第二章 油气储层的基本特征

合集下载

储层地质学期末复习题及答案

储层地质学期末复习题及答案

储层地质学期末复习题第一章绪论一、名词解释1、储集岩2、储层3、储层地质学第二章储层的基本特征一、名词解释1、孔隙度2、有效孔隙度3、流动孔隙度4、绝对渗透率5、相渗透率6、相对渗透率7、原始含油饱和度8、残余油饱和度9、达西定律二、简答题1、简述孔隙度的影响因素..2、简述渗透率的影响因素..3、简述孔隙度与渗透率的关系第三章储层的分布特征一、简答题1、简述储层的岩性分类2、简述碎屑岩储层岩石类型3、简述碳酸盐岩储层岩石类型4、简述火山碎屑岩储层岩石类型5、风化壳储层的结构6、泥质岩储层的形成条件二、论述题1、简述我国中、新生代含油气湖盆中的主要储集砂体成因类型及主要特征..要点:重点针对河流相、三角洲、扇三角洲、滩坝、浊积岩等砂体分析其平面及剖面展布特征第四章储层孔隙成岩演化及其模型一、名词解释1、成岩作用2、同生成岩阶段3、表生成岩阶段二、简答题1、次生孔隙形成的原因主要有哪些2、碳酸盐岩储层成岩作用类型有哪些3、如何识别次次生孔隙..三、论述题1、简述成岩阶段划分依据及各成岩阶段标志2、论述碎屑岩储层的主要成岩作用类型及其对储层发育的影响..3、论述影响储层发育的主要因素有哪些方面..第五章储层微观孔隙结构一、名词解释1、孔隙结构2、原生孔隙3、次生孔隙4、喉道5、排驱压力二、简答题1、简述砂岩碎屑岩储层的孔隙与喉道类型..2、简述碳酸盐岩储层的孔隙与喉道类型..三、论述题试述毛管压力曲线的作用并分析下列毛管压力曲线所代表的含义第六章储层非均质性一、名词解释1、储层非均质性2、层内非均质性3、层间非均质性4、平面非均质性二、简答题1、请指出储层非均质性的影响因素..2、如何表征层内非均质性三、论述题1、论述裘怿楠1992关于储层非均质性的分类及其主要研究内容..2、论述宏观非均质性对油气采收率的影响要点:分析层内、层间、平面非均质性对油气采收率的影响第七章储层敏感性一、名词解释1、储层敏感性2、水敏性3、酸敏性4、速敏性二、简答题1、储层损害的原因2、储层敏感性类型储层地质学期末复习题参考答案第一章绪论一、名词解释1、储集岩:具有孔隙空间并能储渗流体的岩石..2、储层:凡是能够储存油气并能在其中参与渗流的岩岩层即为储层..3、储层地质学:是研究储层成因类型、特征、形成、演化、几何形态、分布规律;还涉及储层的研究方法和描述技术以及储层评价和预测的综合性地质学科..第二章储层的基本特征一、名词解释1、孔隙度:岩样孔隙空间体积与岩样体积之比2、有效孔隙度:指相互连通的;在一般压力条件下允许流体在其中流动的孔隙体积之和与岩石总体积的比值3、流动孔隙度:指在一定压差下;流体可以在其中流动的孔隙体积与岩石总体积的比值4、绝对渗透率:当岩石为某单一流体所饱和时;岩石与流体之间不发生任何物理—化学反应;所测得的岩石对流体的渗透能力称为该岩石的绝对渗透率5、相渗透率:又称之为有效渗透率;指岩石孔隙中存在两种或两种以上互不相溶流体共同渗流时;岩石对每一种流体的渗透能力的量度;称之为该相流体的有效渗透率6、相对渗透率:岩石孔隙为多相流体饱和时;岩石对各流体的相对渗透率指的是岩石对各种流体的有效渗透率与该岩石的绝对渗透率的比值7、原始含油饱和度:油藏开发前;所测出的油层岩石孔隙空间中原有体积与岩石孔隙体积的比值称为原始含油饱和度8、残余油饱和度:残余油是在油层内处于不可流动状态的那一部分油;其所占总孔隙体积百分数称为残余油饱和度..P139、达西定律:位时间内通过岩石截面积的液体流量与压力差和截面积的大小成正比;与液体通过岩石的长度以及液体的粘度成反比..二、简答题1、简述孔隙度的影响因素..1分选性、粒度对碎屑岩及碎屑结构储集岩的孔隙度有明显的影响;2颗粒磨圆度对储集岩孔隙度的影响;3颗粒的填集作用对储集岩孔隙度的影响;4成岩作用对孔隙度的影响..2、简述渗透率的影响因素..1岩石特征:包括粒度、分选、胶结物及层理等..如疏松砂的粒度越细;分选越差;渗透率越低..2孔隙的影响:岩石孔隙度和渗透率之间有定的内在联系;但没有严格的函数关系;尤其当存在裂缝和溶洞时..;实际上;孔隙度和渗透率的关系在很大程度上取决于孔隙机构;凡影响岩石孔隙结构的因素都影响渗透率..在有效孔隙度相同的情况下;孔隙喉道小的岩石比喉道大的岩石渗透率低;孔喉形状复杂的岩石比孔喉形状简单的岩石渗透率低..一般来说;岩石渗透率与孔隙喉道大小的平方成正比;而与喉道形状复杂程度成反比3压力和温度的影响..温度不变时;渗透率随压力增大而减小;当压力超过某一数值时;渗透率急剧下降;这是泥质砂岩比砂岩渗透率减小的更快..随温度升高;压力对渗透率影响减小..这是因为温度升高;岩石骨架和流体膨胀;阻碍压实..3、简述孔隙度与渗透率的关系大量资料表明;岩石的孔隙度与渗透率之间有一定的相关关系;常规储层相关性较好;致密储层相关性较差;但两者之间通常没有严格的函数关系..岩石的渗透性除受孔隙度影响外;还受孔道截面大小、形状、连通性以及流体性能等多方面因素的影响..一般来说;有效孔隙度大;则绝对渗透率也高;在有效孔隙度相同的条件下;孔隙直径小的岩石比直径大的岩石渗透率低;孔隙形状复杂的岩石比孔隙形状简单的岩石渗透率低..孔隙和喉道的不同配置关系;也可以使储层呈现不同的性质..第三章储层的分布特征一、简答题1、简述储层的岩性分类碎屑岩储层、碳酸盐岩储层、泥质岩储层、岩浆岩储层、变质岩储层2、简述碎屑岩储层岩石类型包括砾岩、砂岩和泥岩3、简述碳酸盐岩储层岩石类型岩性主要为石灰岩、白云岩及其过渡类型..4、简述火山碎屑岩储层岩石类型火山岩储层的岩石类型:集块岩、火山角砾岩、凝灰岩、熔结角砾岩和沉凝灰岩..5、风化壳储层的结构风化壳自上而下分为崩解带、淋滤带、水解带..6、泥质岩储层的形成条件1特定的岩相条件;2压实或欠压实的成岩条件;3断裂或其它的动力造缝条件二、论述题1、简述我国中、新生代含油气湖盆中的主要储集砂体成因类型及主要特征..P18-30我国中、新生代含油气湖盆中的主要储集砂体成因类型包括冲积扇相、河流相、三角洲相、扇三角洲相、湖底扇浊积相、滩坝等..冲积扇沉积以砾岩为主;属于碎屑岩沉积体系中最近源的沉积物;分选性最差;平面连续性较好;物性非均质性严重、层内非均质性剧烈而无序..河流沉积可以提供大量岩石物理性质量好的储层砂体;以中高渗透率为主;经常以高产储层出现;河流砂体几乎成为各类碎屑岩储层之首..其中辫状河广为发育;而一般很难形成大规模的曲流河体系..河流砂体侧向连续性差;以正韵律沉积为特征..三角洲砂体储层包括:三角洲平原上的分流河道砂体;这类砂体与河流砂体大体类似;三角洲前缘发育的水下分流河道;其储层特征于三角洲平原上的分流河道砂体基本一致;正韵律的层内非均性;侧向连续性差的条带状和明显的渗透率方向性;河口坝砂体的特征为反韵律或复合韵律;很好的侧向连续性;平面非均质性较弱;三角洲前缘发育的薄层席状砂;广布的侧向连续性..湖底扇是重力流搬运沉积建造于浪基面以下深湖环境的碎屑岩体;湖底扇储层以浊流砂体占绝大多数;特点是具有鲍玛序列;矿物结构成熟度低;砂体侧向连续性差;连续性较好的扇叶体较少..滩坝储集砂体一般都属于小型沉积、储层体积较小..