专题16 解直角三角形(专题评测)(解析版)
初二数学解直角三角形试题答案及解析
初二数学解直角三角形试题答案及解析1.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2B.60,2C.60,D.60,【答案】C.【解析】∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S=DF×CF=×=.阴影故选C.【考点】1.旋转的性质2.含30度角的直角三角形.2.如图,一圆柱高8 cm,底面半径为cm,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是()cm.A.6B.8C.10D.12【答案】C【解析】底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB=(cm).故选C.【考点】平面展开-最短路径问题.3.如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是( )A.B.2C.D.【答案】B【解析】设菱形ABCD边长为t,则AE=t-2,由即可求得t的值,从而可以求的AE的长,再根据勾股定理求的DE的长,即可求得结果.解:设菱形ABCD边长为t.∵BE=2,∴AE=t-2.∵,∴∴,解得∴AE=5-2=3.∴∴tan∠DBE=故选B.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.已知:在锐角△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即cosC=),则AC边上的中线长是.【答案】【解析】首先作△ABC的高AD,解直角△ACD与直角△ABD,得到BC的长,再利用余弦定理求解.解:作△ABC的高AD,BE为AC边的中线∵在直角△ACD中,AC=a,cosC=,∴CD=,AD=.∵在直角△ABD中,∠ABD=45°,∴BD=AD=,∴BC=BD+CD=.在△BCE中,由余弦定理,得BE2=BC2+EC2-2BC•EC•cosC【考点】解直角三角形点评:解直角三角形是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5.一轮船以l6海里/时的速度从港口A出发沿着北偏东60°的方向航行,另一轮船以l2海里/时的速度同时从港口A出发沿着南偏东30°的方向航行,离开港口2小时后两船相距_______ 海里.【答案】40【解析】由北偏东60°的方向与南偏东30°的方向成直角,根据勾股定理求解即可.解:由题意得两船相距海里.【考点】方位角,勾股定理的应用点评:勾股定理的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.6.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.B.C.D.【答案】A【解析】依题意知,要三边满足勾股定理公式的边长才能构成直角三角形。
专题16三角形及全等三角形(共40题)-2021年中考数学真题分项汇编(解析版)【全国通用】
2021年中考数学真题分项汇编【全国通用】(第01期)专题16三角形及全等三角形(共40题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】 根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠∠ABC =∠BCD ,∠CB 平分∠DCE ,∠∠BCE =∠BCD ,∠∠BCE =∠ABC ,∠∠AEC =∠BCE +∠ABC =40°,∠∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B【分析】 由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∠25B ∠=︒,50C ∠=︒,∠在Rt ∠BEC 中,由三角形内角和可得105BEC ∠=︒,∠35A ∠=︒,∠170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒【答案】C【分析】 由垂直的定义可得∠2=90°;根据对顶角相等可得510α∠=∠=︒,再根据三角形外角的性质即可求得140β∠=︒.【详解】∠13l l ⊥,∠∠2=90°;∠510α∠=∠=︒,∠125090140β∠=∠+∠=︒+︒=︒.故选C .【点睛】本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∠∠BCD =100°,∠∠CBD +∠CDB =180°-100°=80°,∠∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形. 7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C与D.【详解】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.8.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OA=3,利用圆的面积公式S 圆=163π. 【详解】解:方法一:∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 603c R C ===︒,∠3R = ∠S 圆=2221633R OA ππππ⎛=== ⎝⎭.方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,∠∠AOB =2∠C =2×60°=120°,∠OA =OB ,∠∠OAB =∠OBA =()1180120302︒-︒=︒, ∠OD ∠AB ,AB 为弦,∠AD =BD =122AB =,∠AD =OA cos30°,∠OA =343cos30223AD ÷︒=÷=, ∠S 圆=222431633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】 根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加AB DC =, 在ABC 和DCB 中,AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】 解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断∠ABC ∠∠DEF ,故C 符合题意;D. 添加一个条件AC ∠FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形【答案】D【分析】 此题是有关剪纸的问题,此类问题应亲自动手折一折,剪一剪.【详解】解:由题可知,AD 平分BAC ∠,折叠后AEO △与AFO 重合,故全等,所以EO =OF ;又作了AD 的垂直平分线,即EO 垂直平分AD ,所以AO =DO ,且EO ∠AD ;由平行四边形的判定:对角线互相平分的四边形为平行四边形,所以AEDF 为平行四边形;又AD ∠EF ,所以平行四边形AEDF 为菱形.故选:.D【点睛】本题主要考察学生对于立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,有几何图形想象出实物的图形”的要求相一致,充分体现了实践操作性原则.12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,42b a +是分式,故选项错误; D.若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A .【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.13.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4 【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简. 14.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∠//,140m n ∠=︒,∠∠4=∠1=40°,∠230∠=︒,∠34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点AB 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒【答案】C【分析】 根据题意可得直线MN 是线段AB 的垂直平分线,进而可得CB AC =,利用平行线的性质及等腰三角形中等边对等角,可得40CAB CBA ∠=∠=︒,所以可求得100ACB ∠=︒.【详解】∠已知分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,∠直线MN 垂直平分线段AB ,∠CB AC =,∠//a b ,140∠=︒,∠140CBA ∠=∠=︒,∠40CAB CBA ∠=∠=︒,∠180100ACB CBA CAB ∠=︒-∠-∠=︒.故选:C.【点睛】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线MN垂直平分线段AB 是解题关键.17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。
解直角三角形(5种题型)(解析版)
解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
高中数学 三角函数——解直角三角形
高中数学 三角函数——解直角三角形一、单选题1.在 ΔABC 中, ∠A =60∘,AB =2 且 ΔABC 的面积为 √32,则 AC 的长为( )A .√32B .1C .√3D .22.已知灯塔A 在海洋观察站C 的北偏东50°的方向上,灯塔B 在海洋观察站C 的南偏东70°的方向上,A ,C 两点间的距离为5海里,A ,B 两点间的距离为7海里,则B ,C 两点间的距离为( )海里. A .3B .4C .6D .83.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2−b 2=√3bc ,sinC =2√3sinB ,则A=( ). A .30∘B .60∘C .120∘D .150∘4.在 △ABC 中, a =3 , b =2 , A =60° ,那么 sinB 的值为( )A .√33B .−√23C .√23D .−√335.已知两灯塔A 和B 与海洋观测站C 的距离都等于2km ,灯塔A 在观测站C 的北偏东25°,灯塔B在观测站C 的南偏东35°,则灯塔A 与之间B 的距离为( ) A .2kmB .2√2kmC .2√3kmD .4km6.在直四棱柱 ABCD −A 1B 1C 1D 1 中,底面 ABCD 是边长为1的正方形, AA 1=2 , M 、 N分别是 A 1B 1 、 A 1D 1 中点,则 BM 与 AN 所成的角的余弦值为( ) A .1517B .1617C .513D .12137.在△ABC 中,若∠A =600,∠B =450,BC =3√2, , 则AC= ( )A .4√3B .2√3C .√3D .√328.在△ABC 中,△A=120°,AB →•AC →=﹣2,则|BC →|的最小值是 ( )A .2B .4C .2√3D .129.△ ABC 中,“△ ABC 是钝角三角形”是“ |AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |<|BC ⃗⃗⃗⃗⃗ | ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.如图, E 、 F 分别是三棱锥 P −ABC 的棱 AP 、 BC 的中点, PC =10 , AB =6 ,EF =7 ,则异面直线 AB 与 PC 所成的角为( )A .30°B .60°C .0°D .120°11.在 △ABC 中,角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,若 (a 2−b 2+c 2)tanB =√3a ,则角 B 的值为( )A .π6B .π3C .π6 或 5π6D .π3 或 2π312.在 ΔABC 中, a,b,c 分别为角 A,B,C 的对边,若 A =2π3,a =2√10 ,且 ΔABC 的面积 S =a 2+b 2−c 212,则 c = ( ) A .2√3 B .4√3C .2√33D .4√3313.ΔABC 中, ∠ABC =60∘ , AB =4 ,若满足条件的 ΔABC 有两个,则边 AC 的取值范围为( ) A .[2√3,4)B .[2,4)C .(2√3,4)D .(2,4)14.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最大面的面积为( )A .2√2B .4√2C .4D .2√515.已知 F 1,F 2 是椭圆 C 1 和双曲线 C 2 的公共焦点,P 是它们的一个公共交点,且 ∠F 1PF 2=2π3,若椭圆 C 1 离心率记为 e 1 ,双曲线 C 2 离心率记为 e 2 ,则 27e 12+e 22的最小值为( ) A .25B .100C .9D .3616.若 O 是 △ABC 垂心, ∠A =π6且 sinBcosCAB ⃗⃗⃗⃗⃗ +sinCcosBAC ⃗⃗⃗⃗⃗ =2msinBsinCAO ⃗⃗⃗⃗⃗ ,则 m = ( )A .12B .√32C .√33D .√3617.在 △ABC 中,D 为三角形所在平面内一点,且 AD →=13AB →+12AC → ,则 S△BCD S △ACD = ( )A .16B .12C .13D .23二、填空题18.在四边形 ABCD 中, AB =1 , BC =√2 , ∠ABC =3π4, ∠ADC =π4 , AB ⊥AD , CB ⊥CD ,则对角线 BD 的长为 .19.已知 ΔABC 中, a , b , c 分别为角 A , B , C 的对边且 a =2 , b =2√3 , A =30ο ,则 B = .20.在 △ABC 中,若 C =60° , AC =√6 , AB =3 ,则角 A = .21.在 △ABC 中,三个内角 A 、 B 、 C 的对边分别是 a 、 b 、 c ,若 a =2 , b =3 ,c =4 ,则 cosA = .22.在△ABC 中,已知AC =2,BC =3,B = π6,那么sinA = .23.一艘海轮从A 地出发,沿固定航道匀速行驶,先沿北偏东75°方向航行√6小时后到达海岛B ,然后从海岛B 出发沿北偏东15°方向航行一段时间到达海岛C ,之后从海岛C 出发沿南偏西60°方向航行回到A 地,则从海岛C 回到A 地所需时间是 小时.24.在 △ABC 中, sinA:sinB:sinC =2:5:6 ,则 cosC 的值为 .25.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sinC =2sinA ,b 2﹣a 2=12ac ,则sinB 等于 .26.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,A=75°,B=45°,c=3 √2 ,则b= .27.在△ABC 中,已知a=3,b=4,sinB= 23 ,则sinA= .28.四边形 ABCD 中, ∠A =5π6 , ∠B =∠C =5π12, ∠D =π3 , BC =2 ,则 AC 的最小值是 .29.在 ΔABC 中,角 A , B , C 所对的边分别为 a , b , c , ΔABC 的面积为 S ,若bcosA +acosB =2√3b ,且 a 2sinA =b 2sinA +2√3S ,则 A = .30.在 △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足 a 2−(b −c)2=S ,b +c =2,则S 的最大值是31.在 ΔABC 中, A =3π4,AB =6,AC =3√2 ,点 D 在 BC 边上, AD =BD ,则 AD = .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,A =π6,a=2,△O 为△ABC 的外接圆,OP⃗⃗⃗⃗⃗⃗ =mOB ⃗⃗⃗⃗⃗⃗ +nOC ⃗⃗⃗⃗⃗ . (1)若m=n=1,则|OP⃗⃗⃗⃗⃗ |= . (2)若m ,n ∈[0,1],则点P 的轨迹所对应图形的面积为 .33.