几何证明举例(1)
一个代数不等式的几何证法

一个代数不等式的几何证法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。
步骤/方法比较法比较法是证明不等式的最基本方法,具体有作差比较和作商比较两种。
基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。
当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)基准1未知a+b0,澄清:a3+b3a2b+ab2分析:由题目观察知用作差比较,然后提取公因式,结合a+b0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)?(a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证明: =(a-b)2(a+b)又∵(a-b)20(a-b)2(a+b)0即a3+b3a2b+ab2例2 设a、br+,且ab,求证:aabbabba分析:由澄清的不等式所述,a、b具备轮休对称性,因此可以在设a0的前提下用做商比较法,作商后同1比较大小,从而达至证明目的,步骤就是:10作商20商形整理30推论为与1的大小证明:由a、b的对称性,不妨解a0则aabbabba=aa-b?bb-a=(ab)a-b∵a?b?0,ab?1,a-b?0(ab)a-b?(ab)0=1即aabbabba1,又abba0aabbabba练习1 已知a、br+,nn,求证(a+b)(an+bn)2(an+1+bn+1)基本不等式法利用基本不等式及其变式证明不等式就是常用的方法,常用的基本不等式及变形存有:(1)若a、br,则a2+b22ab(当且仅当a=b时,取等号)(2)若a、br+,则a+b 2ab (当且仅当a=b时,挑等号)(3)若a、b同号,则 ba+ab2(当且仅当a=b时,取等号)基准3 若a、br, |a|1,|b|1则a1-b2+b1-a21分析:通过观察可直接套用: xyx2+y22证明:∵a1-b2b1-a2a2+(1-b2)2+b2-(1-a2)2=1b1-a2+a1-b21,当且仅当a1+b2=1时,等号成立练2:若 a?b?0,证明a+1(a-b)b3综合法综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
2023年数学中考试题精选:几何综合证明(一)

1.(2023.营口24题)在平行四边形ABCD中,∠ADB=90°,点E在CD 上,点G在AB上,点F在BD的延长线上,连接EF,DG, ∠FED=∠ADG,ADBD =DG EF=k.(1)如图1,当k=1时,请用等式表示线段AG与线段DF的数量关系________;(2)如图2,当k=√(3)时,写出线段AD,DE和DF之间的数量关系,并说明理由;(3)在(2)的条件下,当点G是AB的中点时,连接BE,求tan∠EBF的值2.(2023.本溪铁岭辽阳25题)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF 的数量关系;(2)如图2,当点D在线段AB上时,求证:CG+BD=√2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.3.(2023.大连25题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质。
已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折,同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”补足探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.4.(2023.牡丹江26题)平行四边形ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图1,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图2,当点E在线段CB延长线上,∠ABC=135°时,如图3,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE=______.5.(2023.贵州省25题)如图1,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图2,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为______度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图3,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD将于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.6.(2023.沈阳24题)如图1.在平行四边形纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将平行四边形ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C`,D`,射线C`E与射线AD将于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为______;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM 交C`D`于点N,连接AN,EN,求△ANE的面积。
5.6几何证明举例(1)

,
• 则能使△ABD≌△ACD(任加一条件)
• (4)如图AB=CD,DE=AF,CF=BE,∠AFB=60°,
• ∠CDE=80°,那么∠ABC
。
D
(第3题)
小结
判定三角形全等的方法有:
“ASA”, “ AAS”,“SAS” “SSS”.
利用三角形全等可以得到线段相等或角相等.
再见
2021/6/20
证明:∵∠B=∠B′, ∠C=∠C′
(已知)
∴∠A=∠A′ (三角形内角和定理)
在△ABC与△ABC中, ∠A=∠A′ (已证) AB=A′B′ (已知) ∠B=∠B′ (已知)
∴△ABC≌△ABC (ASA)
已知:如图,AB=CB, AD=CD. 求知:∠A=∠C
2021/6/20
5
全全等全等三等三角三角形角形对形对应对应边应边上角上的的的高平中相分线等线相相等等
B(E)
F A
C
O Dபைடு நூலகம்
达标测评:
• 1、选择题:
• (1)(2011江西南昌)如图
• 下列条件中,不能证明△ABD≌△ACD的是( )
.
• A.BD=DC,AB=AC
B.∠ADB=∠ADC,BD=DC
• C.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC
• (2)下列各组条件中,可保证ΔABC与ΔA′B′C′全等的是( )
.
