x 推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf ;4.初等函数的连续性:初等函数在其定域区间内都是连续的; 第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左或右邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-或:)(lim )(00x f x f x x '='+→+3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在;5.导函数: ),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导; y )(0x f '6.导数的几何性质: y ∆)(0x f '是曲线)(x f y =上点 ∆()00,y x M 处切线的斜率; o x 0㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导;4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数; ㈢微分的概念 1.微分:)(x f 在x 的某个邻域内有定义,其中:)(x A 与x ∆无关,)(x o ∆是比x ∆较高阶的无穷小量,即:0)(lim 0=∆∆→∆x x o x 则称)(x f y =在x 处可微,记作:2.导数与微分的等价关系: 定理:)(x f 在x 处可微)(x f ⇒在x 处可导,且:)()(x A x f ='3.微分形式不变性:不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式;§ 中值定理及导数的应用 一、主要内容 ㈠中值定理1.罗尔定理: )(x f 满足条件:y)(ξf ' )(x fa o ξb x a o x2.拉格朗日定理:)(x f 满足条件:㈡罗必塔法则:∞∞,型未定式 定理:)(x f 和)(x g 满足条件:1o)或)或∞=∞=→→(0)(lim (0)(lim x g x f ax ax ;2o 在点a 的某个邻域内可导,且0)(≠'x g ;3o)(或∞=''∞→,)()(lim )(A x g x f a x则:)(或∞=''=∞→∞→,)()(lim )()(lim )()(A x g x f x g x f a x a x☆注意:1o 法则的意义:把函数之比的极限化成了它们导数之比的极限; 2o若不满足法则的条件,不能使用法则;即不是型或∞∞型时,不可求导;3o 应用法则时,要分别对分子、分母 求导,而不是对整个分式求导; 4o 若)(x f '和)(x g '还满足法则的条件,可以继续使用法则,即: 5o 若函数是∞-∞∞⋅,0型可采用代数变形,化成或∞∞型;若是0,0,1∞∞型可采用对数或指数变形,化成或∞∞型;㈢导数的应用 1.切线方程和法线方程:设:),(),(00y x M x f y =切线方程:))((000x x x f y y -'=-法线方程:)0)((),()(10000≠'-'-=-x f x x x f y y 2. 曲线的单调性:⑴),(0)(b a x x f ∈≥'内单调增加;在),()(b a x f ⇒⑵),(0)(b a x x f ∈>'内严格单调增加;在),(b a ⇒3.函数的极值: ⑴极值的定义:设)(x f 在),(b a 内有定义,0x 是),(b a 内的一点;若对于x 的某个邻域内的任意点x x ≠,都有:则称)(0x f 是)(x f 的一个极大值或极小值,称x 为)(x f 的极大值点或极小值点;⑵极值存在的必要条件:定理:)()(.2)()(.1=⇒⎭⎬⎫'xfxfxfxf存在。

《函数的极限与连续》课件

《函数的极限与连续》课件

示例
考虑函数$f(x) = x^2$,在区间 $[0, 1]$上连续且单调增加。如果 $f(0) < c < f(1)$,则可以证明$c < frac{f(0) + f(1)}{2}$。
利用连续性求函数的零点
要点一
总结词
利用函数的连续性可以找到函数的零 点。
要点二
详细描述
如果函数在某区间上连续,且在该区 间上从正变负或从负变正,则可以利 用函数的连续性找到函数的零点。这 是因为函数在这一点上从增加变为减 少或从减少变为增加,的定义
函数在某点连续的定义
如果函数在某点的左右极限相等且等于该点的函数值,则函数在该点连续。
函数在区间上连续的定义
如果函数在区间内的每一点都连续,则函数在该区间上连续。
连续性的性质
连续函数的和、差、积、商(分母不为零)仍为连续函数。
复合函数在复合点连续的定义:如果一个复合函数在某点的极限等于该点的函数值,则复合函数在该点 连续。
与其他数学知识的联系
探讨函数极限与连续性与中学数学、微积分等其他 数学知识的联系,理解其在数学体系中的地位。
理论严谨性
深入思考函数极限与连续性理论的严谨性和 完备性,理解数学严密性的重要性。
对后续学习的展望
导数与微分
预告后续将学习函数的导数与微分概念,了解它们与 极限和连续性的关系。
级数与积分
简要介绍级数和积分的基本概念,理解其在数学中的 重要性和应用。
01
和差运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)pm g(x)]=Apm B$。
02
03
乘积运算性质
幂运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)cdot g(x)]=Acdot B$。

函数的连续性及极限的应用PPT教学课件

函数的连续性及极限的应用PPT教学课件

一、矛盾是事物发展的源泉和动力
(一)、矛盾的同一性和斗争性 (1)什么是矛盾
①含义:
反映事物内部对立和统一的哲学范畴,
简言之,矛盾就是对立统一。
剪之— 你死我亡——一绳系两命 — 统一— 两者的命运统一于一条绳 — 对立— 两者之间随时都可能相斗 —
不剪— 冤家路窄——利益有冲突 —
矛盾:事物自身包含的既对 立又统一的关系
(4)矛盾同一性与斗争性的关系:
区别:
矛盾的同一性是相对的,斗争性是绝对的
联系:
①同一性离不开斗争性,同一以差别和对立为前提。
②斗争性寓于同一性之中,并为同一性所制约。 ③矛盾双方既对立又统一,由此推动事物的运动、变 化和发展。
试一试:
材料一:酿酒窖泥奇臭,酿出的名酒特香,香鲸的 粪便恶臭,燃烧后却香味浓郁。
第四节 函数的连续性 及极限的应用
高三备课组
知识点
1.函数在一点连续的定义:
如果函数f(x)在点x=x0处有定义,xlimx0 f(x)存在,且
lim
x x0
f(x)=f(x0),那么函数f(x)在点x=x0处连续.
2..函数f(x)在点x=x0处连续必须满足下面三 个条件.
((21))函数xlimfx(0xf)(在x)存点在x=;x0处有定义;
7.特别注意:函数f(x)在x=x0处连续与函数f(x) 在x=x0处有极限的联系与区别。 “连续必有极限,有极限未必连续。”
点击双基
1.f(x)在x=x0处连续是f(x)在x=x0处有 定义的_________条件.
A.充分不必要
B.必要不充分
C.充要
D.既不充分又不必要
2.下列图象表示的函数在x=x0处连

《函数的极限与连续》PPT课件

《函数的极限与连续》PPT课件

定量刻画之一:远近
刻画远近的工具——距离
x与x0的距离是 | x x0 | ( f x)与A的距离是 | ( f x) A |
计算 | a b | 的大小的“精确值” 几乎是不可能也是不可取的
因此,我们选择用| a b | 的 "精确度"来刻画,即若给定
一个精确度, 那么符合这个
精确度要求的数的全体为
极限存在左右极限存在并相等不存在第一类间断点第一类间断点第二类间断点第二类间断点??可去间断点可去间断点??跳跃间断点跳跃间断点??无穷间断点无穷间断点??震荡间断点震荡间断点第一类间断点第二类间断点可去间断点可去间断点无定义无定义值太高值太高值太低值太低跳跃间断点跳跃间断点无穷间断点无穷间断点震荡间断点震荡间断点哎呀哎呀不好不好
第二类间断点
无穷间断点 震荡间断点
情形1.1:f (x)在x0处无定义.
x自由地趋于x0
y
注意到:
在这种情形下,
lim f (x) A
x x0
存在,因此如果我们重 新定义
f (x)在x0处的值为

f (x0 ) A,
那么这个新的 f (x)在x0处连续.
这种间断点称为可去间断点.
O
x
哎呀,不好!有个洞, 还没 有支撑, 我掉下去了!!!