但储层连续性好;储层物性较好..第四章储层孔隙成岩演化及其模型一、名词解释1、成岩作用:沉积物沉积之后转变为沉积岩直至变质作用之前;或因构造运动重新抬升到地表遭受风化以前所发生的物理、化学、物理化学和生物的作用;以及这些作用所引起的沉积物或沉积岩的结构、构造和成分的变化..2、同生成岩阶段:沉积物沉积后至埋藏前所发生的变化与作用时期..3、表生成岩阶段:处于某一成岩阶段的弱固结或固结的碳酸盐岩、碎屑岩;因构造作用抬升至地表或近地表;受大气淡水的溶滤等作用所发生的变化与作用时期..二、简答题1、次生孔隙形成的原因主要有哪些1溶解或溶蚀作用;2成岩收缩作用;3构造应力作用..2、碳酸盐岩储层成岩作用类型有哪些碳酸盐岩的成岩作用可以分为两类:1破坏孔隙的成岩作用;包括胶结作用、机械压实作用、压溶作用、重结晶作用和沉积物充填作用等;2有利于孔隙形成和演化的成岩作用;包括溶解作用、白云石化作用、生物和生物化学成岩作用、破裂作用等..3、如何识别次生孔隙..1岩石学标志通过显微镜观察;可以识别一些重要的岩石学标志来判定次生孔隙的存在及其发育过程..最重要的岩石学标志有以下八种..①部分溶解:颗粒或胶结物的不完全溶解;并在孔隙附近有残余物;残余物质有明显的溶蚀外貌..②印模:指颗粒、胶结物或交代物完全溶解后的铸模..③排列的不均一性:单个残余颗粒或孔隙次生标志不明显时;颗粒或孔隙分布的不均一性是判定次生孔隙的重要标志..这是因为次生溶解作用有选择性;易溶组分被溶解掉包括选择颗粒和胶结物后;未溶物质的分布必然排列上出现不均一..④特大孔隙:直径比相邻颗粒大得多的特大孔隙很常见;它们为次生孔隙提供了很好的证据..大多数特大孔隙是有组构选择的;并且主要是由可溶性沉积碎屑、透镜状基质或其交代物选择性溶解的产物..⑤伸长状孔隙:孔喉明显扩大并串联多个孔隙的伸长孔隙是次生孔隙标志之一;其成因显然是混合成因的..⑥溶蚀的颗粒:主要表现在颗粒边缘参差不齐;并与伸长孔隙、特大孔隙共生..⑦组分内孔隙:很明显组分内溶孔是矿物溶解造成的..按溶解程度分粒内溶孔、蜂窝状孔隙;并逐渐过渡到溶解残余孔隙..组分内溶孔一般遵循结构选择性溶解的原则..⑧破裂的颗粒裂隙:主要是由于压实致密颗粒出现微裂缝;而后进一步溶蚀所致..三、论述题1、简述成岩阶段划分依据及各成岩阶段标志答:碎屑岩的成岩作用可以划分为同生成岩阶段、早成岩阶段、中成岩阶段、晚成岩阶段和表生成岩阶段..1同生成岩阶段的主要标志有:①岩石沉积物疏松;原生孔隙发育;②海绿石主要形成于本阶段;③鲕绿泥石的形成;④同生结核的形成..⑤沿层理分布的微晶及斑块状泥晶菱铁矿;⑥分布于粒间及粒表的泥晶碳酸盐;有时呈纤维状及微粒状方解石;⑦有时有新月形及重力胶结;⑧在碱性水介质盐湖盆地中析出的自生矿物有粉末状和草莓状黄铁矿、他形粒状方沸石、基底式胶结或斑块状的石膏、钙芒硝;可见石英等硅酸盐矿物的溶蚀现象等..2早成岩阶段可分为A、B两期;下面分别对A期和B期进行阐述..1早成岩A期的主要标志有:①古温度范围为古常温小于65℃..②有机质未成熟;其镜质组反射率Ro 小于0.35%;最大热降解峰温Tmax小于430℃;孢粉颜色为淡黄色;热变指数TAI小于2.0..③岩石弱固结—半固结;原生粒间孔发育..④淡水—半咸水水介质的泥岩中富含蒙皂石层占70%以上的伊利石/蒙皂石I/S无序混层粘土矿物有序度R=0;统称蒙皂石带;碱性水介质含煤地层的砂岩中自生矿物不发育;局部见少量方解石或菱铁矿;颗粒周围还可见少量绿泥石薄膜;碱性水介质的自生矿物有粒状方沸石、泥晶碳酸盐;无石英次生加大..古温度低于42℃是石膏及钙芒硝析出;本期末;泥晶含铁方解石和含铁白云石析出;泥岩中粘土矿物以伊利石—绿泥石I—C组合和伊利石—绿泥石—伊利石/蒙皂石混层I-C-I/S组合为主;伊利石/蒙皂石I/S混层为有序混层;也有无序混层;少见蒙皂石;砂岩中可见高岭石..⑤砂岩中一般未见石英加大;长石溶解较少;可见早期碳酸盐胶结呈纤维状、栉壳状、微粒状及绿泥石环边;粘土矿物可见蒙皂石、无序混层矿物及少量自生高岭石..在碱性水介质中可见石英、长石溶蚀现象..2早成岩B期的主要标志有:①古温度范围为大于65℃~85℃..②有机质未成熟;镜质组反射率Ro 为0.35%~0.5%;最大热解峰温Tmax为43℃~435℃;孢粉颜色为深黄色;热变指数TAI为2.0~2.5..③压实强;颗粒可呈点—线状接触;压实作用使原生孔隙明显减少;④泥岩中蒙皂石明显向伊利石/蒙皂石I/S混层粘土矿物转化;蒙皂石层占70%~50%;属无序混层有序度R=0;称无序混层带⑤可见Ⅰ级石英次生加大;加大边窄或有自形晶面;扫描电子显微镜下可见石英小雏晶;呈零星或相连成不完整晶面;书页状自生高岭石较普遍;有的砂岩受火山碎屑颗粒的影响;仍可见蒙皂石3中成岩阶段;中成岩阶段同样可分为A、B两期..1中成岩A期①古温度范围为85℃~140℃..②有机质低成熟—成熟;镜质体反射率Ro大于0.5%~1.3%;最大热解峰温Tmax为435℃~460℃;孢粉颜色为橘黄—棕色;热变指数TAI为2.5~3.7..③泥岩中的伊利石/蒙皂石I/S混层粘土矿物;蒙皂石层占15%~50%;其中蒙皂石层占35%~50%时属部分有序混层R=0/R=1;蒙皂石层占15%~35%时属有序混层R=1..④砂岩中可见晚期含铁碳酸盐类胶结物;特别是铁白云石;常呈粉晶—细晶;以交代、加大或胶结形式出现⑤石英次生加大属Ⅱ级;大部分石英颗粒和部分长石颗粒具次生加大;自形晶面发育;有的见石英小晶体..⑥砂岩中的粘土矿物;可见自生高岭石、伊利石/蒙皂石I/S混层粘土矿物、呈丝发状自生伊利石、叶片状或绒球状自生绿泥石、绿泥石/蒙皂石C/S混层粘土矿物等;蒙皂石基本上消失..⑦长石、岩屑等碎屑颗粒及碳酸盐胶结物常被溶解;孔隙类型除部分保留的原生孔隙外;以次生孔隙为主..三种水介质在中成岩阶段A期;根据泥岩中伊利石/蒙皂石I/S混层粘土矿物演化和有机质热演化特征;以蒙皂石层占35%、镜质组反射率Ro为0.7%或最大热解峰温Tmax为440℃为界;还可以细分为A1、A2两个亚期..2中成岩B期①古温度范围为140℃~175℃..②有机质处于高成熟阶段;镜质组反射率Ro为 1.3%~2.0%;最大热解峰温Tmax为460℃~490℃;孢粉颜色为棕黑色;热变指数TAI为3.7~4.0..③泥岩中有伊利石及伊利石/蒙皂石I/S混层粘土矿物;蒙皂石层小于15%;属超点阵或称卡尔克博格有序混层有序度R≥3;称超点阵有序混层带..④砂岩中石英次生加大为Ⅲ级;特别是富含石英的岩石中几乎所有石英和长石具有加大且边宽;多呈镶嵌状;高岭石明显减少或缺失;有的可见含铁碳酸盐类矿物、浊沸石和钠长石化⑤孔隙类型以裂缝为主;少量溶孔;颗粒间呈线—凹凸状接触或缝合线状接触;碱性水介质中岩石致密;裂缝较发育;颗粒间以凹凸接触和缝合线状接触为主;部分颗粒间为线接触..4晚成岩阶段①古温度范围为175℃~200℃..②有机质处于过成熟阶段;镜质组反射率Ro为2.0%~4.0%;最大热解峰温Tmax>490℃;孢粉颜色为黑色;热变指数TAI>4.0..③岩石已极致密;颗粒呈缝合接触及有缝合线出现;孔隙极少且有裂缝发育..④砂岩中可见晚期碳酸盐类矿物及钠长石、榍石等自生矿物;石英加大属Ⅳ级;颗粒间呈缝合线状接触;自形晶面消失..