§1.3集合的基本运算教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念
的作用。
课型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
一、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
二、新课教学
1.并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A 与B的并集(Union)
记作:A∪B 读作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P 9-10例4、例5)
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。
2. 交集
一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。
记作:A ∩B 读作:“A 交B ”
即: A ∩B={x|∈A ,且x ∈B}
交集的Venn 图表示
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
例题(P 9-10例6、例7)
拓展:求下列各图中集合A 与B 的并集与交集
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3. 补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A
的所有元素
A
组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,
记作:C U A
即:C U A={x|x∈U且x∈A}
补集的Venn图表示
说明:补集的概念必须要有全集的限制
例题(P12例8、例9)
4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集
与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
5.集合基本运算的一些结论:
A∩B⊆A,A∩B⊆B,A∩A=A,A∩∅=∅,A∩B=B∩A
A⊆A∪B,B⊆A∪B,A∪A=A,A∪∅=A,A∪B=B∪A
(C U A)∪A=U,(C U A)∩A=∅
若A∩B=A,则A⊆B,反之也成立
若A∪B=B,则A⊆B,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
6.课堂练习
(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=∅
(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z
___;__________C B A _____,__________C B A }2
5x 0x |x {C }3x 1|x {B }2x 4|x {A )4(__________B A }Z 2
1m |m {B }Z 2n |n {A )3(==≥≤=≤≤-=≤≤-==∈+=∈= 那么,或,,集合,则,集合
三、
归纳小结(略) 四、 作业布置
1、 书面作业:P 13习题1.1,第6-12题
2、 提高内容:
(1) 已知X={x|x 2+px+q=0,p 2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且 X B X ,A X =∅= ,试求p 、q ;
(2) 集合A={x|x 2+px-2=0},B={x|x 2-x+q=0},若A B={-2,0,1},求p 、q ;
(3) A={2,3,a 2+4a+2},B={0,7,a 2+4a-2,2-a},且A B ={3,7},求
B