x0 x
x
情形 3:f ( x)在x0处有 或无定义. lim f ( x)
x x0
和 lim f ( x)至少有
x x0
一个为 或 或. 此时,直线
x x0 称为y f ( x)的渐进线.
这种间断点称为无穷间 断点
x x0
y
快救救我,我 要跑到未知世

《高等数学(上)》函数、极限与连续

《高等数学(上)》函数、极限与连续

26
四、 反函数
定理1.1
调函数必有反函数,且单调增加(减少)的函
数的反函数也是单调增加(减少)的.
27
本讲内容
01
预备知识
02
函数的概念
03
函数的性质及四则运算
04
反函数
05
复合函数
06
初等函数
07
建立函数关系举例
五、复合函数
定义1.5 设有函数链
y f (u ), u D f ,
(1.1)
3.双曲函数与反双曲函数
函数名称
函数的表达式
函数的图形
函数的性质
e − e−
双曲正弦 sh =
2
定义域 −∞, +∞ ;
奇函数;
单调增加.
e + e−
双曲余弦 ch =
2
定义域 −∞, +∞ ;
偶函数;
图像过点(0,1).
e + e−
双曲正切 th =
e + e−
定义域 −∞, +∞ ;
的开区间,记作(a, b),如图1.1 a 所示.
即(a, b) x a x b.
O
a
b
x
(a)
2 满足不等式a x b 的所有实数x 的集合,称为以a、b为端点
的闭区间,记作[a, b],如图1.1b 所示.
即[a, b] x a x b.
a
x 10,
1.6x,
即y
2.8x 12,x 10.
35
高等数学(上册)(慕课版)
第一章
函数、极限与连续
第二讲 极限的概念与性质

《连续与极限》课件

《连续与极限》课件

极限的单调有界定理
单调有界定理是极限运算中的另一个重要定理,它指出如果一个数列是 单调递增(或递减)且有上界(或下界),那么这个数列必定收敛。
单调有界定理的应用也需要证明数列的单调性和有界性,并证明其收敛 性。在应用单调有界定理时,需要注意数列的单调性和有界性的判断。
单调有界定理在研究函数的极限和连续性等方面也有着重要的应用,可 以用来求解一些较为复杂的极限问题。
总结词
收敛数列的性质。
详细描述
数列的极限定义基于一个实数$lim_{n to infty} a_n = L$ ,表示当$n$趋向无穷大时,数列$a_n$趋向于一个常数 $L$。
详细描述
收敛数列具有唯一性、有界性和稳定性等性质,这些性质 在解决实际问题中具有重要应用。
函数的极限
总结词
函数的极限描述了函数在某一点或无穷远点的变化趋势。
泛函分析
泛函分析是数学分析的延伸和发展,涉及到函数空间、算子、泛函等概念。在泛函分析中,连续与极限 的概念被用于研究函数空间的结构、算子的性质以及解决一些与函数空间相关的数学问题。
在实际生活中的应用
金融
在金融领域中,连续与极限的概念被用于描述金融数据的波动和变化,以及预测 金融市场的走势和风险。例如,在期权定价、风险评估和投资组合优化等方面, 连续与极限的概念有着广泛的应用。
03
极限的运算
极限的四则运算
极限的四则运算法则是极限运算的基础,包括加法、减法、乘法和除法等运算。
在进行极限的四则运算时,需要注意运算的优先级和运算顺序,同时要确保各项的 极限都存在。
极限的四则运算法则可以用来求解一些简单的极限问题,也可以为后续的夹逼定理 和单调有界定理等提供基础。
极限的夹逼定理

