《材料力学性能》复习提纲
安徽工业大学 工程材料力学性能复习提纲整理(1)
1.包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~2%),卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。
2.用低密度可动位错理论解释屈服现象产生的原因金属材料3.答:塑性变形的应变速率与可动位错密度、位错运动速率及柏氏矢量成正比欲提高v就需要有较高应力τ这就是我们在实验中看到的上屈服点。
一旦塑性形变产生,位错大量增值,ρ增加,则位错运动速率下降,相应的应力也就突然降低,从而产生了屈服现象。
(回答不完整,尤其是上屈服点产生的原因回答的不好)3.塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质。
强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。
韧性:表示材料在塑性变形和断裂过程中吸收能量的能力脆性:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
4.韧性断裂与脆性断裂的区别,为什么脆性断裂最危险?答:韧性断裂是材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量,韧性断裂的断裂面的断口呈纤维状,灰暗色。
脆性断裂是突然发生的断裂,断裂前基本不发生塑性变形,没有明显征兆,因而危害性极大,脆性断裂面的断口平齐而光亮,常呈放射状或结晶状。
5.试指出剪切断裂与解理断裂哪一个是穿晶断裂,哪一个是沿晶断裂?哪一个属于韧性断裂,哪一个属于脆性断裂?为什么?答:都是穿晶断裂,剪切断裂是材料在切应力作用下沿滑移面发生滑移分离而造成的断裂,断裂面为穿晶型,在断裂前会发生明显的塑性变形,为韧性断裂;而解理断裂是材料在正应力作用下沿一定的晶体学平面产生的断裂,也为穿晶断裂,但断裂面前无明显的塑性变形,为脆性断裂。
6.拉伸断口的三要素:纤维区、放射区、剪切唇7. 理论断裂强度的推导过程是否存在问题?为什么?为什么理论断裂强度与实际的断裂强度在数值上有数量级的差别?答:(1)虽然理论断裂强度与实际材料的断裂强度在数值上存在着数量级的差别,但是理论断裂强度的推导过程是没有问题的。
材料力学性能复习提纲
σs—材料的屈服强度,用应力表示材料的屈服点或下屈服点,表征材料对微量塑性变形的抗力。
σb抗拉强度,只代表金属材料所能承受的最大拉伸应力,表征金属材料对最大均匀塑性变形的抗力。
n应变硬化指数,反映金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标。
A断后伸长率,是试样拉断后标距的残余伸长(Lu-L0)与原始标距L0之比的百分率。
表征金属材料断裂前发生塑性变形的能力。
Agt它是金属材料拉伸时产生的最大均匀塑性变形量。
Z断面收缩率,它是指试样拉断后,缩颈处横截面积的最大缩减量与原始横截面积之比的百分率。
K:冲击吸收能量,材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。
KV: V型缺口的冲击吸收功。
KU: U型缺口的冲击吸收功。
NDT:Rmc:抗压强度,试样压至破坏过程中的最大应力。
σbb:抗弯强度,在三点弯曲试验中,试样弯曲至断裂前达到的最大弯曲力。
τm:抗扭强度,金属试样在扭断前承受的最大扭矩Tm与试样抗弯截面系数W的商NSR:缺口敏感度,表征材料的缺口敏感性。
HBW:压头为硬质合金球的材料的布氏硬度。
HRA:压头为金刚石圆锥的材料的洛氏硬度。
IC K 和C K:IC K 为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗C K 为平面应力断裂韧度,表示平面应力条件下材料抵抗裂纹失稳扩展的能力。
同属于Ⅰ型裂纹的材料断裂韧性指标,但C K 与试样厚度有关。
IC K 与试样厚度无关,是真正的材料常数。
G1C:当增加到某一临界值时,能克服裂纹失稳扩展的阻力,则裂纹失稳扩展断裂。
J1C:断裂韧度,表示材料抵抗裂纹开始扩展的能力δC:断裂韧度,表示材料阻σscc:金属材料抗应力腐蚀性能指标表示材料不发生应力腐蚀的临界应力K1scc:应力腐蚀临界应力场强度因子,即试样在特定化学介质中不发生应条件下的断裂韧度。