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,6cosB =b(1−3cosA),则△ABC 的面积的最大值为 .34.平面向量a ⃗ ,b ⃗ ,c ⃗ 满足|a |=|a −b ⃗ |=|c |=1,b 2⃗⃗⃗⃗ +a ⃗ ⋅c ⃗ +√22|b ⃗ −c ⃗ |=b ⃗ ⋅(a ⃗ +c ⃗ ),a ⃗⃗ ⋅b ⃗⃗+|b ⃗⃗|b ⃗⃗ ⋅c⃗ =|a⃗ +1|b ⃗⃗ |b ⃗ |,则(b ⃗ −c ⃗ )2= . 三、解答题35.平面直角坐标系 xOy 中,曲线 C 的参数方程为 {x =√3+2cosαy =1+2sinα ( α 为参数),在以坐标原点 O 为极点, x 轴非负半轴为极轴的极坐标系中,点 P 在射线 l :θ=π3 上,且点 P 到极点 O的距离为 4 .(1)求曲线 C 的普通方程与点 P 的直角坐标; (2)求 △OCP 的面积.36.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知c =2b ,a =3,D 是边BC 上一点.(1)求bcosC +2bcosB 的值;(2)若AD ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ . ①求证:AD 平分∠BAC ;②求△ABC 面积的最大值及此时AD 的长.37.如图,在 △ABC 中, ∠ABC =π2 , ∠ACB =π3, BC =2 ,P 是 △ABC 内一点,且∠BPC=π2.(1)若∠ABP=π6,求线段AP的长度;(2)若∠APB=2π3,设∠PBA=α,求sinα.38.如图,某游乐园的平面图呈圆心角为120°的扇形AOB,其两个出入口设置在点B及点C处,且园内有一条平行于AO的小路CD.已知某人从C沿CD走到D用了8分钟,从D沿DB走到B用了6分钟.若此人步行的速度为每分钟50米.(1)求△CDB的面积;(2)求该扇形的半径OA的长.39.在△ABC中,AC>AB,cosA=3132,AB=8.(1)若S△ABC=15√74,求BC;(2)若 cos(B −C)=18 ,求 S ΔABC .40.在四边形 ABCD 中, ∠BAD =2π3,∠BCD =π3,cosD =−17,AD =DC =2 .(1)求 cos∠DAC 及 AC 的长; (2)求 BC 的长.41.已知 △ABC 三边 a , b , c , c 2+b 2−a 2=√3bc , acosB =bsinA .证明:三角形的三个角满足, A 3+B 3+C 3≥11π336.42.如图,银川市拟在长为 8km 的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数 y =Asinωx(A >0,ω>0)x ∈[0,4] 的图象,且图象的最高点为S(3,2√3) ;赛道的后一部分为折线段 MNP ,为保证参赛运动员的安全,限定 ∠MNP =120° .(1)求 A 、ω 的值和 M 、P 两点间的距离; (2)应如何设计,才能使折线段赛道最长?43.已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且a△b△c =7△5△3.(1)求cos A 的值;(2)若△ABC 的面积为45 √3 ,求△ABC 外接圆半径R 的大小.44.如图,直三棱柱 ABC −A 1B 1C 1 中, CC 1=4 , AB =2 , AC =2√2 , ∠BAC =450 ,点M 是棱 AA 1 上不同于 A,A 1 的动点.(1)证明:BC⊥B1M;(2)若M是AA1的中点,求四面体MB1BC的体积.45.在锐角ΔABC中,角A,B,C所对的边分别为a,b,c,已知a=√7,b=3,√7sinB+ sinA=2√3.(1)求角A的大小;(2)求ΔABC的面积.46.在ΔABC中,角A,B,C对应的边分别是a,b,c,已知cosA+2a=2cosB−cosCc.(△)求角A的大小;(△)若AD,AE分别为BC边上的高和中线,a=4√3,b+c=2√14,求|AD⇀||AE⇀|的值.47.△ABC的内角A,B,C所对的边分别为a,b,c.向量π⃗=(a,√3b)与n⃗=(cosA,sinB)平行.(△)求A;(△)若a= √7,b=2,求△ABC的面积.48.在①a=5,②cosC=17这两个条件中任选一个,补充到下面的横线中,并求解.在△ABC中,角A,B,C所对的边分别是a,b,c,且√3acosB=bsinA,b=7,若____.(注:只需选一个作答,如果选择两个条件分别解答,按第一个解答给分)求:(1)c的值;(2)△ABC的面积.49.如图,直三棱柱的底面是等腰直角三角形,AB=AC=1,∠BAC=π2,高等于3,点M1,M2,N1,N2为所在线段的三等分点.(1)求此三棱柱的体积和三棱锥A1−AM1N2的体积;(2)求异面直线A1N2,AM1所成的角的大小.50.在△ABC中,角A,B,C的对应边分别为a,b,c,已知bcosC+ccosB=1.(1)求a的值;(2)若1≤c≤b≤√3,求A的最小值.答案解析部分1.【答案】B【知识点】三角形中的几何计算【解析】【解答】∵∠A=60∘,AB=2且ΔABC的面积为√32. ∴SΔABC=12AB·AC·sin∠A=12×2×AC×sin60∘=√32AC=√32.∴AC=1故答案为:B【分析】由三角形面积公式S=12bcsinA求解即可.2.【答案】D【知识点】余弦定理的应用【解析】【解答】由题意得∠ACB=180°−50°−70°=60°,AC=5,AB=7,由余弦定理得cos∠ACB=AC 2+BC2−AB2 2AC⋅BC,所以12=25+BC2−4910BC,解得BC=8或BC=−3(舍去)。
初二数学解直角三角形试题答案及解析
初二数学解直角三角形试题答案及解析1.如图,Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD.将△ABC绕点D按顺时针旋转角α(0<α<180°)后,如果点B恰好落在初始Rt△ABC的边上,那么α= °.【答案】80°或120°.【解析】(1)△ABC绕着点D顺时针旋转α度后得到△A′B′C′,当B′点在AB上时,△B B′D是等腰三角形,由于∠B=50°,可得:∠B B′D=80°,即:α=80°;(2)如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴△B′CD为直角三角形,∵BD=2CD,∴B′D=2CD,在Rt△B′CD中,sin∠B′DC=,∴∠B′DC=60°,∴∠BDB′=180°﹣60°=120°,即旋转角α=120°.故答案是80°或120°.【考点】旋转的性质.2.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是()A.1,2,3B.5,12,13C.4,5,7D.9,80,81【答案】B【解析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.解:A、∵12+22≠32,∴1,2,3不能构成直角三角形.B、∵52+122=132,∴5,12,13能构成直角三角形;C、∵42+52≠72,∴4,5,7不能构成直角三角形;D、∵92+802≠812,∴9,80,81不能构成直角三角形.故选B.点评:主要考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是( )A.B.2C.D.【答案】B【解析】设菱形ABCD边长为t,则AE=t-2,由即可求得t的值,从而可以求的AE的长,再根据勾股定理求的DE的长,即可求得结果.解:设菱形ABCD边长为t.∵BE=2,∴AE=t-2.∵,∴∴,解得∴AE=5-2=3.∴∴tan∠DBE=故选B.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.如图,∠ XOY=900,OW平分∠XOY,PA⊥OX,PB ⊥OY,PC⊥OW.若OA+ OB+OC=1,则OC=( ).A.2-B.-1C.-2D.2-3【答案】B【解析】解:过AP与OW的交点作EF⊥OB,∵∠XOY=90°,OW平分∠XOY,∴∠AOC=∠COB=45°,∴∠AEO=∠CEP=45°,∴sin45°=,AE=OE,EP=CP,OE=EF,∵cos45°=,∴EC=EP,∵AO=EF,OF+EP=OB,OC=OE+EC,∴OC=-1;【考点】三角函数点评:此题考查了等腰直角三角形,用到的知识点是特殊角的三角函数值,解题的关键是根据角的度数表示出各个边.5.已知点C是线段AB的黄金分割点(AC>BC),若AB=10cm,则AC= 。
2020-2021学年最新华东师大版九年级数学上册《解直角三角形》解码专题训练及答案解析-精编试题
解码专训一:巧用构造法求几种特殊角的三角函数值名师点金:对于30°、45°、60°角的三角函数值,我们都可通过定义利用特殊直角三角形三边的关系进行计算;而在实际应用中,我们常常碰到像15°、22.5°、67.5°等一些特殊角的三角函数值的计算,同样我们也可以构造相关图形,利用数形结合思想进行巧算.巧构造15°与30°角的关系的图形计算15°角的三角函数值1.求sin 15°,cos 15°,tan 15°的值.巧构造22.5°与45°角的关系的图形计算22.5°角的三角函数值2.求tan 22.5°的值.巧用折叠法求67.5°角的三角函数值3.小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,求出67.5°角的正切值.(第3题)巧用含36°角的等腰三角形中的相似关系求18°、72°角的三角函数值4.求sin 18°,cos 72°的值.巧用75°与30°角的关系构图求75°角的三角函数值5.求sin 75°,cos 75°,tan 75°的值.解码专训二:巧用三角函数解学科内综合问题名师点金:锐角三角函数体现着一种新的数量关系——边角关系,锐角三角函数解直角三角形,既是相似三角形及函数的延续,又是继续学习三角形的基础,利用三角函数可解决与学科内的一次函数、反比例函数、相似三角形,一元二次方程等综合问题,也会应用到后面学习的圆的内容中,它的应用很广泛.)利用三角函数解与函数的综合问题1.如图,直线y=kx-1与x轴、y轴分别交于B,C两点,tan∠OCB=1 2 .(1)求点B的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点,在点A的运动过程中,试写出△AOB的面积S与x的函数关系式.(第1题)2.如图,反比例函数y=kx(x>0)的图象经过线段OA的端点A,O为原点,过点A作AB⊥x轴于点B,点B的坐标为(2,0),tan ∠AOB=3 2 .(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=kx(x>0)的图象恰好经过DC的中点E,求直线AE对应的函数关系式;(3)若直线AE与x轴交于点M,与y轴交于点N,请你探索线段AN与线段ME的数量关系,写出你的结论,并说明理由.(第2题)利用三角函数解与方程的综合问题3.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两个根,求Rt△ABC中较小锐角的正弦值.利用三角函数解与相似的综合4.如图,在矩形ABCD中,点E是CD的中点,点F是边AD上一点,连接FE并延长交BC的延长线于点G,连接BF,BE,且BE⊥FG.(1)求证:BF=BG;(2)若tan ∠BFG=3,S△=63,求AD的长.CGE(第4题)解码专训三:应用三角函数解实际问题的四种常见问题名师点金:在运用解直角三角形的知识解决实际问题时,要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,若不是直角三角形,应尝试添加辅助线,构造出直角三角形进行解答,这样才能更好地运用解直角三角形的方法求解.其中仰角、俯角的应用问题,方向角的应用问题,坡度、坡角的应用问题要熟练掌握其解题思路,把握解题关键.定位问题1.(2014·贺州)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离;(结果精确到0.1海里)(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin 55°≈0.819,cos 55°≈0.574,tan 55°≈1.428,tan 42°≈0.900,tan 35°≈0.700,tan 48°≈1.111)(第1题)坡坝问题2.如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:2≈1.414,3≈1.732)(第2题)测距问题3.一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30千米,B,C间的距离是60千米,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C 的距离相等,请求出交叉口P到加油站A的距离.(结果保留根号)测高问题4.(2015·盐城)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米.现有一只小猫睡在台阶的MN这层上晒太阳.(3取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还可以晒到太阳?请说明理由.(第4题)解码专训四:利用三角函数解判断说理问题名师点金:利用三角函数解答实际中的“判断说理”问题:其关键是将实际问题抽象成数学问题,建立解直角三角形的数学模型,运用解直角三角形的知识来解决实际问题.航行路线问题1.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.(第1题)工程规划问题2.A,B两市相距150千米,分别从A,B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心、45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接A,B两市的高速公路.问连接A,B两市的高速公路会穿过风景区吗?请说明理由.(第2题)航行拦截问题3.(2015·荆门)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1 000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).(第3题)台风影响问题4.如图所示,在某海滨城市O附近海面有一股强台风,据监测,当前台风中心位于该城市的东偏南70°方向200 km的海面P处,并以20 km/h的速度向北偏西65°的PQ方向移动,台风侵袭的范围是一个圆形区域,当前半径为60 km,且圆的半径以10 km/h的速度不断扩大.(1)当台风中心移动4 h时,受台风侵袭的圆形区域半径增大到________km;当台风中心移动t(h)时,受台风侵袭的圆形区域半径增大到____________km;(2)当台风中心移动到与城市O距离最近时,这股台风是否会侵袭这座海滨城市?请说明理由.(参考数据:2≈1.41,3≈1.73)(第4题)解码专训五:解直角三角形中常见的热门考点名师点金:本章主要学习直角三角形的性质,锐角三角函数的定义,锐角三角函数值,解直角三角形,以及解直角三角形的实际应用,重点考查运用解直角三角形的知识解决一些几何图形中的应用和实际应用,是中考的必考内容.直角三角形的性质1.(2014·宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,点H是AF的中点,那么CH的长是( )A.2.5 B. 5 C.322 D.2(第1题)(第2题)2.如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于点E,且CD=2,DE=1,则BC的长为________.锐角三角函数的定义3.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是________.(第3题)(第4题)4.如图,在矩形ABCD中,E为边CD上一点,沿AE折叠,点D恰好落在BC边上的F点处,若AB=3,BC=5,则tan∠EFC的值为________.5.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=15,AB的垂直平分线ED交BC的延长线于D点,垂足为E,求sin∠CAD的值.