情境导入
• 如图,某同学把一把三角形的玻璃打碎成了三块, • 现在要到玻璃店去配一块大小形状完全一样的玻璃, • 那么最省事的办法是( ) • (A)带①和②去 (B)带①去 • (C)带②去 (D)带③去 •
你还记得有关全等三角形的 几个公理吗?
勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
沪教版(上海)八年级第一学期 第十九章 第1讲 几何证明

例
逆命题:如果一个角是钝角,那么这个角是两个钝角的和.
4
逆命题:直角三角形其中一边上中线等于这边的一半.
逆命题:如果两个三角形关于某点成中心对称,那么这两个三角形全等. 逆命题:如果两个三角形全等,那么其中两边及第三边上的高对应相等.
逆命题:如果两个角不相等,那么这两个角不是对顶角.
例 5
例
逆命题:如果三角形两腰上的中线相等,那么这个三角形是等腰三角形.
第一讲
几何证明
命题 可以判断正误的陈述句
滚出去! 站起来.
命题的组成
如果两条直线互相平行, 那么这两条直线被第三条直线所截得的内错角相等.
如果一个人骑着白马,那么他一定是唐僧。
对顶角相等.
逆命题
原命题: 如果两条直线互相平行, 那么这两条直线被第三条直线所截得的内错角相等.
逆命题: 如果两条直线被第三条直线所截得的内错角相等, 那么这两条直线互相平行.
l
例 6
例 6
例 6
例 7
例 7
例 8
练 习 1
练 习 2
练 习 3练 习 4练 习 5练 习 6
对顶角相等.
相等的角是对顶角.
如果一个人骑着白马,那么他一定是唐僧。
如果一个人是唐僧,那么他骑着白马。
例 1
例 1
例 2
例 2
如果一个四边形有三个角是直角,那么这个四边形是矩形.
如果两个角是同一个角的补角,那么这两个角相等.
如果两个数都是无理数,那么他们的积是无理数.
例 3
例 3
例 4
5
逆命题:两直线平行,内错角相等. 逆命题:等角对等边.
逆命题:如果两条直线被第三条直线所截得的同旁内角的角平分线互相垂直,那么这两条直线平行. 逆命题:如果 a+b 为奇数,那么a,b两数一奇一偶.
全国通用版中考数学:勾股定理有关的几何证明(一)—详解版

【例1】如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2-BN2=AC2.证明:∵MN⊥AB于N,∴BN2=BM2-MN2,AN2=AM2-MN2,∴BN2-AN2=BM2-AM2,又∵∠C=90°,∴AM2=AC2+CM2 ,∴BN2-AN2=BM2-AC2-CM2,又∵BM=CM,∴BN2-AN2=-AC2,即AN2-BN2=AC2.【例2】四边形ABCD,AC⊥BD ,探究AB2,CD2,BC2,AD2之间的数量关系.【解析】AD2+BC2=AB2+CD2,设AC与BD的交点为E∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2,1.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:四边形ABCD是以DC、BC为勾股边的勾股四边形.证明:连接CE,∵△DBE是由△ABC的顶点B按顺时针方向旋转60°而得,∴AC=DE,BC=BE,∠CBE=60°,∴△BCE是等边三角形,∴∠BCE=60°,EC=BC,又∵∠DCB=30°,∴∠DCE=90°,∴在Rt△DCE中,DE2=DC2+CE2∴AC2=DC2+BC2即四边形ABCD是以DC,BC为勾股边的勾股四边形.2.在△ABC中,AD⊥BC于D,求证:AB2+CD2=AC2+BD2.证明:在Rt△ABD中,根据勾股定理得:AB2-BD2=AD2;在Rt△ACD中,根据勾股定理得:AC2-CD2=AD2,∴AB2-BD2=AC2-CD2=AD2,则AB2+CD2=AC2+BD2.3.如图,△ABC中,AB=AC,∠BAC=90°,D是BC边上任意一点,求证:BD2+CD2=2AD2.证明:作AE⊥BC于E,如图所示:∵在△ABC中,∠BAC=90°,AB=AC,1BC,∴BE=CE=AE=2∴BD2+CD2=(BE+DE)2+(CE-DE)2=2AE2+2DE2=2AD2.4.如图,在△ABC中,∠C=90°,点P、Q分别在BC、AC上,求证:AP2+BQ2=AB2+PQ2.证明:∵在RT△APC中,AP2=AC2+CP2,在RT△BCQ中,BQ2=BC2+CQ2,∴AP2+BQ2=AC2+CP2+BC2+CQ2,∵在RT△ABC中,AC2+BC2=AB2,在RT△APC中,PC2+CQ2=PQ2,∴AP2+BQ2=AC2+CP2+BC2+CQ2=AB2+PQ2.5.如图,在△ABC中,∠C=90°,D是AC的中点,DE⊥AB于点E.求证:BC2=BE2-AE2.证明:连接BD,∵D是AC的中点,∴CD=AD.∵∠C=90°,DE⊥AB,∴BE2-AE2=(BD2-DE2)-(AD2-DE2)=BD2-AD2=(BC2+CD2)-AD2=BC2.【例1】在△ABC中,以AB为斜边,作Rt△ABD,使点D落在△ABC内,∠ADB=90°,AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).证明:BF2+FC2=2AD2,理由:如图3,连接AF、CD.∵EF⊥AC,且AE=EC,∴FA=FC,∠FAC=∠FCA,∵EF⊥AC,且AE=EC,∴∠DAC=∠DCA,DA=DC,∵AD=BD,∴BD=DC,∴∠DBC=∠DCB,∵∠FAC=∠FCA,∠DAC=∠DCA,∴∠DAF=∠DCB,∴∠DAF=∠DBC,∴∠AFB=∠ADB=90°,在Rt△ADB中,DA=DB,∴AB2=2AD2,在Rt△ABF中,BF2+FA2=AB2=2AD2,∵FA=FC∴BF2+FC2=2AD2.