一个新的正项级数敛散性的判别法
正项级数敛散性的判别法
骶婺煞堂2一+/ ;2+;32+岔 ;3+4专岔+3;6从
熙佤=i1,熙佤=j1,
则有lim√口。=J『不存在,根值判别法由于 月—÷+∞’
,不存在而失效,但是争似=!塑±11一是发散的。 智L 2 J
正项级数的根值判别法有改进的形式,如果
(3)1i璎√口。<1,则级数收敛;(4)lim刈口。
岸—'+∞’
对于比值判别法存在两点不足:当l=i时, 判别法失效,既有收敛的,又有发散的级数。
例1:p-级数否寺是收敛的’此时 n=I’’
lim兰纽=lim二=l=,, 即比值判别
一---),4.00
a。
一一+一(1+,z)’
法失效。
例2:调和级数喜去是发散的,但
lim纽:Iim土:1:,,即比值判别法
月一口n ”_÷扣(1+,z)
级数余项的估值在精度计算中有着重要意义,但获得估值式一般都比较麻烦.如果利用达朗贝尔(D'Alembert)比值判别法和柯西(Cauchy)根值判别法 ,当级数被判断收敛时,我们给出了该级数余项比较简单的估值式.
8.期刊论文 吴华安 比值审敛法与根值审敛法的关系 -高等数学研究2005,8(4)
讨论正项级数的比值审敛法与根值审敛法之间的关系,证明了凡是可用比值判别法的正项级数必能用根值判别法,而在一定的条件下,其逆也成立.
“—H-%
3 “---’-{-oo口^
“_佃口“
存在,但是∑3”十1广是发散级数。
n--|
正项级数的比值判别法有改进的形式,如果
(3) lim旦吐<l,则级数收敛;(4)lim曼吐
盯_'佃a月
”_÷佃口月
>l,则级数发散。
2 正项级数的根值判别法 正项级数的根值判别法:
正项级数
的敛散性.
故原级数收敛.
例2 判定级数
的敛散性.
解
收敛, 则级数
收敛.
例3 判定级数
的敛散性.
解 因为
发散, 则级数
发散.
定理9.2.3 (比较判别法的极限形式)
若两个正项级数
满足:
(1)当0 < l < +∞时, 级数
同敛散;
(2)当l= 0且级数 收敛时, 级数 也收敛;
(3)当l= +∞且级数
发散时, 级数 也发散.
§9.2 正项级数及其敛散性判别
一. 正项级数的概念 二. 正项级数敛散性的判别法
一、正项级数的概念
定义9.2.1 若数项级数 中的各项 则称此级数为正项级数.
于是正项级数的部分和数列
是一个单増数列, 即
定理9.2.1 正项级数 有上界.
收敛的充要条件是部分和数列
此定理的等价命题: 正项级数发散的充要条件是部分和数列 其等价命题是: “若 无上界, 则 从而正项级数发散.”
故原级数发散.
3. 根值判别法
定理9.2.5 (柯西根值判别法) 若正项级数
满足
则 (1) 当0 ≤ l < 1时, 级数
收敛;
(2) 当 l > 1时, 级数 发散;
(3) 当 l = 1 时, 级数
可能收敛, 也可能发散.
例6 判定级数
的敛散性.
解
故原级数收敛. 练习:
3,(1) 判定级数 解
无上界.
二. 正项级数敛散性的判别法
1. 比较判别法 定理9.2.2 (比较判别法) 设两个正项级数
的对
应项满足:
则 (1)当级数 收敛时, 级数 (大收小收)
正项级数敛散性判别法的讨论
根据柯西准则的否命题判定某些级数的发散性,这一点经常用到而且非常方便.
例1[1](P8)用柯西收敛准则的否命题证明调和级数的发散性.
证明略.
阿贝尔判别法和狄利克雷判别法是适用范围比较广泛的两种判别法.对于某一具体的数项级数,如果它是两个级数通项积的形式时,可以首先考虑这两种判别法.较之于定义与柯西收敛准则,其优越性就非常明显了.
证明(ⅰ)由已知条件得
存在 ,当 时,有
由于当 时, 级数是收敛的,故由比较原则得 收敛.
同理可证(ⅱ)成立.
定理7[10](P1)高斯判别法设 为正项级数,且存在某正整数 及常数 ,
(ⅰ)若对一切 ,成立不等式
,
则级数 收敛;
(ⅱ)若对一切 ,成立不等式
,
则级数 发散.
定理8设 是正项级数,且存在某正数 及常数 ,
则
,
而
(10)
由(2)式得
.(11)
由(4)式得
= .(12)
其中
.(13)
由(2)(5)(6)(7)(8)(12)(13)式得
= .(14)
由(6)(7)(8)(10)(11)(14)式得
.(15)
由于 故存在 ,当 时,有
.(16)
由(9)(15)(16)式一定存在 ,
当 ,有 即: ,
由于 收敛,由引理1, 收敛.
3结论
任何收敛的正项级数都存在比它收敛慢的正项级数;任何发散的正项级数都存在比它发散慢的正项级数.因此通过选择级数作为“比较标准”建立一个对一切正项级数都有效的收敛判别法或发散判别法是不可能的.例如可以考虑用 或其它级数作为比较对象建立起比以上判别法更优越的判别法.
以上几种具体的正项级数的判别法都是以比较原则为基础,选用不同收敛级数作为比较对象,得到不同的判别法.正项级数敛散性判别法的判别范围广泛与否,取决于它的比较对象的选取,比较对象的收敛速度越慢,它的使用范围越广.而正项收敛级数的收敛速度完全取决于这个无穷小的“阶”,即当 时它以什么样的速度趋近于零.