K1HEC:氢脆临界应力场强度因子表示试样在化学介质中不发生应力腐蚀断裂的da/dt:应力腐蚀裂纹扩展速率,即单位时间内裂纹的扩展量。
材料力学性能-考前复习总结(前三章)
材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。
材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。
其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。
应力软性系数:最大切应力与最大正应力的相对大小。
1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
ae=1/2σeεe=σe2/2E。
取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。
需通过合金强化及组织控制提高弹性极限。
2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。
①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。
金属中点缺陷的移动,长时间回火消除。
弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。
吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。
②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。
材料力学性能复习重点
第一章包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(P)或屈服强度(S)增加;反向加载时弹性极限(P)或屈服强度(S)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面一一解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
可以从河流花样的反“河流”方向去寻找裂纹源。
解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。
5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑(一)影响屈服强度的内因素1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力一一派拉力、位错运动交互作用产生的阻力)决定。
派拉力:位错交互作用力aGb(a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。
)2.晶粒大小和亚结构晶粒小f晶界多(阻碍位错运动)一位错塞积一提供应力一位错开动一产生宏观塑性变形。
晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。
屈服强度与晶粒大小的关系:霍尔一派奇(Hall-Petch)s= i+kyd-1/23.溶质元素加入溶质原子一(间隙或置换型)固溶体一(溶质原子与溶剂原子半径不一样)产生晶格畸变一产生畸变应力场一与位错应力场交互运动一使位错受阻一提高屈服强度(固溶强化)。
4.第二相(弥散强化,沉淀强化)不可变形第二相提高位错线张力一绕过第二相一留下位错环一两质点间距变小f流变应力增大。
工程材料力学性能各章节复习知识点
工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。
塑性:指金属材料断裂前发生塑性变形的能力。
脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。
韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。
应力、应变;真应力,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。
用肉眼或放大镜观察时,断口呈纤维状,灰暗色。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。