⑤砂岩和泥岩中代表性粘土矿物为伊利石和绿泥石;并有绢云母、黑云母;混层已基本消失;称伊利石带或伊利石—绿泥石带..5表生成岩阶段的主要标志①含低价铁的矿物如黄铁矿、菱铁矿等被褐铁矿化或呈褐铁矿的浸染现象;②碎屑颗粒表面的氧化膜;③新月形碳酸盐胶结及重力胶结;④渗流充填物;⑤表生钙质结核;⑥硬石膏的石膏化;⑦表生高岭石;⑧溶蚀现象;有溶孔、溶洞产生;使不整合面下的次生孔隙发育;改善了物性;⑨断层和裂缝的发育;为地表水的向下渗透及深部地层水和地表水的对流作用提供通道;同时也形成次生孔隙..2、论述碎屑岩储层的主要成岩作用类型及其对储层发育的影响..1压实、压溶作用压实作用是指沉积物沉积后在其上覆水层或沉积层的重荷下;或在构造应力的作用下;发生水分排出、孔隙度降低、体积缩小的作用..随埋藏深度增加;碎屑颗粒接触点上承受的压力超过正常流体压力时;溶解度增加;导致发生晶格变形和溶解;称之为压溶作用..压实、压溶作用使得孔隙缩小..2胶结作用是指孔隙水的溶解组分在砂岩孔隙中沉淀晶出的作用;能将碎屑沉积物胶结成岩..常见的胶结物有氧化硅胶结物、碳酸盐胶结物和粘土胶结物..这些胶结物堵塞了孔隙;使得储层孔隙性变差..3交代作用一种矿物代替另一种矿物的作用称之为交代作用..交代作用对储层有一定的影响;交代矿物化学活泼性很强;很容易发生溶解;易于形成次生溶蚀孔隙有利于孔隙度的增加..4溶蚀作用砂岩中的碎屑颗粒、基质、胶结物;在一定的成岩环境及物化条件下可以发生程度不等的溶蚀作用和形成次生溶蚀孔隙;这些溶孔常常是油气储层的主要储集空间..砂岩的溶蚀作用可发生多次;使砂岩孔隙结构特征发生很大的变化..3、论述影响储层发育的主要因素有哪些方面..1母岩性质及物源供应母岩组合特征影响碎屑岩的成分及岩石类型;如长石砂岩是富含长石的母岩花岗岩等经受风化后被搬运至沉积盆地中沉积形成的;物源供应影响碎屑岩储层及其孔隙的发育;如若物源供应充足时;输沙量大;搬运和沉积作用快速;则碎屑岩相对沉积厚、分布广;近源沉积物粗;成分和结构成熟度低;可能富含基质;从而影响原生粒间孔隙的发育;母岩组分的稳定性影响碎屑岩储层的储集性;若母岩的不稳定组分含量高;在成岩过程中会被溶蚀而形成次生溶孔..2岩石组分、结构与构造对储层发育的影响都表现在对储层孔隙发育的影响..如储层中不稳定成分较多时易形成溶蚀孔隙;粒度较粗、分选好、圆度好的砂岩的原生砂岩粒间孔隙比粒度细、分选及磨圆度差的砂岩发育好;具块状层理的岩石比具斜层理的岩石孔隙度发育好..3构造地质作用对储层发育的影响区域构造背景控制沉积环境与相的展布与变化;进而控制了储集岩的发育与分布;区域性抬升引起不整合面的分化淋滤作用;产生次生孔隙或形成风化壳型储层;构造变动剧烈地区和断裂发育带地区易产生裂隙;有利于储集性能的改善..4气候对储层发育的影响气候影响风化产物的性质与储集岩的成因类型;不同气候条件可引起不同类型风化产物及储集岩的形成;气候影响储集岩岩石类型;如干热或寒冷气候有利于碎屑岩中不稳定矿屑和岩屑的保存..5沉积环境控制储层发育沉积环境可控制储集岩体的发育与分布;对其岩性和物性也有很大影响..一定沉积环境形成一定的储集岩体;且储集岩体的几何形态和分布有一定的规律性..6成岩作用对储集岩及其孔隙发育的影响成岩作用对储集岩及其孔隙的演化与发育可能起促进作用;也可能起破坏作用..产生次生孔隙的作用主要是溶蚀作用、白云石化作用、岩溶作用..破坏孔隙发育的作用主要是压实作用、胶结作用和部分重结晶作用..第五章储层微观孔隙结构一、名词解释1、孔隙结构:是指岩石中孔隙和喉道的几何形态、大小及其相互连通和配置的关系..2、原生孔隙:是岩石沉积过程中形成的孔隙;它们形成后没有遭受过溶蚀或胶结等重大成岩作用的改造..3、次生孔隙:是岩石经过成岩作用改造后产生的孔隙;最主要的类型是溶蚀孔隙;还有少数交代作用和胶结作用形成的晶间孔隙..4、喉道:是孔隙系统中相对较小的、局限在两个颗粒之间连通的狭窄空间部分..5、排驱压力:润湿相北非润湿相驱替所需要的最小压力二、简答题1、简述砂岩碎屑岩储层的孔隙与喉道类型..1孔隙类型:1成因分类①原生孔隙;②次生孔隙;⑧混合孔隙..2按孔隙产状及溶蚀作用分类①粒间孔隙;②粒内孔隙;③填隙物内孔隙;④裂缝孔隙;⑤溶蚀粒间孔隙;⑥溶蚀粒内孔隙;⑦溶蚀填隙物内孔隙;⑧溶蚀裂缝孔隙..3成因及孔隙几何形态分类①粒间孔隙;②微孔隙;③溶蚀孔隙;④裂缝..4按孔隙直径大小分类①超毛细管孔隙;②毛细管孔隙;⑧微毛细管孔隙..5按孔隙对流体的渗流情况分类①有效孔隙;②无效孔隙..2喉道类型:①孔隙缩小型喉道..②颈型喉道..③片状喉道..④弯片状喉道..⑤管束状喉道..2、简述碳酸盐岩储层的孔隙与喉道类型..一孔隙类型1按形态分类:孔、缝、洞..2按主控因素分类1受组构控制的原生孔隙:①粒间孔隙;②遮蔽孔隙;③粒内孔隙;④生物骨架孔隙;⑤生物钻孔孔隙及生物潜穴孔隙;⑥鸟眼孔隙;⑦收缩孔隙;⑧晶间孔隙..2溶解作用形成的次生孔隙:①粒内溶孔和溶模孔隙;②粒间溶孔;③其他溶孔和溶洞;④角砾孔隙..3碳酸盐岩的裂缝①构造缝;②成岩缝;③沉积-构造缝;④压溶缝;⑤溶蚀缝..3按成因或形成时间分类:①原生孔隙;②次生孔隙..4按孔径大小分类按孔径大小可将碳酸盐岩储集空间分为七种类型..溶洞的孔径大于2mm;溶孔的孔径大小为1.0-2.0mm;粗孔的孔径大小05-1.0mm;中孔的孔径大小为025-0.5mm..细孔的孔径大小01-0.25mm;很细孔的孔径大小为0.01-0.1mm:极细孔的孔径小于0.01mm..二喉道类型①构造裂缝型;②晶间隙型;③孔隙缩小型;④管状喉道;⑤解理缝型..三、论述题试述毛管压力曲线的作用并分析下列毛管压力曲线所代表的含义a.未分选;b.分选好、细歪度;c.分选好、粗歪度;d.分选差、细歪度第六章储层非均质性一、名词解释1、储层非均质性:油气储集层由于在形成过程中受沉积环境、成岩作用及构造作用的影响;在空间分布及内部各种属性上都存在不均匀的变化;这种变化就称为储层非均质性..2、层内非均质性:包括粒度韵律性、层理构造序列、渗透率差异程度及高渗段位置、层内不连续薄泥质夹层的分布频率和大小、全层规模的水平/垂直渗透率比值等..3、层间非均质性:包括层系的旋回性、砂层间渗透率的非均质程度、隔层分布、特殊类型层的分布、层组和小层的划分..4、平面非均质性:包括砂体成因单元连通程度、平面孔隙度、渗透率的变化及非均质程度以及渗透率方向性..二、简答题1、请指出储层非均质性的影响因素..影响储层非均质性的因素有:1沉积构造的影响;包括储层垂向上的粒序性;生物潜穴及生物扰动;不同类型层理等对非均质性的影响..2层内不连续薄夹层对储层非均质性的影响;3储层的孔喉形状、大小、分布;以及孔隙类型;粘土基质等;是储层微观非均质性的主要影响因素..2、如何表征层内非均质性1渗透率的差异程度——影响流体的波及程度与水窜2高渗透率的位置——决定注采方式与射孔部位3垂直渗透率与水平渗透率的壁纸——控制着水洗的效果4层内不连续薄泥夹层的分布频率、密度和范围——影响开采方式与油气水界面的分布三、论述题1、论述裘怿楠1992关于储层非均质性的分类及其主要研究内容..。