(第5题)特殊角的三角函数值及其计算6.在等腰直角三角形ABC中,∠C=90°,那么sin A等于( )A.12B.22C.32D.17.若等腰三角形底边与底边上的高的比是23,则顶角为( ) A.60°B.90°C.120°D.150°8.计算:(cos 60°)-1÷(-1)2 016+|2-8|-22+1×(tan 30°-1)0.解直角三角形(第9题)9.如图是教学用的直角三角板,边AC=30 cm,∠C=90°,tan ∠BAC=3 3,则边BC的长为( )A.30 3 cm B.20 3 cmC.10 3 cm D.5 3 cm(第10题)10.(2014·大庆)如图,矩形ABCD中,AD=2,F是DA延长线上一点,G 是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=________.11.(2014·临沂)如图,在▱ABCD中,BC=10,sin B=910,AC=BC,则▱ABCD的面积是________.(第11题)解直角三角形的实际应用12.(2015·南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km/h和36 km/h,经过0.1 h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O 多远?(参考数据:sin58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)(第12题)三角函数与学科内的综合13.如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE的长;(2)当a=3时,连接DF,试判断四边形APFD的形状,并说明理由;(3)当tan∠PAE=12时,求a的值.(第13题)解直角三角形中思想方法的应用a.转化思想14.如图所示,已知四边形ABCD,∠ABC=120°,AD⊥AB,CD⊥BC,AB=303,BC=503,求四边形ABCD的面积.(要求:用分割法和补形法两种方法求解)(第14题)b.方程思想15.如图,在Rt△ABC中,∠ACB=90°,sin B=35,点D是BC上一点,DE⊥AB于点E,CD=DE,AC+CD=9,求BE,CE的长.(第15题)16.(中考·泰州)如图,为了测量山顶铁塔AE的高,小明在27 m高的楼CD 底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角为36°52′.已知山高BE为56 m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin 36°52′≈0.60,tan 36°52′≈0.75)(第16题)答案解码专训一1.解:如图,在Rt△ABC中,∠BAC=30°,∠C=90°,延长CA到D,使AD=AB,则∠D=15°,设BC=a,则AB=2a,AC=3a,∴AD=2a,CD=(2+3)a.在Rt△BCD中,BD=BC2+CD2=a2+(7+43)a2=(6+2)a.∴sin 15°=sin D=BCBD=a(6+2)a=6-24;cos 15°=cos D=CDBD =(2+3)a(6+2)a=6+24;tan 15°=tan D=BCCD =a(2+3)a=2- 3.(第1题)(第2题)2.解:如图,在Rt△ABC中,∠C=90°,AC=BC,延长CA到D,使DA=AB,则∠D=22.5°,设AC=BC=a,则AB=2a,∴AD=2a,DC=(2+1)a,∴tan 22.5°=tan D=BCCD=a(2+1)a=2-1.3.解:∵将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点E处,∴AB=BE,∠AEB=∠EAB=45°,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,∴AE =EF ,∠EAF =∠EFA =45°÷2=22.5°, ∴∠FAB =67.5°.设AB =x ,则AE =EF =2x ,∴tan ∠FAB =tan 67.5°=FB AB =2x +x x=2+1.(第4题)4.解:如图,作△ABC ,使∠BAC =36°,AB =AC ,使∠ABC 的平分线BD 交AC 于D 点,过A 作AE ⊥BC 于E 点,设BC =a ,则BD =AD =a ,由△ABC ∽△BCD 可得:AB BC =BC CD ,∴AB a =aAB -a,即AB 2-a ·AB -a 2=0,∴AB =5+12a(负根舍去),∴sin 18°=sin ∠BAE =BE AB=5-14.∴cos 72°=cos ∠ABE =BE AB =5-14.(第5题)5.解:方法1:利用第1题的图形求解.方法2:如图,作△ABD ,△ACD ,使得DC =DA ,∠DAB =30°,过点A 作AD ⊥BC 于D ,过B 作BE ⊥AC 于E ,则∠BAE =75°,设AD =DC =a ,则AC =2a ,BD =33a ,AB =233a ,∴BC =BD +CD =⎝ ⎛⎭⎪⎫33+1a.则CE =BE =BC ·sin 45°=6+326a ,∴AE =AC -CE =32-66a ,∴sin 75°=sin ∠BAE =BEAB =32+66a 233a =6+24,cos 75°=cos ∠BAE =AE AB =6-24,tan 75°=tan ∠BAE =BEAE =2+ 3.解码专训二1.解:(1)把x =0代入y =kx -1,得y =-1,∴点C 的坐标是(0,-1),∴OC =1.在Rt △OBC 中,∵tan ∠OCB =OB OC =12,∴OB =12.∴点B 的坐标是⎝ ⎛⎭⎪⎫12,0.把B ⎝ ⎛⎭⎪⎫12,0的坐标代入y =kx -1,得12k -1=0.解得k =2.(2)由(1)知直线AB 对应的函数关系式为y =2x -1,所以△AOB 的面积S 与x 的函数关系式是S =12OB ·y =12×12(2x -1)=12x -14.2.解:(1)∵点B 的坐标为(2,0),tan ∠AOB =32,∴A 点的坐标为(2,3),∴k =6.(2)易知点E 的纵坐标为32,代入y =6x 中,得点E 的横坐标为4,即点E 的坐标为⎝ ⎛⎭⎪⎫4,32,∵直线AE 过点A(2,3),E ⎝ ⎛4,32,∴易得直线AE 对应的函数关系式为y =-34x +92.(3)结论:AN =ME.理由:在y =-34x +92中,令y =0可得x =6,令x =0可得y =92. ∴点M(6,0),N ⎝⎛⎭⎪⎫0,92.方法一:延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2,OF =3, ∴NF =ON -OF =32.根据勾股定理可得AN =52.∵CM =6-4=2,EC =32,∴根据勾股定理可得EM =52,∴AN=ME.方法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM =12OM·EC=12×6×32=92,S△AON=12ON·AF=12×92×2=92,∴S△EOM=S△AON.∵AN和ME边上的高相等,∴AN=ME.3.解:∵a,b是方程x2-mx+2m-2=0的根,∴a+b=m,ab=2m-2. 在Rt△ABC中,由勾股定理,得a2+b2=c2,即a2+b2=52.∴a2+b2=(a+b)2-2ab=25,即m2-2(2m-2)=25.解得m1=7,m2=-3. ∵a,b是Rt△ABC的两条直角边的长,∴a+b=m>0.即m=-3不合题意,舍去.∴m=7.当m=7时,原方程为x2-7x+12=0.解得x1=3,x2=4.不妨设a=3,b=4,则∠A是最小的锐角,∴sin A=ac=35.即Rt△ABC中较小锐角的正弦值为3 5 .4.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DCG=90°,∵点E是CD的中点,∴DE=CE.∵∠DEF=∠CEG,∴△EDF≌△ECG,∴EF=EG.∵BE⊥FG,∴BE 是FG的中垂线,∴BF=BG.(2)解:∵BF=BG,∴∠BFG=∠G,∴tan ∠BFG=tan G=3,设CG=x,则CE=3x,∴S△CGE =32x2=63,解得x=23(负值舍去),∴CG=23,CE=6,又易得EC2=BC·CG,∴BC=63,∴AD=6 3.解码专训三1.解:(1)过C作AB的垂线,垂足为D,根据题意可得:∠ACD=42°,∠BCD=55°. 设CD=x海里,在Rt△ACD中,tan 42°=ADCD,则AD=x·tan 42°海里,在Rt△BCD中,tan 55°=BDCD,则BD=x·tan 55°海里.∵AB=80海里,∴AD+BD=80海里,∴x·tan 42°+x·tan 55°=80,解得x≈34.4,答:海轮在航行过程中与灯塔C的最短距离约是34.4海里;(2)在Rt△BCD中,cos 55°=CD BC,∴BC=CDcos 55°≈60(海里),答:海轮在B处时与灯塔C的距离约是60海里.2.解:在Rt△ABE中,∠BEA=90°,∠BAE=45°,BE=20米,∴AE=20米.在Rt△BEF中,∠BEF=90°,∠F=30°,BE=20米,∴EF=BEtan 30°=2033=203(米).∴AF=EF-AE=203-20≈20×1.732-20=14.64≈15(米).答:AF的长度约是15米.3.解:分两种情况:(1)如图(1),在Rt△BDC中,CD=30千米,BC=60千米.sin B=CDBC=12,∴∠B=30°.∵PB=PC,∴∠BCP=∠B=30°.∴在Rt△CDP中,∠CPD=∠B+∠BCP=60°,∴DP=CDtan∠CPD =30tan60°=103(千米).在Rt△ADC中,∵∠A=45°,∴AD=DC=30千米.∴AP=AD+DP=(30+103)千米.(第3题)(2)如图(2),同法可求得DP=103千米,AD=30千米.∴AP=AD-DP=(30-103)千米.故交叉口P到加油站A的距离为(30±103)千米.点拨:本题运用了分类讨论思想,针对P点位置分两种情况讨论,即P可能在线段AB上,也可能在BA的延长线上.(第4题)4.解:(1)当α=60°时,在Rt△ABE中,∵tan 60°=BAAE=BA10,∴BA=10 tan 60°=103≈10×1.73=17.3(米).即楼房的高度约为17.3米.(2)当α=45°时,小猫仍可以晒到太阳.理由如下:如图,假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.∵∠BFA=45°,∴tan 45°=BAAF=1.此时的影长AF=BA≈17.3米,所以CF=AF-AC≈17.3-17.2=0.1(米),∴CH=CF=0.1米,∴楼房的影子落在台阶MC这个侧面上.∴小猫仍能晒到太阳.解码专训四1.解:若继续向正东方向航行,该货船无触礁危险.理由如下:过点C作CD⊥AB,交AB的延长线于点D.依题意,知AB=24×3060=12(海里),∠CAB=90°-60°=30°,∠CBD=90°-30°=60°.在Rt△DBC中,tan ∠CBD=tan 60°=CD BD,∴BD=33 CD.在Rt△ADC中,tan ∠CAD=tan 30°=CD AD,∴AD=3CD.又∵AD=AB+BD,∴3CD=12+33CD,得CD=63海里.∵63>9,∴若继续向正东方向航行,该货船无触礁危险.技巧点拨:将这道航海问题抽象成数学问题,建立解直角三角形的数学模型.该货船有无触礁危险取决于岛C到航线AB的最短距离与9海里的大小关系,因此解决本题的关键在于求岛C到航线AB的距离.2.解:不会穿过风景区.理由如下:过C作CD⊥AB于点D,根据题意得:∠ACD=α,∠BCD=β,则在Rt△ACD中,AD=CD·tan α,在Rt△BCD中,BD =CD·tan β.∵AD+DB=AB,∴CD·tan α+CD·tan β=AB,∴CD=ABtan α+tan β=1501.627+1.373=1503=50(千米).∵50>45,∴连接A,B两市的高速公路不会穿过风景区.(第3题)3.解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=12BC=12×1 000=500(米);在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=1 000米,∴CF=22CD=5002(米).∴DA=BE+CF=(500+5002)米,即拦截点D处到公路的距离是(500+5002)米.4.解:(1)100;(60+10t)(2)过点O作OH⊥PQ于点H.在Rt△POH中,∠OHP=90°,∠OPH=65°-(90°-70°)=45°,OP=200 km,∴OH=PH=OP·sin ∠OPH=200×sin 45°=1002≈141(km).设经过t h时,台风中心从P移动到H,台风中心移动速度为20 km/h,则PH=20t=1002,∴t=5 2.此时,受台风侵袭的圆形区域半径应为60+10×52≈131(km).台风中心在整个移动过程中与城市O的最近距离OH≈141 km,而台风中心从P移动到H时受侵袭的圆形区域半径约为131 km,131 km<141 km,因此,当台风中心移动到与城市O距离最近时,城市O不会受到台风侵袭.解码专训五1.B 点拨:连接AC ,CF ,根据正方形性质分别求出AC ,CF 的长,由∠ACD =∠GCF =45°,得∠ACF =90°,然后利用勾股定理求出AF 的长,再根据直角三角形斜边上的中线等于斜边的一半解答即可.2.43 33.224.435.解:设AD =x ,则BD =x ,CD =x -3, 在Rt △ACD 中,(x -3)2+(15)2=x 2,解得x =4, ∴CD =4-3=1 ∴sin ∠CAD =CD AD =14.6.B 7.C8.解:原式=⎝ ⎛⎭⎪⎫12-1÷1+22-2-22+1×1=2+22-2-(22-2) =2.9. C 10. 6 11.181912.解:设B 处距离码头Ox km ,在Rt △CAO 中,∠CAO =45°,∵tan ∠CAO =COAO ,∴CO =AO ·tan ∠CAO =(45×0.1+x)·tan45°=(4.5+x) km , 在Rt △DBO 中,∠DBO =58°,∵DC =DO -CO , ∴36×0.1=x ·tan 58°-(4.5+x),∴x =36×0.1+4.5tan 58°-1≈36×0.1+4.51.60-1=13.5.因此,B 处距离码头O 大约13.5 km.13.解:设CE =y ,(1)∵四边形ABCD 是矩形,∴AB =CD =4,BC =AD =5,∠B =∠BCD =∠D =90°.∵BP =a ,CE =y ,∴PC =5-a ,DE =4-y ,∵AP ⊥PE ,∴∠APE =90°,∠APB +∠CPE =90°,∵∠APB +∠BAP =90°,∴∠CPE =∠BAP ,∴△ABP ∽△PCE ,∴BP CE =AB PC ,∴y =-a 2+5a 4,即CE =-a 2+5a 4.(2)四边形APFD 是菱形,理由如下:当a =3时,y =-32+5×34=32,即CE=32,∵四边形ABCD 是矩形, ∴AD ∥BF ,∴△AED ∽△FEC ,∴AD CF =DECE ,∴CF =3,∴PF =PC +CF =5.∴PF =AD ,∴四边形APFD 是平行四边形,在Rt △APB 中,AB =4,BP =3,∠B =90°,∴AP =5=PF ,∴四边形APFD 是菱形.(3)根据tan ∠PAE =12可得AP PE=2, 易得△ABP ∽△PCE ,∴BP CE =AB PC =AP PE =2,得a y =45-a =2或a y =4a -5=2,解得a =3,y =1.5或a =7,y =3.5.∴a =3或7.14.解法1:如图①所示,过点B 作BE ∥AD 交DC 于点E ,过点E 作EF ∥AB 交AD 于点F ,则BE ⊥AB ,EF ⊥AD.∴四边形ABEF 是矩形.∴∠CBE =120°-90°=30°,∠D =180°-120°=60°.在Rt △BCE 中,BE =BC cos ∠CBE =503cos 30°=50332=100, EC =BC ·tan ∠CBE =503×tan 30°=503×33=50. 在Rt △DEF 中,DF =EF tan D =AB tan 60°=3033=30. ∴AD =AF +DF =BE +DF =100+30=130.∴S 四边形ABCD =S 梯形ABED +S △BCE =12(AD +BE)·AB +12BC ·EC =12×(130+100)×303+12×503×50=4 700 3.(第14题)解法2:如图②所示,延长DA,CB交于点E,则∠ABE=180°-∠ABC=60°,∠E=90°-∠ABE=30°. 在Rt△ABE中,AE=AB·tan 60°=303×3=90,BE=ABcos 60°=30312=60 3.∴CE=BE+BC=603+503=110 3.在Rt△DCE中,DC=CE·tan 30°=1103×33=110.∴S四边形ABCD=S△DCE-S△ABE=12DC·CE-12AB·AE=12×110×1103-12×303×90=4 700 3.点拨:求不规则图形的面积要将其转化为直角三角形或特殊的四边形的面积来求.可适当添加辅助线,把不规则四边形分割为直角三角形和直角梯形求解;还可通过补图,把不规则四边形转化为直角三角形求解.15.解:∵sin B=35,∠ACB=90°,DE⊥AB,∴sin B=DEDB=ACAB=35.设DE=CD=3k(k>0),则DB=5k.∴CB=8k,AC=6k,AB=10k.∵AC+CD=9,∴6k+3k=9.解得k=1. ∴DE=3,DB=5,∴BE=DB2-DE2=52-32=4.过点C作CF⊥AB于点F,则CF∥DE,∴DECF=BEBF=BDBC=58,∴CF=245,BF=325,∴EF=BF-BE=12 5 .在Rt△CEF中,CE=CF2+EF2=125 5.16.解:如图,过点C作CF⊥AB于点F.(第16题)设塔高AE=x m,由题意得EF=BE-CD=56-27=29(m),AF=AE+EF=(x+29)m. 在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则CF=AFtan 36°52′≈x+290.75=43x+1163(m),在Rt△ABD中,∠ADB=45°,AB=(x+56)m,则BD=AB=(x+56)m,∵CF=BD,∴x+56≈43x+1163,解得x≈52.答:该铁塔的高AE约为52 m.。