高数:级数敛散判别法
则称无穷级数收敛;
S un 级数的和
若
lim
n
Sn
不存在,
则称无穷级数发散 。
n1
rn S Sn
uk
级数的余项。
lim
n
rn
0
无穷级数收敛。
kn1
若un≥0 (n=1, 2, 3, …) , un 正项级数。 Sn是单调增加数列。
n1
正项级数 un 收敛
n1
部分和序列 Sn有界 。
比较判别法
1 n 1
np n1n p dx
n n1
1 xp
dx
1
Sn
1
1 2p
1 3p
1
4p
1
np
1
2nddxx 1 xxpp
231dxxp1pn p11n
dx n1x1p
1 p 1
,
因而 Sn有上界。 由基本定理可知, 当p>1时p级数收敛。
9.2.2 比较判别法
定理2 (比较判别法) 设 un , vn 是两个正项级数, 且
设 un , vn 是两个正项级数, 且存在自然数N,
n1 n1
使当 n>N 时有 un≤kvn (k>0为常数) 成立, 则
(1) 若强级数 vn 收敛 , 则弱级数 un 也收敛 ;
n1
n1
(2) 若弱级数 un 发散 , 则强级数 vn 也发散 。
n1
n1
比较对象
①
p级数
1 np
,
p>1收敛,p<1发散。
证: 因为
1
nn 1
1 n (n 1)
发散 。
1 1 n 1, 2,
正项级数敛散性的判别方法
正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。
判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。
一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。
2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。
二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。
三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。
四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。
五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。
这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。
同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。
7.2-1 正项级数敛散性的判别
n 1
n 1
Sn s 一般级数收敛 lim n
正项级数收敛 S n 有上界 单调有界数列有极限
1 p 在p >1 时收敛, p 1 时发散. 例1. 证明 n 1 n
证:p =1,原级数为调和级数,发散;
1 1 1 1 p < 1时 n p n , n p 的部分和大于 n 的部分和 n 1 n 1
2 n1 un1 [(n 1)! ] ( 2n)! lim 1 / 4 1 lim lim n 2( 2n 1) n u n ( n! ) 2 [ 2( n 1)]! n
x n 例5. 判别 n( ) ( x 0) 的敛散性 n 1 2 n n 1 x x 解: un n , un1 ( n 1) 2 2 un1 n 1 x lim lim x/2 n u n n 2 n 由0 x / 2 1 0 x 2, 此时原级数收敛
由 x / 2 1 x 2, 此时原级数发散 由 x / 2 1 x 2, 原级数为 n 发散
n 1
当 0< x< 2时,收敛 x n 综上 n( ) ( x 0) n 1 2 当 x 2 时,发散
2. 根值判别法 n u r lim n 定理:设 un 为正项级数,若 n 则 r <1 ,级数收敛;r > 1,级数发散;r =1,此法失效.
则当 p > 1时广义p-级数收敛; p 1 时广义p-级数发散.
上述结论的证明有待于下次课的比较判别法 例10. 下列级数的敛散性如何?
1 1) n1 n( n 1)
8.2 正项级数敛散性的判别
1. n1
un
S
lim
n
Sn
S
un发散 {Sn }发散
n1
a
2. aqn1
1
q
n1
发散
q 1 q 1
1发散
n1 n
3.级数的性质,尤其是: n1
un收敛
lim
n
un
0
同号级数
正项级数
(un 0)
数项级数
负项级数 (un 0)
任意项级数
un与 (un )有相同敛散性
n1
n1
§8.2 正项级数
(2)解:lim n
n
un
lim n
n
1 3n
( n 1)n2 n
lim 1 ( n 1)n n 3 n
1 lim (1
n 3
1 )n n
e 1, 3
所以
n1
1 3n
(
n
n
1
)n2
收敛.
nn1
(3) n1 (n 1)n2
析:lim n n
un
lim n n
nn1 (n 1)n2
n1
n1
n1
n
n
证明: (1) Sn ui vi vn S
i 1
i 1
n1
即{Sn }有上界,由定理8.1可知 un收敛.
n1
由(1)
(2) 反证:假设 vn收敛 un收敛. 矛盾!
n1
n1
思路:先猜敛散再选择放大还是缩小
例1.判定
n1
1 n2n
的敛散性.
解:un
1 n2n
xn 发散.
n1 n
n1 n
高等数学(微积分)课件--§7.2正项级数敛散性的判别
N
, 使得当 n N 时 , 有 u n cv n , 则 (1)当
v
n 1 n 1
n
收敛时, u n 收敛 ;
n 1
( 2)当
u
n
发散时, v n 发散 .
n 1
比较收敛法的前提
要有参考级数. (比较的对象)
6
例 1
P-级数 讨 论 p-级 数
1
p
1
1 3
即部分和数列有上界
(2) 设 sn (n )
n
u n 收敛
n1
.
且 un vn ,
则
sn
是无上界数列 定理证毕.
v n 发散
n1
.
5
比较判别法的推论
推论 设 u n 和 v n 都是正项级数
n 1 n 1
,
且存在常数
c 和自然数
由比较收敛法的推论, 得证.
( 2 ) 由 lim
n
存在 , 若级数
u n 收敛
n1
,
则由结论
( 1 ) 有级数
v n 收敛
n1
, 但级数
v n 发散
n1
,
故级数
u n 不可能收敛
n1
, 即级数发散
.
12
例题讲解
例 解
判定级数
sin
n1
1 n
的收敛性
.
且 un v n ( n 1, 2,) ,若 v n 收敛,则 un 收敛;
n 1 n1
正项级数敛散性的判别(2)
收敛
例7
n1 n1 n2 1
n1
lim
n
n2
1
1 1, n
发散
例8
1
n1 ln(1 n2 )
1
lim
n
ln(1
n2
)
1 n2
1,收敛
10
*例9
设常数
p
0
,试判别级数
n1
ln
np np
1
的敛散性.
解
lim
n
ln
n
p np
1
1 np
1
所以原级数当 p 1 时收敛,当 0 p 1 时发散.
从某项起,恒有un kvn ,(k 0) .
3
例1
判断级数
1
n1 sin 2n
的收敛性.
解
因为
0
s
in
1 2n
1 2n
,
而 1 收敛,
2n
n1
所以原级数收敛.
4
例2
讨论 p-级数
1 的收敛性(p 0 ).
np
n1
解
当
p 1 时,
1 np
1, n
y
而调和级数
1 发散,
n1 n
故原级数发散;
例10
(1 cos )
n1
n
解
lim(1 cos )
n
n
1 lim 1 ( )2
n2 n 2 n
1 2 n2 2 ,
收敛.