油气藏地质与储层特征分析

油气藏地质与储层特征分析

油气藏地质与储层特征分析在油气勘探与开发工作中,油气藏地质与储层特征的分析是十分重要的。

通过对油气藏的地质构造和储层条件进行分析,可以为勘探与开发提供科学依据,提高勘探与开发效果。

本文将对油气藏地质与储层特征进行详细的分析,以帮助读者更好地理解与应用。

一、地质构造与油气藏地质构造对于油气藏的形成与分布起着重要作用。

常见的油气藏形成方式包括构造油气藏、沉积油气藏和溶蚀油气藏。

构造油气藏主要分布在构造陷落区,沉积油气藏则与特定的沉积环境有关,溶蚀油气藏则形成于溶蚀岩层中。

通过对地质构造的研究,可以确定油气藏的形成机制与分布规律,为油气勘探与开发提供指导。

二、储层特征与油气藏储层特征对于油气藏的形成与储集起着决定性作用。

储层常见的特征包括孔隙度、渗透率、孔喉半径分布等。

孔隙度指的是储层中孔隙的体积占比,渗透率则是储层中流体流动的能力,孔喉半径分布则决定了流体在储层中的运移方式。

储层特征的研究可以帮助确定油气的储集情况和运移规律,为油气勘探与开发提供关键参数。

三、地质与储层特征分析方法地质与储层特征的分析需要借助一系列科学方法。

常见的分析方法包括地震勘探、测井解释、岩心分析等。

地震勘探通过分析地震波在地下的传播情况,可以探测地下油气藏的分布。

测井解释则通过测量井孔中的电磁、声波等物理性质,获取储层的特征参数。

岩心分析是指对地下取得的岩石样本进行物理、化学等分析,了解储层的组成与特征。

综合运用这些方法,可以全面地了解地质与储层特征,为油气勘探与开发提供准确的信息。

四、地质与储层特征分析的应用案例地质与储层特征的分析在实际工作中具有广泛的应用价值。

以某油田为例,通过地震勘探探测到该油田上方存在构造油气藏。

通过测井解释和岩心分析,显示该油田具备良好的储层特征,包括较高的孔隙度和渗透率。

基于这些分析结果,该油田成功地实施了钻探开发,在勘探与开发中取得了丰硕成果。

总结:油气藏的地质与储层特征分析对于油气勘探与开发至关重要。

石油地质学第二章储集层及盖层之二

石油地质学第二章储集层及盖层之二
机械压实是指沉积物在上覆重力及静水压力作用下, 定 发生水分排出,碎屑颗粒紧密排列,软组分挤入孔隙,使孔隙 义 体积缩小,孔隙度降低,渗透性变差的作用.结果引起除骨架
颗粒溶解之外的岩石总体积的减小.
① 颗粒间接触由点 线,随深度加大而变紧密.
表 现
② 塑性变形.火山岩屑、泥质岩屑、云母等柔性组分
形 式
变形呈假杂基挤入颗粒空间.
③ 破裂.刚性颗粒发生破裂,出现小裂缝.
④ 颗粒定向排列,石英拉长具优选方位.
压溶作用
压溶是指在压应力作用下,由骨架颗粒在接触点的 溶解所引起的岩石总体积的减小过程.
a 石英自生加大
b 颗粒呈凹凸、缝合接触
石英自生加大
颗粒呈凹凸、缝合接触
2〕成岩后生作用
②溶解作用:
使物性变好,可产生溶蚀孔隙. 特别是有机质热成熟产生的有机 酸和CO2可使储集层中的碳酸盐 胶结物及铝硅酸盐颗粒大量溶解, 从而有助于次生孔隙的形成.
2、影响碎屑岩储层储集物性的主要因素
1〕物源和沉积条件 ——微观因素的控制〔包括:岩石的成分、结构和构造〕 ①碎屑颗粒的矿物成分: 相同成岩作用下,石英砂岩 储集性比长石砂岩好.原因: a长石的润湿性比石英强; b长石比石英的抗风化能力弱.
②碎屑颗粒的粒度及分选性:
粒度越大,φ、K大;分选 程度好, φ、K大. a. 粒度一定时,分选越好, 物性越好. b.分选一定时,K与粒度 呈正比.
第二节 储集层的岩石类型
目前发现的含有油气的储集层可归为三类:
碎屑岩类储集层:砂岩、砾岩、粉砂岩 碳酸盐岩储集层:灰岩、白云岩、礁灰岩 其他岩类储集层:岩浆岩、变质岩、裂缝性泥岩
据世界546个大中型油气田的统计,碎屑岩类和碳酸盐岩类储集 层所储油气占总量99.8%,其中碎屑岩中的储量占57.1%,碳酸盐 岩中占42.7%.其中,碎屑岩储集层是我国目前最重要的储集层类 型.

油气的储集层与盖层

油气的储集层与盖层

岩裂缝;
在碎屑岩成岩后,后期构造运动所形成的裂 缝、节理等次生孔隙—次要地位。
Schmidt将碎屑岩孔隙类型分为5种类型: 粒间孔隙:一般为原生孔隙。其孔隙度随埋深的增加有所
降低,但降低的速度比粘土岩慢得多。
特大孔隙:按Schmidt标准,超过相邻颗粒直径1.2倍的孔 隙属特大孔隙。多数为次生孔隙。
v储集层(岩)中含有工业价值油(气)流——油(气)层; v已投入开采的油(气)层——产层。
二、储集层的分类
根据研究目的及油田生产实践的需要,对储集层有各种 分类方案。
v按岩类分为:
碎屑岩储层、碳酸盐岩储层、 特殊岩类储层(包括岩浆岩、变质岩、泥质岩等) v按储集空间类型分为: 孔隙型储层、裂缝型储层、孔缝型储层、
σ — 水银表面张力,常取480×105N/cm
Pc 0.075
最小非饱和的孔隙体积 百分数 Smin % 排驱压力 Pd 孔隙等效半径 r
Pb
Smin 100 S饱 50
饱和度中值压力 Pc50
Pc50对应的孔喉半径≈ 平均喉道半径
Smax
0
汞注入量,%
75
毛细管压力曲线图
毛细管压力曲线与孔隙吼道分布直方图
白云石的
菱铁矿的 溶解作用 硫酸盐的 其它蒸发岩的 硅酸盐的 其它非硅酸盐的
较多
较多 较少 较少 很少 很少
(二)碎屑岩储集层的喉道类型
(三)影响碎屑岩储层储集物性的主要因素
1.沉积环境 ①碎屑颗粒的矿物成分:
主要表现在两个方面:
矿物颗粒的耐风化性,即性质坚硬程度和遇水溶解及膨胀 程度; 矿物颗粒与流体的吸附力大小。 一般而言,矿物的润湿性:润湿性强,亲水的矿物, 表面束缚薄膜较厚,缩小孔隙空间,渗透性变差。 矿物的抗风化能力:抗风化能力弱,易风化成粘土矿物 充填孔隙或表面形成风化层减小孔隙空间。 因此,性质坚硬、遇水不溶解和不膨胀、遇油不吸附的 碎屑颗粒组成的砂岩,储油性好。

油层物理-储层岩石特性

油层物理-储层岩石特性
或该油藏的原油储量为1.68×107×0.86=1.445万吨。
7 3
第六章储层岩石的流体渗透性
第一节
达西定律及岩石绝对渗透率
第一节
达西定律及岩石绝对渗透率
流量Q
或流速
Q

AP L
压差
P ( P 1 P 2 )
达西定律:
AP Q K L
式中:Q——在压差△P下,通过砂柱的流量,cm3/s;