【精品】初中数学中考专题《解直角三角形》真题汇编
专题16 解直角三角形真题汇编1总分数 100分时长:不限题型单选题填空题简答题综合题题量 2 3 15 4总分 4 6 60 441(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 83(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:si n15°=cos75°≈0.259).4(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.7(3分)(2017株洲中考)计算:.8(3分)(2017益阳中考)计算:.9(3分)(2017岳阳中考)计算:10(3分)(2017邵阳中考)计算:.11(3分)(2017永州中考)计算:.12(3分)(2017娄底中考)计算:.13(3分)(2017怀化中考)计算:. 14(3分)(2017张家界中考)计算:.15(3分)(2017湘西土家族苗族自治州中考)计算:16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.专题16 解直角三角形真题汇编1参考答案与试题解析1(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.【解析】本题考查坐标网格中的三角函数计算,作AB⊥x轴于点B,由勾股定理得OA=5,D 在Rt△AOB中,利用正弦函数的定义得出,故选C.【答案】C2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 8【解析】本题考查实数的运算.分别选取第一行一列,第二行二列,第三行四列,第四行三列的四个“数”,求其和为.设第三行三列,第四行二列的四个“数”,求其和为,解得x=7,故选C.【答案】C3(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:sin15°=cos75°≈0.259).【解析】本题考查圆周率的近似值的计算.当n=12时,如图所示,由题意可知,作OC⊥AB,则∠AOC=15°.在直角三角形AOC中,,所以AC≈0.259r,AB=2AC≈0.518r,L=AB≈6.216r,所以.【答案】3.114(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.【解析】本题考查正方形的性质、等边三角形的性质、三角形面积的计算.∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°,又BC=BP,∠CBP=30°,∴AB=BP,∠ABP=60°.∴是等边三角形,∴,∠DAE=30°.,AE=2DE=2×2=4,,.过点P作PF⊥CD,垂足为F,则∠EPF=∠DAE=30°,,∴.【答案】5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.【解析】本题考查利用特殊的角解直角三角形,在Rt△ALR中,由∠ARL=30°,AR=40 km,得AL=20 km,,所以.【答案】6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.【解析】【名师指导】本题考查绝对值、零次幂、负指数幂的运算法则、特殊角的正弦值.根据去绝对值符号法则、零次幂、负指数幂的运算法则、特殊角的正弦值分别计算求解.【答案】解:原式=3+1-2×+3=6.7(3分)(2017株洲中考)计算:.【解析】【名师指导】本题考查有理数运算的化简与求值.【答案】解:原式.(其中:)8(3分)(2017益阳中考)计算:.【解析】【名师指导】本题考查绝对值、特殊角的三角函数值、零指数幂的计算.【答案】解:原式==-5.9(3分)(2017岳阳中考)计算:【解析】【名师指导】本题考查实数的相关计算、三角函数、负指数、零指数、绝对值. 【答案】解:原式===2.10(3分)(2017邵阳中考)计算:.【解析】【名师指导】本题考查二次根式、特殊角三角函数值的计算、负指数的计算. 【答案】解:原式===-211(3分)(2017永州中考)计算:.【解析】【名师指导】本题考查二次根式、零指数幂、特殊角的三角函数值的混合运算. 根据运算法则计算即可.【答案】解:==-1.12(3分)(2017娄底中考)计算:.【解析】【名师指导】本题考查实数的综合运算.先化简二次根式,计算负指数幂,求特殊角的三角函数值,计算零指数幂,然后进行综合运算,求出算式的结果即可.【答案】解:原式===-2.13(3分)(2017怀化中考)计算:.【解析】【名师指导】本题考查实数的计算,涉及绝对值、零指数、负指数、特殊角的三角函数值及立方根的运算.【答案】解:原式==-2.14(3分)(2017张家界中考)计算:.【解析】【名师指导】本题考查整数指数幂、三角函数值、绝对值的意义.【答案】解:原式==2.15(3分)(2017湘西土家族苗族自治州中考)计算:【解析】【名师指导】本题考查实数的相关计算、二次根式、指数幂、三角函数.【答案】解:原式=.(其中)16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【解析】(1)本题考查解直角三角形的应用.根据方位角的概念得到三角形中角的度数,进而求解;(2)根据含特殊角的直角三角形的边的关系求解相关线段的长度,进而求解.【答案】(1)解:依题意得,∠PAB=30°,∠PBE=60°,∵∠PBE=∠PAB+∠APB,∴∠APB=∠PBE-∠PAB=60°-30°=30°.(2)由(1)知∠PAB=∠APB=30°,∴PB=AB=50(海里),如图,过点P作PC⊥AB于点C,在中,PC=PB·sin60°=(海里).∵>25,∴海监船继续向正东方向航行是安全的.17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)【解析】【名师指导】本题考查利用解直角三角形解决实际问题.根据已知条件可得等腰三角形ABC,从而得AB=BC,再在直角三角形中利用锐角三角函数求解或设CD为x米,锐角三角函数表示出BD,找到等量关系,建立方程求解.【答案】解法一:∵∠CAB=30°,∠CBD=60°,∴∠ACB=30°,∴AB=BC=10.4.又∵∠CDA=90°∴CD=BC·sin∠CBD=10.4×sin60°=10.4×≈9.0064,9.006 4+1.5≈10.5答:来雁塔高约10.5米.解法二:设CD为x米.∵∠CBD=60°,∠CDA=90°,∴.又∵∠CAB=30°,∴.∴10.4+x,x≈9.0064,9.006 4+1.5≈10.5(米).答:来雁塔高约10.5米.18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5.所以这架无人机的长度为5米.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于将实际问题转化到直角三角形中求解.【答案】解:过点P作PH⊥AC垂足为点H,由题意可知∠EAP=60°,∠FBP=30°,∴PAB=30°,∠PBH=60°,∴∠APB=30°,∴AB=PB=120.在,∵,∴,∵103.80>100,∴要修建的这条高速铁路不会穿越森林保护区.20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于添加辅助线构造直角三角形求解.【答案】解:过点E作EP⊥BC,交CB的延长线于点P,过点A作AQ⊥FP于点Q,在Rt△ABC中,,∴AB=CB·tan75°≈0.60×3.732≈2.239,∴四边形ABPQ是矩形,∴PQ≈2.239,又∵HE⊥FP,AQ⊥FP’∴,∴∠FAQ=∠FHE=60°,在中,,∴,∴DQ=FQ-FD≈2.165-1.35=0.815,∴DP=DQ+QP≈0.815+2.239=3.054≈3.05.答:篮筐D到地面的距离约为3.05米.21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).【解析】【名师指导】本题考查解直角三角形的应用.作垂线构造直角三角形,根据锐角三角函数求出相关线段的长度,再根据线段间的数量关系求出仙女峰的高度.【答案】解:过点B作AC的垂线,交AC的延长线于点D.设BD=x米,在中,,在中,,∵AD-CD=AC,∴,解得x=580.答:仙女峰的高度是580米.22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【解析】【名师指导】本题考查应用解直角三角形的知识解决实际问题.【答案】解:在中,∵∠DBC=45°,∴BC=DC=2.3米,在中,AC=BC·tan70.5°≈6.5米,则AD=AC-DC≈6.5-2.3=4.2(米).23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).【解析】(1)【名师指导】本题考查解直角三角形.利用在直角三角形中,30°角所对的直角边等于斜边的一半求解;(2)根据特殊角的正弦值求解相关线段的长度,进而得到结论.【答案】(1)解:在中,∵∠ABE=90°,∠BAE=30°,AE=80,∴∠AEB=60°,.答:旋转木马E处到出口B处的距离为40米.(2)在中,∵∠C=90°,∴∠CED=∠AEB=60°∵,CD=34,∴(或者).∴DB=DE+BE=40+40=80(慊蛘逥B=DE+BE=40+39=79).答:海洋球D处到出口B处的距离为80(或者79)米(其他方法参照给分).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5. 所以这架无人机的长度为5米.。
中考数学难点突破与经典模型精讲练解直角三角形中的拥抱模型和12345模型(解析版)
专题16 解直角三角形中的拥抱模型和12345模型【模型展示】 分别解两个直角三角形,其中公共边BC 是解题的关键.在Rt△ABC 和Rt△DCB 中,BC=BC.一、单选题1.如图,某学校大楼顶部有一个LED 屏AB ,小明同学在学校门口C 处测得LED 屏底部A 的仰角为53°,沿大门楼梯CD 向上走到D 处测得LED 屏顶部B 的仰角为30°,D 、E 、F 在同一水平高度上,已知大门楼梯CD 的坡比i =80CD =米,30EF =米,大楼AF 和大门楼梯CD 的剖面在同一平面内,则LED 屏AB 的高度为( ) 1.73≈,sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .24.6米B .30.6米C .34.6米D .44.6米 【答案】C【分析】如图,过D 作DH ⊥水平线于H ,延长AF 交水平线于,G 则,AG CH ⊥ 过C 作CO DE ⊥于,O 则,,DH CO CH DO 利用坡度的含义求解30,40,cos 30403,CDOOC OD CD 再求解30,tan53OC OE 60403,tan 5340,DF AF EF tan3074.6,BF DF 从而可得答案.【详解】解:如图,过D 作DH ⊥水平线于H ,延长AF 交水平线于,G 则,AG CH ⊥ 过C作CO DE ⊥于,O 则,,DH CO CH DO 由题意得:1:3,80,CD i CD 13tan ,33DHCO CDO CHDO 30,40,cos 30403,CDO OC ODCD53,ACG 而,DF HG ∥53,OEC AEF ACG ∴∠=∠=∠=︒4030,4tan 533OC OE 30,EF 4403303060403,tan533040,3DF AFEF 30,,BDFBF DF·tan 30604074.6,BF DF ∴=︒=+=≈ 74.64034.6.AB BF AF故选C【点睛】本题考查的是解直角三角形的应用,坡度的含义,熟练的构建直角三角形是解本题的关键.2.如图,某建筑物AB 在一个坡度为i =1:0.75的山坡BC 上,建筑物底部点B 到山脚点C 的距离BC =20米,在距山脚点C 右侧同一水平面上的点D 处测得建筑物顶部点A 的仰角是42°,在另一坡度为i =1:2.4的山坡DE 上的点E 处测得建筑物顶部点A 的仰角是24°,点E 到山脚点D 的距离DE =26米,若建筑物AB 和山坡BC 、DE 的剖面在同一平面内,则建筑物AB 的高度约为( )(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45,sin 42°≈0.67.cos 42°≈0.74,tan 42°≈0.90)A .36.7米B .26.3 米C .15.4米D .25.6 米 【答案】D【分析】如图所示,过E 点做CD 平行线交AB 线段为点H ,标AB 线段和CD 线段相交点为G 和H 由坡度为i =1:0.75,BC =20可得BG =16,GC =12,由坡度为 i =1:2.4,DE =26可得DF =24,EF =10,分别在在AGB 中满足tan 42AG GD =︒,在AEH △中满足tan 24AH HE =︒化简联立得AB =25.6.【详解】如图所示,过E 点做CD 平行线交AB 线段为点H ,标AB 线段和CD 线段相交点为G 和H△在BGC 中BC =20,坡度为i =1:0.75,△222BG GC BC +=, △2223()4BG BG BC +=, △222916BG BG BC +=, △22252016BG =, △22540016BG =, △21640025BG =⨯, △2256BG =,△16BG =, △3124CG BG ==. 在BGC 中DE =26,坡度为 i =1:2.4,△222DF EF DE +=,△22212()5EF EF DE +=, △22214425EF EF DE +=, △221692625EF =, △225676169EF =⨯, △2100EF =,△10EF =, △12245DF EF ==, △在AGB 中满足tan 42AG GD =︒,在AEH △中满足tan 24AH HE =︒, 即0.9AB BG GC CD +=+,0.45AB BH GC CD DF+=++ 其中BG =16、BG =12、BH =BG -EF =6、DF =24,代入化简得160.9(12)60.45(36)AB CD AB CD +=+⎧⎨+=+⎩①②, 令2②-①有2261620.45360.91220.450.9AB AB CD CD -+⨯-=⨯⨯-⨯+⋅⋅-△421.6AB -=,△AB =25.6.故选:D .【点睛】本题考查了解直角三角形的应用,利用三角形的坡度和斜边长通过勾股定理可以求得三角形各边长度,再根据角度列含两个未知数的二元一次方程组,正确的列方程求解是解题的关键.3.