11
例11
1 n1 3n n
lim
n
3n
1
n
1 3n
1,
而 1 收敛, 所以原级数收敛. 3n n1
关于正项级数敛散性的判别法
关于正项级数敛散性的判别法作者: 学号: 单位: 指导老师摘要:级数是数学分析中的主要内容之一,我们学习过的数项级数敛散性判别法有许多种,柯西(Cauchy )判别法、达朗贝尔(D'Alembert )判别法、高斯(Gause )判别法、莱布尼兹(Leibniz )判别法、阿贝尔(Abel )判别法等,对数项级数敛散性判别法进行归纳,使之系统化.关键词:正项级数;敛散性;判别法1引言设数项级数121...++...nn n aa a a ∞+==+∑的n 项部分和为:121......nn n i i S a a a a ==++++=∑.若n 项部分和数列为{n S }收敛,即存在一个实数S ,使lim n x S S →∞=.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和,可见无穷级数是否收敛,取决于lim n x S →∞是否存在,从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]: 数项级数1nn a∞=∑收敛⇔0,,,N N n N p N ε++∀>∃∈∀>∀∈对,有+1+2++...+<n n n p a a a ε.当p=1时,可得推论:若级数∑∞=1n nu收敛,则u lim n n =∞→.其逆否命题为:若lim n ≠∞→,则级数∑∞=1n nu发散.2 正项级数敛散性判别法设数项级数1nn a∞=∑为正项级数()0n a ≥,则级数的n 项部分和数列{}n S单调递增,由数列的单调有界定理,有定理2.1:正项级数n 1u n ∞=∑收敛⇔它部分和数列{}n S 有上界.证明:由于,...),2,1(0u i =>i 所以{n S }是递增数列.而单调数列收敛的充要条件是该数列有界(单调有界定理),从而本定理得证 . 由定理2.1可推得 定理2.2(比较判别法):设两个正项级数n 1u n ∞=∑和n 1n v ∞=∑,且,n ,N N N ≥∀∈∃+有n n cv u ≤,c 是正常数,则1)若级数n 1n v ∞=∑收敛,则级数n 1u n ∞=∑也收敛;2)若级数n 1u n ∞=∑发散,则级数n 1n v ∞=∑也发散.证明:由定理知,去掉,增添或改变级数n 1u n ∞=∑的有限项,,则不改变级数n1u n ∞=∑的敛散性.因此,不妨设,+∈∀N n 有n n cv u ≤,c 是正常.设级数n 1n v ∞=∑与n1u n ∞=∑的n 项部分和分部是n B A 和n ,有上述不等式有,n n n n cB v v v c cv cv cv u A =+++=++≤+++=)...(......u u 212121n .1)若级数n 1n v ∞=∑收敛,根据定理1,数列{n B }有上届,从而数列{n A }也有上届,再根据定理1,级数n 1u n ∞=∑收敛;2)若级数n 1u n ∞=∑发散,根据定理1,数列{n A }无上届,从而数列{n B }也无上届,在根据定理1,级数n1un ∞=∑发散.其极限形式:定理2.2.1(比较判别法的极限形式):设n 1u n ∞=∑和n 1n v ∞=∑(n v 0≠)是两个正项级数且有lim =n x nuv λ→∞,+∞≤≤λ0,1)若级数n 1n v ∞=∑收敛,且+∞<≤λ0,则级数n 1u n ∞=∑也收敛;2)若级数n 1n v ∞=∑发散,且+∞≤<λ0,则级数n 1u n ∞=∑也发散.证明:1)若级数n1n v∞=∑收敛,且+∞<≤λ0,,由已知条件,,,,00N n N N ≥∀∈∃>∃+ε,有0u ελ<-nnv ,即n n v N )(u ,n 0ελ+<≥∀有,根据柯西收敛准则推论的逆否命题,级数n 1u n ∞=∑收敛;2)若级数n 1n v ∞=∑发散,且+∞≤<λ0,由已知条件,,u ,,,00n nv N n N N <-≥∀∈∃+∞<<∃+ελλε有:根据柯西收敛准则推论的逆否命题知,则级数n 1u n ∞=∑也发散.若级数n 1n v ∞=∑发散,且+∞=λ,有已知条件,,u ,,0M v N n N N M nn>≥∀∈∃>∃+有,即,u ,,0M v N n N N M nn>≥∀∈∃>∃+有,根据’柯西收敛准则推论的逆否命题,则级数n 1u n ∞=∑也发散.例1 判别级数∑∞=+1)1(1n n n 的敛散性.分析: 考虑通项)1(1+n n ,分子n 的最高幂是0(只有常数1 ),分母n 的最高幂是2,这时通项接近2201n n n =,原级数也接近于级数∑∞=121n n ,这是12>=p 的收敛的p-级数,那么原级数也一定收敛.事先知道级数是收敛的,就把通项放大,放大为一个收敛的级数通项,这个级数一般就是∑∞=121n n ,至多差一个系数. 解: 因为21)1(1n n n <+(分母缩小,分数放大),又由于∑∞=121n n收敛.则由此比较判别法,原级数∑∞=+1)1(1n n n 也收敛.例2 判别级数∑∞=--+12521n n n n 的敛散性. 分析: 考虑通项5212--+n n n ,分子n 的最高幂是1,分母n 的最高幂是2,这时通项接近,n n n 2122=,原级数也接近于级数∑∞=11n n,至多差一个系数.解: 因为52152221222--+≤--<=n n n n n n n n n (分子缩小,分母放大,分数缩小),又由于∑∞=11n n是发散的,则由比较判别法,原级数也是发散的.由比较判别法可推得:定理2.3(比值判别法——达朗贝尔判别法):设n 1u n ∞=∑(0>n u )为正项级数,且存在正常数q,则有1) 若,1u ,,1<≤≥∀∈∃++q u N n N N nn 有则级数n1un ∞=∑收敛;2) 若N n N N ≥∀∈∃+,,有1n n u v ≥,则级数n1u n ∞=∑发散. 证明:1)不妨设q N n n u u ,1n ≤∈∀+有, n=1, q u u 12≤;n=2,;u 2123q u q u ≤≤ n=3,;u 3134q u q u ≤≤......n=k,kk k q u u 11u ≤≤+......已知几何级数)10(11<<∑∞=q qu kk 收敛,根据柯西收敛准则推论的逆否命题,则级数n 1u n ∞=∑收敛.2)已知,1,n ,1≥≥∀∈∃++nn u u N N N 有即正项级数{n u }从N 项以后单调增加,不去近乎0()∞→0,则级数n1un ∞=∑发散.