【例2】如图,∠C=90°,AM=CM,MP⊥AB于点P,求证:BP2=AP2+BC2.证明:∵△ABC是直角三角形,∠C=90°,∴AB2=BC2+AC2,则AB2-AC2=BC2.又∵在直角△AMP中,AP2=AM2-MP2,∴AB2-AC2+(AM2-MP2)=BC2+(AM2-MP2).又∵AM=CM,∴AB2-AC2+(AM2-MP2)=BC2+(MC2-MP2),①∵△APM是直角三角形,∴AM2=AP2+MP2,则AM2-MP2=AP2,②∵△BPM与△BCM都是直角三角形,∴BM2=BP2+MP2=MC2+BC2,MC2+BC2-MP2=BM2-MP2=BP2,③把②③代入①,得AB2-AC2+AP2=BP2,即BP2=AP2+BC2.1.如图,已知AM是△ABC的BC边上的中线,证明:AB2+AC2=2(AM2+MC2).证明:过点A作AD⊥BC于点D,在Rt△ABD中,AB2=AD2+BD2①,在Rt△ACD中,AC2=AD2+CD2②,由①+②得:AB2+AC2=2AD2+BD2+CD2,在Rt△ADM中,AD2=AM2-DM2,则AB2+AC2=2AM2-2DM2+BD2+CD2,∵AM是△ABC的BC边上的中线,∴BM=MC,∴BD2=(BM+DM)2=(MC+DM)2=MC2+2MC•DM+DM2,CD2=(MC-DM)2=MC2-2MC•DM+DM2,∴AB2+AC2=2AM2-2DM2+MC2+2MC•DM+DM2+MC2-2MC•DM+DM2,∴AB2+AC2=2AM2+2MC2=2(AM2+MC2).2.在△ABC中,AB=AC.(1)如图,若点P是BC边上的中点,连接AP.求证:BP•CP=AB2-AP2;(2)如图,若点P是BC边上任意一点,上面(1)的结论还成立吗?若成立,请证明、若不成立,请说明理由;(3)如图,若点P是BC边延长线上一点,线段AB,AP,BP,CP之间有什么样的数量关系?画出图形,写出你的结论.(不必证明)(1)证明:∵AB=AC,P是BC的中点,∴AP⊥BC,∴AB2-AP2=BP2=BP•CP;(2)成立,理由如下:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD在Rt△ABD中,AB2=AD2+BD2①在Rt△APD中,AP2=AD2+PD2②①-②得:AB2-AP2=BD2-PD2=(BD+PD)(BD-PD)=PC•BP;(3)结论:AP2-AB2=BP•CP.如图所示,理由如下:P是BC延长线任一点,连接AP,并做AD⊥BC,交BC于D,∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AB2=AD2+BD2,在Rt△ADP中,AP2=AD2+DP2,∴AP2-AB2=(AD2+BD2)-(AD2+DP2)=PD2-BD2,又∵BP=BD+DP,CP=DP-CD=DP-BD,∴BP•CP=(BD+DP)(DP-BD)=DP2-BD2,∴AP2-AB2=BP•CP.3.已知AM是△ABC的中线.(1)求证:AB2+AC2=2(AM2+BM2);(2)若AD是高,求证:AB2-AC2=2BC•MD.证明:(1)在Rt△ABD中,AB2=AD2+BD2①,在Rt△ACD中,AC2=AD2+CD2②,由①+②得:AB2+AC2=2AD2+BD2+CD2,在Rt△ADM中,AD2=AM2-DM2,则AB2+AC2=2AM2-2DM2+BD2+CD2,∵AM是△ABC的BC边上的中线,∴BM=MC,∴BD2=(BM+DM)2=(MC+DM)2=MC2+2MC•DM+DM2,CD2=(MC-DM)2=MC2-2MC•DM+DM2,∴AB2+AC2=2AM2-2DM2+MC2+2MC•DM+DM2+MC2-2MC•DM+DM2,∴AB2+AC2=2AM2+2BM2=2(AM2+BM2).(2)∵AD是高,∴△ABD和△ACD是直角三角形,∴AB2=BD2+AD2,AC2=AD2+DC2,∴AB2-AC2=BD2-DC2=(BD+CD)(BD-CD)=BC(BM+MD-CD),∵AM是中线,∴AB2-AC2=BC(CM+MD-CD)=BC(MD+MD)=2BC•MD.。
立体几何中的向量方法(一)证明平行与垂直

立体几何中的向量方法(一)证明平行与垂直【考点梳理】1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0【考点突破】考点一、利用空间向量证明平行问题【例1】如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD =22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.证明:PQ∥平面BCD.[解析]法一如图,取BD的中点O,以O为原点,OD,OP所在射线分别为y,z轴的正半轴,建立空间直角坐标系O-xyz.由题意知,A(0,2,2),B(0,-2,0),D(0,2,0).设点C的坐标为(x0,y0,0).因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF→=14CD →,设点F 坐标为(x ,y ,0),则 (x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0 又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .【类题通法】1.恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.2.