其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
板状矩形拉伸试样断口呈人字形花样。
人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。
缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。
材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。
在某些合金中,增强效果随合金元素含量的增加而下降。
材料的晶粒变粗,增强效果提高。
第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
材料力学性能复习
第二章 材料在静载荷下的力学性能1. 连续塑性变形强化材料和非连续塑性形变强化材料曲线、变形过程、屈服强 度。
2.指出以下应力应变曲线与哪些典型材料相对应,并对其经历的变形过程做出说明。
G 局语度钢、高腻耦{淬火十髙五回火}等2低碳钢、低合金踽枸锯3. 拉伸断裂前,发生少量塑性变形,无颈缩,在最高载荷点处断裂;°应费材料分类: 尸脆性材料 尸塑性材料 沪高分子材料4.断裂前先发生弹性变形,然后进入屈服阶段,之后发生形变强化+均匀塑性变形,有颈缩现象,再发生非均匀塑性变形直至断裂 5. 应力状态软性系数的定义及其意义、应力状态图的应用口应力状态软性系救斷区 6. 画出低碳钢的应力应变曲线,并说明获得该材料的强度和塑性指标?比例极限 屈服极限 断裂强度 弹性极限强度极限延伸率 断面收缩率7. 工程应力、工程应变、真应力和真应变之间有什么关系定5G乜一足性描达菓一应力狀态下材料哽 形过営中的帮性与腸性就向I </壑E 区[卜.费•疋是揚性斷顒吗?拉伸曲线〔低碳钢)厢变霍比*均勺婕性变形 非均匀显性变堆 单性先雁 弹性曼形8.为什么灰口铸铁的拉伸断口与拉伸轴垂直,而压缩断口却与压缩力轴成45o 角?7 *;庄鴨斤为布达钳Mtt 准眇7壺力忒靭J 莊扭叶苛愈會4尿逐未劇■叩怦外就占聊〔甲时驱呼$曲甲由打‘僭触抵’妇妙阳知/专歼 料r 老乍如右丿弼・勺毓甲力押爭歹:9.材料为灰铸铁,其试样直径 d=30mm ,原标距长度h 。
=45mm 。
在压缩试验时,当试样承受到485kN 压力时发生破坏,试验后长度h=40mm 。
试求其抗11.现有如下工件需测定硬度,选用何种硬度试验方法为宜 ?(1)渗碳层的硬度分布;⑵灰铸铁;⑶淬火钢件;(4)氮化层;⑸双相钢中的铁素体和马氏体;(6)高速钢刀具;(7)硬质合金;(8)退火态下的软钢。
第三章材料的变形12.金属的弹性模量主要取决于什么?材料的弹性模量可以通过材料热处理等方式 进行有效改变的吗?为什么说它是一个对结构不敏感的力学性能? 弹性也称之为 刚度,都是表征材料变形的能力? 特点:单值性,可逆性,变形量小;物理本质:克服原子间力(双原子模型) 组织不敏感:E 主要取决于材料的本性,与晶格类型和原子间距有关,合金 中固溶原子、热处理工艺、冷塑性变形,温度、加载方式等都对弹性模量影 响不大;Q = —= = E A刚度: _________ 性与刚度是不同的,弹性表征材料弹性变形的能力,刚度表征材料弹性变形的抗力。
《材料力学性能》复习提纲(安工大)
《材料力学性能》复习提纲第一章金属在单向静拉伸载荷下的力学性能1.拉伸变形过程;2.弹性不完整性(滞弹性,包申格效应),循环韧性;3.塑性变形方式,滑移,均匀屈服产生机制,影响屈服强度的因素;4.应变硬化(形变强化)及其产生原因和工程意义;5.缩颈,抗拉强度;6.塑性、脆性及韧性,塑性指标;7.机件的失效形式:磨损、腐蚀和断裂;8.断裂的分类及各类断口特征,韧性断裂和脆性断裂的区别,哪种断裂更危险及其原因;9.拉伸断口的三要素以及强度和塑性对断口三个区域组成的影响;10.微孔聚集断裂过程;11.格雷菲斯裂纹理论(原理,出发点,必要条件);12.为什么理论断裂强度与实际断裂强度在数值上有数量级的差别;13.机械设计中最常用的两个强度指标为:屈服强度和抗拉强度;14.碳含量对钢拉伸曲线的影响。
第二章金属在其他静载荷下的力学性能1.应力状态软性系数α及其代表的意义;2.压缩、弯曲、扭转试验的特点;3.缺口效应(定义及由于缺口引起的两个效应),理论应力集中系数,缺口敏感度及其代表的意义;4.硬度的分类、符号表示方法、测试(布氏硬度、洛氏硬度、维氏硬度)原理\方法;5.课后作业P55页的8题。