大学高等数学(高数)函数极限与连续

大学高等数学(高数)函数极限与连续

第一章函数、极限与连续由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数.极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述.第一节变量与函数一、变量及其变化范围的常用表示法在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ⎡⎤⎣⎦,即,{|}a b x a x b =≤≤⎡⎤⎣⎦;满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即(,){|}a b x a x b =<<;满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ⎤⎦ (或),a b ⎡⎣),即(,{|}a b x a x b =<≤⎤⎦ (或),{|}a b x a x b =≤<⎡⎣),左开右闭区间与右开左闭区间统称为半开半闭区间,实数a ,b 称为区间的端点.以上这些区间都称为有限区间.数b a -称为区间的长度.此外还有无限区间:(){|}x x -∞+∞=-∞<<+∞=R ,,(,{|}b x x b -∞=-∞<≤⎤⎦,(,){|}b x x b -∞=-∞<<,){|}a x a x +∞=≤<+∞⎡⎣,, (){|}a x a x +∞=<<+∞,,等等.这里记号“-∞”与“+∞”分别表示“负无穷大”与“正无穷大”.邻域也是常用的一类区间.设0x 是一个给定的实数,δ是某一正数,称数集:{}00|x x δx x δ-<<+为点0x 的δ邻域,记作0(,)U x δ.即(){}000,|U x δx x δx x δ=-<<+称点0x 为该邻域的中心,δ为该邻域的半径(见图1-1).称{}00(,)U x δx -为0x 的去心δ邻域,记作0(,)x δoU ,即{}00(,)|0U x δx x x δ︒=<-<图1-1下面两个数集(){}000,|U x δx x δx x ︒-=-<<,(){}000,|U x δx xx x δ︒+=<<+,分别称为0x 的左δ邻域和右δ邻域.当不需要指出邻域的半径时,我们用0()U x ,0()x oU 分别表示0x 的某邻域和0x 的某去心邻域,(),x δ-oU ,()0,U x δ︒+分别表示0x 的某左邻域和0x 的某右邻域.二、函数的概念在高等数学中除了考察变量的取值范围之外,我们还要研究在同一个过程中出现的各种彼此相互依赖的变量,例如质点的移动距离与移动时间.曲线上点的纵坐标与该点的横坐标,弹簧的恢复力与它的形变,等等.我们关心的是变量与变量之间的相互依赖关系,最常见的一类依赖关系,称为函数关系.定义1设A ,B 是两个实数集,如果有某一法则f ,使得对于每个数x A ∈,均有一个确定的数y B ∈与之对应,则称f 是从A 到B 内的函数.习惯上,就说y 是x 的函数,记作()y f x =()x A ∈其中,x 称为自变量,y 称为因变量,()f x 表示函数f 在x 处的函数值.数集A 称为函数f 的定义域,记为()D f ;数集{}()|(),f A y y f x x A B ==∈⊆称为函数f 的值域,记作()R f .从上述概念可知,通常函数是指对应法则f ,但习惯上用“() ,y f x x A =∈”表示函数,此时应理解为“由对应关系()y f x =所确定的函数f ”.确定一个函数有两个基本要素,即定义域和对应法则.如果没有特别规定,我们约定:定义域表示使函数有意义的范围,即自变量的取值范围.在实际问题中,定义域可根据函数的实际意义来确定.例如,在时间t 的函数()f t 中,t 通常取非负实数.在理论研究中,若函数关系由数学公式给出,函数的定义域就是使数学表达式有意义的自变量x 的所有可以取得的值构成的数集.对应法则是函数的具体表现,它表示两个变量之间的一种对应关系.例如,气温曲线给出了气温与时间的对应关系,三角函数表列出了角度与三角函数值的对应关系.因此,气温曲线和三角函数表表示的都是函数关系.这种用曲线和列表给出函数的方法,分别称为图示法和列表法.但在理论研究中,所遇到的函数多数由数学公式给出,称为公式法.例如,初等数学中所学过的幂函数、指数函数、对数函数、三角函数与反三角函数都是用公式法表示的函数.从几何上看,在平面直角坐标系中,点集()(){(,)|,}x y y f x x D f =∈称为函数()y f x =的图像(如图1-2所示).函数()y f x =的图像通常是一条曲线,()y f x =也称为这条曲线的方程.这样,函数的一些特性常常可借助于几何直观来发现;相反,一些几何问题,有时也可借助于函数来作理论探讨.现在我们举一个具体函数的例子.图1-2例1求函数2141y x x =-+-的定义域. 解要使数学式子有意义,x 必须满足> ,240,10x x ⎧-≥⎪⎨-⎪⎩即>2,1.x x ⎧≤⎪⎨⎪⎩由此有12x <≤,因此函数的定义域为(12⎤⎦,.有时一个函数在其定义域的不同子集上要用不同的表达式来表示对应法则,称这种函数为分段函数.下面给出一些今后常用的分段函数.例2绝对值函数<,0,,0.x x y x x x ≥⎧==⎨-⎩ 的定义域()()D f =-∞+∞,,值域()[0,)R f =+∞,如图1-3所示.例3符号函数<>1,0,sgn 0,0,1,0x y x x x -⎧⎪===⎨⎪⎩的定义域()()D f =-∞+∞,,值域()11{0}R f =-,,,如图1-4所示.图1-3 图1-4例4 最大取整函数y x =⎡⎤⎣⎦,其中x ⎡⎤⎣⎦表示不超过x 的最大整数.例如,113⎡⎤-=-⎢⎥⎣⎦,00=⎡⎤⎣⎦,12⎡⎤=⎣⎦,π3=⎡⎤⎣⎦等等.函数y x =⎡⎤⎣⎦的定义域()()D f =-∞+∞,,值域(){}R f =整数.一般地,y x n ==⎡⎤⎣⎦,1n x n ≤<+,120,,n =±±,,如图1-5所示. 图1-5在函数的定义中,对每个()x D f ∈,对应的函数值y 总是唯一的,这样定义的函数称为单值函数.若给定一个对应法则g ,对每个()x D g ∈,总有确定的y 值与之对应,但这个y 不总是唯一的,我们称这种法则g 确定了一个多值函数.例如,设变量x 与y 之间的对应法则由方程2225x y +=给出,显然,对每个55[,]x ∈-,由方程2225x y +=可确定出对应的y 值,当5x =或5-时,对应0y =一个值;当55(,)x ∈-时,对应的y 有两个值.所以这个方程确定了一个多值函数.对于多值函数,往往只要附加一些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分支.例如,由方程2225x y +=给出的对应法则中,附加“0y ≥”的条件,即以“2225x y +=且0y ≥”作为对应法则,就可以得到一个单值分支()2125y g x x ==-;附加“0y ≤”的条件,即以“2225x y +=且0y ≤”作为对应法则,就可以得到一个单值分支22()25y g x x ==--.在有些实际问题中,函数的自变量与因变量是通过另外一些变量才建立起它们之间的对应关系的,如高度为一定值的圆柱体的体积与其底面圆半径r 的关系,就是通过另外一个变量其底面圆面积S 建立起来的对应关系.这就得到复合函数的概念.定义2设函数()y f u =的定义域为()D f ,函数()u g x =在D 上有定义,且()()g D D f ⊆.则由下式确定的函数()()y f g x =,x D ∈称为由函数()y f u =与函数()u g x =构成的复合函数,记作()()()()y f g x f g x =︒=,x D ∈,它的定义域为D ,变量u 称为中间变量.这里值得注意的是,D 不一定是函数()u g x =的定义域()D g ,但()D D g ⊆.D 是()D g 中所有使得()()g x D f ∈的实数x 的全体的集合.例如,()y f u u ==,()21u g x x ==-.显然,u 的定义域为(),-∞+∞,而()(0,)D f =+∞.因此,11,D -⎡⎤⎣⎦=,而此时1()0,R f g ︒=⎡⎤⎣⎦.两个函数的复合也可推广到多个函数复合的情形.例如,log a μxu y x a ==()10a a >≠且可看成由指数函数u y a =与log a u μx =复合而成.又形如()log ()()()a v x u x v x y u x a ==()0u x ⎡⎤⎣⎦>()10a a >≠且的函数称为幂指函数,它可看成由wy a =与()log ()a w v x u x =复合而成.而2sin y x =可看成由y u =,sin u v =,2v x =复合而成.