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【对点训练】如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .[解析] ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF→=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎨⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量,∵PB→=(2,0,-2), ∴PB→·n =0,∴n ⊥PB →, ∵PB ⊄面EFG , ∴PB ∥平面EFG .法二 PB→=(2,0,-2),FE →=(0,-1,0),FG→=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2. ∴PB→=2FE →+2FG →, 又∵FE→与FG →不共线, ∴PB→,FE →与FG →共面. ∵PB ⊄平面EFG , ∴PB ∥平面EFG .考点二、利用空间向量证明垂直问题【例2】如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .[解析] (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM→·PB →=32×1+0×0+32×(-3)=0,∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB . ∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB . 【类题通法】1.利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.2.用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【对点训练】如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .[解析] 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c , m =λBA 1→+μBD →=⎝ ⎛⎭⎪⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ+12μa +μb +λc =4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证.法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三、利用空间向量解决探索性问题【例3】如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.[解析] (1)设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 平面AA 1C 1C ∩平面ABCD =AC , A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .【类题通法】向量法解决与垂直、平行有关的探索性问题1.根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.2.假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.【对点训练】如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ ⊥平面PQMN ?若存在,求出实数λ的值;若不存在,说明理由.[解析] (1)以D 为坐标原点,建立如图所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN→=(-1,-1,0),NP →=(-1,0,λ-2).当λ=1时,FP→=(-1,0,1),因为BC 1→=(-2,0,2), 所以BC 1→=2FP →, 即BC 1∥FP . 而FP ⊂平面EFPQ , 且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎨⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1). 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0, 即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22. 故存在λ=1±22,使平面EFPQ ⊥平面PQMN .。
初二数学几何证明题(5篇可选)

初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。
如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。
求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。
M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在ABD和ABD中
ADB ADB B B
A
AB AB
ABD ABD
AD AD
B D C B
A D C
已知:如图, ABC ABC, AD, AD分别是边 BC, BC上的中线。 求证:AD AD.