第三章金属在冲击载荷下的力学性能1.冲击韧性;2.低温脆性、韧脆转变温度及其确定方法、韧性温度储备;3.产生低温脆性的物理本质和机理;4.影响韧脆转变温度的因素。
第四章金属的断裂韧度1.低应力脆断;2.裂纹的扩展形式;3.应力场强度因子KⅠ定义及其表达式;4.材料的断裂韧度,断裂K判据,断裂G判据;55.KⅠ和K IC,G IC与K IC的关系;6.KⅠ的修正条件,考虑应力松弛时塑性区宽度(平面应力,平面应变),修正后KⅠ计算公式;7.断裂韧度测试时试样的制备(满足条件);8.张开位移δ(COD),断裂δ判据;9.平面应力和平面应变;10.有关断裂韧度的计算。
第五章金属的疲劳1.疲劳;2.疲劳断裂的特点,疲劳断口的宏观(贝纹线)与微观特征(存在疲劳条带);3.疲劳曲线(S-N曲线),疲劳极限σ-1;4.过载损伤,过载损伤界,过载持久值,过载损伤区;5.疲劳缺口敏感度及其代表的意义;6.疲劳裂纹扩展门槛值ΔK th,ΔK th和σ-1区别;7.材料的疲劳过程,疲劳裂纹的形成机理、阻止其产生的措施;8.疲劳裂纹的扩展过程,扩展第二阶段的断口特征,贝纹线和疲劳条带的区别;9.疲劳的分类(P96低周、高周、热疲劳、热机械疲劳)10.影响疲劳强度的因素;11.高周疲劳、低周疲劳定义,低周疲劳的特点(P120);12.循环软化,循环硬化,过渡寿命。
材料力学性能总复习
《材料力学性能》课程期末总复习一、名词解释刚度、形变强化、弹性极限、应力腐蚀开裂、韧性、等温强度、缺口效应、磨损、腐蚀疲劳、脆性断裂、等强温度、应力松弛、Bauschinger效应、粘着磨损、缺口敏感度、冲击韧度、滞弹性、韧脆转变温度、应力腐蚀、抗拉强度、蠕变、高温疲劳、低应力脆断、氢脆、弹性变形、应力状态软性系数、应力幅、应力场强度因子、变动载荷、抗热震性、弹性比功、残余应力、比强度、高周疲劳、约比温度、滑移、应变时效、内耗、断面收缩率、腐蚀磨损二、选择题1、Bauschinger效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限()的现象。
A.升高 B.降低 C.不变 D.无规律可循2、橡胶在室温下处于:()A.硬玻璃态 B.软玻璃态 C.高弹态 D.粘流态3、下列金属中,拉伸曲线上有明显屈服平台的是:()A.低碳钢 B.高碳钢 C.白口铸铁 D.陶瓷4、HBS所用压头为()。
A.硬质合金球B.淬火钢球C.正四棱金刚石锥D.金刚石圆锥体5、对称循环交变应力的应力比r为()。
A.-1 B.0 C.-∞ D.+∞6、Griffith强度理论适用于()。
A.金属 B.陶瓷 C.有机高分子 D.晶须7、疲劳裂纹最易在材料的什么部位产生()。
A.表面 B.次表面 C.内部 D.不一定8、⊿Kth表示材料的()。
A.断裂韧性B.疲劳裂纹扩展门槛值C.应力腐蚀破裂门槛值D.应力场强度因子9、拉伸试样的直径一定,标距越长则测出的断面收缩率会()。
A.越高 B.越低 C.不变 D.无规律可循10、下述断口哪一种是延性断口()。
A.穿晶断口 B.沿晶断口 C.河流花样 D.韧窝断口11、与维氏硬度可以相互比较的是()。
A.布氏硬度 B.洛氏硬度 C.莫氏硬度 D.肖氏硬度12、为提高材料的疲劳寿命可采取如下措施()。
A.引入表面拉应力B.引入表面压应力C.引入内部压应力D.引入内部拉应力13、材料的断裂韧性随板材厚度或构件截面尺寸的增加而()。
《材料的力学性能》西北工业大学出版社--复习资料
《材料的力学性能》第一章 材料的拉伸性能名词解释:比例极限P σ,弹性极限e σ,屈服极限s σ,屈服强度0.2σ,抗拉强度b σ,延伸率k δ,断面收缩率k ψ(P7-8),断裂强度f σ(k σ),韧度(P10)1、拉伸试验可以测定那些力学性能?对拉伸试件有什么基本要求? 答:拉伸试验可以测定的力学性能为:弹性模量E ,屈服强度σs ,抗拉强度σb ,延伸率δ,断面收缩率ψ。
2、拉伸图和工程应力-应变曲线有什么区别?试验机上记录的是拉伸图还是工程应力-应变曲线?答:拉伸图和工程应力—应变曲线具有相似的形状,但坐标物理含义不同,单位也不同。
拉伸图横坐标为伸长量(单位mm ),纵坐标为载荷(单位N );工程应力-应变曲线横坐标为工程应力(单位MPa ),纵坐标为工程应变(单位无)。
