人教版八年级数学下一次函数的应用含答案全解全析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s

人教版八年级数学下一次函数的应用

一.选择题(共2小题)

1.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.

A.6B.8C.9D.12

二.填空题(共1小题)

2.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l

、l

分别表示甲、乙两人前往目的地所走的路程(km)随时间(分)变化的函数图象.乙出发分钟后追上甲.

三.解答题(共11小题)

3.甲、乙两人同求方程ax﹣b y=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.

4.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:

销售时段销售数量

A种型号

第一周3台

销售收入

B种型号

5台1800元

第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)

(1)求A、B两种型号的电风扇的销售单价;

(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?

(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

5.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:

(1)甲车间每天加工大米吨,a=.

(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?

6.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.

(1)第24天的日销售量是件,日销售利润是元.

(2)求y与x之间的函数关系式,并写出x的取值范围;

(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?

7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题

(1)起点A与终点B之间相距米.

(2)哪支龙舟队先到达终点?(填“甲”或“乙”)

(3)分别求甲、乙两支龙舟队离开起点的距离y关于x的函数关系式;

(4)甲龙舟队出发多长时间时,两支龙舟队相距200米?

8.某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:

购买数量低于5000块购买数量不低于5000块

红色地砖

蓝色地砖

原价销售

原价销售

以八折销售

以九折销售

如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.

(1)红色地砖与蓝色地砖的单价各多少元?

(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.

9.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出

售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y

、y

乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.

(1)直接写出y

,y

关于x的函数关系式;

(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?

10.某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:

(1)生产A,B两种产品的方案有哪几种;

(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.

11.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)

第一次

第二次

A

2

1

B

1

3

55

65根据以上信息解答下列问题:

(1)求A,B两种商品的单价;

(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.

12.武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:

相关文档
最新文档