数学实践活动课中小明同学测量某建筑物CD 的高度,如图,已知斜坡AE 的坡度为i =1:2.4,小明在坡底点E处测得建筑物顶端C处的仰角为45°,他沿着斜坡行走13米到达点F 处,在F测得建筑物顶端C处的仰角为35°,小明的身高忽略不计.则建筑物的CD高度约为()(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)A.28.0米B.28.7米C.39.7米D.44.7米【答案】D【分析】过点F作FG△BD于G,FH△CD于H,设FG=x米,则EG=2.4x米,在Rt△FGE 中,由勾股定理解得FG=5,EG=12,证明△CDE是等腰直角三角形,则CD=DE,设CD=y 米,在Rt△CHF中,由三角函数定义求解即可.【详解】过点F作FG△BD于G,FH△CD于H则△CFH=35°,四边形DGFH是矩形,△HF=DG,DH=FG,△斜坡AE的坡度为i=1:2.4,△设FG=x米,则EG=2.4x米,在Rt△FGE中,由勾股定理得:EF2FG2+EG2,即:132=x2+(2.4x)2,解得:x=5,△FG=5,EG=12,△△CED=45°,△△CDE是等腰直角三角形,△CD=DE,设CD=y米,则CH=(y﹣5)米,Rt△CHF中,tan△CFH=CH HF,即tan35°=512yy-+,则y﹣2=tan35°×(y+12),解得:y≈44.7,即建筑物的CD高度约为44.7米;故选:D.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题以及坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键4.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C处测得该座建筑物顶点A的仰角为45°,沿着C向上走到D点.再测得顶点A 的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB的高度为()(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60B.70C.80D.90【答案】D【分析】作AH△ED交ED H,根据坡度的概念分别求出CE、DE,根据正切的定义求出AB.【详解】解:作AH△ED交ED的延长线于H,设DE=x米,△CD的坡度:i=1:2,△CE=8x米,由勾股定理得,DE2+CE2=CD8,即x2+(2x)2=(2,解得,x=30,则DE=30米,CE=60米,设AB=y米,则HE=y米,△DH=y﹣30,△△ACB=45°,△BC=AB=y,△AH=BE=y+60,在Rt△AHD中,tan△DAH=tan22DH AH︒=则3060yy-+≈0.4,解得,y=90,△高楼AB的高度为90米,故选:D.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.5.如图,某大楼DE楼顶挂着“众志成城,抗击疫情”的大型宣传牌,为了测量宣传牌的高度CD,小江从楼底点E向前行走30米到达点A,在A处测得宣传牌下端D的仰角为60°.小江再沿斜坡AB行走26米到达点B,在点B测得宣传牌的上端C的仰角为43°,已知斜坡AB的坡度i=1:2.4,点A、B、C、D、E在同一平面内,CD△AE,宣传牌CD的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.8.3米B.8.5米C.8.7米D.8.9米【答案】A【分析】过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,再求出EF即BG的长;在Rt△CBG中求出CG的长,根据CD=CG+GE-DE即可求出宣传牌的高度.【详解】解:过B作BF△AE,交EA的延长线于F,作BG△DE于G.Rt△ABF 中,i =tan△BAF =BF AF =12.4,AB =26米, △BF =10(米),AF =24(米),△BG =AF +AE =54(米),Rt△BGC 中,△CBG =43°,△CG =BG •tan43°≈54×0.93=50.22(米),Rt△ADE 中,△DAE =60°,AE =30米,,△CD =CG +GE -DE =50.22+10-(米).故选:A .【点睛】此题考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.6.如图,小明在距离地面30米的P 处测得A 处的俯角为15︒,B 处的心角为60︒,若斜面坡度为,则斜面AB 的长是( )米.A.B .C .D .【答案】B【分析】过点A 作AF BC ⊥于点F ,根据三角函数的定义得到30ABF ∠=︒,根据已知条件得到3045HPB APB ∠∠=︒=︒,,求得60HBP ∠=︒,解直角三角形即可得到结论.【详解】如图所示:过点A 作AF BC ⊥于点F ,斜面坡度为,AF tan ABF BF ∠∴== 30ABF ∠∴=︒,在P 处进行观测,测得山坡上A 处的俯角为15︒,山脚B 处的俯角为60︒,3045HPB APB ∠∠∴=︒=︒,,60HBP ∠∴=︒,9045PBA BAP ∠∠∴=︒=︒,,PB AB ∴=,303060PH PH m sin PB PB =︒===,,解得:)PB m =,故AB =,故选:B .【点睛】此题主要考查了解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题,正确得出PB AB =是解题关键.7.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为63.4︒,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为53︒.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度i =5:12,求此人从所在位置点P 走到建筑物底部B 点的路程( )米.(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:4tan533︒≈,tan63.42︒≈)A .119.2B .137.1C .129.2D .127.1【答案】D 【分析】首先过点P 作PE △AB 于E ,PH △BD 于H ,由题意可知i =PH :CH =5:12,然后设PH =5x 米,CH =12x 米,在Rt △ABC 中,63.4ACB ∠=︒,BC =90米,则可得tan63.4AB BC︒=,利用正切函数的知识可求AB ,在Rt △AEP 中,53APE ∠=︒,利用正切函数可得关于x 的方程,从而得出PH ,在Rt △PHC 中,利用勾股定理可求CP 的长度,进一步可求此人从所在位置点P 走到建筑物底部B 点的路程.【详解】解:如图:过点P 作PE △AB 于E ,PH △BD 于H ,设PH =BE =5x 米,CH =12x 米,在Rt △ABC 中,63.4ACB ∠=︒,BC =90米,则tan63.4AB BC ︒=, 即=290AB , △AB =180(米),在Rt △AEP 中,53APE ∠=︒,AE =AB -BE =180-5x ,BH =EP =BC +CH =90+12x , △18054tan5390123AE x EP x -︒===+, 解得207x =, 经检验207x =是原方程的解,且符合题意, △201005577PH x ==⨯=(米),在Rt △PHC 中,260371PC x ===(米), 故此人从所在位置点P 走到建筑物底部B 点的路程是:26089090127.177+=≈(米),故选:D .【点睛】本题考查了仰角的定义,以及解直角三角形的实际应用问题,解题的关键是要能借助仰角构造直角三角形并解直角三角形,注意数形结合思想的应用,注意辅助线的作法.二、填空题8.一名高山滑雪运动员沿着斜坡FC 滑行,他在点D 处相对大树顶端A 的仰角为30︒,从D点再滑行米到达坡底的C 点,在点C 处相对树顶端A 的仰角为45︒,若斜坡CF 的坡比为1:3i =(点E ,C ,B 在同一水平线上),则大树AB 的高度___________米(结果保留根号).【答案】【分析】作DH △CE 于H ,解Rt △CDH ,即可求出DH ,CH ,过点D 作DG △AB 于点G ,设BC =a 米,用a 表示出AG 、DG ,根据tan△ADG =AG DG列式计算得到答案. 【详解】解:过点D 作DH △CE 于点H ,过点D 作DG △AB 于点G ,设BC =a 米,由题意知CD =△斜坡CF 的坡比为i =1:3, △13DH CH =, 设DH =x 米,则CH =3x 米,△DH 2+CH 2=DC 2,△()(2223x x +=,△x =2,△DH =2米,CH =6米,△△DHB =△DGB =△ABC =90°,△四边形DHBG 为矩形,△DH =BG =2米,DG =BH =(a +6)米,△△ACB =45°,△BC =AB =a (米),△AG =(a −2)米,△△ADG =30°,△tan 30AG DG ︒==△26a a -=+△a =6+△AB =6+,故答案为:6+【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.9.如图,小明在P 处测得A 处的俯角为15°,B 处的俯角为60°,PB =30m .若斜面AB 坡度为AB 的长是______m .【答案】30【分析】根据斜面AB 坡度为30ABF ∠=︒,再利用角之间的关系求出601545∠=︒-︒=︒APB ,PAB 45∠=︒,进一步得到=30m =PB AB .【详解】解:△斜面AB 坡度为1:,△tan∠ABF 30ABF ∠=︒,△在P 处测得A 处的俯角为15°,B 处的俯角为60°,△906030∠=︒-︒=︒HPB ,△60HBP ∠=︒,△90PBA ∠=︒,△601545∠=︒-︒=︒APB ,∠=︒,△PAB45=,△PB ABPB=,△30mAB=,△30m故答案为:30【点睛】此题主要考查了解直角三角形的应用,正确得出PB=AB是解题关键.三、解答题10.大楼AB是某地标志性建筑,如图所示,某校九年级数学社团为测量大楼AB的高度,一小组先在附近一楼房CD的底端C点,用高为1.5米的测杆CE在E处观测AB大楼顶端B 处的仰角是72°,另一小组到该楼房顶端D点处观测AB大楼底部A处的俯角是30°,已知楼房CD高约是45米,根据以上观测数据求AB大楼的高(精确到0.1米).(,sin72°≈0.951,cos72°≈0.034,tan72°≈3.08)【答案】241.3米【分析】过E作EF△AB于F,则四边形ACEF是矩形,得到EF=AC,AF=CE,利用三角函数在Rt△ACD中求出AC,在Rt△BEF中求出BF,即可得到AB大楼的高.【详解】解:过E作EF△AB于F,则四边形ACEF是矩形,△EF=AC,AF=CE,在Rt △ACD 中,△DAC =30°,CD =45,△AC =tan30CD =︒在Rt △BEF 中,△BEF =72°,EF =AC =△BF =EF ∙tan72°=,△AB =AF +BF =239.78+1.5≈241.3(米),答:AB 大楼的高为241.3米.【点睛】此题考查了解直角三角形的实际应用,正确理解题意构造直角三角形解决问题是解题的关键.11.如图,坡AB 的坡度为1:2.4,坡面长26米,BC AC ⊥,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡(BE 请将下面两小题的结果都精确到0.1 1.732)≈.(1)若修建的斜坡BE 的坡角(即)BEF ∠恰为45︒,则此时平台DE 的长为______米;(2)坡前有一建筑物GH ,小明在D 点测得建筑物顶部H 的仰角为30︒,在坡底A 点测得建筑物顶部H 的仰角为60︒,点B 、C 、A 、G 、H 在同一平面内,点C 、A 、G 在同一条水平直线上,问建筑物GH 高为多少米?【答案】(1)7.0(2)建筑物GH 高约为17.9米【分析】(1)先利用勾股定理解直角BCA ∆求出10BC =,24AC =,再证BCA BFD ∆∆,推出12BF FD BD BC AC AB ===,代入数值即可求解; (2)过点D 作DP AC ⊥,垂足为P ,利用矩形的性质求出12PA AC PC =-=,5MG DP ==,12DM PG AP AG AG ==+=+,解Rt DMH ∆可得()tan3012HM DM AG =⋅︒=+,进而得出()125GH HM MG AG =+=++,再解Rt HGA ∆,列等式求出AG ,则HG =. 【详解】(1)解:由题意知,90BCA ∠=︒,26AB =,12.4BC AC =,△设BC x =,则 2.4AC x =,由勾股定理得:222BC AC AB +=,即()2222.426x x +=,解得10x =,△10BC =,24AC =.△45BEF ∠=︒,90BFE ∠=︒,△45FBE BEF ∠=∠=︒,△BF FE =.由题意,DF AC ∥,△BDF BAC ∠=∠,又△90BCA BFE ∠=∠=︒,△BCA BFD ∆∆, △12BF FD BD BC AC AB ===, △1132AD BD AB ===,152BF CF EF BC ====,1122DF AC ==, △1257.0(DE DF EF =-=-=米);则平台DE 的长为7.0m ,(2)解:过点D 作DP AC ⊥,垂足为P .在矩形FDPC 中,5DP CF ==,12PC DF ==,△12PA AC PC =-=.在矩形DPGM 中,5MG DP ==,12DM PG AP AG AG ==+=+,在Rt DMH ∆中,()tan3012HM DM AG =⋅︒=+,△()125GH HM MG AG =+=++, 60HAG ∠=︒,)1253tan60AG HG AG AG++∴︒===解得:AG =,17.9HG ∴==≈(米), 即建筑物GH 高约为17.9米.【点睛】本题考查解直角三角形的实际应用,涉及勾股定理、相似三角形的判定与性质、矩形的判定与性质、特殊角的三角函数值等知识点,解题的关键是构造直角三角形,利用特殊角的三角函数值求解.12.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C 处测得该建筑物顶端B 的仰角为60°,沿山坡向上走20m 到达D 处,测得建筑物顶端B 的仰角为30°.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助该小组计算建筑物的高度AB .(结果精确到0.1m ,1.732≈)【答案】该建筑物AB 的高度约为31.9m【分析】如图,作DE AC ⊥交AC 于点E ,作DF AB ⊥交AB 于点F ,作CH DF ⊥交DF 于点H ,根据题意分别求出BF 和AF 的长,再根据AB AF BF =+即可求解.【详解】作DE AC ⊥交AC 于点E ,作DF AB ⊥交AB 于点F ,作CH DF ⊥交DF 于点H 则DE AF =,HF AC =,DH CE = △3tan 4θ= △设3DE x =,则4CE x =在Rt CDE △中,90E ∠=︒△222DE CE CD +=△222(3)(4)20x x +=△4x =(负值舍去)△12DE =,16CE =△12AF DE ==,16DH CE ==设BF y =,则(12)AB y =+在Rt BDF 中,30BDF ∠=︒ △tan BF BDF DF ∠=△DF =在Rt ABC 中,60ACB ∠=︒ △tan AB ACB AC ∠=△12)AC y =+即12)HF AC y ==+ △DF FH DH -=12)16y +=△(6y =+△6121831.9(m)AB BF FA =+=+=+≈答:该建筑物AB 的高度约为31.9m .【点睛】本题考查解直角三角形的应用,熟练掌握坡角坡度,仰角的定义,添加合适的辅助线构造直角三角形是解题的关键.13.如图,在建筑物DF 的左边有一个小山坡,坡底B 、C 同建筑底端F 在同一水平线上,斜坡AB 的坡比为5:12i = ,小李从斜坡底端B 沿斜坡走了26米到达坡顶A 处,在坡顶A处看建筑物的顶端D 的仰角α为35︒,然后小李沿斜坡AC 走了C 点,已知建筑物上有一点E ,在C 处看点E 的仰角为18︒,(点A 、B 、C 、D 、E 、F 在同一平面内)建筑物顶端D 到E 的距离DE 长度为28.8米,求建筑物DF 的高度.(参考数据:4cos355︒≈, 7tan35?10≈,9cos1810︒≈,1tan183︒≈)【答案】40.8米【分析】如图AG BC ⊥于G ,AH DF ⊥于H ,连接AD CE ,根据比例设5AG x =,12BG x =,结合勾股定理求出=2x ,得到10AG =,再次由勾股定理求出8GC =,设EF m =,然后利用解直角三角形,求出12m =,即可得到答案.