定理2.3.1(比值判别法的极限形式):设n 1u n ∞=∑(0>n u )为正项级数,且l u u n n n =+∞→1lim,有,1) 若1<l ,则级数n 1u n ∞=∑收敛;2) 若1>l ,则级数n 1u n ∞=∑发散.证明:1),1:q <<∃q l 由数列极限定义,l q l N N N l nn -<->∀∈∃>=∃++u u ,n ,,0-q 10有ε即1u u 1<<+q nn ,根据达朗贝尔判别法,级数n 1u n ∞=∑收敛;2)已知1>l ,根据数列极限的保号性,1u u ,,n1n >≥∀∈∃++有N n N N ,达朗贝尔判别法,级数n1un ∞=∑发散.例3 判别级数∑∞=1!n n n n 的敛散性. 解: 由于11])11(1[lim )1(lim ]!)1()!1([lim lim11<=+=+=++=∞→∞→+∞→+∞→en n n nn n n u u n n n n nn n n n n ,所以根据达朗贝尔判别法的推论知,级数∑∞=1!n nnn 收敛. 例4 判别级数∑∞=155n nn的敛散性.解: 由于15)1(5lim ]5)1(5[lim lim55511>=+=+=∞→+∞→+∞→n n nn u u n n n n n n n ,根据达朗贝尔判别法的推论知,级数∑∞=155n nn发散.当正项级数的一般项n u 具有积、商、幂的形式,且n u 中含有!n 、!!n 、n a 以及形如)()2)((nb a b a b a +++ 的因子时,用达朗贝尔判别法比较简便.定理2.4(根式判别法——柯西判别法):设n 1u n ∞=∑)0(u n >为正项级数,存在常数q ,则有1) 若,n ,N N N ≥∀∈∃+有1n <≤q u n ,则级数n 1u n ∞=∑收敛;2) 若存在自然数列的子列{}i n ,使得1u ≥nn ,则级数n 1u n ∞=∑发散.证明:1)已知,n ,N N N ≥∀∈∃+有qu n ≤n,有已知几何级数∑∞=<≤0n )10(q qn收敛,于是级数∑∞=0n nu收敛;2)已知存在无限个n,有1n≥n u ,即n u 趋近于0(∞→n ),于是级数n1un ∞=∑发散.定理2.4.1(根式判别法的极限形式):设n 1u n ∞=∑为正项级数,若lu n n n =∞→lim1) 若1<l 时,级数n 1u n ∞=∑收敛;2) 若1>l 时,则级数n 1u n ∞=∑发散.证明:1):q ∃1<<q l ,由数列极限定义,11,n ,,01q n 0<<--≥∀∈∃>-=∃+q u q l u N N N n n n 即有ε,根据柯西判别法,级数n 1u n ∞=∑收敛;2)已知1>l ,根据数列极限的保号性,1,n ,n >≥∀≥∃+n u N N N 有,根据柯西判别法,级数n 1u n ∞=∑发散.注意:在比值判别法和根式判别法的极限形式中,对=1r 的形式都为论及.实际上,当+1lim=1n x n u u →∞或+1lim =1n x nuu →∞时,无法使用这两个法判别来判断敛散性,如级数=11n n ∞∑和2=11n n∞∑,都有1+1lim =lim =11+1x x n n n n→∞→∞,()2221+1lim =lim =11+1x x n n n n →∞→∞⎛⎫ ⎪⎝⎭,lim x →∞,lim x →∞但前者发散而后者收敛.此外,定理2.3和定理2.4中,关于收敛条件+1q<1n nu u ≤和<1q ≤也不能放宽到+1<1n n u u,.例如对调和级数=11n n∞∑,有+1=<1+1n n u nu n ,,但级数却是发散的.例1 判别级数nnnn)12(1∑∞=+的敛散性.分析: 该级数的通项nnn)12(+是一个n次方的形式,于是联想到柯西判别法,对通项开n次方根,看其结果与1的大小关系.解: 由于12112lim)12(limlim<=+=+=∞→∞→∞→nnnnunnnnnnn,根据柯西判别法的推论,可得级数nnnn)12(1∑∞=+收敛.例2 判别级数∑∞=1ln32nnn的敛散性.解: 由于123232lim32limlimlnln>====∞→∞→∞→nnnnnnnnnnu,所以根据柯西判别法的推论知,级数∑∞=1ln32nnn发散.我们知道,广义调和级数(P-级数)11npnn=∑当1q>时收敛,而当1q≤时发散,因此,取P-级数作为比较的标准,可得到比比式判别法更为精细而又应用方便的判别法.即定理2.5(拉阿贝判别法):设1nnnu=∑是正项级数且有)0(u>n,则存在常数q,1)若11n,n,1>≥⎪⎪⎭⎫⎝⎛-≥∀∈∃++quuNNNnn有,则级数1nnnu=∑收敛;2)若11n,,1≤⎪⎪⎭⎫⎝⎛-≥∀∈∃++nnuuNnNN有,则级数1nnnu=∑发散.证明:1)由q u u n n ≥⎪⎪⎭⎫ ⎝⎛-+11n 可得n qu n n -<+1u 1,选p 使1<p<q.由 ()()()11lim11lim 111lim 100<=-=--=---→→∞→qpqx p qx x nq np x px pn ,因此,存在正数N ,是对任意n>N,pn n⎪⎭⎫ ⎝⎛-->111q ,这样p p p n n n n ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛---<+1111111u u n 1n ,于是,当n>N 时就有()Np PN PppN N N n n u n N u N N n n n n u u u u u .1.1...121.......u u u 11n 1n 1n -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-≤=++++,当p>1时,级数∑∞=1n n1p收敛,故级数 则级数1nn n u =∑收敛;2)由,1111111nn n u u u u n n n n n -=-≥≤⎪⎪⎭⎫ ⎝⎛-++可得于是222231-n n n 1n 1n .1u .21...12.1.u u .....u u .u u u u n n n n n u =--->=++,因为∑∞=1n 1n 发散,故级数1nnn u=∑发散.定理2.5.1(拉阿贝判别法的极限形式): 设正项级数∑∞=1n n u )0(>n u ,且极限存在,若.)1(lim 1l u u n nn n =-+∞→ 1)当1<l 时,级数∑∞=1n n u 收敛;2) 当1>l 时,级数∑∞=1n n u 发散.例1 讨论级数sn n n ∑∞=⎥⎦⎤⎢⎣⎡⋅⋅⋅-⋅⋅⋅1)2(42)12(31 当3,2,1=s 时的敛散性.分析: 无论3,2,1=s 哪一值,对级数sn n n ∑∞=⎥⎦⎤⎢⎣⎡⋅⋅⋅-⋅⋅⋅1)2(42)12(31 的比式极限,都有1lim1=+∞→nn n u u .