例5设()1xf x x =+()1x ≠-,求()()()f f f x解令()y f w =,()w f u =,()u f x =,则()()()f f f x 是通过两个中间变量w 和u 复合而成的复合函数,因为()111121x x x x ux w f u u x ++====+++,12x ≠-; ()2121,1131xx x x wxy f w w x ++====+++13x ≠-, 所以()()()31x f f f x x =+,111,,23x ≠---.定义3设给定函数()y f x =,其值域为()R f .如果对于()R f 中的每一个y 值,都有只从关系式()y f x =中唯一确定的x 值与之对应,则得到一个定义在()R f 上的以y 为自变量,x 为因变量的函数,称为函数()y f x =的反函数,记为()1x f y -=.从几何上看,函数()y f x =与其反函数()1x f y -=有同一图像.但人们习惯上用x 表示自变量,y 表示因变量,因此反函数()1x f y -=常改写成()1y f x -=.今后,我们称()1y f x -=为()y f x =的反函数.此时,由于对应关系1f-未变,只是自变量与因变量交换了记号,因此反函数()1y f x -=与直接函数()y f x =的图像关于直线y x =对称,如图 1 -6所示.图1-6值得注意的是,并不是所有函数都存在反函数,例如函数2y x =的定义域为()-∞+∞,,值域为,但)0+∞⎡⎣,对每一个()0y ∈+∞,,有两个x 值即1x y 和2x y =-因此x 不是y 的函数,从而2y x =不存在反函数.事实上,由逆映射存在定理知,若f 是从()D f 到()R f 的一一映射,则f 才存在反函数1f-.例6设函数(1)1xf x x +=+()1x ≠-,求()11f x -+. 解函数()1y f x =+可看成由()y f u =,1u x =+复合而成.所求的反函数()11y f x -=+可看成由()1y f u -=,1u x =+复合而成.因为()11x u f u x u-==+,0u ≠, 即1u y u -=,从而,()11u y -=-,11u y=-, 所以()111y f u u-==-,因此()1111 ,01(1)f x x x x-+==-≠-+.三、函数的几种特性1. 函数的有界性设函数()f x 在数集D 上有定义,若存在某个常数L ,使得对任一x D ∈有()f x L ≤(或()f x L ≥), 则称函数()f x 在D 上有上界(或有下界),常数L 称为()f x 在D 上的一个上界(或下界);否则,称()f x 在D 上无上界(或无下界).若函数()f x 在D 上既有上界又有下界,则称()f x 在D 上有界;否则,称()f x 在D 上无界.若()f x 在其定义域D f ()上有界,则称()f x 为有界函数.容易看出,函数()f x 在D 上有界的充要条件是:存在常数M>0,使得对任一x D ∈,都有()f x M ≤.例如,函数sin y x =在其定义域()-∞+∞,内是有界的,因为对任一()x ∈-∞+∞,都有sin 1x ≤,函数1y x=在()10,内无上界,但有下界. 从几何上看,有界函数的图像界于直线y M =±之间. 2. 函数的单调性设函数()f x 在数集D 上有定义,若对D 中的任意两数12,x x 12()x x <,恒有()()12f x f x ≤ [或()()12f x f x ≥],则称函数()f x 在D 上是单调增加(或单调减少)的.若上述不等式中的不等号为严格不等号,则称为严格单调增加(或严格单调减少)的.在定义域上单调增加或单调减少的函数统称为单调函数;严格单调增加或严格单调减少的函数统称为严格单调函数.如图1-7所示.图1-7例如,函数()3f x x =在其定义域()-∞+∞,内是严格单调增加的;函数()cos f x x =在π0,()内是严格单调减少的.从几何上看,若()y f x =是严格单调函数,则任意一条平行于x 轴的直线与它的图像最多交于一点,因此()y f x =有反函数.3.函数的奇偶性设函数()f x 的定义域()D f 关于原点对称(即若()x D f ∈,则必有()x D f -∈.若对任意的()x D f ∈,都有()()f x f x -=-[或()()f x f x -=],则称()f x 是()D f 上的奇函数(或偶函数).奇函数的图像对称于坐标原点,偶函数的图像对称于y 轴,如图1-11所示.图1-8例7讨论函数()()ln 21f x x x =+的奇偶性. 解函数()f x 的定义域()-∞+∞,是对称区间,因为()(ln 2211ln 1f x x x x x⎛⎫-=-+=++ (()ln 21x x f x =-++=-所以,()f x 是()-∞+∞,上的奇函数.4.函数的周期性设函数()f x 的定义域为()D f ,若存在一个不为零的常数T ,使得对任意()x D f ∈,有x T D f ±∈()(),且f x T f x +=()(),则称()f x 为周期函数,其中使上式成立的常数T 称为()f x 的周期,通常,函数的周期是指它的最小正周期,即:使上式成立的最小正数T T (如果存在的话).例如,函数sin f x x =()的周期为π2;()tan f x x =的周期是π. 并不是所有函数都有最小正周期,例如,狄利克雷(Dirichlet )函数为数为无数10 ,) (,x D x x ⎧=⎨⎩有理,理. 任意正有理数都是它的周期,但此函数没有最小正周期.四、函数应用举例下面通过几个具体的问题,说明如何建立函数关系式.例8火车站收取行李费的规定如下:当行李不超过50千克时,按基本运费计算.如从上海到某地每千克以0.15元计算基本运费,当超过50千克时,超重部分按每千克0.25元收费.试求上海到该地的行李费y (元)与重量x (千克)之间的函数关系式,并画出函数的图像.解当500x <≤时,150.y x =;当50x >时,1552550.00.(0)y x =⨯+-. 所以函数关系式为:0.15, 050;7.50.25(50),50.x x y x x <≤⎧=⎨+->⎩ 这是一个分段函数,其图像如图1-9所示.图1-9例9某人每天上午到培训基地A 学习,下午到超市B 工作,晚饭后再到酒店C 服务,早、晚饭在宿舍吃,中午带饭在学习或工作的地方吃.A B C ,,位于一条平直的马路一侧,且酒店在基地与超市之间,基地与酒店相距3km ,酒店与超市相距5km ,问该打工者在这条马路的A 与B 之间何处找一宿舍(设随处可找到),才能使每天往返的路程最短. 解如图1-10所示,设所找宿舍D 距基地A 为x (km ),用f x ()表示每天往返的路程函数.图1-10 当D 位于A 与C 之间,即30x ≤≤时,易知()()8823222f x x x x x =++-+-=-(), 当D 位于C 与B 之间,即38x ≤≤时,则()882312()()0.f x x x x x =++-+-=+ 所以22,03;()102,38.x x f x x x -≤≤⎧=⎨+≤≤⎩这是一个分段函数,如图1-11所示,在30,⎡⎤⎣⎦上,()f x 是单调减少,在38,⎡⎤⎣⎦上,()f x 是单调增加.从图像可知,在3x =处,函数值最小.这说明,打工者在酒店C 处找宿舍,每天走的路程最短.图1-11五、基本初等函数初等数学里已详细介绍了幂函数、指数函数、对数函数、三角函数、反三角函数,以上我们统称为基本初等函数.它们是研究各种函数的基础.为了读者学习的方便,下面我们再对这几类函数作一简单介绍.1.幂函数 函数μy x = (μ是常数)称为幂函数.幂函数μy x =的定义域随μ的不同而异,但无论μ为何值,函数在()0+∞,内总是有定义的.当0μ>时,μy x =在)0+∞⎡⎣,上是单调增加的,其图像过点0,0()及点()1,1,图1-12列出了12μ=,1μ=,2μ=时幂函数在第一象限的图像.当0μ<时,μy x =在()0+∞,上是单调减少的,其图像通过点()1,1,图1-13列出了12μ=-,1μ=-,2μ=-时幂函数在第一象限的图像.图1-12图1-132.指数函数 函数x y a =(a 是常数且10a a >≠,)称为指数函数.指数函数xy a =的定义域是()-∞+∞,,图像通过点()10,,且总在x 轴上方.当时1a >,x y a =是单调增加的;当10a <<时,x y a =是单调减少的,如图1-14所示. 以常数e 271828182.=为底的指数函数e x y =是科技中常用的指数函数.图1-143. 对数函数指数函数x y a =的反函数,记作log a y x =(a 是常数且10,a a >≠),称为对数函数.对数函数log a y x =的定义域为()0+∞,,图像过点()1,0.当1a >时,log a y x =单调增加;当10a <<时,log a y x =单调减少,如图1-15所示. 科学技术中常用以e 为底的对数函数e log y x =,图1-15它被称为自然对数函数,简记作ln y x =.