中 等 差 无 价 值
Petro-Physics 油层物理学
中国石油大学(北京)
第四节
储层岩石的压缩性
当油层压力每 降低单位压力 时,单位体积 岩石孔隙体积 缩小值。 孔隙体积缩小 , 才使油不断从 油层中流出。 (驱油动力)
一、岩石压缩系数(岩石弹性压缩系数)
C
Cf
Vb Vb p 1
孔隙度(φ)是指岩石中孔隙体积Vp与岩石总体积Vb的比值

Vp Vb
100 %
V V V b S S 100 % ( 1 ) 100 % V V b b
1、岩石的绝对孔隙度(φ) 岩石总孔隙体积(Va)可以细分为以下几种孔隙:
a
a可流动的孔隙体积
岩石总孔隙体积
{
1)连通孔隙体积又称为有效孔隙体积
S oi
V oi Vp
Soi=1—Swi
3、当前油、气、水饱和度
油田开发一段时间后,地层孔隙中含油、气、
水饱和度称为当前含油、气、水饱和度,简称含油饱
和度、含气饱和度或含水饱和度。
5、残余油饱和度与剩余油饱和度
经过某一采油方法或驱替作用后,仍然不能采出而残留 于油层孔隙中的原油称为残余油,其体积在岩石孔隙中所占体 积的百分数称为残余油饱和度用 Sor 表示。可以理解,驱替后 结束后残余油是处于束缚状态、不可流动状态的。 剩余油主要指一个油藏经过某一采油方法开采后,仍不能 采出的地下原油。一般包括驱油剂波及不到的死油区内的原油 及驱油剂(注水)波及到了但仍驱不出来的残余油两部分。剩 余油的多少取决于地质条件、原油性质、驱油剂种类、开发井 网以及开采工艺技术,通过一些开发调整措施或增产措施后仍 有一部分可以被采出。剩余油体积与孔隙体积的之比称为剩余 油饱和度。

油气储层微观结构特征分析与评价方法研究

油气储层微观结构特征分析与评价方法研究

油气储层微观结构特征分析与评价方法研究油气储层是石油和天然气的储藏区域,对于石油和天然气开采具有重要意义。

为了更好地了解油气储层的微观结构特征,科学家们进行了大量的研究和实践,开发出了各种评价方法。

首先,我们来看油气储层的微观结构特征。

油气储层是由沉积物构成的,其中包含了孔隙、裂缝等空隙结构。

孔隙是指岩石中的空隙或空洞,它可以储存石油和天然气。

裂缝是指岩石中的裂缝或裂缝网络,它们对于储藏和流动的石油和天然气起着关键作用。

此外,油气储层还包含着致密层和非致密层,它们的孔隙度和渗透率有所不同,对开采石油和天然气的效果有所影响。

为了评价油气储层的微观结构特征,科学家们开发了多种方法。

其中较为常用的方法包括孔隙度测定、浸泡法、数字图像分析和核磁共振等。

孔隙度测定是通过测量样品中的孔隙体积与总体积的比值来评估孔隙的分布和大小。

浸泡法是将样品浸泡在染料溶液中,通过观察上色程度来评估孔隙结构的连通性和孔隙径向分布。

数字图像分析是利用图像处理技术,将样品的图像转化为数字图像,通过分析图像中颜色和形状等特征来评估孔隙度和孔隙结构。

核磁共振则是利用核磁共振技术,通过对样品进行核磁共振扫描,获取样品中的孔隙信息。

除了上述方法外,科学家们还开发了一些新的评价方法,例如电子显微镜、X射线衍射和激光共聚焦显微镜等。

电子显微镜可以观察到更高放大倍数的样品细节,从而进一步了解油气储层的微观结构。

X射线衍射可以分析样品中的晶体结构,从而评估油气储层中矿物颗粒的分布和排列方式。

激光共聚焦显微镜则可以获得更精细的图像,从而更准确地评估孔隙结构和裂缝的存在与分布。

除了以上方法,还有很多其他评价方法被广泛研究和应用。

这些方法多样化,可以相互补充和验证,为油气储层的微观结构特征提供了更全面的分析和评价。

通过这些评价方法,科学家们可以更好地了解油气储层的微观结构特征,为开采和利用石油和天然气提供更有效的方法和技术。

总结起来,油气储层的微观结构特征分析与评价方法是研究人员进行石油和天然气开采的重要工具。

第二章油气藏评价

第二章油气藏评价
油气总资源量:是指在自然环境中,油气资源所蕴藏的地质总量。
原始地质储量:是指已发现资源量的部分,是根据地震、钻井、
测井和测试,以及取心和液体取样等取得的各项静动态资料,利用确 定参数的容积法计算的油气地质储量。
原始可采储量:又称为总可采储量或最终可采储量,它是在现代工
业技术条件下,能从已探明的油气田或油气藏中,可以采出的具有经 济效益的商业性油气总量。
驱油机理: 油层岩石和流体的弹性膨胀,地层压实
生产特征: 1、压力下降; Pe 2、产量下降;
3、气油比稳定。 Qo
Pe
采收率: 1%~10%,
Qo
平均3%。
R
R
第二节 油气藏驱动类型及其开采特征
二、溶解气驱动
形成条件: 驱油机理:
1、无气顶;
2、无边底水或边底水不活跃; 3、 Pi≤ Pb。 溶解气膨胀
• 油藏评价的目的,实际上就是进一步落实上 道工序提交的探明储量,为下道工序编制 开发方案做准备.这样,才是真正意义上实 现了勘探开发一体化,大大缩短了解勘探 开发的距离。反之,如果做不到上述三点, 油藏评价就没有意义。
一、油藏的压力系统
第一节 油藏温压系统
1、有关地层压力的概念
原始油层压力(Pi): 指油层未被钻开时,处于原始状 态下的油层压力。
压力系数(ap):指原始地层压力与同深度静水柱压力之 比值。
( ap=0.9~1.3,常压油藏;ap>1.3,异常高压油藏) 压力梯度(Gp): 地层海拔高程每相差一个单位相应的压
力变化值。
第一节 油藏温压系统
一、油藏的压力系统
1、有关地层压力的概念 油层折算压力(Pc):为了消除构造因素的影响,把已测出的
产水量 井动态 原油采收率

最新石油与天然气地质学教案——第二章 储集层和盖层

最新石油与天然气地质学教案——第二章 储集层和盖层

第二章储集层和盖层第一节储集层的物性参数储集层的基本特征是具孔隙性和渗透性,其孔隙渗透性的好坏、分布规律是控制地下油气分布状况、油气储量及产量的主要因素。

一、储集层的孔隙性绝对孔隙度:岩样中所有孔隙空间体积之和与该岩样总体积的比值。

是衡量岩石孔隙的发育程度。

Pt=V p/V t*100%按岩石孔隙大小,有超毛细管孔隙、毛细管孔隙和微毛细管孔隙三类。

1.超毛细管孔隙:直径>0.5mm,相应裂缝宽度>0.25mm,液体在重力作用下自由流动。

2.毛细管孔隙:直径0.5~0.0002mm,裂缝宽度0.25~0.0001mm,由于毛细管力的作用,液体不能自由流动。

3. 微毛细管孔隙:直径<0.0002mm,裂缝宽度<0.0001mm,液体在非常高的剩余流体压力梯度下流动。

有效孔隙度:指彼此连通的,且在一般压力条件下,可以允许液体在其中流动的超毛细管孔隙和毛细管孔隙体积之和与岩石总体积的比值。

Pe=V e/V t*100%二、渗透性渗透性:指在一定的压差下,岩石允许流体通过其连通孔隙的性质。

对于储集层而言,指在地层压力条件下,流体的流动能力。

其大小遵循达西定律。

K即为岩石的渗透率,国际单位为μm2,常用单位为达西(D)。

国际单位:μ=1Pa.s △P=1Pa F=1m2 L=1m Q=1cm3/s则:K=1μm2常用单位:μ=1厘泊△P=1大气压 F=1cm2 L=1cm Q=1cm3/s则:K=1D=1000md1D=0.987μm21D=987*10-6μm2绝对渗透率:单相液体充满岩石孔隙,液体不与岩石发生任何物理化学反应,测得的渗透率称为绝对渗透率。