所以用比式判别法无法判别该级数的敛散性.现在用拉贝判别法来讨论.解: 当1=s 时,由于)(12122)22121()1(1∞→<→+=++-=-+n n n n n n u u n n n , 所以根据拉贝判别法知,原级数是发散的.当2=s 时,由于)(1)22()34()2212(1)1(221∞→<++=⎥⎦⎤⎢⎣⎡++-=-+n n n n n n n u u n n n , 所以原级数是发散的.当3=s 时,∵)(23)22()71812()2212(1)1(3231∞→→+++=⎥⎦⎤⎢⎣⎡++-=-+n n n n n n n n u u n n n , 所以原级数收敛.考虑到级数与无穷积分的关系,可得 定理2.6(积分判别法):设函数()f x 在区间(]1,∞上非负且递减,()n u f n =,n=1,2,……,则级数1nnn u=∑收敛的充分必要条件是极限()1lim xx f x dt →∞⎰存在.证明:()0f x ≥,知()F x =1()xf t dt ⎰单调递增.1lim ()lim ()xx x F x f t dt →∞→∞∴=⎰存在⇔()F x 在(]1,∞有界.(充分性)设1lim ()x x f t dt →∞⎰存在,则存在0M >,使得(]11,,()xx f t dt M ∀∈∞≤⎰级数1n n u ∞=∑的部分和12...n n S u u u =+++()()()12...f f f n =+++()()()()231211...n n f f t dt f t dt f t dt -≤+++⎰⎰⎰()()()111nf f t dt f M=+≤+⎰即部分和数列有上界.所以级数1n n u ∞=∑收敛.(必要性)设正项级数1n n u ∞=∑收敛,则它的部分和有上界,即存在0,,M n N ≥∀∈有,n S M ≤从而对(]1,,x ∀∈∞令[]1n x =+ 则()()2311121()()...()xnn n f t dt f t dt f t dt f t dt f t dt -≤=++⎰⎰⎰⎰⎰()()()112...1n f f f n S M -≤+++-=≤.故极限1()x f t dt ⎰存在.由此我们得到两个重要结论: (1)p 级数11pn n∞=∑收敛1p ⇔>; (2)级数11ln pn n n∞=∑收敛1p ⇔>. 证明:1)在p 级数一般项中,把n 换位x ,得到函数1()(1)pf x x x =≥.我们知道,这个函数的广义积分收敛1p ⇔>,因此根据正项级数的广义积分判定法,结论成立.2)证法同(1). 例1 判别级数∑∞=131n n 的敛散性. 分析:因为将n 换成连续变量x ,即是31x ,显然函数31x在),1[+∞是单调减少的正值函数,所以可以用积分判别法.解:将原级数∑∞=131n n 换成积分形式dx x ⎰+∞131,由于21210)21()21(lim 21121213=+=---=-=+∞→+∞∞+⎰px dx x p ,即dx x ⎰+∞131收敛,根据积分判别法可知,级数∑∞=131n n 也收敛. 例2 证明调和级数∑∞=11n n发散.把n 换成连续变量x 得函数x1,显然这是一个在),1[+∞单调减少的正值函数,符合积分判别法的条件.解:将原级数∑∞=11n n换成积分形式dx x ⎰+∞11,由于+∞=-+∞==∞++∞⎰0ln 111x dx x ,即dx x ⎰+∞11发散,根据积分判别法可知,调和级数∑∞=11n n发散. 3 正项级数敛散性其他两种判别法定理2.7(阶的估计法):设1n n u ∞=∑为正项级数1()()n pu O n n=→∞,即n u 与1p n 当()n →∞是同阶无穷小,则1) 当1p >时,级数1n n u ∞=∑收敛;2) 当1p ≤是,级数1n n u ∞=∑发散.把比较判别法和比式判别法结合,又可得 定理2.8(比值比较判别法):设级数1n n u ∞=∑和1n n v ∞=∑是正项级数且存在自然数N ,使当n N ≥时有11n n n nu v u v ++≤,则1) 若1n n v ∞=∑收敛,则1n n u ∞=∑也收敛;2) 若1n n u ∞=∑发散,则1n n v ∞=∑也发散.证明:当n N ≥时,由已知得12121111.......n N N n N N n n N N N n N N n Nu u u u v v v vu u u u v v v v +++++-+-=≤=由此可得,N N n n n n N Nu vu v u v v u ≤≤.再由比较判别法即知定理结论成立. 主要参考文献:[1]刘玉琏、傅沛仁等,数学分析讲义(第三版).高等教育出版社,2003 [2]罗仕乐,数学分析绪论.韶关学院数学系选修课程,2003.8 [3]李成章、黄玉民,数学分析(上册).科学出版社,1999.5 [4]邓东皋、尹晓玲,数学分析简明教程.高等教育出版社,2000.6 [5]张筑生,数学分析新讲.北京大学出版社,2002.6 [6]丁晓庆,工科数学分析(下册).科学出版社,2002.9[7]R.柯朗、F.约翰,微积分与数学分析引论.科学出版社,2002.5(注:文档可能无法思考全面,请浏览后下载,供参考。
7.2正项级数敛散性的判别
∞
1 lim ln n = ∞ 而∑ 2 收敛, n →∞ n =1 n
∞
∞
ln n ∴ ∑ 2 的敛散性依据该定理无法判别. n =1 n
1 ln n n2 = lim ln n = lim ln x = lim x = lim 2 1 = 0 lim 1 n →∞ x →+∞ x →+∞ n →∞ 1 x x x →+∞ 1 2 n 3 2 x 2 n
3 2
n2 1 = lim 2 = n →∞ 3n − 1 3
而级 数 ∑
n =1 ∞
1 n
3 2
n 收敛 , ∴ 级 数 ∑ 2 收敛. n =1 3n − 1
∞
1 的敛散性 . 例 判定级数 ∑ n n =1 3 − n 1
∞
3 n = lim 1 ∵ lim 3 − n = lim = 1, 解 n n→ ∞ n→ ∞ 1 n n→ ∞ 3 − n 1−
当q < 1时, 收敛 n 1 ∑aq 敛散性 、 当q ≥ 1时, 发散 n=0
∞
1 2、调和级数 、 ∑n发散. n=1
∞
§7.2 正项级数敛散性的判别
• • • • 一、正项级数的概念 二、比较判别法 三、比值判别法 四、*根值判别法 根值判别法
一、正项级数
称为正项级数 正项级数. 定义 如果级数 ∑ un中各项均有 un ≥ 0, 这种级数 称为正项级数.