试验机记录的是拉伸图。
3、脆性材料与塑性材料的应力-应变曲线有什么区别?脆性材料的力学性能可以用哪两个指标表征?答:如下图所示,左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂,说明是脆性材料。
右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂,说明是塑性材料。
脆性材料力学性能用“弹性模量“和”脆性断裂强度”来描述。
4、塑性材料的应力-应变曲线有哪两种基本形式?如何根据应力-应变曲线确定拉伸性能?答:分为低塑性和高塑性两种,如下图所示。
左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。
右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。
5、何谓工程应力和工程应变?何谓真应力和真应变?两者之间有什么定量关系?答:6、如何测定板材的断面收缩率?答:断面收缩率是材料本身的性质,与试件的几何形状无关,其测试方法见P8。
材料力学性能复习资料
材料力学性能复习资料一、 说明下列力学性能指标的意义1) Pσ 比例极限 2) eσ 弹性极限 3) bσ抗拉强度 4) sτ扭转屈服强度 5) bbσ抗弯强度 6) HBW 压头为硬质合金球时的布氏硬度7) HK 显微努氏硬度8) HRC 压头为顶角120︒金刚石圆锥体、总试验力为1500N 的洛氏硬度9) KV A 冲击韧性10) K IC 平面应变断裂韧性 11) Rσ应力比为R 下的疲劳极限 12) ∆K th 疲劳裂纹扩展的门槛值 13) ISCCK 应力腐蚀破裂的临界应力强度因子 14) /Tt εσ给定温度T 下,规定试验时间t 内产生一定的蠕变伸长率δ的蠕变极限15) Ttσ给定温度T 下,规定试验时间t 内发生断裂的持久极限二、单向选择题1)在缺口试样的冲击实验中,缺口越尖锐,试样的冲击韧性( b )。
a) 越大; b) 越小;c ) 不变;d) 无规律2)包申格效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限( b )的现象。
a) 升高;b) 降低;c) 不变;d) 无规律可循3)为使材料获得较高的韧性,对材料的强度和塑性需要( c )的组合。
a) 高强度、低塑性;b) 高塑性、低强度;c) 中等强度、中等塑性;d) 低强度、低塑性4)下述断口哪一种是延性断口(d )。
a) 穿晶断口;b) 沿晶断口;c) 河流花样;d) 韧窝断口5) 5)HRC是( d )的一种表示方法。
a) 维氏硬度;b) 努氏硬度;c) 肖氏硬度;d) 洛氏硬度6)I型(张开型)裂纹的外加应力与裂纹面(b);而II型(滑开型)裂纹的外加应力与裂纹面()。
a) 平行、垂直;b) 垂直、平行;c) 成450角、垂直;d) 平行、成450角7)K ISCC 表示材料的( c )。
a) 断裂韧性; b) 冲击韧性;c ) 应力腐蚀破裂门槛值;d) 应力场强度因子8)蠕变是指材料在( B )的长期作用下发生的塑性变形现象。
材料力学性能复习大纲
材料力学性能复习大纲一、名词解释10个×3分=30分二、单项选择12个×2分=24分三、简答题5个×6分=30分四、论述题1个×16分=16分————————————————————————————————————————————————第一章金属在单向静拉伸载荷下的力学性能基本概念工程应力-应变曲线:将拉伸力-伸长曲线的纵、横坐标分别用拉伸试样的原始截面积A0和原始标距长度L0去除,则得到应力-应变曲线。
因均以一常数相除,故曲线形状不变,这样的曲线称为工程应力-应变曲线。
真应力-真应变曲线:用拉伸过程中每一瞬间的真实应力和真实应变绘制曲线,则得到真实应力-应变曲线。
比例极限:保证材料的弹性变形按正比关系变化的最大应力。
弹性极限:材料由弹性变形过渡到弹塑性变形时的应力,是表征开始塑性变形的抗力。
弹性比功:表示材料在弹性变形过程中吸收变形功的能力,又称弹性比能、应变比能。
屈服强度、抗拉强度、屈服现象:拉伸试验中,材料由弹性变形转变为弹塑性变形状态的现象。
应变硬化指数:应变硬化指数反映金属材料抵抗继续塑性变形的能力,是表征金属应变硬化的性能指标。