证明:ABC ABC
AB AB, BC BC,B B
求证:BH=AC
A
HE
B
C D
Hale Waihona Puke 选做题• 已知:如图,在△ABC中,D为BC上的一点, AD平分∠EDC,且∠E=∠B,DE=DC
• 求证:AB=AC
作业
课后练习2
谢谢聆听,再见!
3、利用三角形全等可以得到线段相等或角相等.
4、证明两条线段(或角)相等的方法:(1)先观察 要证明的线段(或角)在那两个可能全等的三角形中, 再证明这两个三角形全等;(2)若图中没有全等三角 形,可以把要证明的线段(或角)用和它相等的线段 (或角)代换,再证明它们所在的三角形全等;(3) 如果没有相等的线段(或角)代换,可设法作辅助线 构造全等三角形。
例 已知:如图,AB=AC,DB=DC. 求证:∠B=∠C.
A
B
C
D
例 已知:如图,AB=AC,DB=DC. 求证:∠B=∠C.
A
1
B
3
2C
4
D
变式1、 已知:如图,AB=AC,∠B=∠C. 求证: DB=DC.
A
1
B
3 ?
2C
4
?
D
练习
已知:如图,PB=PC,CE、BD相交于
点P,∠BDA=∠CEA. 求证:AB=AC. A
3.某同学把一块三角形的玻璃打碎也成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么
最省事的办法是 ( C ) A.带①去 B.带②去 c . 带③去
D.带①和②去
4:如图,AC和BD相交于点O,OA=OC,OB=OD 求证:DC∥AB
D
C
O
A
B
选做题
如图,△ABC中,∠ABC=45°
H是高AD和高BE的交点
E 34 D
P
B
C
合作与探究
两个全等三角形的对应边上的高线、对应边上的 中线、对应角的平分线有什么性质呢?
A
A
A
A
B D C B D C A
B D C B D C A
B D C B D C
已知:如图, ABC ABC, AD, AD分别是边 BC, BC上的高。 求证:AD AD.
证明: AD BC, AD BC
年级:八年级 学科名称:数学
有关全等三角形的证明
授课学校: 授课教师:
同学们还记得有关全等三角形的几个基本事 实吗?
回顾与思考
全等三角形的判定方法有哪些?它有什么性质? 其中哪些是基本事实?
“SAS” “ASA” “SSS” “AAS” 全等三角形的性质:对应边相等,对应角相等
“SAS” “ASA” “SSS”
求证:△ABC ≌ △A′B′C′。
( 已知 )
{ ∠B=∠B′
∵
AB=A′B′
∠A=∠A′
(等量代换
( 已知 ) ( 已知 ) ( 已证 )
( 三角形内角和定理 ) )
( ASA )
• 全等三角形的判定方法有: “SAS” “ASA” “SSS” “AAS”
• 全等三角形的作用:证明线段或角相等
几何证明的步骤是什么?
1、根据题意画出图形 2、结合图形,根据条件、结论,写出已知、求证 3、找出由已知推出求证的途径,写出“证明”
求证:如果一个三角形的两角及其中一角的对边与另一个三角形 的两角及其中一角的对边对应相等,那么这两个三角形全等。
已知:如图,在△ABC和△A′B′C′中,AB=A′B′, ∠B=∠B′ ∠C=∠C′
A
B
AB
B B
B
ABD ABD AD AD
A
A
D C B D C
课程总结
全等三角形对应边上的 中线、对应角的角平分线、 对应边上的高线相等。
1、判定三角形全等的方法有:
“ASA”, “ AAS”, “SSS”, “SAS” 2、证明全等的思路:若已知一条边可考虑“ASA”、 “ AAS”, 若已知两条边可考虑“SAS”,若已知三条边 可考虑“SSS”。
达标检测
1、如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和
△ABC全等的图形是
(B )
A.甲和乙 B.乙和丙 C.只有乙 D.只有丙
2.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条
件是( D)
A.∠M=∠N B.AB=CD C.AM=CN
D.AM∥CN
在ABD和ABD中
BD BD B B
AB AB
ABD ABD AD AD B
A
A
D C B D C
已知:如图 ABC ABC, AD, AD分别是A和A的角平分线。
求证:AD AD.
证明:ABC ABC
AB AB,B B, BAD BAD
在ABD和ABD中
BAD BAD