n=1 n =1 n =1 ∞ n=1 ∞
∞
∞
判 断 ∑ u n的 敛 散 性 .
n=1
∞
对欲求级数进行 缩小应缩小为发 发 散级数. 散级数
c n ≤ un ≤ v n
放大, 放大,缩小的方向
关于正项级数收敛性的判别法
关于正项级数收敛性的判别法On convergence of series with positive terms摘要正项级数作为级数理论中最基本的一类级数,它的敛散性的判定是级数理论的核心问题。
正项级数的敛散性判别方法有很多,本文对正项级数敛散性的各种判别法的特点与联系作了简单、系统的归纳与剖析。
正项级数不仅有一般级数收敛性的判别法,也有许多常用的和一些新的收敛性的判定方法,如比较判别法、柯西判别法、达朗贝尔判别法、拉贝判别法和对数判别法等,但运用起来有一定的技巧,需要根据对不同级数通项的特点进行分析,选择适宜的方法进行判定,这样才能够最大限度的节约时间,提高效率,特别是对于一些典型问题,运用典型方法,更能事半功倍。
关键词:级数;正项级数;收敛;发散。
AbstractDetermining whether or not a series is convergent in the series theory is the core issue. There are many ways to determine if a positive series is convergent. This thesis makes full analysis for the convergence determination methods for positive series. There are many common and some new convergence determination methods, such as comparison criterion, Cauchy criterion, d'Alembert criterion, Log Criterion and Rabe Criterion and other methods. But using which of these methods needs certain skills, needs to analyze the general items of the series. A lot of time can be saved if an appropriate method is used. Key words: Series;positive series; convergence; divergence.目录摘要................................................................................................................................................................. I I ABSTRACT.. (III)目录 (IV)引言 (1)1 基础知识 (2)1.1无穷级数的定义 (2)1.2无穷级数的部分和 (2)1.3无穷级数收敛的定义 (2)2 正项级数敛散性的常用判别法 (3)2.1柯西收敛原理[1] (3)2.2基本定理 (3)2.3比较判别法 (3)2.4达朗贝尔判别法 (4)2.5柯西判别法 (4)2.6积分判别法 (5)2.7阿贝尔判别法 (5)2.8狄利克雷判别法 (5)3 正项级数敛散性的一些新的判别法 (6)3.1定理1(比较判别法的推广) (6)3.2定理2(等价判别法) (6)3.3定理3(拉贝判别法)[3] (7)3.4定理4(高斯判别法)[5] (8)3.5定理5(库默尔判别法)[3] (8)3.6定理6(对数判别法)[4] (9)3.7定理7(隔项比值判别法)[3] (10)3.8定理8(厄尔马可夫判别法)[4] (10)3.9定理9(推广厄尔马可夫判别法)[4] (10)4 正项级数敛散性判别法的比较 (12)5 应用举例 (16)6 总结与展望 (20)参考文献 (21)致谢 (22)引言在数学分析中,数项级数是全部级数理论的基础,主要包括正项级数和交错级数,而正项级数在各种数项级数中是最基本的,同时也是十分重要的一类级数。
8.2正项级数敛散性的判别
r不存在时, 若 不存在时,比值法也不 . 能 ∞ ∞ un+1 1 1 ( 3)举例 : ∑ , ∑ n2 lim un = 1 n →∞ n =1 n n =1 发散! 收敛! 发散! 收敛! a n 的因子, 一般项中含有 n或 !的因子,宜用比值判别 . 法
例 1 .判定下列级数的敛散性 : ∞ n un+1 ( n + 1) 2n1 1 (1 ) ∑ n 1 lim = <1 = lim n n →∞ n →∞ n =1 2 un 2 n 2
n ∞
∞
π
证明收敛:un < 某一收敛级数. 证明收敛: 某一收敛级数. ∑ 1 n=1 ∞ 收敛. 例3.证明级数 ∑ 收敛. 某一发散级数. 证明发散: 证明发散:un > 某一发散级数. n =1 n! ∑ n=1 ∞ 1 证: 方向: < 某一收敛级数. 方向: 某一收敛级数. ∑ n=1 n ! ∞ ∞ 1 1 1 1 1 1 = < = n1 ∑ n1收敛 ∑ 收敛 n! 1 2 3L n 2 2L 2 2 n =1 2 n =1 n! ∞ 1 的敛散性. 例4.判定级数 ∑ 的敛散性. n=1 n( n + 1) 1 1 1 解: un = > = n( n + 1) ( n + 1)( n + 1) n + 1 ∞ ∞ 1 1 Q∑ 为调和级数少一项, ∴ 发散. 为调和级数少一项, ∑ 发散. n =1 n + 1 n =1 n + 1 ∞ 1 ∴∑ 发散. 发散. n( n + 1) n =1
∞
un+1 2n+1 ( n + 1)! n n 2 2 n! 收敛! ∑ nn lim u = lim ( n + 1)n+1 2n n!= e < 1 收敛! n →∞ n →∞ n=1 n
一个新的正项级数敛散性的判别法
A w ie i n o eCo v r e c n v r e c Ne Cr t ro f h n e g n e a d Di e g n e t
o h stv e i s ft e Po ii e S re
GU a mi g PENG o Xin- n , Ha
为正项级 数 ,且存 在正数 Ⅳ ,对 一切 ,>N ,有 2
< U V月
nI n n
于 是
做 比较标 准得 到一系列关于 正项级数 的敛散性判 别法 ,并 称为 B ra d判别法 ,但是 笔者在文章 中得到 的一种有别 et r n
( )若级数 1
于 B rad e r 判别法的新的判别法。首先先给出几个引理 : tn
第 3 卷第 2 4 期
唐 山 师 范 学 院 学 报
2 1 年 3月 02
∑“
也收敛 ; ( )若级 数 2
由拉格朗 日中值定理知 ,对 任意 l,存在 ' l ∈(, +1 一 )
使得
I( +1一I : nn ) n
∑“
发散 ,则
故
Un
一
<
±2 ±2 1
Ab t a t n t i a e an w rt ro sp o o e ic i n t ec n e g n e o o ii e s re y u i g s re s r c :I sp p  ̄ e c e i n wa r p s dt d s rmi a et o v r e c f st e sb sn e s h i o h p v i i
—l< 】l
我们得 到的定理 如下 :
! g1 o 州 i. m
显然
12.2正项级数的判别法
的收敛性.(
p
0)
解 1.当0p1时 , 1 np
1, n
则P级数发. 散
y
2.当p1时,由图可知
1 n dx
np x n1 p
sn12 1p3 1p n 1p
y
1 xp
(p1)
112d xpx nn1d xpx
o 1 234
x
2021/6/4
8
1
n dx 1 xp
1p11(1n1p1)
2021/6/4
6
其收敛性, 则首先要通过观察, 找到另一个已知级 数与其进行比较, 并应用定理2进行判断, 只有知道 一些重要级数的收敛性, 并加以灵活应用, 才能熟 练掌握比较判别法.