有效渗透率:储集层中有多相流体共存时,岩石对每一单相流体的渗透率称该相流体的有效渗透率。

油气水分别用Ko、Kg、Kw表示。

相对渗透率:对每一相流体局部饱和时的有效渗透率与全部饱和时的绝对渗透率之比值,称为该相流体的相对渗透率。

油气水分别表示为Ko/K、Kg/K、Kw/K。

油气储层微观结构与地质特征的综合分析

油气储层微观结构与地质特征的综合分析

油气储层微观结构与地质特征的综合分析作为一种重要的能源资源,油气在现代社会中的作用不可忽视。

为了更好地开发和利用油气,了解油气储层的微观结构和地质特征是必不可少的。

本文将从微观层面出发,结合地质特征进行综合分析,探讨油气储层的构成及影响储集条件的多种因素。

1. 油气储层的结构特征油气储层是一种由孔洞、裂隙和构造空间组成的复杂多层结构。

它的物理特性和运移特性会对油气的储集、输送和采收产生直接的影响。

1.1 孔隙储集孔洞是油气储层中最为主要的储集空间形式,主要包括微孔、介孔和大孔。

这些孔隙根据其尺寸、形状、连接性等不同特征,对于储油气的能力有所不同。

孔隙通常是由细粘土矿物、石英等物组成的。

孔隙空间最终形态的形成是由于岩石物质不断的溶解和蚀变作用。

1.2 裂隙储集裂隙是油气储层中另一种重要的储集空间形式,其包括层理面、节理面、构造面等。

裂隙是岩石层中一种表现形式,对于一些具有较好连通性的裂隙,储层的含油气性也有好的表现。

岩石物质中裂隙的发育程度取决于其泥质含量、成岩压力、岩石稳定性等因素,一些规模较大的裂隙对于储油气起到了重要的作用。

1.3 构造空间储集构造空间储集是指非均质性储层中具有良好储集条件的,由地质构造和构造构成的储集空间。

构造空间储集可以表现形式各异,包括构造空间缝洞、褶皱、断层、膨胀岩体、岩浆侵入体等。

由于构造空间储集的存在,使得储层具有了较强的非均质性和异质性,从而成为了富含油气的区域。

2. 油气储层的地质特征油气储层的地质特征是影响油气储集和采收的关键。

地质特征包括沉积、岩性、构造、地貌等多个方面的因素。

2.1 沉积条件沉积条件包括硬度、厚度、岩相等多个方面。

这些条件对岩石物质的孔隙发育和油气生成和富集都有直接的影响。

常规油气藏通常形成于具有较好沉积环境条件的沉积盆地中。

而对于非常规油气藏,如页岩气,其则是依靠岩石物质自身富含的有机质经过热解、成熟,从而形成大量的天然气。

2.2 岩性条件岩性条件包括岩石成分、物性特征等。

油层物理知识点总结

油层物理知识点总结

油层物理知识点总结一、油气储层的物理性质1. 储层岩石的物理性质储层岩石的物理性质是指岩石在外部作用下表现出来的物理特征,主要包括孔隙度、渗透率、孔隙结构、孔隙连通性等。

储层岩石的物理性质直接影响着岩石的储集能力和渗流性能。

孔隙度是指储层岩石中孔隙空间所占的比例,其大小直接影响着岩石的储集能力。

渗透率是指流体在岩石中运移的能力,它受孔隙度、孔隙连通性和岩石孔隙结构的影响。

孔隙结构是指储层岩石中孔隙的形态和大小分布特征,它直接影响着岩石对流体的储集和运移能力。

孔隙连通性是指储层岩石孔隙之间的互相连接程度,对于流体的渗流性能具有重要影响。

2. 储层流体的物理性质储层流体的物理性质包括油气的密度、粘度、饱和度、渗透率等。

油气的密度是指油气的质量与体积的比值,它直接影响着油气在地下的运移和驱替过程。

粘度是指液体的内摩擦力,它直接影响着油气在储层中的流动能力。

饱和度是指储层岩石中的孔隙空间中含有流体的比例,它直接影响着储层中的流体储集能力。

渗透率是指储层流体在岩石孔隙中渗流的能力,它受孔隙度、孔隙连通性和流体的物理性质的影响。

3. 储层的物理模型储层的物理模型是指将储层岩石和流体的物理性质用数学模型来描述,以便进行评价和预测储层的性质和行为。

常见的储层物理模型包括孔隙模型、细观模型、孔隙介质模型等。

这些模型可以帮助地质学家和工程师更好地理解和分析储层的物理性质,为油气田的勘探和开发提供科学依据。

二、油层物理测井技术1. 测井装备和工具油层物理测井是研究储层的物理性质和流体性质的一种技术,主要通过在井孔中使用测井装备和工具来获取储层的物理数据。

常见的测井装备和工具包括γ射线测井仪、自感应测井仪、声波测井仪、电阻率测井仪等。

这些测井装备和工具可以在井孔中获取储层的物理数据,并通过数据处理和解释来分析和评价储层的性质。

2. 测井曲线及解释测井曲线是指通过测井仪器在井孔中获取的物理数据所绘制出来的曲线,主要包括γ射线曲线、自感应曲线、声波曲线、电阻率曲线等。

油气储层地质学基础

油气储层地质学基础

Vo Vo 含油饱和度 S o = = × 100% ; Vp V f
含气饱和度 S g =
Vg Vp
=
Vg Vf
× 100% ;
Vw Vwo = × 100% 含水饱和度 S w = Vp V f
Vp为孔隙体积,Vf为岩石体积。
March 5, 2009
21
第一节 储层的物理特性
Bill Yu
含油饱和度是油气勘探与开发阶段很重要的参数,确定原 始含油饱和度,才能准确地进行储量计算。它所不同于孔隙度 与渗透率的是它既不是标量,也不是矢量,而是一个难于算准 的变量。 必须指出的是:油层中岩石含水饱和度的数值与石油在原 始含水层中的集聚过程、石油的粘度、油水分界面上的表面张 力、岩石中的颗粒分布、油水接触面与取芯位置的接近程度、 岩石中粘土含量、特别是岩石孔隙大小和分布等有关。单靠渗 透率不能决定油层的含水饱和度。
8
第一节 储层的物理特性
(四)孔隙度的影响因素
Bill Yu
碎屑岩是由母岩经破碎、搬运、胶结和压实而成,因此碎屑的类 型、数量以及成岩后的压实作用就成为影响这类岩石孔隙度的主要 因素。 1、岩石的矿物成分 在其它条件相同时,一般石英砂岩储油物性好,这主要是因为长 石的亲油、亲水性比石英强。当被油、水润湿时,长石表面所形成 的液膜一般是不移动的,它在一定程度上减少了孔隙的流动截面和 储集体积。 2、颗粒的排列方式及分选性 不同的颗粒排列方式对孔隙空间的形态和大小有着很大的影响。
油气储层地质学基础
Basis of Hydrocarbon Reservoir Geology
于兴河 教授 博士生导师
中国地质大学(北京)能源学院石油教研室
Tel: 82320109或82321857 (O) Email: billyu@

第2章油气水层的判断

第2章油气水层的判断

1.储层岩性细、比面大是导致高束缚水饱 和度的重要原因。 低阻油(气)层的岩性有三类: ①粘土矿物含量少,岩性极细的粉砂岩; ②胶结物为富含伊利石和蒙脱石且呈分 散状分布的砂岩; ③薄层砂岩与泥岩的互层。
无论这三种岩性中的任何一种,其组 成岩石的骨架颗粒都比较细,岩石的 比较面较大,是形成大量微毛细管孔 隙的条件之一。在微毛细管中,存在 两种水,即在油气运移中未被驱替的 原生水和岩石颗粒表面的吸附水。岩 石的粒度越小,束缚水饱和度越高。
SP曲线:以泥岩为基线,当泥浆电阻 率(Rmf)大于地层水电阻率(Rw)时, 渗透层在SP曲线上为负异常。反之, 为正异常。异常幅度大小取决于储层 的致密程度,泥质含量和地层水与泥 浆电阻率差别,泥质含量越多,岩石 越致密,幅度越小,Rmf与Rw相差越大, 异常幅度也就越大。
微电极曲线:渗透层在微电极曲线上反映 为正幅度差(即微电位大于微梯度的视电 阻率值),且微电位的视电阻率(Ra)为 中等数值,一般约为泥浆电阻率(Rm)的 2~10倍。泥岩的Ra为低值且无幅度差。在 侵入很浅或泥饼很薄的情况下,Ra反映的 是非侵入带原始地层状态,故可能出现负 的幅度差(即微梯度大于微电位电阻率)。 由于微电极具有很好的纵向分辨率,可以 用来划分薄层或确定薄层砂岩的总厚度。
判断油、气、水层的内容
1. 从地层剖面中划分出渗透层; 2.确定渗透层的产液性质及生产 能力:
各种录井方法及钻井过程中的油气显示, 是判断渗透层和划分油、气、水层的 第一性资料,是测井解释的基础。而 各种测井方法是准确划分岩性界面、 反映岩性、物性和含油性的重要手段。 因此,常用的判断油、气、水层的方 法, 是以地质录井和测井资料相结合 的综合分析方法。
d. Sw与Swi重叠分析:
见教材P43。