【详解】解:如图AG BC ⊥于G ,AH DF ⊥于H ,连接AD 、CE ,△AB 的坡比5:12i =,设5AG x =,12BG x =,△在Rt ABG 中,1326AB x ===, △=2x ,△10AG =,在Rt ACG 中,8GC ,设EF m =,在Rt CEF 中,1tan =tan18?=3EF CF β≈, △3CF m =,△四边形AGFH 是矩形,△83AH GF GC CF m ==+=+,又△()28.81018.8DH DE EH DE EF HF m m =+=+-=+-=+,在Rt AHD 中,7tan tan 3510DH AH α=︒=≈, 18.878310m m +∴≈+,12m =∴,△28.81240.8DF DE EF =+=+=,答:建筑物DF 的高度为40.8米.【点睛】本题考查了解直角三角形的应用——仰角俯角问题,也考查了勾股定理,根据题意作出正确的辅助线是解答此题的关键.14.某工程队计划测量一信号塔OC 的高度,由于特殊原因无法直达到信号塔OC 底部,因此计划借助坡面高度来测量信号塔OC C 的高度.如图,在信号塔OC 旁山坡脚A 处测得信号塔OC 顶端C 的仰角为70︒,当从A 处沿坡面行走13米到达P 处时,测得信号塔OC 顶端C 的仰角为45︒.已知山坡的坡度1:2.4i =,且O ,A ,B 在同一条直线上.请根据以上信息求信号塔OC 的高度.(侧倾器高度忽略不计,参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.7︒≈)【答案】信号塔OC 的高度约为27.0米【分析】过点P 作PE △OB 于点E ,PF △OC 于点F ,设PE =5x ,则AE =12x ,在Rt △AEP 中根据勾股定理可得(5x )2+(12x )2=132,解方程求出x ,设CF =PF =m 米,则OC = (m +5) 米,OA =(m -12)米,在Rt △AOC 中,由5tan 7012OC m OA m +︒==-求得m 的值,继而可得答案. 【详解】解:如图,过点P 作PE △OB 于点E ,PF △OC 于点F ,则四边形OFPE 是矩形, △OF =PE ,OE =PF ,△i =1:2.4,13AP =, △15tan 2.412PE PAE AE ∠===, △设PE =5x ,则AE =12x ,在Rt △AEP 中,由勾股定理得:(5x )2+(12x )2=132,解得:1x =或=1x -(舍去),△PE =5,则AE =12,△△CPF =45°,PF △CF ,△△CPF =△PCF = 45°,△CF PF =,设CF =PF =m 米,则OC = (m +5) 米,OA =(m -12)米,在Rt △AOC 中,5tan 7012OC m OA m +︒==-, 解得:22.0m ≈,△22.0527.0OC ≈+=(米)△信号塔OC 的高度约为27.0米.【点睛】本题考查的是解直角三角形的应用,仰角、坡度的定义,矩形的性质与判定,解题的关键是要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形. 15.感恩回馈,传播文化.2022年3月份,河南省绝大部分景点实施免门票政策,其中去嵩山少林寺的人数量巨大.如图,王林进入景区之后沿直线BD 行至山坡坡脚C 处,测得检票大厅顶点A 的仰角为60︒,沿山坡向上走到山门E 处再测得检票大厅顶点A 的仰角为37︒,已知山坡的坡比1:1.5i =,48BC =米.求王林所在山门E 处的铅直高度.(结果精确到0.1.参考数据:sin 370.60,cos 370.80,tan 37 1.73≈≈≈°°°)【答案】22.1米【分析】根据解直角三角形求得tan60AB BC =⋅︒=,如图,过点E 作EF AB ⊥于点F ,EG BD ⊥于点G ,则四边形EFBG 是矩形,设EG BF x ==米,求得()48 1.5EF BG x ==+米,列方程()0.7548 1.5x x +=,求解即可.【详解】解:在Rt ABC 中,48BC =米,60ACB ∠=︒, △tan60AB BC =⋅︒=.如图,过点E 作EF AB ⊥于点F ,EG BD ⊥于点G ,则四边形EFBG 是矩形,△,EF BG BF GE ==,设EG BF x ==米.在Rt EGC 中,1tan 1.5EG i ECG CG =∠==, △ 1.5CG x =(米),△()48 1.5EF BG x ==+米.在Rt AFE 中,37AEF ∠=︒,△()tan370.7548 1.5AF EF x =⋅︒≈+米.又△()AF AB BF x =-=米,△()0.7548 1.5x x +=,解得22.1x ≈,即22.1EG ≈(米).答:王林所在山门E 处的铅直高度约为22.1米.【点睛】本题考查了解直角三角形的应用问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.16.如图,某测绘小组在山坡坡脚A 处测得信号发射塔尖C 的仰角为56.31°,沿着山坡向上走到P 处再测得点C 的仰角为36.85°,已知AP =米,山坡的坡度1:3i =(坡度指坡面的铅直高度与水平宽度的比),且D 、A 、B 三点在同一条直线上,求塔尖C 到地面的高度CD 的长.(测角仪的高度忽略不计,参考数据:sin56.310.83︒≈,cos56.310.55︒≈,tan56.31 1.50︒≈,sin36.850.60︒≈,cos36.850.80︒≈,tan36.850.75︒≈)【答案】约为130米【分析】过点P 作PM CD ⊥垂足为M ,则四边形DBPM 是矩形,得DM BP =,MP DB =,根据1:3i =,且AP =,求出PB ,AB 的长度;在Rt CPM 中,36.85CPM ∠=︒,设CM x =,由三角函数值求出3443PM CM x ==,在Rt ACD 中56.31CAD ∠=︒,20CD x =+,()2203AD x =+,根据PM BD AB AD ==+列方程求出x ,即可得到CD 长度. 【详解】解:过点P 作PM CD ⊥垂足为M ,则四边形DBPM 是矩形DM BP ∴=,MP DB =, 1:3i =,且AP =20PB ∴=,60AB =,在Rt CPM 中,36.85CPM ∠=︒,设CM x =,3tan 36.854CM PM ︒==, 3443PM CM x ∴==, 在Rt ACD 中,56.31CAD ∠=︒,20CD x =+,203tan 56.312CD x AD AD +∴︒===, ()2203AD x ∴=+, PM BD AB AD ==+,即()42206033x x =++, 110x ∴=,130CD CM DM ∴=+=,答:塔尖到地面的高度CD 约为130米.【点睛】本题考查了解直角三角形的应用,仰角俯角问题,以及坡角问题,本题要求学生借助仰角关系,构造直角三角形,并结合图形利用三角函数解直角三角形.17.在一次数学课外实践活动中,某小组要测量一幢大楼MN 的高度,如图,在山坡的坡脚A 处测得大楼顶部M 的仰角是58︒,沿着山坡向上走75米到达B 处.在B 处测得大楼顶部M 的仰角是22︒,已知斜坡AB 的坡度3:4i =(坡度是指坡面的铅直高度与水平宽度的比)求大楼MN 的高度.(图中的点A ,B ,M ,N ,C 均在同一平面内,N ,A ,C 在同一水平线上,参考数据:tan220.4,tan58 1.6︒≈︒≈)【答案】大楼MN 的高度为92米【分析】过点B 分别作BE △AC ,BF △MN ,垂足分别为E 、F ,通过解直角三角形表示出BF 、AN 、AE 的长度,利用BF =NE 进行求解即可.【详解】过点B 分别作BE △AC ,BF △MN ,垂足分别为E 、F ,90BEA BFN BFM MNA ∴∠=∠=∠=∠=︒∴四边形BENF 为矩形,,BE AN BF NE ∴==设MN x =,在Rt ABE 中,斜坡AB 的坡度3:4i =,即34BE AE =, 3sin 5BE BAE AB ∴∠== 75AB =45,60BE AE ∴==45FN ∴=45MF x ∴=-在Rt AMN △中,tan ,58MN MAN MAN AN∠=∠=︒ tan 58 1.6x AN∴︒=≈ 58AN x ∴≈ 5608NE AN AE x ∴=+=+ 在Rt BMF △中,tan ,22MF MBF MBF BF∠=∠=︒ 45tan 220.4x BF-∴︒=≈ 5(45)2BF x ∴≈- 5560(45)82x x ∴+=- 解得92x =,所以,大楼MN 的高度为92米.【点睛】本题考查了解直角三角形的应用—仰角俯角问题,准确理解题意,能添加辅助线构造直角三角形是解题的关键.18.如图,公园内有一个垂直于地面的立柱AB ,其旁边有一个坡面CQ ,坡角30QCN ∠=.在阳光下,小明观察到在地面上的影长为120cm ,在坡面上的影长为180cm .同一时刻,小明测得直立于地面长60cm 的木杆的影长为90cm (其影子完全落在地面上).求立柱AB 的高度.【答案】【分析】延长AD交BN于点E,过点D作DF△BN于点F,根据直角三角形的性质求出DF,根据余弦的定义求出CF,根据题意求出EF,再根据题意列出比例式,计算即可.【详解】解:延长AD交BN于点E,过点D作DF△BN于点F,在Rt△CDF中,△CFD=90°,△DCF=30°,则DF=12CD=90(cm),CF=CD•cos△DCF cm),由题意得:DFEF=6090,即90EF=6090,解得:EF=135,△BE=BC+CF+EF,6090,解得:AB答:立柱AB的高度为.【点睛】此题考查了解直角三角形的应用-坡度坡角问题、平行投影的应用,解题的关键是数形结合,正确作出辅助线,利用锐角三角函数和成比例线段计算.19.如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30︒(点A ,B ,C ,D 在同一平面内).(1)求C ,D 两点的高度差;(2)求居民楼的高度AB .(结果精确到1m 1.7≈)【答案】(1)9m(2)24m【分析】(1)过点D 作DE BC ⊥,交BC 的延长线于点E ,在Rt DCE 中,可得()4cos 1512m 5CE CD α=⋅=⨯=,再利用勾股定理可求出DE ,即可得出答案.(2)过点D 作DF AB ⊥于F ,设m AF x =,在Rt ADF 中,30AF x tan DF DF ︒===,解得DF =,在Rt ABC 中,()9m AB x =+,)12m BC =-,tan60AB BC ︒===x 的值,即可得出答案. (1)解:过点D 作DE BC ⊥,交BC 的延长线于点E ,在Rt DCE 中,4cos 5α=,15m CD =, ()4cos 1512m 5CE CD α∴=⋅=⨯=.()9m DE ∴===.答:C ,D 两点的高度差为9m .(2)过点D 作DF AB ⊥于F ,由题意可得BF DE =,DF BE =,设m AF x =,在Rt ADF 中,tan tan30AF x ADF DF DF ∠=︒===解得DF =,在Rt ABC △中,()9m AB AF FB AF DE x =+=+=+,)12m BC BE CE DF CE =-=-=-,tan60AB BC ︒===解得92x =, ()9924m 2AB ∴=+≈. 答:居民楼的高度AB 约为24m .【点睛】本题考查解直角三角形的应用-仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数的定义是解答本题的关键.20.在一次课外活动中,某数学兴趣小组测量一棵树CD 的高度.如图所示,测得斜坡BE 的坡度1:4i =,坡底AE 的长为8米,在B 处测得树CD 顶部D 的仰角为30°,在E 处测得树CD 顶部D 的仰角为60°,求树高CD .(结果保留根号)【答案】(3)米【分析】作BF CD ⊥于点F ,设DF x =米,则BF =米,(2)CD x =+米,从而计算出2)EC x =+米,结合AC EC AE -=,得到BF EC AE -=,建立起等式计算即可.【详解】解:作BF CD ⊥于点F ,根据题意可得四边形ABFC 是矩形,△,AB FC AC BF ==,△斜坡BE 的坡度1:4i =,坡底AE 的长为8米,△2AB FC ==,设DF x =米,在Rt DBF 中,tan DF DBF BF ∠=, 则3tan 30DF BF ==(米), 在Rt DCE 中,(2)CD DF CF x =+=+米,tan DC DEC EC ∠=, △32)tan 603CD EC x ==+米.△AC EC AE -=, △BF EC AE -=,8=.解得:1x =,则12)3)CD =+=米.答:CD 的高度是3)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.如图,株洲市炎陵县某中学在实施“五项管理”中,将学校的“五项管理”做成宣传牌(CD ),放置在教学楼A 栋的顶部(如图所示)该中学数学活动小组在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿芙蓉小学围墙边坡AB 向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度为i =1:3,AB m ,AE =8m .(1)求点B距水平面AE的高度BH.(2)求宣传牌CD的高度.(结果精确到0.1)【答案】(1)点B距水平面AE的高度BH是2米(2)广告牌CD的高度约为2.1米【分析】(1)根据山坡AB的坡度为i=1:3,可设BH=a,则AH=3a,然后在Rt△ABH中,利用勾股定理进行计算即可解答;(2)过点B作BF△CE,垂足为F,则BH=EF=2米,BF=HE=14米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,再在Rt△BFC中,利用锐角三角函数的定义求出CF的长,最后进行计算即可解答.【详解】(1)解:在Rt△ABH中,BH:AH=1:3,△设BH=a,则AH=3a,△AB由勾股定理得BH=2,答:点B距水平面AE的高度BH是2米;(2)解:在Rt△ABH中, BH=2,△AH =6,在Rt△ADE中, tan△DAE=DE AE.,即DE=tan60 ·AE,如图,过点B作BF△CE ,垂足为F,BF= AH + AE=6+8 =14,DF= DE-EF= DE-BH,在Rt△BCF中,△C=△CBF=45°,△ CF= BF= 14,△CD=CF-DF =14—()答:广告牌CD的高度约为2.1米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.。
解直角三角形测试题与答案
解直角三角形测试题与答案一、选择题(每小题 5 分,共 25 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。
2、在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:D解析:因为 sinA =,设 BC = 4x,AB = 5x,则 AC = 3x,所以tanB =。
3、如图,在△ABC 中,∠C = 90°,AC = 8,∠A 的平分线 AD =,则 BC 的长为()A 12B 10C 8D 6答案:B解析:因为 AD 是∠A 的平分线,所以∠CAD =∠BAC。
在Rt△ACD 中,cos∠CAD =,即,解得 CD = 6。
在 Rt△ABC 中,BC =。
4、已知在 Rt△ABC 中,∠C = 90°,tanA =,则 sinA 的值为()A B C D答案:B解析:设 BC = 3x,AC = 4x,则 AB = 5x,所以 sinA =。
5、如图,在菱形 ABCD 中,DE⊥AB,cosA =,BE = 2,则tan∠DBE 的值是()A B 2C D答案:C解析:因为 cosA =,设 AD = 5x,AE = 3x,则 DE = 4x。
因为BE = 2,所以 5x 3x = 2,解得 x = 1,所以 DE = 4。
在 Rt△BDE 中,tan∠DBE =。
二、填空题(每小题 5 分,共 25 分)1、在 Rt△ABC 中,∠C = 90°,若 sinA =,AB = 10,则 BC=________。
答案:6解析:因为 sinA =,所以,设 BC = 3x,AB = 5x,因为 AB =10,所以 5x = 10,解得 x = 2,所以 BC = 6。
解直角三角形测试题与答案