比较判别法的不便: 须有参考级数.
2021/6/4
7
例 1 讨论 P-级数
1
1 2p
1 3p
1 4p
1 np
两点注意:
1 . 当 1 时 比 值 审 敛 法 失 效 ;
例如,级数
1发散,
n1 n
级
数
n1
1 n2
收
敛,
(
1)
2021/6/4
26
2 . 条 件 是 充 分 的 , 而 非 必 要 .
例 如un22 ( n1)n23nvn,
级n 数 1unn 122 ( n1)n收,敛
但 uu nn 122(2 ( ( 1)1n)n 1)an,
1 1 p1
即sn有界, 则P级数收. 敛
故有:P级数 当 当pp 11时 时,,
收敛 发散
重要参考级数: 几何级数, P-级数, 调和级数.
2021/6/4
9
例 2 证明:级数
关于正项级数敛散性判定方法的总结比较
关于正项级数敛散性判定方法的总结比较摘要:本文将对正项级数的敛散性问题进行研究,引入常用的比较判别法和比值判别法,而后再给出相应的级数作为比较尺度后,得到了相应的达朗贝尔判别法和柯西根式判别法,并给出了相应的极限形式和上下极限形式的版本。
在采用更加精细的级数作为比较尺度后,引出了拉贝尔判别法,并对上述的几种方法进行了总结和分析。
关键词:正项级数敛散性达朗贝尔判别法柯西根式判别法拉贝尔判别法引言随着正负无穷的引入,人们对于数字的理解不再拘泥于传统意义上的有限数字。
此时,关于一列已知序列求和的敛散性问题便应运而生。
如何判断一列序列求和是有限的还是发散的,成为数学分析中的一个重要问题,受到了很多的关注和研究,产生了诸如比较判别法、达朗贝尔判别法和柯西根式判别法等等。
本文将对目前常用的一些判定方法进行归纳,并对它们的适用性和局限性进行分析。
一、比较判别法、比值判别法及达朗贝尔判别法我们在本节中将介绍三种常用的判别方法——比较判别法、比值判别法和达朗贝尔判别法,在引入序列的上下极限以后,给出极限形式和上下极限形式下的达朗贝尔判别法,从而使得达朗贝尔判别法得到很好的总结和完善。
而后改变比较级数的尺度,对达朗贝尔判别法进行推广,引入拉贝尔判别法,使得比较变得更加的精细和准确[1]。
1.比较判别法和比值判别法当我们遇到一个未知的序列以后,我们可以将它与已知的收敛或者发散的序列进行比较,进而来判断它的敛散性,从而诞生了比较判别法和比值判别法。
为了下文的行文的简单性,我们用符号来表示[2]。
定理1(比较判别法)假设级数和均为正项级数,那么我们有:(1)如果收敛且存在和,使得,,那么也收敛;(2)如果发散且存在和,使得,,那么也发散。
为了方便使用,我们这里引入极限形式的比值判别法.推论1设级数和均为正项级数令则有:(1)如果收斂,且,那么也收敛;(2)如果发散,且,那么也发散。
同样的,对于严格的正项级数我们可以得到如下的比值判别法.定理2(比值判别法)假设级数和都是严格的正项级数,那么我们有:(1)如果收敛,且存在,使得,,那么也收敛;(2)如果发散,且存在,使得,,那么也发散。
正项级数敛散性的判别方法
正项级数敛散性的判别方法摘要:正项级数是级数内容中的一种重要级数,它的敛散性是其基本性质。
正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。
根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。
关键词:正项级数;收敛;方法;比较;应用1引言数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。
英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。
因而,判断级数的敛散性问题常常被看作级数的首要问题。
我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。
我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。
因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。
2正项级数敛散性判别法2.1判别敛散性的简单方法由级数收敛的基本判别定理——柯西收敛准则:级数1nn u∞=∑收敛⇔0,,,,N N n N p N ε+∀>∃∈∀>∀∈有12n n n p u u u ε++++++<。
取特殊的1p =,可得推论:若级数1nn u∞=∑收敛,则lim 0n n u →∞=。
2.2比较判别法定理一(比较判别法的极限形式): 设1n n u ∞=∑和1n n v ∞=∑为两个正项级数,且有limnn nu l v →∞=,于是(1)若0l <<+∞,则1nn u∞=∑与1nn v∞=∑同时收敛或同时发散。
高等数学 级数 (11.2.1)--正项级数及其敛散性的判别法
n=1
2) 当 l 1时, un 发散
n=1
上海交大乐经良
例 讨论下列级数的敛散性
1) 2n n=1 n!