强度、塑性、韧度滞弹性:在弹性范围内快速加载或卸载后,弹性应变落后于外加应力,并随时间延长产生附加弹性应变的现象,称为滞弹性(弹性后效)。
内耗:加载时消耗的变形功大于卸载时释放的变形功,这部分被金属吸收的功,称为内耗。
包申格效应:金属材料经过预先加载产生少量塑性变。
卸载后,若再同向加载,则规定残余伸长应力增加;若反向加载,则规定残余伸长应力降低的现象。
韧性断裂:金属材料断裂前产生明显宏观塑性变形的断裂。
脆性断裂:材料断裂前基本上不发生明显的宏观塑性变形的断裂。
穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,大部分是脆性断裂。
解理断裂:解理断裂是金属材料在一定条件下(如低温),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂。
材料力学性能复习提纲
材料力学性能复习提纲1)弹性模量的概念,单晶体、多晶体的弹性模量各自的特点。
弹性模量:抵抗正应变的能力。
E= σ/ε(P11)单晶体金属的弹性模量表现为各向异性,多晶体金属的弹性模量表现为伪各向同性。
非晶态材料的弹性模量表现为各向同性(P12)2)弹性比功的定义和工程意义。
弹性比功的定义:表示金属材料吸收变形功的能力,又叫弹性比能。
工程意义:弹性比功是指材料吸收变形功而不发生永久变形的能力,它标志着单位体积材料所吸收的最大弹性变形功,是一个韧度指标。
a e=σeεe/2=σe2/(2E) (P12-13)3)弹性滞后环应变落后于应力,加载时消耗在变形上的功大于卸载时金属恢复变形所做的功,其面积表示金属吸收不可变形功的能力。
(P16)4)塑性变形的主要方式和特点方式:滑移和孪生特点:1、不可逆性,2、变形条件应力大于屈服强度,3、变形量大,4、非线性。
(p19) 附:1.各晶粒塑性变形的不同时性和不均匀性;2.各晶粒塑性变形的相互制约和协调。
多晶体塑性变形的必要条件:至少5个独立的滑移系。
5)屈服现象受力式样中,应力达到某一特定值后,开始大规模塑性变形的现象。
(p20)6)应变硬化材料开始屈服以后继续变形将产生加工硬化。
S=Ke n n为应变硬化指数。
理想弹性体n=1为一条45°的斜线,理想塑性体n=0为一条水平直线,n=1/2为一条抛物线(P28)7)细晶强化、固溶强化的概念和特点细晶强化:通过细化晶粒尺寸提高材料强度的方法称为细晶强化。
特点:晶粒越细,金属的强度、硬度越高,同时塑形、韧性也越好。
固溶强化:金属中溶入溶质原子(间隙固溶、置换固溶)形成固溶体,其屈服强度会明显提高,这种提高强度的方法称为固溶强化。
特点:强度、硬度增加,而韧性、塑性有所下降。
8)颈缩的概念及其判据概念:是韧性金属材料在拉伸试验时,变形集中于局部区域的现象,是材料加工硬化和试样截面减小共同作用的结果。
判据:真应变在数值上与应变强化指数相等。
材料力学性能复习提纲(答案)
材料⼒学性能复习提纲(答案)⼀、名词解释弹性:指物体在外⼒作⽤下发⽣形变,当外⼒撤消后能恢复原来⼤⼩和形状的性质塑性:指⾦属材料断裂前发⽣塑性变形(不可逆永久变形)的能⼒。
弹性模量:单纯弹性变形过程中应⼒与应变的⽐值,表⽰材料对弹性变形的抗⼒。
(⼯程上弹性模量被称为材料的刚度,表征⾦属材料对弹性变形的抗⼒,其值越⼤,则在相同应⼒下产⽣的弹性变形就越⼩)包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余延伸强度(或屈服强度)增加;反向加载,规定残余延伸强度降低的现象。
滞弹性:在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象。
河流花样:是判断是否为解理断裂的重要微观证据。
解理⾯:指⾦属材料在⼀定条件下(如低温),当外加正应⼒达到⼀定数值后,以极快速率沿⼀定晶体学平⾯产⽣的穿晶断裂;因与⼤理⽯的断裂相似,所以称这种晶体学平⾯为解理⾯。
断裂韧度:在弹塑性条件下,当应⼒场强度因⼦增⼤到某⼀临界值,裂纹便失稳扩展⽽导致材料断裂,这个临界或失稳扩展的应⼒场强度因⼦即断裂韧度。
韧脆转变:(体⼼⽴⽅合⾦随着温度的降低表现出从延性到脆性⾏为的转变。
该转变发⽣的温度范围可以通过摆锤式或悬臂梁式冲击实验来确定。
【材科定义】)当温度低于某⼀数值时,某些⾦属的塑性(特别是冲击韧性)会显著降低⽽呈现脆性的现象。