另外以10为底的对数函数1log 0y x =,也是常用的对数函数,简记作g l y x =.4.三角函数常用的三角函数有正弦函数siny x =, 余弦函数cos y x =, 正切函数tany x =, 余切函数 cot y x =,其中自变量x 以弧度作单位来表示.它们的图形如图1-16,图1-17,图1-18和图1-19所示,分别称为正弦曲线,余弦曲线,正切曲线和余切曲线.图1-16图1-17正弦函数和余弦函数都是以π2为周期的周期函数,它们的定义域都为(),-∞+∞,值域都为1,1-⎡⎤⎣⎦.正弦函数是奇函数,余弦函数是偶函数.图1-18 图1-19由于πcos sin 2x x ⎛⎫=+ ⎪⎝⎭,所以,把正弦曲线sin y x =沿x 轴向左移动π2个单位,就获得余弦曲线cos y x =.正切函数sin tan cos xy x x==的定义域为()21{|(),}D f x x x n n =∈≠+R ,整为数. 余切函数cos cot sin xy x x==的定义域为 ()π{,}D f x x x n n =∈≠R |,整为数.正切函数和余切函数的值域都是()-∞+∞,,且它们都是以π为周期的函数,且都是奇函数. 另外,常用的三角函数还有正割函数sec y x =;余割函数csc y x =.它们都是以π2为周期的周期函数,且1sec cos x x=;1csc sin x x =.5.反三角函数常用的反三角函数有反正弦函数arcsin y x =(如图1-20);反余弦函数arccos y x =(如图1-21); 反正切函数arctan y x =(如图1-22); 反余切函数arccot y x = (如图1-23).它们分别称为三角函数sin y x =,cos y x =,tan y x =和cot y x =的反函数.这四个函数都是多值函数.严格来说,根据反函数的概念,三角函数sin y x =,cos y x =,tan y x =和cot y x =在其定义域内不存在反函数,因为对每一个值域中的数y ,有多个x 与之对应.但这些函数在其定义域的每一个单调增加(或减少)的子区间上存在反函数.例如,sin y x =在闭区间,22ππ⎡⎤-⎢⎥⎣⎦上单调增加,从而存在反函数,称此反函数为反正弦函数arcsin x 的主值,记作y =arcsin x .通常我们称arcsin y x =为反正弦函数.其定义域为11,-⎡⎤⎣⎦,值域为,22ππ⎡⎤-⎢⎥⎣⎦.反正弦函数arcsin y x =在11,-⎡⎤⎣⎦上是单调增加的,它的图像如图1-20中实线部分所示. 类似地,可以定义其他三个反三角函数的主值arccos arctan ,y x y x ==和arccot y x =,它们分别简称为反余弦函数,反正切函数和反余切函数.反余弦函数arccos y x =的定义域为1,1-⎡⎤⎣⎦,值域为π0,⎡⎤⎣⎦,在1,1-⎡⎤⎣⎦上是单调减少的,其图像如图1-21中实线部分所示.反正切函数arctan y x =的定义域为(),-∞+∞,值域为ππ22⎛⎫- ⎪⎝⎭,,在()-∞+∞,上是单调增加的,其图像如图1-22中实线部分所示.反余切函数arccot y x =的定义域为()-∞+∞,,值域为π0,(),在()-∞+∞,上是单调减少的,其图像如图1-23中实线部分所示.图1-20图1-21图1-22图1-23六、初等函数由常数和基本初等函数经有限次四则运算和复合运算得到并且能用一个式子表示的函数,称为初等函数.例如,23sin4y x x =+,()ln 21y x x =++,3arctan22sin lg(1)1x y x x x =++++ 等等都是初等函数.分段函数是按照定义域的不同子集用不同表达式来表示对应关系的,有些分段函数也可以不分段而表示出来,分段只是为了更加明确函数关系而已.例如,绝对值函数也可以表示成2y x x ==;函数1,,()0,x a f x x a <⎧=⎨>⎩ 也可表示成2()1()12x a f x x a ⎛⎫- ⎪=-⎪-⎝⎭.这两个函数也是初等函数.七、双曲函数与反双曲函数1. 双曲函数双曲函数是工程和物理问题中很有用的一类初等函数.定义如下:双曲正弦sh e e 2x x x --=()x -∞<<+∞, 双曲余弦ch e e 2x x x -+=()x -∞<<+∞, 双曲正切th e e e e sh ch x xx xx x x ---==+()x -∞<<+∞, 其图像如图1-24和图1-25所示图1-24图1-25.双曲正弦函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内单调增加.双曲余弦函数的定义域为()x -∞<<+∞,它是偶函数,其图像通过点()10,且关于y 轴对称,在(),0-∞内单调减少;在()0+∞,内单调增加.双曲正切函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内是单调增加的.由双曲函数的定义,容易验证下列基本公式成立.()sh sh ch ch sh x y x y x y ±=±,()ch ch ch sh sh x y x y x y ±=±,sh22sh ch x x x =,2222ch2ch sh 12sh 2ch 1x x x x x =+=+=-,22ch sh 1x x -=.2. 反双曲函数双曲函数的反函数称为反双曲函数,sh y x =,ch y x =和th y x =的反函数,依次记为反双曲正弦函数a rsh y x =, 反双曲余弦函数arch y x =, 反双曲正切函数a rth y x =.反双曲正弦函数a rsh y x =的定义域为()-∞+∞,,它是奇函数,在()-∞+∞,内单调增加,由sh y x =的图像,根据反函数作图法,可得a rsh y x =的图像,如图1-26所示.利用求反函数的方法,不难得到()a rsh ln 21y x x x ==++.反双曲余弦函数arch y x =的定义域为)1+∞⎡⎣,,在)1+∞⎡⎣,上单调增加,如图1-27所示,利用求反函数的方法,不难得到()arch ln 21y x x x ==+-.图1-26 图1-27反双曲正切函数a rtanh y x =的定义域为11()-,,它在11()-,内是单调增加的.它是奇函数,其图像关于原点(00),对称,如图1-28所示.容易求得 a rth 1ln1xy x x+==-.图1-28第二节数列的极限一、数列极限的定义定义1如果函数f 的定义域()*{}D f N ==,,,123,则函数f 的值域()(){}**|f N f n n N =∈中的元素按自变量增大的次序依次排列出来,就称之为一个无穷数列,简称数列,即()()()12,,f f f n ,,.通常数列也写成12,n x x x ,,,,并简记为{}n x ,其中数列中的每个数称为一项,而()n x f n =称为一般项.对于一个数列,我们感兴趣的是当n 无限增大时,n x 的变化趋势. 我们看下列例子:数列12,,,,231n n +(1-2-1)的项随n 增大时,其值越来越接近1;数列2462n ,,,,,(1-2-2) 的项随n 增大时,其值越来越大,且无限增大;数列1111(1)0,n n-+-,,,, (1-2-3)的各项值交替地取1与0;数列()11111,,,,,23n n--- (1-2-4)的各项值在数0的两边跳动,且越来越接近0;数列2222,,,,,(1-2-5) 各项的值均相同.在中学教材中,我们已知道极限的描述性定义,即“如果当项数n 无限增大时,无穷数列{}n x 的一般项n x 无限地趋近于某一个常数a (即n x a -无限地接近于0),那么就说a 是数列{}n x 的极限”.于是我们用观察法可以判断数列{}1n n -,1(1)n n -⎧⎫-⎨⎬⎩⎭,{}2都有极限,其极限分别为1,20,.但什么叫做“n x 无限地接近a ”呢?在中学教材中没有进行理论上的说明.我们知道,两个数a 与b 之间的接近程度可以用这两个数之差的绝对值b a -来度量.在数轴上b a -表示点a 与点b 之间的距离,b a -越小,则a 与b 就越接近,就数列(1-2-1)来说,因为111n x n n-=-=, 我们知道,当n 越来越大时,1n 越来越小,从而n x 越来越接近1.因为只要n 足够大,11n x n-=就可以小于任意给定的正数,如现在给出一个很小的正数1100,只要n 100>即可得11100n x -<,11120,0,n =如果给定110000,则从10001项起,都有下面不等式1110000n x -<成立.这就是数列1n n x n-=12 (,,)n =,当n →∞时无限接近于1的实质. 一般地,对数列{}n x 有以下定义.定义2设{}n x 为一数列,若存在常数a 对任意给定的正数ε(无论多么小),总存在正整数N ,当n N >时,有不等式n x a ε-<即(,)n x U a ε∈,则称数列{}n x 收敛,a 称为数列{}n x 当n →∞时的极限,记为lim n n x a →∞=或n x a →()n →+∞.