2)
2n + 3 n=1 3n 2
3)
ann! nn
n=1
(a 0)
三 . 根值判别法
若正项级数 un
n =1
满足
lim n
n
un
= l,
则
11.2.1 正项级数
若级数 un 满足 un 0, 则称之为正项级数 n=1
显然正项级数的部分和 Sn 单调增加,因此有
正项级数 un收敛 n=1 充分必要条件 部分和 Sn 有 界
例 讨论
p
1
级数 n=1 n p
的敛散性
上海交大乐经良
11.2.2 正项级数敛散性判别法
sin n n2
上海交大乐经良
2) (-1)n
n +1
n=1
n
H.W 习题 11 12 (1) (2) (4) (5) 13 (1)(2)(3)(4)(6)
上海交大乐经良
若级数
un
收n=1
n=1
若级数 un 发散 , 而级数 un 收敛 , 则称级数
n =1
n=1
un 条件收敛
n=1
命题 若级数 un 收敛 , 则级数 un 收敛
n =1
n=1
例 判别级数敛散性 , 并指出收敛类型
1)
n=1
n=1
n=1
上海交大乐经良
例 讨论下列级数的敛散性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
un
n 1
un (n 1) ln(n 1) u n 1 n ln n
成立,则
收敛。因为
un (n 1)[ln(n 1)] p u n 1 n(ln n) p
un
n 1
nu n ln p (n 1) ln p n 1 (n 1)u n 1 ln p n
n2
1
p
n
做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法,称为“对数判别法” 。 关键词:比较判别法;级数判别法的极限形式;Lagrange 中值定理;对数判别法 中图分类号: O173 A 文献标识码: 文章编号:1009-9115(2012)02-0031-03
A New Criterion of the Convergence and Divergence of the Positive Series
要使 n 足够大时有
1 p n 1 n ln n
来说,当 p 1 时是收敛的;当 p 1 是发散的。 2 主要结果 设正项级数 我们得到的定理如下: Theorem(Logarithm Test) 显然
n ln n[
成立,只需
nu n 1] 1 (n 1)u n 1 nu n 1] 1 (n 1)u n 1
-32故
ln(n 1) p ln n p
n
顾先明,等:一个新的正项级数敛散性的判别法
un (n 1)[ln(n 1)] p u n 1 n(ln n) p
n ln n[ lim p
n
n[ln n ] p p n [ln n] p
nun 1] s 1 ( n 1)un 1
n ln
n2
1
p
u n 1 v n 1 un vn
于是 (1)若级数
n
做比较标准得到一系列关于正项级数的敛散性判别法,并 称为 Bertrand 判别法,但是笔者在文章中得到的一种有别 于 Bertrand 判别法的新的判别法。首先先给出几个引理: Lemma 1[1] 设
v
n 1
lim n ln n[
n
un
n 1
n
lim
n
n
1
满足:
故当
nu n lim n ln n[ 1] s n (n 1)u n 1
则 (1)当 s 1 时,
lim n ln n[
n
nu n 1] 1 (n 1)u n 1
时,
un
时,
成立,只需
un
n 1
lim n ln n[
n
nun 1] (n 1)un 1
收敛。 此外,当 s 1 时此判别法失效。
lim p
n
n[ln n ] p n [ln n] p 1
p 1
[参考文献]
[1] 吴良森,等.数学分析学习指导书(下册)[M].北京:高等教
目前较常用而又精细的正项级数判别法是拉阿比判别 法,然而此判别法有时精确度仍然不够。本文以级数
u
n 1
n
n ln
n2
1
p
n
v
n 1
n
做比较标准, 得到一个比拉阿比判别法更为精细又应用方便 的判别法—“对数判别法” 。虽然文献[1-3]以对数级数
为正项级数,且存在正数 N ,对一切 n N ,有
n
收敛,则
────────── 基金项目:唐山师范学院的大学生科技创新立项项目 收稿日期:2011-01-22 作者简介:顾先明(1989-) ,男,安徽寿县人,本科学生,研究方向为函数论,计算数学。
-31-
第 34 卷第 2 期
唐山师范学院学报
2012 年 3 月
u
n 1
由拉格朗日中值定理知,对任意 n ,存在
若
lim n ln n[
n
nun 1] s 1 (n 1)un 1
教育出版社,2006:26. [2] 谢惠民,等.数学分析习题课讲义(下册)[M].北京:高等教 教育出版社,2004. [3] 菲赫金哥尔茨 . 徐献瑜 , 等译 . 微积分学教程 ( 第二卷 - 第 二分册)[M].北京:高等教育出版社,2007. [4] 华东师范大学数学系.数学分析(下册)(3 版)[M].北京:高 等教教育出版社,2006:13-14.
nu n n[ln n ] 1] p (n 1)u n 1 n [ln n] p 1
m n ln n[
n
n ln n[
nu n n[ln n ] p 1 1] p (n 1)u n1 n [ln n] p 1
n 1
un
n 1
发散。 收敛的情况可类似讨论:设数列 {u n } 是正项数列,若 存在 p 1 使得 n 足够大时,有
收敛; (2)当 s 1 时,
un
n 1
un (n 1)[ln(n 1)] p u n 1 n(ln n) p
成立,则
发散。 先考虑发散的情况。设数列 {u n } 是正项数列,若 n 足 够大时,由比较判别法有
第 34 卷第 2 期 Vol.34 No.2
唐山师范学院学报 Journal of Tangshan Teachers College
2012 年 3 月 Mar. 2012
一个新的正项级数敛散性的判别法
顾先明,彭 浩
063000) (唐山师范学院 数学与信息科学系,河北 唐山 摘 要:用级数
n ln
发散。 为了应用方便, 我们来寻求像拉阿比判别法那样的 “极 限形式” : 使得
由拉格朗日中值定理知,对任意 n ,存在
n (n, n 1)
p[ln n ] p 1
un (n 1) ln(n 1) u n 1 n ln n nu n ln(n 1) ln n 1 (n 1)u n 1 ln n
取
p
就有
1 s 1 2 nun 1] (n 1)un 1
lim n ln n[
n
(责任编辑、校对:赵光峰)
-33-
GU Xian-ming, PENG Hao
(Department of Mathematics and Information Science, Tangshan Teachers College, Tangshan 063000, China) Abstract: In this paper, a new criterion was proposed to discriminate the convergence of positive series by using series
n
n (n, n 1)
使得
也收敛; (2)若级数
u
n 1
ln(n 1) ln n
故
1
n
n
发散,则
v
n 1
n
un (n 1) ln(n 1) u n 1 n ln n
n ln n[
亦发散。 Lemma 2[2] 对于正项级数
nu n 1] 1 , (n 1)u n 1
n ln
n2
1
p
n
as a comparing standard. This type of criterion is finer and more convenient than that frequently-used Raaba’s criterion. Key Words: new criterion; positive series; ponvergence; Raaba’s criterion 1 引言 和