石油储层特征分析与优化开发研究

石油储层特征分析与优化开发研究

石油储层特征分析与优化开发研究石油储层是石油工业的重要组成部分。

石油储层的特征对于石油勘探开发以及油田开采有着重要的意义。

本文将重点探讨石油储层特征以及如何优化开发。

一、石油储层特征分析石油储层的特征包括孔隙度、渗透率、地质构造以及成岩作用等。

其中,孔隙度与渗透率是决定油气储量的关键因素。

孔隙度是储层中空隙所占的体积比例。

一般来说,孔隙度越大,储层储量越大。

但是孔隙度太大会导致流体渗漏,影响油层的稳定性。

因此,孔隙度的大小需要结合石油类型、沉积环境、成岩作用等因素综合考虑。

渗透率是指单位时间内流体通过储层单位长度时的体积流量。

渗透率越高,注水压力越小,油田开采效率越高。

渗透率受到孔隙度以及岩石孔隙连通性的影响。

因此,渗透率的大小需要结合孔隙度、沉积构造、岩石类型等因素综合考虑。

地质构造是石油储层的重要特征。

地质构造对油气的储藏、迁移、分布有着重要的影响。

油气往往聚集在构造隆起、凹陷带、断层等地质构造带上。

因此,构造地质分析对石油勘探开发至关重要。

成岩作用是储层物性变化的主要原因。

成岩作用包括压实、水成岩、热成岩以及化学作用等。

成岩作用会改变石油储层的孔隙度、渗透率以及岩性等特征。

因此,成岩作用的分析对于石油勘探开发具有重要意义。

二、石油储层优化开发优化开发石油储层的关键是提高采收率。

目前,石油勘探开发技术不断革新,为提高石油采收率提供了更好的手段。

1.高效注水高效注水是提高采收率的重要手段之一。

注水可以提高油层压力,驱动油向采油井方向移动,从而提高采收率。

但是,注水应注意注水压力以及水质和注水量这三方面原则。

注水应根据储层特征以及地质构造合理选择注水井,注水井密度不宜过小,尽量达到油层的饱和度。

2.地质分析地质分析是优化开发石油储层的重要手段。

通过地质分析可以确定构造、层序及其变化规律,为采集有价值的信息提供依据。

地质分析的主要方法包括地质测井分析、地震波分析等。

3.人工改造人工改造是提高采收率的常规手段之一。

油藏地质学第2章储集层

油藏地质学第2章储集层

尼日利亚尼日尔河三角洲与油田分布图
障壁岛
㈣ 沿岸堤坝砂岩体 1. 形成:海(湖)沿岸地区(岸外砂坝、堤坝、障壁岛) 2. 岩石特征:以中、细砂岩为主,分选磨园好,物性好 3. 分布形态:平面呈狭长带状或串珠状沿海岸线延伸
剖面呈底平顶凸的透镜体 4. 实例:美国 堪萨斯州 契洛期带状油田
蒙大拿州 钟溪油田
扇顶砾为主,分选差。 5.规模大小:最大的可达几百公里,厚度几千米 6.油田实例:克拉玛依 T(三叠) 克拉玛依组油层
点砂坝
河流砂体 (曲流河)
㈡ 河流砂岩体(Fluvial sandstone) 1.形成条件:长期沉降、气候潮湿,河流发育的冲积平原
2.分布形态:形态极不规则,平面上呈条带状、蛇曲状、树 枝状、网状. B.剖面上,呈顶平底凸的透镜状,底砾顶泥的二 元结构。
Mz=(P25+P75)/2 ⑶ 分选系数:So=P25/P75
分选好:1—2.5; 分选中:2.5—4; 分选差: >4.0。
㈢ 碎屑颗粒的排列方式和磨园度 1. 排列方式
最紧密排列: Ф理=25.9%; 中等排列: Ф理:25.9%~47.6%; 最不紧密的排列: Ф理=47.6%。 说明:排列越疏松,孔隙半径越大,连通性越好,渗 透率越大。
(据D.C.Beard & P.K.Weyl,1973)
人工混合沙的孔隙度
人工混合沙的渗透率(达西)
分选差的砾岩、粗砂岩,Ф小,储集物性差; 分选较好的中-细砂岩,Ф较高,储集物性较好; 分选最好的粉砂岩,绝对Ф高,Фe小,储集物性差。
风成砂>海滩砂>河流砂>洪积砂>冰川砂
粒度参数和颗粒分选参数描述: ⑴ 粒度中值:Md=P50 ⑵ 平均粒径:
sands) C 前三角洲亚相:

储层基本特征

储层基本特征

储层基本特征嘿,咱今儿就来说说储层基本特征这档子事儿。

你说储层像啥呢?就好比是一个大宝藏的藏身之处!储层啊,那可是地下的宝贝窝。

它就像是一个巨大的仓库,专门用来储存石油、天然气这些珍贵的资源。

咱先看看储层的渗透性吧。

这渗透性就好像是一条通畅的大道,油气能在里面欢快地流动。

要是渗透性不好,那不就像是路堵住了,油气想跑也跑不顺畅呀!这渗透性强的储层,就像那四通八达的高速公路,油气能快速地通过,给我们带来财富和能量。

再说说储层的孔隙度。

这孔隙度呢,就像是储层这个大仓库里的空间大小。

孔隙度大,那能装的油气就多呀,就好像一个大房间能放好多东西一样。

要是孔隙度小,那能存的油气自然就少啦。

你想想,要是仓库太小,能放的宝贝不就有限嘛。

储层的岩性也是很重要的哦!有的是砂岩,有的是碳酸盐岩。

砂岩就像是那种比较粗糙但很实在的材料,能让油气在里面有个安稳的家;碳酸盐岩呢,则像是有点特别的存在,有着自己独特的魅力和作用。

还有啊,储层的分布也是有讲究的。

有的地方储层多,有的地方就少得可怜。

这就好像有的地方宝藏多,有的地方找半天也找不到啥宝贝。

那我们怎么知道哪里有储层呢?这就得靠那些地质学家们的本事啦,他们就像是寻宝的高手,能通过各种方法找到这些隐藏的宝贝窝。

储层的厚度也不能小瞧呀!厚的储层就像一座大山,蕴含着无尽的潜力;薄的储层呢,就像是一个小土丘,虽然也有宝贝,但相对就少一些啦。

咱生活中很多东西都和储层有关系呢!你开的车,用的天然气,不都是从储层里来的嘛。

所以说呀,储层对我们的生活可重要啦!没有这些储层,我们的生活得少多少便利呀!总之呢,储层基本特征可太重要啦!它决定了我们能不能找到那些宝贵的油气资源,决定了我们的能源供应和生活质量。