若数列{}n x 不收敛,则称该数列发散.定义中的正整数N 与ε有关,一般说来,N 将随ε减小而增大,这样的N 也不是唯一的.显然,如果已经证明了符合要求的N 存在,则比这个N 大的任何正整数均符合要求,在以后有关数列极限的叙述中,如无特殊声明,N 均表示正整数.此外,由邻域的定义可知,()n x U a ε∈,等价于n x a ε-<.我们给“数列{}n x 的极限为a ”一个几何解释: 将常数a 及数列123,,,,,n x x x x 在数轴上用它们的对应点表示出来,再在数轴上作点a 的ε邻域,即开区间(,)a εa ε-+,如图1-29所示图1-29因两个不等式||n x a ε-<,n a εx a ε-<<+等价,所以当n N >时,所有的点n x 都落在开区间(,)a εa ε-+内,而只有有限个点(至多只有N 个点)在这区间以外.为了以后叙述的方便,我们这里介绍几个符号,符号“∀”表示“对于任意的”、“对于所有的”或“对于每一个”;符号“∃”表示“存在”;符号“{}ax m X ”表示数集X 中的最大数;符号“{}min X ”表示数集X 中的最小数.数列极限lim n n x a →∞=的定义可表达为:lim n n x a →∞=0ε⇔∀>,∃正整数N ,当n N >时,有n x a ε-<.例1证明1lim 02nn →∞=.证0ε∀>(不防设1ε<),要使11022nn ε-=<,只要21n ε>,即ln ln21/n ε>(). 因此,0ε∀>,取ln /ln21N ε⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦,则当n N >时,有102n ε-<.由极限定义可知 1lim 02n n →∞=. 例2证明π1lim cos04n n n →∞=. 证由于ππ111cos 0cos 44n n n n n -=≤,故0ε∀>,要使π1cos 04n εn -<,只要1εn <,即1n ε>.因此,0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有π1cos 04n εn -<.由极限定义可知π1lim cos 04n n n →∞=. 用极限的定义来求极限是不太方便的,在本章的以后篇幅中,将逐步介绍其他求极限的方法.二、数列极限的性质定理1(惟一性)若数列收敛,则其极限惟一.证设数列{}n x 收敛,反设极限不惟一:即lim n n x a →∞=,lim n n x b →∞=,且a b ≠,不妨设a b <,由极限定义,取2b a ε-=,则10N ∃>,当1n N >时,2n b ax a --<,即 322n a b a bx -+<<,(1-2-6) 20N ∃>,当2n N >时,2n b a x b --<,即322n a b b ax +-<<,(1-2-7) 取{}12m ,N ax N N =,则当n N >时,(1-3-6),(1-3-7)两式应同时成立,显然矛盾.该矛盾证明了收敛数列{}n x 的极限必惟一.定义3 设有数列{}n x ,若存在正数M ,使对一切12,,n =,有n x M ≤,则称数列{}n x 是有界的,否则称它是无界的.对于数列{}n x ,若存在常数M ,使对12n =,,,有n x M ≤,则称数列{}n x 有上界;若存在常数M ,使对12,,n =,有n x M ≥,则称数列{}n x 有下界.显然,数列{}n x 有界的充要条件是{}n x 既有上界又有下界. 例3数列{}211n +有界;数列{}2n 有下界而无上界;数列{}2n -有上界而无下界;数列{}11nn --()既无上界又无下界. 定理2(有界性)若数列{}n x 收敛,则数列{}n x 有界.证 设lim n n x a →∞=,由极限定义,0ε∀>,且1ε<,0N ∃>,当n N >时,1||n x a ε-<<,从而<1n x a +.取{}12m 1,,,,N M ax a x x x =+⋯,则有n x M ≤,对一切123,,,n =,成立,即{}n x 有界.定理2的逆命题不成立,例如数列{}1()n -有界,但它不收敛.定理3(保号性)若lim n n x a →∞=,0a >(或0a <),则0N ∃>,当n N >时,0n x >(或0n x <). 证由极限定义,对02a ε=>,0N ∃>,当n N >时,2n a x a -<,即322n a x a <<,故当n N>时,02n ax >>. 类似可证0a <的情形.推论设有数列{}n x ,0N ∃>,当n N >时,0n x > (或0n x <),若lim n n x a →∞=,则必有0a ≥(或0a ≤).在推论中,我们只能推出0a ≥ (或0a ≤),而不能由0n x > (或0n x <)推出其极限(若存在)也大于0(或小于0).例如10n x n=>,但1lim lim 0n n n x n →∞→∞==.下面我们给出数列的子列的概念.定义4在数列{}n x 中保持原有的次序自左向右任意选取无穷多个项构成一个新的数列,称它为{}n x 的一个子列.在选出的子列中,记第1项为1n x ,第2项为2n x ,…,第k 项为k n x ,…,则数列{}n x 的子列可记为{}k n x .k 表示k n x 在子列{}k n x 中是第k 项,k n 表示k n x 在原数列{}n x 中是第k n 项.显然,对每一个k ,有k n k ≥;对任意正整数h ,k ,如果h k ≥,则h k n n ≥;若h k n n ≥,则h k≥由于在子列{}k n x 中的下标是k 而不是k n ,因此{}k n x 收敛于a 的定义是:0ε∀>,0K ∃>,当k K >时,有k n x a ε-<.这时,记为lim k n k x a →+∞= .定理4lim n k x a →∞=的充要条件是:{}n x 的任何子列{k n x }都收敛,且都以a 为极限. 证先证充分性.由于{}n x 本身也可看成是它的一个子列,故由条件得证. 下面证明必要性.由lim n k x a →∞=,0ε∀>,0N ∃>,当n N >时,有n x a ε-<.今取K N =,则当k K >时,有k K N n n n N >=≥,于是k n x a ε-<.故有lim k n k x a →∞=.定理4用来判别数列{}n x 发散有时是很方便的.如果在数列{}n x 中有一个子列发散,或者有两个子列不收敛于同一极限值,则可断言{}n x 是发散的.例4判别数列{}*πsin ,8n n x n N =∈的收敛性.解在{}n x 中选取两个子列:{}*8πsin ,8k k N ∈,即{}πππ8168sin ,sin ,sin ,888k ⋅⋅⋅⋅⋅⋅; ()*164πsin ,8k k N +⎧⎫∈⎨⎬⎩⎭,即()ππ16420sin ,sin ,88k ⎧⎫+⎪⎪⋅⋅⋅⋅⋅⋅⎨⎬⎪⎪⎩⎭. 显然,第一个子列收敛于0,而第二个子列收敛于1,因此原数列{}πsin 8n 发散.三、收敛准则定义5数列{}n x 的项若满足121n n x x x x +≤≤≤≤≤,则称数列{}n x 为单调增加数列;若满足121n n x x x x +≥≥≥≥≥,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成立时,则分别称{}n x 是严格单调增加和严格单调减少数列.收敛准则单调增加有上界的数列必有极限;单调减少有下界的数列必有极限. 该准则的证明涉及较多的基础理论,在此略去证明.例5证明数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.证根据收敛准则,只需证明11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调增加且有上界(或单调减少且有下界).由二项式定理,我们知道1221111(1)1n n n n n n nx C C C n n n n =+=++++ 11112112111(1)(1)(1)(1)(1)(1)2!3!!n n n n n n n n -=++-+--++---,11211111211111(1)111(1)(1)n n n n n n n x C C C n n n n +++++++=+=++++++++ 1111211(1)(1)(1)2!13!11n n n =++-+--++++1121(1)(1)(1)!111n n n n n -+--++-+++ 112(1)(1)(1)(1)!111n n n n n +--++-++++, 逐项比较n x 与1n x +的每一项,有1n n x x +<,1,2,.n =这说明数列{}n x 单调增加,又111112!3!!n x n <+++++ 211111222n <+++++111121331212nn --=+=-<-.。