解直角三角形测试题与答案一、选择题(每小题 3 分,共 30 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:在直角三角形中,30°角所对的直角边等于斜边的一半。
设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。
2、已知在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:A解析:因为 sinA =,所以设 BC = 3x,AB = 5x,则 AC = 4x。
所以 tanB =。
3、在△ABC 中,∠C = 90°,AB = 15,sinA =,则 BC 等于()A 9B 12C 10D 6答案:B解析:因为 sinA =,所以 BC = AB×sinA = 15×= 9。
4、如图,在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,则cosB 的值是()A B C D答案:A解析:因为在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,所以BC = 3。
所以 cosB =。
5、一个直角三角形的两条直角边分别为 6 和 8,则其斜边上的高为()A 48B 5C 3D 10答案:A解析:根据勾股定理可得斜边为 10,设斜边上的高为 h,根据面积相等可得 ×6×8 = ×10×h,解得 h = 48。
6、在 Rt△ABC 中,∠C = 90°,若 sinA =,则 cosA 的值为()A B C D答案:B解析:因为 sin²A + cos²A = 1,sinA =,所以 cosA =。
7、如图,在 Rt△ABC 中,∠ACB = 90°,CD⊥AB 于点 D,若AC =,BC = 2,则 sin∠ACD 的值为()A B C D答案:A解析:因为∠ACB = 90°,AC =,BC = 2,所以 AB = 3。
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。
中考数学专题16等腰三角形与直角三角形(共5题)(全国通用解析版)
等腰三角形与直角三角形一.选择题(共24小题)1.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm.则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm.而没有明确腰、底分别是多少.所以要进行讨论.还要应用三角形的三边关系验证能否组成三角形.【解析】当3cm是腰长时.3.3.5能组成三角形.当5cm是腰长时.5.5.3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.【点评】本题考查等腰三角形的性质及三角形三边关系.已知没有明确腰和底边的题目一定要想到两种情况.分类进行讨论.还应验证各种情况是否能构成三角形进行解答.这点非常重要.也是解题的关键.2.(2022•泰安)如图.l1∥l2.点A在直线l1上.点B在直线l2上.AB=BC.∠C=25°.∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°.利用平行线的性质得到∠BEA=95°.再根据三角形外角的性质即可求解.【解析】如图.∵AB=BC.∠C=25°.∴∠C=∠BAC=25°.∵l1∥l2.∠1=60°.∴∠BEA=180°﹣60°﹣25°=95°.∵∠BEA=∠C+∠2.∴∠2=95°﹣25°=70°.故选:A.【点评】本题考查了等腰三角形的性质.平行线的性质以及三角形外角的性质.解决问题的关键是注意运用两直线平行.同旁内角互补.3.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°.则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°.则顶角的度数为(2x+20)°.根据三角形内角和是180°列出方程.解方程即可得出答案.【解析】设底角的度数是x°.则顶角的度数为(2x+20)°.根据题意得:x+x+2x+20=180.解得:x=40.故选:B.【点评】本题考查了等腰三角形的性质.考查了方程思想.掌握等腰三角形两个底角相等是解题的关键.4.(2022•天津)如图.△OAB的顶点O(0.0).顶点A.B分别在第一、四象限.且AB⊥x轴.若AB=6.OA=OB=5.则点A的坐标是()A.(5.4)B.(3.4)C.(5.3)D.(4.3)【分析】根据等腰三角形的性质求出AC.根据勾股定理求出OC.根据坐标与图形性质写出点A的坐标.【解析】设AB与x轴交于点C.∵OA=OB.OC⊥AB.AB=6.∴AC=AB=3.由勾股定理得:OC===4.∴点A的坐标为(4.3).故选:D.【点评】本题考查的是等腰三角形的性质、坐标与图形性质.掌握等腰三角形的三线合一是解题的关键.5.(2022•台湾)如图.△ABC中.D点在AB上.E点在BC上.DE为AB的中垂线.若∠B=∠C.且∠EAC>90°.则根据图中标示的角.判断下列叙述何者正确?()A.∠1=∠2.∠1<∠3B.∠1=∠2.∠1>∠3C.∠1≠∠2.∠1<∠3D.∠1≠∠2.∠1>∠3【分析】根据线段垂直平分线的性质.等腰三角形的性质解答即可.【解析】∵DE为AB的中垂线.∴∠BDE=∠ADE.BE=AE.∴∠B=∠BAE.∴∠1=∠2.∵∠EAC>90°.∴∠3+∠C<90°.∵∠B+∠1=90°.∠B=∠C.∴∠1>∠3.∴∠1=∠2.∠1>∠3.故选:B.【点评】本题主要考查了线段垂直平分线的性质和等腰三角形的性质.熟练掌握相关的性质定理是解答本题的关键.6.(2022•广元)如图.在△ABC中.BC=6.AC=8.∠C=90°.以点B为圆心.BC长为半径画弧.与AB交于点D.再分别以A、D为圆心.大于AD的长为半径画弧.两弧交于点M、N.作直线MN.分别交AC、AB于点E、F.则AE的长度为()A.B.3C.2D.【分析】利用勾股定理求出AB.再利用相似三角形的性质求出AE即可.【解析】在Rt△ABC中.BC=6.AC=8.∴AB===10.∵BD=CB=6.∴AD=AB=BC=4.由作图可知EF垂直平分线段AD.∴AF=DF=2.∵∠A=∠A.∠AFE=∠ACB=90°.∴△AFE∽△ACB.∴=.∴=.∴AE=.故选:A.【点评】本题考查勾股定理.相似三角形的判定和性质等知识.解题的关键是正确寻找相似三角形解决问题.属于中考常考题型.7.(2022•金华)如图是城市某区域的示意图.建立平面直角坐标系后.学校和体育场的坐标分别是(3.1).(4.﹣2).下列各地点中.离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系.然后根据勾股定理.可以得到点O到超市、学校、体育场、医院的距离.再比较大小即可.【解析】如右图所示.点O到超市的距离为:=.点O到学校的距离为:=.点O到体育场的距离为:=.点O到医院的距离为:=.∵<=<.∴点O到超市的距离最近.故选:A.【点评】本题考查勾股定理、平面直角坐标系.解答本题的关键是明确题意.作出合适平面直角坐标系.8.(2022•温州)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.连结CF.作GM⊥CF于点M.BJ⊥GM于点J.AK⊥BJ于点K.交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5.CE=+.则CH的长为()A.B.C.2D.【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB=m.证明△AFL ≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=(m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP=.FP=m.BP=.即知P为AB中点.CP=AP=BP=.由△CPN∽△FP A.得CN =m.PN=m.即得AN=m.而tan∠BAC===.又△AEC∽△BCH.得=.即=.故CH=2.【解析】设CF交AB于P.过C作CN⊥AB于N.如图:设正方形JKLM边长为m.∴正方形JKLM面积为m2.∵正方形ABGF与正方形JKLM的面积之比为5.∴正方形ABGF的面积为5m2.∴AF=AB=m.由已知可得:∠AFL=90°﹣∠MFG=∠MGF.∠ALF=90°=∠FMG.AF=GF.∴△AFL≌△FGM(AAS).∴AL=FM.设AL=FM=x.则FL=FM+ML=x+m.在Rt△AFL中.AL2+FL2=AF2.∴x2+(x+m)2=(m)2.解得x=m或x=﹣2m(舍去).∴AL=FM=m.FL=2m.∵tan∠AFL====.∴=.∴AP=.∴FP===m.BP=AB﹣AP=m﹣=.∴AP=BP.即P为AB中点.∵∠ACB=90°.∴CP=AP=BP=.∵∠CPN=∠APF.∠CNP=90°=∠F AP.∴△CPN∽△FP A.∴==.即==.∴CN=m.PN=m.∴AN=AP+PN=m.∴tan∠BAC====.∵△AEC和△BCH是等腰直角三角形.∴△AEC∽△BCH.∴=.∵CE=+.∴=.∴CH=2.故选:C.【点评】本题考查正方形性质及应用.涉及全等三角形判定与性质.相似三角形判定与性质.勾股定理等知识.解题的关键是用含m的代数式表示相关线段的长度.9.(2022•安徽)已知点O是边长为6的等边△ABC的中心.点P在△ABC外.△ABC.△P AB.△PBC.△PCA的面积分别记为S0.S1.S2.S3.若S1+S2+S3=2S0.则线段OP长的最小值是()A.B.C.3D.【分析】如图.不妨假设点P在AB的左侧.证明△P AB的面积是定值.过点P作AB的平行线PM.连接CO延长CO交AB于点R.交PM于点T.因为△P AB的面积是定值.推出点P的运动轨迹是直线PM.求出OT的值.可得结论.【解析】如图.不妨假设点P在AB的左侧.∵S△P AB+S△ABC=S△PBC+S△P AC.∴S1+S0=S2+S3.∵S1+S2+S3=2S0.∴S1+S1+S0=2.∴S1=S0.∵△ABC是等边三角形.边长为6.∴S0=×62=9.∴S1=.过点P作AB的平行线PM.连接CO延长CO交AB于点R.交PM于点T.∵△P AB的面积是定值.∴点P的运动轨迹是直线PM.∵O是△ABC的中心.∴CT⊥AB.CT⊥PM.∴•AB•RT=.CR=3.OR=.∴RT=.∴OT=OR+TR=.∵OP≥OT.∴OP的最小值为.当点P在②区域时.同法可得OD的最小值为.如图.当点P在①③⑤区域时.OP的最小值为.当点P在②④⑥区域时.最小值为.∵<.故选:B.【点评】本题考查等边三角形的性质.解直角三角形.三角形的面积等知识.解题的关键是证明△P AB的面积是定值.10.(2022•南充)如图.在Rt△ABC中.∠C=90°.∠BAC的平分线交BC于点D.DE∥AB.交AC于点E.DF⊥AB于点F.DE=5.DF=3.则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理.可以求得CD和CE的长.再根据平行线的性质.即可得到AE的长.从而可以判断B和C.然后即可得到AC的长.即可判断D.再根据全等三角形的判定和性质即可得到BF的长.从而可以判断A.【解析】∵AD平分∠BAC.∠C=90°.DF⊥AB.∴∠1=∠2.DC=FD.∠C=∠DFB=90°.∵DE∥AB.∴∠2=∠3.∴∠1=∠3.∴AE=DE.∵DE=5.DF=3.∴AE=5.CD=3.故选项B、C正确.∴CE==4.∴AC=AE+EC=5+4=9.故选项D正确.∵DE∥AB.∠DFB=90°.∴∠EDF=∠DFB=90°.∴∠CDF+∠FDB=90°.∵∠CDF+∠DEC=90°.∴∠DEC=∠FDB.∵tan∠DEC=.tan∠FDB=.∴.解得BF=.故选项A错误.故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质.解答本题的关键是明确题意.利用数形结合的思想解答.11.(2022•宜昌)如图.在△ABC中.分别以点B和点C为圆心.大于BC长为半径画弧.两弧相交于点M.N.作直线MN.交AC于点D.交BC于点E.连接BD.若AB=7.AC=12.BC=6.则△ABD的周长为()A.25B.22C.19D.18【分析】根据题意可知MN垂直平分BC.即可得到DB=DC.然后即可得到AB+BD+AD=AB+DC+AD=AB+AC.从而可以求得△ABD的周长.【解析】由题意可得.MN垂直平分BC.∴DB=DC.∵△ABD的周长是AB+BD+AD.∴AB+BD+AD=AB+DC+AD=AB+AC.∵AB=7.AC=12.∴AB+AC=19.∴∵△ABD的周长是19.故选:C.【点评】本题考查线段垂直平分线的性质.三角形的周长.解答本题的关键是明确题意.利用数形结合的思想解答.12.(2022•河北)题目:“如图.∠B=45°.BC=2.在射线BM上取一点A.设AC =d.若对于d的一个数值.只能作出唯一一个△ABC.求d的取值范围.”对于其答案.甲答:d≥2.乙答:d=1.6.丙答:d=.则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整【分析】由题意知.当CA⊥BA或CA>BC时.能作出唯一一个△ABC.分这两种情况求解即可.【解析】由题意知.当CA⊥BA或CA>BC时.能作出唯一一个△ABC.①当CA⊥BA时.∵∠B=45°.BC=2.∴AC=BC•sin45°=2×=.即此时d=.②当CA=BC时.∵∠B=45°.BC=2.∴此时AC=2.即d>2.综上.当d=或d>2时能作出唯一一个△ABC.故选:B.【点评】本题主要考查三角形的三边关系及等腰直角三角形的知识.熟练掌握等腰直角三角形的性质及三角形的三边关系是解题的关键.13.(2022•宜宾)如图.△ABC和△ADE都是等腰直角三角形.∠BAC=∠DAE=90°.点D是BC边上的动点(不与点B、C重合).DE与AC交于点F.连结CE.下列结论:①BD=CE.②∠DAC=∠CED.③若BD=2CD.则=.④在△ABC内存在唯一一点P.使得P A+PB+PC的值最小.若点D在AP的延长线上.且AP的长为2.则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【分析】①正确.证明△BAD≌△DAE(SAS).可得结论.②正确.证明A.D.C.E四点共圆.利用圆周角定理证明.③正确.设CD=m.则BD=CE=2m.DE=m.OA=m.过点C作CJ⊥DF于点J.求出AO.CJ.可得结论.④错误.将△BPC绕点B顺时针旋转60°得到△BNM.连接PN.当点A.点P.点N.点M共线时.P A+PB+PC值最小.此时∠APB=∠APC=∠BPC=120°.PB =PC.AD⊥BC.设PD=t.则BD=AD=t.构建方程求出t.可得结论.【解析】如图1中.∵∠BAC=∠DAE=90°.∴∠BAD=∠CAE.∵AB=AC.AD=AE.∴△BAD≌△DAE(SAS).∴BD=EC.∠ADB=∠AEC.故①正确.∵∠ADB+∠ADC=180°.∴∠AEC+∠ADC=180°.∴∠DAE+∠DCE=180°.∴∠DAE=∠DCE=90°.取DE的中点O.连接OA.OA.OC.则OA=OD=OE=OC.∴A.D.C.E四点共圆.∴∠DAC=∠CED.故②正确.设CD=m.则BD=CE=2m.DE=m.OA=m.过点C作CJ⊥DF于点J.∵tan∠CDF===2.∴CJ=m.∵AO⊥DE.CJ⊥DE.∴AO∥CJ.∴===.故③正确.如图2中.将△BPC绕点B顺时针旋转60°得到△BNM.连接PN.∴BP=BN.PC=NM.∠PBN=60°.∴△BPN是等边三角形.∴BP=PN.∴P A+PB+PC=AP+PN+MN.∴当点A.点P.点N.点M共线时.P A+PB+PC值最小.此时∠APB=∠APC=∠BPC=120°.PB=PC.AD⊥BC.∴∠BPD=∠CPD=60°.设PD=t.则BD=AD=t.∴2+t=t.∴t=+1.∴CE=BD=t=3+.故④错误.故选:B.【点评】本题考查等腰直角三角形的性质.全等三角形的判定和性质.四点共圆.圆周角定理.解直角三角形等知识.解题的关键是学会添加常用辅助线.构造特殊三角形解决问题.属于中考选择题中的压轴题.14.(2022•眉山)在△ABC中.AB=4.BC=6.AC=8.点D.E.F分别为边AB.AC.BC 的中点.则△DEF的周长为()A.9B.12C.14D.16【分析】根据三角形的中位线平行于第三边.并且等于第三边的一半.可得出△ABC的周长=2△DEF的周长.【解析】如图.点E.F分别为各边的中点.