我们可得好好了解它,珍惜它,让它为我们的生活发挥更大的作用!。

油气储层地质特征与勘探模型

油气储层地质特征与勘探模型

油气储层地质特征与勘探模型在石油勘探领域,了解油气储层地质特征以及掌握有效的勘探模型对于油田的发现和开发是至关重要的。

油气储层地质特征主要包括岩性、孔隙结构、渗透率和储量等方面,而勘探模型则是通过对地质特征的分析和解释,形成的一种理论框架和实践指南。

首先,我们来谈谈油气储层的岩性特征。

油气储层岩性主要指砂岩、碳酸盐岩和页岩等不同的岩石类型。

砂岩储层通常具有较高的孔隙度和渗透率,易于形成良好的储集空间。

碳酸盐岩储层则由于其特殊的成岩作用和溶蚀作用,具有丰富的孔隙和裂缝系统,对于储层的形成和保存起到了重要作用。

而页岩储层则通常为低孔隙度和低渗透率的储层,储层评价和勘探难度较大。

其次,孔隙结构和渗透率是影响油气储层有效性和开发程度的重要因素。

孔隙结构主要指孔隙的形态、大小、分布和连通性。

相比于圆孔和直通孔,弯曲孔、死胡同和盲孔等孔隙形态对于流体流动的影响较大。

孔隙大小和分布则影响储层的渗透率和储量,孔隙连通性则是判断储层有效性的重要依据。

渗透率则是孔隙中流体流动能力的量化指标,可以通过实验室测定和数学模型模拟等方法进行计算。

储量是勘探中的核心概念之一,也是评价油气勘探价值的重要指标。

储量的大小决定了油田的开发规模和经济价值。

储层中的有效储存体积和有效孔隙度是评估储量的关键参数。

有效储存体积是指石油和天然气在储层中的可产生量,一般由石油地质和地球物理勘探手段进行评估。

有效孔隙度则是指储层中可用于储存石油和天然气的孔隙体积占总孔隙体积的比例。

最后,让我们了解一下油气勘探中常用的勘探模型。

勘探模型基于对储层地质特征的认知和理解,提供了一套实际操作中的方法和步骤。

常用的勘探模型包括构造模型、沉积模型和成藏模型等。

构造模型是根据地质构造特征,分析构造中的断裂带、断裂岩层和构造陷落等,推测油气分布情况和勘探目标。

沉积模型则通过对沉积物的沉积环境、沉积速率和物源特征等进行研究,推测储层的分布和特征。

成藏模型则对油气的生成、迁移和储藏进行描述和解释,构建了成藏机制和成藏模式。

02第二章:储集层和盖层

02第二章:储集层和盖层

第二章储集层和盖层§2.0储集层和盖层我们时常从书本里或新闻节目中了解到,油田开采过程中发生井喷、喷出黑色的油柱或长舌状的火焰(人工点燃气体后),我们还知道,我国大庆油田自1959年被发现(松基3井)至今已有近五十年的历史,累计采油近20亿吨,而大庆油田仍通过磕头机源源不断地采出石油,保持较高产量的连续多年稳产,人们不禁要问,难道地下真有“油湖”或“油河”?人类历经两千多年来对油气的利用和探索,特别是经过近代150年来的油气勘探、开发实践,始终没有发现地下的“油湖”或“油河”的存在,却证实地下的石油、天然气都是储存在岩石的空隙中。

我们把凡是具有连通空隙、能使流体储存并在其中渗滤的岩石(层),称为储集岩(层)。

并非所有的储集层中都储存了油气,如果储集层中储存了油气,就称为含油气层,业已开采的含油气层称为产油气层。

储集层是油气聚集成藏的基本要素,其物理性质及其分布、发育特征直接影响甚至控制着地下油气分布状况、储量和产能。

§2.1.1储集层的物理性质储集层的物理性质通常包括其孔隙性、渗透性、孔隙结构,含油气层还包括其含油气饱和度等。

一、储集层的孔隙性储集层的孔隙性是指空隙形状、大小、连通性与发育程度。

岩石中的空隙按其形状可分为孔隙和裂缝两大类。

孔隙是三维发育的,裂缝主要是二维延展的。

较大的孔隙则笼统地称为孔洞或洞穴,“孔”与“洞”没有严格界限,一般界限为1-4mm。

按照孔隙大小可分为三种类型:超毛细管孔隙、毛细管孔隙和微毛细管孔隙(表2-1)。

表2-1 孔隙/裂缝大小分类表(1)超毛细管孔隙:管形孔隙直径大于0.5mm,裂缝宽度大于0.25mm者。

在超毛细管孔中液体能在重力作用下自由流动。

岩石中的大裂缝、溶洞及胶结疏松砂岩的孔隙大多属于此类;(2)毛细管孔隙:管形孔隙直径介于0.0002mm-0.5mm之间、缝宽介于0.0001mm-0.25mm之间者。

在毛细管孔中,由于液体质点之间及液体与孔隙壁之间均处于分子引力的作用下,故其中的液体在重力作用下不能自由流动。

油气藏的压力、温度系统

油气藏的压力、温度系统

-3000
图例
2-1

层位注记 Ⅰ+Ⅱ类油层 Ⅲ类油层 水层 试油井段 断层编号
3
第二章 油气藏评价
o 油气藏评价的内容 油气藏评价的内容应该包括:油气藏的构
造和油层的分布、油气藏中流体和储层物性、 油气藏的压力系统和温度系统、油气藏的驱动 类型、以及油气藏的储量分类分级和采收率 (储量)的计算方法等。
1 -4

位:
K
1g
2
2~
K
1g
1 2
海 拔:- 19 89 .7~-2 15 2. 2
水:6 7. 5( m 3)含 水10 0%
矿化度:51844,NaHco3

3-2

3-2
2-2
2-2
1-2
1-4
1-4

3-2 2 -2
1-4
0-4
0-4 0-3
1 -2 0-4

位:
K
1g
1 3
海 拔: -1 85 8~- 19 33
0 1 2 3 4 5km
青2 -9
青2-12
青2 - 10
青2-3
柳1 0 3
柳4
3-2 2-2
1-4 1-2
层 位: K 1g 04~K 1g 03 海 拔: -1 98 2. 04~-2 18 3. 04 油:2 20 ( m3/ q) 油 嘴:6 mm
-1000

3-2

2-2
2-2 1-4
4
2-1 油气藏的压力、温度系统
油气藏深埋在地下承受着多种压力,同时又处在地 球的温度场中,而油藏中岩石和流体的一些物理和物理 化学性质与油藏中的压力和温度密切相关。

油气储层地质学基础

油气储层地质学基础
4)优势流体相饱和度的影响
除上述因素外,还有很多其它因素,如流体粘度等。当非润湿相 粘度很高、且大大高于润湿相时,非润湿相的相对渗透率随两相粘度 比增加而增加,而润湿相的相对渗透率与粘度比无关。
March 5, 2009
20
第一节 储层的物理特性
Bill Yu
通常在油气储层的孔隙中为油、气、水三相所饱和,在压力高于饱和压 力的油藏中,则为油水两相所饱和。所饱和的油、气、水含量分别占总孔 隙体积的百分数称为油、气、水的饱和度。 倘若储层中含油、气、水三相,则:
第一节 储层的物理特性
3、埋藏深度
沉积岩随着上覆岩层的加厚、深埋的加 大,地层静压力和温度的也随之增大,使 得岩石排列更加紧密,颗粒间发生非弹性 的、不可逆的移动,使孔隙度迅速下降。 φ=Ae-Bz A、B为常数;z为埋深
Bill Yu
4、成岩作用
在一定温、压力条件下,不同的溶液对 岩石矿物具有选择性溶解的特点,进而形 成次生孔隙。一般而言,有机酸水溶液对 硅酸盐矿物易溶,而对碳酸盐矿物难溶; 无机酸水溶液则正好相反。 March 5, 2009
Bill Yu
除了粒径及排列方式外,颗粒的分选程度对孔隙度影响很大。 岩石分选差时,小颗粒碎屑充填了颗粒间的孔隙和喉道,会降低孔 隙度和渗透率(图2—2)。
图 2—2 分选程度对孔隙度的影响(引自何更生,1994)
a—分选好的物质, φ
≈ 32% ;b—分选差的物质, φ ≈ 17% ;
11
March 5, 2009
第一节 储层的物理特性
一、储集岩的孔隙性
岩石的孔隙广义上讲是指岩石中未被固体物质所充填的 空间部分,也称储集空间或空隙;它包括粒间孔、粒内孔、 裂缝、溶洞等。而狭义的孔隙则是指岩石中颗粒间、颗粒内 和填隙物内的空隙。

石油地质学 第二章 储集层及盖层之一

石油地质学 第二章 储集层及盖层之一

④毛细管压力曲线特征
——通常用Pd、r、Smin%、Pc50作为定量描述孔隙结构的参数。
★a. 排驱(替)压力——汞开始大量注入岩石
排驱(替)压力: 非润湿相开始(大量)注 入岩样中最大连通喉道时 所需要克服的毛细管压力, 即:润湿相流体被非润湿 相流体排替所需要的最小 压力。
④毛细管压力曲线特征
①按成因:
a原生孔隙:和碎屑物质同时形成或与岩石本身同时形成的
孔隙。
b次生孔隙:岩石形成后,经过淋滤、溶解或交代、重结晶
等次生改造作用形成。
②按岩石中孔隙大小及其对流体的不同作用:
a超毛细管孔隙:孔隙直径>0.5mm,裂缝宽度>0.25mm,流体可在其中
自由流动;岩石中一些大的裂缝、溶洞及未胶结的砂岩孔隙等。
Q L K P1 P2 S
渗透率的单位是 m
2
当粘度为1(10-3Pa.s)的液体,在1(105Pa)压差下,通过截面积为 1cm2,长度为1cm的岩样时,若此时的流量正好是1cm3/s,则该岩样 的渗透率即为1D
(1D=1μm2,1mD=987×10-6μm2=0.987×10-3μm2)
在毛细管压力曲线上, 曲线平坦段位置越低,说明 集中的孔喉越粗;平坦段越 长,说明集中的孔喉的百分 含量越大。孔喉半径的集中 范围与百分含量反映了孔喉
半径的粗细程度和分选性。
孔喉越粗,分选性越好,其 孔隙结构越好。
④毛细管压力曲线特征
★d.饱和度中值压力(Pc50) :非润湿相汞饱和度为50%时对 应的毛细管压力
从储集层的定义中,我们可以看出储集层具有两个重 要的特性,就是孔隙性和渗透性,下面我们就来认识一下 储集层这两个特征。
第一节 储集层物理性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档