连续与极限知识点总结

连续与极限知识点总结

连续与极限知识点总结在本文中,我们将深入探讨极限的相关知识点,包括数列和函数的极限,极限的性质,无穷大与无穷小,洛必达法则,泰勒级数等内容。

通过对这些知识点的细致分析,我们将能够更好地理解极限的本质和应用,对于学习微积分和实分析等学科都将具有很高的指导价值。

首先,我们将从数列和函数的极限开始探讨。

在数学中,数列和函数的极限是极其基础的概念,它们在微积分、实分析和数学分析等领域都有着广泛的应用。

对于数列来说,当n趋于无穷大时,数列的极限可以表示成lim(n->∞)an=L,其中L是一个确定的常数,表示数列an当n趋于无穷大时的极限值。

而对于函数来说,当x趋于某个特定的值时,函数的极限可以表示成lim(x->a)f(x)=L,其中L同样表示函数在x趋于a时的极限值。

通过对数列和函数极限的研究,我们可以更好地理解数列和函数的收敛性和发散性,揭示它们之间的变化规律,对于数学中相关概念的理解有着至关重要的作用。

其次,我们将对极限的性质进行深入分析。

极限的性质是指极限运算满足的一系列规律,包括极限的唯一性、有界性、保号性、四则运算性质、复合函数性质等。

通过对这些性质的细致分析,我们可以更好地理解极限运算的基本规律,对于极限的计算和应用具有很高的指导价值。

另外,极限的性质也为我们理解微积分学科中的相关概念奠定了坚实的基础,对于学习微积分和实分析等学科都具有着至关重要的作用。

接着,我们将探讨无穷大与无穷小的概念。

在极限理论中,无穷大和无穷小是两个非常重要的概念,它们在数学中有着广泛的应用。

无穷大是指当自变量趋于某个特定值时,因变量的取值趋于无穷大的情况。

而无穷小是指当自变量趋于某个特定值时,因变量的取值趋于零的情况。

通过对无穷大和无穷小的研究,我们可以更好地理解函数在自变量趋于某个特定值时的变化规律,对于微积分和实分析等学科的学习具有着至关重要的意义。

此外,我们还将深入分析洛必达法则和泰勒级数。

洛必达法则是微积分中的一个重要定理,它描述了当自变量趋于某个特定值时,函数的极限可以通过对函数求导的方式来求解。

高数函数极限与连续.ppt

高数函数极限与连续.ppt

2 7
3
x 4
x
5
x3 1
x3
2. 7
机动 目录 上页 下页 返回 结束
例4、

lim
x1
x
2
x2 1 2x
3
.
( 0型) 0
解:x 1时,分子,分母的极限都是零.
先约去不为零的无穷小因子x 1后再求极限.
lim
x1
x2
x2 1 2x
3
lim
x1
(x (x
1)( x 3)( x
1) 1)
yy y x2 当 x 0 时为减函数;
当 x 0 时为增函数;
o
xx
机动 目录 上页 下页 返回 结束
(3) 函数的有界性:
若X D, M 0,x X ,有 f ( x) M 成立, 则称函数f ( x)在X上有界.否则称无界.
y
y 1 x
在(,0)及(0,)上无界; 在(,1]及[1,)上有界.
2
2
2
机动 目录 上页 下页 返回 结束
例3、 设函数 f ( x) 1 , g( x) x 2
x 1
求 f [g( x)] 和g[ f ( x)] 解:f [g(x)] 1 1 ,
g(x) 1 x 2 1 g[ f (x)] f (x) 2 1 2
x 1
机动 目录 上页 下页 返回 结束
(或n )的过程中, 对应函数值 f ( x)无限
趋近于一个确定常数 A.
lim
n
an
A
lim f ( x) A
x
lim f ( x) A
x
lim f ( x) A
x
定理 : lim f ( x) A lim f ( x) A且 lim f ( x) A.

高等数学第-讲极限与连续PPT课件

高等数学第-讲极限与连续PPT课件
高等数学第-讲极限与连续ppt 课件

CONTENCT

• 极限概念与性质 • 连续概念与性质 • 极限与连续关系 • 典型例题解析 • 练习题与答案解析
01
极限概念与性质
极限定义及存在条件
极限定义
当自变量的某个变化过程(如$x to x_0$或$x to infty$)中,函数 $f(x)$无限接近于某个常数$A$,则称$A$为函数$f(x)$在该变化过 程中的极限。
Cantor定理:若函数在 闭区间[a,b]上连续,则 它在[a,b]上一致连续。
Lipschitz条件:若存在 常数K,使得对任意 x1,x2∈I,都有|f(x1)f(x2)|≤K|x1-x2|,则称 f(x)在区间I上满足 Lipschitz条件。满足 Lipschitz条件的函数一 定一致连续。
练习题3
求极限 lim(x→1) (x^2-1)/(x-1)。
答案解析
通过运用极限的运算法则、等价无穷小替换等方法,可以求出以上极限的值。
判断函数连续性练习题及答案解析
01
02
03
04
练习题1
判断函数 f(x)={x^2, x>0; 0, x≤0n(1/x) 在 x=0 处是否连续。
若函数f(x)在其定义域内单调且连续,则其反函数f1(x)在其对应域内也单调且连续。
初等函数连续性
初等函数在其定义域内是连续的,即在其定义域内的每一点都满 足连续的定义。
初等函数包括幂函数、指数函数、对数函数、三角函数、反三角 函数以及由这些函数经过有限次四则运算和复合运算所得到的函 数。
03
极限与连续关系
练习题3
判断函数 f(x)=e^x 在 R 上的 连续性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)lim[ f (x) g(x)] lim f (x) lim g(x)
(2)lim[ f (x)g(x)] lim f (x) lim g(x)
特别地 lim[ kg(x)] k lim g(x) (k为常数)
(3) lim f (x) lim f (x) (lim g(x) 0) g(x) lim g(x)
(1)
1
lim x sin
x
x
sin 1 lim x
x 1
x
sin 1 lim x
10 1
x
x
1
3.4 两个重要极限公式
习题:
(1)
lim
x0
sin 3x tan 5x
(2)
lim 1 cos x x0 x 2
3.4 两个重要极限公式
例7. 求下列函数的极限
(1)
lim (1 3) x
x
定理 3.2
当 x x0时,函数f(x)的极限存
在的充要条件是当 x x0时与 x x0
时,函数f(x)的极限都存在而且相等。