缺⼝敏感度:⾦属材料的缺⼝敏感性指标⽤缺⼝试样的抗拉强度σbn与等截⾯尺⼨光滑试样的抗拉强度σb的⽐值表⽰,称为缺⼝敏感度,记为NSR。
冲击韧性:指材料在冲击载荷作⽤下吸收塑性变形功和断裂功的能⼒,⽤标准试样的冲击吸收功A k表⽰。
应⼒松弛:在⾼温保证总应变不变的情况下,会发⽣应⼒随着时间延长逐渐降低的现象.该现象叫应⼒松弛。
疲劳贝纹线:贝纹线是疲劳区的最⼤特征,⼀般是由载荷变动引起的。
⾼周疲劳:指材料在低于其屈服强度的循环应⼒作⽤下,经10000-100000 以上循环次数⽽产⽣的疲劳。
《材料力学性能》复习提纲
材料力学性能》复习提纲第一章金属在单向静拉伸载荷下的力学性能1. 拉伸变形过程;可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形、不均匀集中塑性变形和断裂几个阶段。
2. 弹性不完整性(滞弹性,包申格效应),循环韧性;弹性不完整性:金属的弹性变形与载荷方向和加载时间有关而表现出的非弹性性质。
金属在弹性变形中存在滞弹性(弹性后效)和包申格效应等弹性不完整现象。
一、滞弹性(弹性后效)定义:在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹性应变,即应变落后于应力的现象。
二包申格效应定义:材料经预先加载并产生少量塑性变形(残余应变为1%~4%),卸载后,再同向加载,规定残余伸长应力增加,反向加载规定残余伸长应力降低的现象,称为包申格效应。
循环韧性:金属材料在交变载荷作用下吸收不可逆变形功的能力,叫做循环韧性,也称为内耗3. 塑性变形方式,滑移,均匀屈服产生机制,影响屈服强度的因素;一•塑性变形的主要方式:滑移,孪生滑移:指的是金属在切应力作用下沿一定晶面(滑移面)和一定晶向(滑移方向)进行的切变过程。
二•均匀屈服1、均匀屈服曲线的特点有上、下屈服点,没有屈服平台。
2、均匀屈服的机制低密度可动位错理论,柯氏气团钉扎理论,位错塞积群理论三•影响屈服强度的因素一阻碍位错运动1、影响屈服强度的内因(1)基体金属的本性及晶格类型(P12)塑性变形主要沿基体相进行。
(2)溶质原子固溶强化:在纯金属中加入溶质原子形成固溶体合金,将显著提高屈服强度,称为固溶强化。
(3)晶粒大小和亚结构晶界(亚晶界)是位错运动的障碍。
细晶强化:用细化晶粒提高金属屈服强度(同时可以提高其塑性)的方法称为细晶强化。
(4)第二相位错切过或绕过沉淀强化(时效强化):依靠过饱和固溶体的脱溶产生的强化。
弥散强化:用粉末冶金的方法人为地加入第二相所造成的强化。
F b沉淀强化与弥散强化的相同点:第二相以细小颗粒形式分布于基体中 沉淀强化与弥散强化之间的不同点如下表:强化 类型强化机理 热稳定性 相图要求 高温使用情况沉淀 强化溶质原子偏聚一超过 固溶度—共格析出— 分散粒子一阻碍位错 运动。
材料力学性能复习提纲(答案)
一、名词解释弹性:指物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质塑性:指金属材料断裂前发生塑性变形(不可逆永久变形)的能力。
弹性模量:单纯弹性变形过程中应力与应变的比值,表示材料对弹性变形的抗力。
(工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力下产生的弹性变形就越小)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余延伸强度(或屈服强度)增加;反向加载,规定残余延伸强度降低的现象。
滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
河流花样:是判断是否为解理断裂的重要微观证据。
解理面:指金属材料在一定条件下(如低温),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂;因与大理石的断裂相似,所以称这种晶体学平面为解理面。
断裂韧度:在弹塑性条件下,当应力场强度因子增大到某一临界值,裂纹便失稳扩展而导致材料断裂,这个临界或失稳扩展的应力场强度因子即断裂韧度。
韧脆转变:(体心立方合金随着温度的降低表现出从延性到脆性行为的转变。
该转变发生的温度范围可以通过摆锤式或悬臂梁式冲击实验来确定。
【材科定义】)当温度低于某一数值时,某些金属的塑性(特别是冲击韧性)会显著降低而呈现脆性的现象。