lim f (x) A lim f (x) lim f (x) A
xx0
xx0
xx0
3.2 作为变量变化趋势的极限概念
开放讨论题
在体育竞赛中,各项目的世界纪录会否 有极限?如跳高、跳远、100米短跑等哪个变 量为自变量?若有极限,是哪种类型的极限? 你认为人的极限身高是多少?
定义3.3 设函数f(x)在点x0的附近(邻域)内
有定义(x0可以除外),当自变量x从 x0 的
左右两侧无限接近x0时,相应地因变量的取
值无限接近于某个常数A,则称常数A为函数
在点x0处的极限。记为
lim f (x) A 或者 f (x) A
xx0
(x x0 )
3.2 作为变量变化趋势的极限概念
3.4 两个重要极限公式
案例 3.2 危险气体报警装置设计模型
假设现有瓦斯含量为8%的空气,通过厚度 为10厘米的吸收层后,其瓦斯的含量为2%,问
(1)若通过的吸收层厚度为30厘米,出口 处空气中的瓦斯含量是多少?
(2)若要使出口处空气中瓦斯的含量为1%, 其吸收层的厚度应为多少?
3.4 两个重要极限公式
P0 (1
r )nt n
第t年末,该笔本金的本利和Pt为
rt
Pt
lim
n
P0
(1
r )nt n
P0
lim [1
n r
1
]
n r
n
r
P0ert
3.4 两个重要极限公式
思考题
某人现年35岁,有一笔数额为10万元的 闲置资金,如果他将这笔资金投入到某项目, 该项目年收益率为12%,那么,这笔投资到 他65岁退休时本利和将是多少?请分别按单 利、按年复利、按连续复利方式计算本利和。
定理 3.1
当 x 时,函数的极限存在的
充要条件是当 x 时与 x
时,函数f(x)的极限都存在而且相等。即
lim f (x) A lim f (x) lim f (x) A
x
x
x
3.2 作为变量变化趋势的极限概念
(Ⅱ) x 时x函0 数的极限
x 1
x2
3.2 作为变量变化趋势的极限概念
当自变量只满足从x0的左侧或者右侧无限 接近x0时,相应地因变量y的取值无限接近于 某个常数A,则称常数A为函数f(x)在x0点处的 单侧极限。
左极限
lim f (x) A 或者
x x0
f (x) A
(x x0 )
右极限
lim f (x) A 或者
xx0
f (x) A
(x x0 )
3.2 作为变量变化趋势的极限概念
3.1 从“截丈问题”谈起
极限的思想是由于求某些实际问题的精确解 而产生的。
十七世纪主要的科学问题: 1. 研究物体运动状态;
2. 求曲线的切线;
3. 求函数的最大值与最小值;
4. 求曲线长;曲线围成的面积;曲面围成 的体积;物体的重心;物体间的引力
第三章 极限与连续
3.2 作为变量变化趋势的极限概念
x
lim(1
1 x(3) )3
x
x
3
3
lim (1
x 3
1 x
x
)3
3
e3
3.4 两个重要极限公式
(2)
lim
(2
x
)
2 1
x
x0 2
lim(1
x
2
)x
(1
x )1
x0
2
2
lxim0[1
(
1
x
)]
x 2
2
1
e1
e1
3.4 两个重要极限公式
例 8 复利及连续复利公式 设有一笔本金为P0万元存入银行,年利率 为r。以复利计息,(1)每年计息一次,问到 第t年末,该笔本金的本利和Pt为多少?(2)若 每年计息n次,且n→∞,问到第t年末,该笔本 金的本利和Pt为多少?
x无限增大时,函数 f无(x限) 地接近于常数A,
则称当x趋于 时,以A为极限,记作
lim f (x) A 或者 f (x) A (x )
x
3.2 作为变量变化趋势的极限概念
当只考虑自变量x在一个方向变化情形,如
当x 或 x 时,有 f (x) A,这时,
可以称常数A为函数f (x)的广义单侧极限,记作
解:
(1)
lim
n
xn
lim n n 3n 1
lim 1 n 3 1
1 3
n
(2)
lim
n
xn
lim 2n 3 n 3n 4
2 lim
n
3
3
n 4
2 3
n
3.2 作为变量变化趋势的极限概念
2.函数的极限
(Ⅰ) x (包括x )时函数的极限
3.2 作为变量变化趋势的极限概念
定义3.2 设函数 在f (x) (内,有定) 义,如果自变量
x0
x0
故 lim f (x) 不存在 x0
3.2 作为变量变化趋势的极限概念
x3 1, x 0
(2)
f
(x)
0, x 0
3x, x 0
解: lim f (x) lim (x3 1) 1
x0
x0
lim f (x) lim 3x 1
x0
x0
lim f (x) lim f (x)
nn
8% (1 k d ) k 8%(1 k d ) d 8%(1 k d )2
…… n
nn
n
通过第n小段吸收后,吸收瓦斯的量为,
k 8%(1 k d )n1 d 空气中剩余瓦斯含量为
nn
8% (1 k d )n1 k 8%(1 k d )n1 d 8%(1 k d )n
lim
n
xn
A
或者 xn A (n )
当数列{xn}以A为极限时,称数列{xn}收敛 于A;如果通项xn不趋近于任何常数,即数列 {xn}没有极限,则称数列{xn}发散。
3.2 作为变量变化趋势的极限概念
例2.根据数列极限的定义,求下列数列的极限
(1)xn
n 3n 1
(2)
xn
2n 3 3n 4
x0
x0

lim f (x) 1
x0
第三章 极限与连续
3.3 极限的性质及运算法则
1.极限的性质
性质3.1 极限的唯一性
若lim f (x) A且 lim f (x) B,则A=B
xx0
xx0
性质3.2 局部有界性
设在某个变化过程中,如果 lim f (x) A,则 xx0
f(x)在x0“附近”必有界。
(4) lim f (x) g(x) [lim f (x)]limg(x)
3.3 极限的性质及运算法则
例4. 求下列函数的极限
(1)
lim x2 x 3 x 3(x 1)2
lim
x
x2 3( x 2
x 2
3 x 1)
lim
1
1 x
3 x2
x
3(1
2 x
1 x2
)
1 3
( 型)
3.3 极限的性质及运算法则
P2 P1 P1r P1 (1 r)1 P0 (1 r)2
…………………………………… 依此类推,第t年末,该笔本金的本利和Pt为
Pt P0 (1 r)t
3.4 两个重要极限公式
(2)若每年计息n次,这时每期的利率可
以认为是r/n,t年共计息次数为nt次。用上述
同样方法可以推得
Pt
解:设吸收层厚度为d cm,现将吸收层分成n
小段,每小段吸收层的厚度为 d/n cm, 通过第一小段吸收后,吸收瓦斯的量为k 8%, d
n
空气中剩余的瓦斯含量为
8% k 8% d 8% (1 k d )
n
n
3.4 两个重要极限公式
通过第二小段吸收后,吸收瓦斯的量为,
k 8%(1 k空d气) d中剩余的瓦斯含量为
第三章 极限与连续
【学习目标】
1. 极限,左、右极限。 2. 无穷小量,无穷大量。 3. 极限的四则运算法则。
等价无穷小替换定理。 4. 两个重要极限。 5. 函数连续性,函数的连续区间。 6. 函数间断点,间断点的类型。 7. 连续的性质。
第三章 极限与连续
3.1 从“截丈问题”谈起
“一尺之棰,日截其半,万世不竭” ---《庄子.天下篇》
3.4 两个重要极限公式
相关文档
最新文档