缺口敏感度:金属材料的缺口敏感性指标用缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比值表示,称为缺口敏感度,记为NSR。
冲击韧性:指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用标准试样的冲击吸收功A k表示。
应力松弛:在高温保证总应变不变的情况下,会发生应力随着时间延长逐渐降低的现象.该现象叫应力松弛。
疲劳贝纹线:贝纹线是疲劳区的最大特征,一般是由载荷变动引起的。
高周疲劳:指材料在低于其屈服强度的循环应力作用下,经10000-100000 以上循环次数而产生的疲劳。
低周疲劳:材料在循环载荷作用下,疲劳寿命为102~105次的疲劳断裂称为低周疲劳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料力学性能》复习提纲
第一章金属在单向静拉伸载荷下的力学性能
1.拉伸变形过程;
2.弹性不完整性(滞弹性,包申格效应),循环韧性;
3.塑性变形方式,滑移,均匀屈服产生机制,影响屈服强度的因素;
4.应变硬化(形变强化)及其产生原因和工程意义;
5.缩颈,抗拉强度;
6.塑性、脆性及韧性,塑性指标;
7.机件的失效形式:磨损、腐蚀和断裂;
8.断裂的分类及各类断口特征,韧性断裂和脆性断裂的区别,哪种断裂更危险及其原因;
9.拉伸断口的三要素以及强度和塑性对断口三个区域组成的影响;
10.微孔聚集断裂过程;
11.格雷菲斯裂纹理论(原理,出发点,必要条件);
12.为什么理论断裂强度与实际断裂强度在数值上有数量级的差别;
13.机械设计中最常用的两个强度指标为:屈服强度和抗拉强度;
14.碳含量对钢拉伸曲线的影响。
第二章金属在其他静载荷下的力学性能
1.应力状态软性系数α及其代表的意义;
2.压缩、弯曲、扭转试验的特点;
3.缺口效应(定义及由于缺口引起的两个效应),理论应力集中系数,缺口敏感度及其代表的意义;
4.硬度的分类、符号表示方法、测试(布氏硬度、洛氏硬度、维氏硬度)原理\方法;
5.课后作业P55页的8题。
第三章金属在冲击载荷下的力学性能
1.冲击韧性;
2.低温脆性、韧脆转变温度及其确定方法、韧性温度储备;
3.产生低温脆性的物理本质和机理;
4.影响韧脆转变温度的因素。
第四章金属的断裂韧度
1.低应力脆断;
2.裂纹的扩展形式;
3.应力场强度因子KⅠ定义及其表达式;
4.材料的断裂韧度,断裂K判据,断裂G判据;5
5.KⅠ和K IC,G IC与K IC的关系;
6.KⅠ的修正条件,考虑应力松弛时塑性区宽度(平面应力,平面应变),修正后KⅠ计算公式;
7.断裂韧度测试时试样的制备(满足条件);
8.张开位移δ(COD),断裂δ判据;
9.平面应力和平面应变;
10.有关断裂韧度的计算。
第五章金属的疲劳
1.疲劳;
2.疲劳断裂的特点,疲劳断口的宏观(贝纹线)与微观特征(存在疲劳条带);
3.疲劳曲线(S-N曲线),疲劳极限σ-1;
4.过载损伤,过载损伤界,过载持久值,过载损伤区;
5.疲劳缺口敏感度及其代表的意义;
6.疲劳裂纹扩展门槛值ΔK th,ΔK th和σ-1区别;
7.材料的疲劳过程,疲劳裂纹的形成机理、阻止其产生的措施;
8.疲劳裂纹的扩展过程,扩展第二阶段的断口特征,贝纹线和疲劳条带的区别;
9.疲劳的分类(P96低周、高周、热疲劳、热机械疲劳)
10.影响疲劳强度的因素;
11.高周疲劳、低周疲劳定义,低周疲劳的特点(P120);
12.循环软化,循环硬化,过渡寿命。
第六章金属的应力腐蚀和氢脆断裂
1.应力腐蚀断裂定义及其产生条件;
2.应力腐蚀断口特征;
3.应力腐蚀应力场强度因子(P131应力腐蚀门槛值K ISCC);
4.防止应力腐蚀的措施;
5.氢脆类型及特征;氢致延滞断裂;
6.应力腐蚀与氢致延滞断裂的关系。
第七章金属磨损和接触疲劳
1.磨损定义、类型,耐磨性的指标(P140);
2.机件的磨损过程:跑合阶段、稳定磨损阶段、剧烈磨损阶段;
3.粘着磨损及其特征;
4.材料磨损的控制和防磨措施;
5.磨粒磨损及其主要特征;
6.接触疲劳定义,分类。
第八章金属高温力学性能
1.蠕变,等强温度,应力松弛,约比温度;
2.蠕变变形机理及蠕变断裂机理,断口特征;
3.蠕变极限、表达方式(P165)、持久强度极限及其表达方式(P167);
4.剩余应力,松弛稳定性;
5.影响金属高温力学性能的主要因素。