∴DE、EF、DF是△ABC的中位线.∴DE=BC=3.EF=AB=2.DF=AC=4.∴△DEF的周长=3+2+4=9.故选:A.【点评】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.15.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时.用4个全等的直角三角形拼成正方形(如图).并用它证明了勾股定理.这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1.α为直角三角形中的一个锐角.则tanα=()A.2B.C.D.【分析】根据题意和题目中的数据.可以先求出大正方形的面积.然后设出小直角三角形的两条直角边.再根据勾股定理和两直角边的关系可求得直角三角形的两条直角边的长.然后即可求得tanα的值.【解析】由已知可得.大正方形的面积为1×4+1=5.设直角三角形的长直角边为a.短直角边为b.则a2+b2=5.a﹣b=1.解得a=2.b=1或a=1.b=﹣2(不合题意.舍去).∴tanα===2.故选:A.【点评】本题考查勾股定理的证明、解直角三角形.解答本题的关键是求出直角三角形的两条直角边长.16.(2022•苏州)如图.点A的坐标为(0.2).点B是x轴正半轴上的一点.将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m.3).则m的值为()A.B.C.D.【分析】过C作CD⊥x轴于D.CE⊥y轴于E.根据将线段AB绕点A按逆时针方向旋转60°得到线段AC.可得△ABC是等边三角形.又A(0.2).C(m.3).即得AC==BC=AB.可得BD==.OB==.从而+=m.即可解得m=.【解析】过C作CD⊥x轴于D.CE⊥y轴于E.如图:∵CD⊥x轴.CE⊥y轴.∠DOE=90°.∴四边形EODC是矩形.∵将线段AB绕点A按逆时针方向旋转60°得到线段AC.∴AB=AC.∠BAC=60°.∴△ABC是等边三角形.∴AB=AC=BC.∵A(0.2).C(m.3).∴CE=m=OD.CD=3.OA=2.∴AE=OE﹣OA=CD﹣OA=1.∴AC===BC=AB.在Rt△BCD中.BD==.在Rt△AOB中.OB==.∵OB+BD=OD=m.∴+=m.化简变形得:3m4﹣22m2﹣25=0.解得m=或m=﹣(舍去).∴m=.故选:C.【点评】本题考查直角坐标系中的旋转变换.解题的关键是熟练应用勾股定理.用含m的代数式表示相关线段的长度.17.(2022•扬州)如图.小明家仿古家具的一块三角形形状的玻璃坏了.需要重新配一块.小明通过电话给玻璃店老板提供相关数据.为了方便表述.将该三角形记为△ABC.提供下列各组元素的数据.配出来的玻璃不一定符合要求的是()A.AB.BC.CA B.AB.BC.∠B C.AB.AC.∠B D.∠A.∠B.BC 【分析】直接利用全等三角形的判定方法分析得出答案.【解析】A.利用三角形三边对应相等.两三角形全等.三角形形状确定.故此选项不合题意.B.利用三角形两边、且夹角对应相等.两三角形全等.三角形形状确定.故此选项不合题意.C.AB.AC.∠B.无法确定三角形的形状.故此选项符合题意.D.根据∠A.∠B.BC.三角形形状确定.故此选项不合题意.故选:C.【点评】此题主要考查了全等三角形的应用.正确掌握全等三角形的判定方法是解题关键.18.(2022•湖州)如图.已知在锐角△ABC中.AB=AC.AD是△ABC的角平分线.E 是AD上一点.连结EB.EC.若∠EBC=45°.BC=6.则△EBC的面积是()A.12B.9C.6D.3【分析】根据等腰三角形的性质得到BD=CD=3.AD⊥BC.根据等腰直角三角形的性质求出ED.根据三角形的面积公式计算.得到答案.【解析】∵AB=AC.AD是△ABC的角平分线.∴BD=CD=BC=3.AD⊥BC.在Rt△EBD中.∠EBC=45°.∴ED=BD=3.∴S△EBC=BC•ED=×6×3=9.故选:B.【点评】本题考查的是等腰三角形的性质、直角三角形的性质.掌握等腰三角形的三线合一是解题的关键.19.(2022•宁波)如图.在Rt△ABC中.D为斜边AC的中点.E为BD上一点.F为CE中点.若AE=AD.DF=2.则BD的长为()A.2B.3C.2D.4【分析】根据三角形中位线可以求得AE的长.再根据AE=AD.可以得到AD的长.然后根据直角三角形斜边上的中线和斜边的关系.可以求得BD的长.【解析】∵D为斜边AC的中点.F为CE中点.DF=2.∴AE=2DF=4.∵AE=AD.∴AD=4.在Rt△ABC中.D为斜边AC的中点.∴BD=AC=AD=4.故选:D.【点评】本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线.解答本题的关键是求出AD的长.20.(2022•云南)如图.OB平分∠AOC.D、E、F分别是射线OA、射线OB、射线OC上的点.D、E、F与O点都不重合.连接ED、EF.若添加下列条件中的某一个.就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【分析】由OB平分∠AOC.得∠DOE=∠FOE.由OE=OE.可知∠ODE=∠OFE.即可根据AAS得△DOE≌△FOE.可得答案.【解析】∵OB平分∠AOC.∴∠DOE=∠FOE.又OE=OE.若∠ODE=∠OFE.则根据AAS可得△DOE≌△FOE.故选项D符合题意.而增加OD=OE不能得到△DOE≌△FOE.故选项A不符合题意.增加OE=OF不能得到△DOE≌△FOE.故选项B不符合题意.增加∠ODE=∠OED不能得到△DOE≌△FOE.故选项C不符合题意.故选:D.【点评】本题考查全等三角形的判定.解题的关键是掌握全等三角形判定定理并会应用.21.(2022•达州)如图.AB∥CD.直线EF分别交AB.CD于点M.N.将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=80°.则∠PNM等于()A.15°B.25°C.35°D.45°【分析】根据平行线的性质得到∠DNM=∠BME=80°.由等腰直角三角形的性质得到∠PND=45°.即可得到结论.【解析】∵AB∥CD.∴∠DNM=∠BME=80°.∵∠PND=45°.∴∠PNM=∠DNM﹣∠DNP=80°﹣45°=35°.故选:C.【点评】本题考查了平行线的性质.等腰直角三角形的性质.熟练掌握平行线的性质是解题的关键.22.(2022•金华)如图.圆柱的底面直径为AB.高为AC.一只蚂蚁在C处.沿圆柱的侧面爬到B处.现将圆柱侧面沿AC“剪开”.在侧面展开图上画出蚂蚁爬行的最近路线.正确的是()A.B.C.D.【分析】利用圆柱的侧面展开图是矩形.而点B是展开图的一边的中点.再利用蚂蚁爬行的最近路线为线段可以得出结论.【解析】将圆柱侧面沿AC“剪开”.侧面展开图为矩形.∵圆柱的底面直径为AB.∴点B是展开图的一边的中点.∵蚂蚁爬行的最近路线为线段.∴C选项符合题意.故选:C.【点评】本题主要考查了圆柱的侧面展开图.最短路径问题.掌握两点之间线段最短是解题的关键.23.(2022•舟山)如图.在Rt△ABC和Rt△BDE中.∠ABC=∠BDE=90°.点A 在边DE的中点上.若AB=BC.DB=DE=2.连结CE.则CE的长为()A.B.C.4D.【分析】根据题意先作出合适的辅助线.然后根据勾股定理可以得到AB和BC 的长.根据等面积法可以求得EG的长.再根据勾股定理求得EF的长.最后计算出CE的长即可.【解析】作EF⊥CB交CB的延长线于点F.作EG⊥BA交BA的延长线于点G.∵DB=DE=2.∠BDE=90°.点A是DE的中点.∴BE===2.DA=EA=1.∴AB===.∵AB=BC.∴BC=.∵=.∴.解得EG=.∵EG⊥BG.EF⊥BF.∠ABF=90°.∴四边形EFBG是矩形.∴EG=BF=.∵BE=2.BF=.∴EF===.CF=BF+BC=+=.∵∠EFC=90°.∴EC===.故选:D.【点评】本题考查勾股定理、等腰直角三角形.解答本题的关键是明确题意.求出EF和CF的长.24.(2022•遂宁)如图.D、E、F分别是△ABC三边上的点.其中BC=8.BC边上的高为6.且DE∥BC.则△DEF面积的最大值为()A.6B.8C.10D.12【分析】过点A作AM⊥BC于M.交DE于点N.则AN⊥DE.设AN=a.根据DE ∥BC.证出△ADE∽△ABC.根据相似三角形对应高的比等于相似比得到DE=a.列出△DEF面积S的函数表达式.根据配方法求最值即可.【解析】如图.过点A作AM⊥BC于M.交DE于点N.则AN⊥DE.设AN=a.∵DE∥BC.∴∠ADE=∠B.∠AED=∠C.∴△ADE∽△ABC.∴=.∴=.∴DE=a.∴△DEF面积S=×DE×MN=×a•(6﹣a)=﹣a2+4a=﹣(a﹣3)2+6.∴当a=3时.S有最大值.最大值为6.故选:A.【点评】本题考查了三角形的面积.平行线的性质.列出△DEF面积S的函数表达式.根据配方法求最值是解题的关键.二.填空题(共15小题)25.(2022•岳阳)如图.在△ABC中.AB=AC.AD⊥BC于点D.若BC=6.则CD=3.【分析】根据等腰三角形的性质可知D是BC的中点.即可求出CD的长.【解析】∵AB=AC.AD⊥BC.∴CD=BD.∵BC=6.∴CD=3.故答案为:3.【点评】本题考查了等腰三角形的性质.熟练掌握等腰三角形三线合一是解题的关键.26.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍.这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”.底边BC的长为3.则腰AB的长为6.【分析】由等腰△ABC是“倍长三角形”.可知AB=2BC或BC=2AB.若AB =2BC=6.可得AB的长为6.若BC=3=2AB.因1.5+1.5=3.故此时不能构成三角形.这种情况不存在.即可得答案.【解析】∵等腰△ABC是“倍长三角形”.∴AB=2BC或BC=2AB.若AB=2BC=6.则△ABC三边分别是6.6.3.符合题意.∴腰AB的长为6.若BC=3=2AB.则AB=1.5.△ABC三边分别是1.5.1.5.3.∵1.5+1.5=3.∴此时不能构成三角形.这种情况不存在.综上所述.腰AB的长是6.故答案为:6.【点评】本题考查三角形三边关系.涉及新定义.解题的关键是分类思想的应用及掌握三角形任意两边的和大于第三边.27.(2022•云南)已知△ABC是等腰三角形.若∠A=40°.则△ABC的顶角度数是40°或100°.【分析】分∠A是顶角和底角两种情况讨论.即可解答.【解析】当∠A是顶角时.△ABC的顶角度数是40°.当∠A是底角时.则△ABC的顶角度数为180°﹣2×40°=100°.综上.△ABC的顶角度数是40°或100°.故答案为:40°或100°.【点评】本题考查了等腰三角形的性质.此类题目.难点在于要分情况讨论.28.(2022•滨州)如图.屋顶钢架外框是等腰三角形.其中AB=AC.立柱AD⊥BC.且顶角∠BAC=120°.则∠C的大小为30°.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解析】∵AB=AC且∠BAC=120°.∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.【点评】本题考查了等腰三角形的性质.熟练掌握等腰三角形的两个底角相等的性质是解题的关键.29.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣.3).则A点的坐标是(.﹣3).【分析】根据正六边形的性质可得点A和点B关于原点对称.进而可以解决问题.【解析】因为点A和点B关于原点对称.B点的坐标是(﹣.3).所以A点的坐标是(.﹣3).故答案为:(.﹣3).【点评】本题考查了正六边形的性质.中心对称图形.解决本题的关键是掌握关于原点对称的点的坐标特征.30.(2022•金华)如图.在Rt△ABC中.∠ACB=90°.∠A=30°.BC=2cm.把△ABC沿AB方向平移1cm.得到△A'B'C'.连结CC'.则四边形AB'C'C的周长为(8+2)cm.【分析】利用含30°角的直角三角形的性质.勾股定理和平移的性质.求得四边形AB'C'C的四边即可求得结论.【解析】∵在Rt△ABC中.∠ACB=90°.∠A=30°.BC=2cm.∴AB=2BC=4.∴AC==2.∵把△ABC沿AB方向平移1cm.得到△A'B'C'.∴B′C′=BC=2.AA′=CC′=1.A′B′=AB=4.∴AB′=AA′+A′B′=5.∴四边形AB'C'C的周长为AB′+B′C′+CC′+AC=5+2+1+2=(8+2)cm.故答案为:(8+2).【点评】本题主要考查了含30°角的直角三角形的性质.勾股定理和平移的性质.熟练掌握平移的性质是解题的关键.31.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作.书中提出了已知三角形三边a、b、c求面积的公式.其求法是:“以小斜幂并大斜幂减中斜幂.余半之.自乘于上.以小斜幂乘大斜幂减上.余四约之.为实.一为从隅.开平方得积.”若把以上这段文字写成公式.即为S=.现有周长为18的三角形的三边满足a:b:c =4:3:2.则用以上给出的公式求得这个三角形的面积为3.【分析】根据题意先求出a、b、c.再代入公式进行计算即可.【解析】根据a:b:c=4:3:2.设a=4k.b=3k.c=2k.则4k+3k+2k=18.解得:k=2.∴a=4k=4×2=8.b=3k=3×2=6.c=2k=2×2=4.∴S===3.故答案为:3.【点评】本题考查了二次根式的运算.要注意运算顺序.解答的关键是对相应的运算法则的熟练掌握.32.(2022•十堰)【阅读材料】如图①.四边形ABCD中.AB=AD.∠B+∠D=180°.点E.F分别在BC.CD上.若∠BAD=2∠EAF.则EF=BE+DF.【解决问题】如图②.在某公园的同一水平面上.四条道路围成四边形ABCD.已知CD=CB=100m.∠D=60°.∠ABC=120°.∠BCD=150°.道路AD.AB上分别有景点M.N.且DM=100m.BN=50(﹣1)m.若在M.N之间修一条直路.则路线M→N的长比路线M→A→N的长少370m(结果取整数.参考数据:≈1.7).【分析】解法一:如图.作辅助线.构建直角三角形.先根据四边形的内角和定理证明∠G=90°.分别计算AD.CG.AG.BG的长.由线段的和与差可得AM和AN 的长.最后由勾股定理可得MN的长.计算AM+AN﹣MN可得答案.解法二:构建【阅读材料】的图形.根据结论可得MN的长.从而得结论.【解析】解法一:如图.延长DC.AB交于点G.∵∠D=60°.∠ABC=120°.∠BCD=150°.∴∠A=360°﹣60°﹣120°﹣150°=30°.∴∠G=90°.∴AD=2DG.Rt△CGB中.∠BCG=180°﹣150°=30°.∴BG=BC=50.CG=50.∴DG=CD+CG=100+50.∴AD=2DG=200+100.AG=DG=150+100.∵DM=100.∴AM=AD﹣DM=200+100﹣100=100+100.∵BG=50.BN=50(﹣1).∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50.Rt△ANH中.∵∠A=30°.∴NH=AN=75+25.AH=NH=75+75.由勾股定理得:MN===50(+1).∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图.延长DC.AB交于点G.连接CN.CM.则∠G=90°.∵CD=DM.∠D=60°.∴△BCM是等边三角形.∴∠DCM=60°.由解法一可知:CG=50.GN=BG+BN=50+50(﹣1)=50.∴△CGN是等腰直角三角形.∴∠GCN=45°.∴∠BCN=45°﹣30°=15°.∴∠MCN=150°﹣60°﹣15°=75°=∠BCD.由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50.∵AM+AN﹣MN=AD+AG﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.【点评】此题重点考查了含30°的直角三角形的性质.勾股定理.二次根式的混合运算等知识与方法.解题的关键是作出所需要的辅助线.构造含30°的直角三角形.再利用线段的和与差进行计算即可.33.(2022•山西)如图.在正方形ABCD中.点E是边BC上的一点.点F在边CD 的延长线上.且BE=DF.连接EF交边AD于点G.过点A作AN⊥EF.垂足为点M.交边CD于点N.若BE==8.则线段AN的长为4.【分析】连接AE.AF.EN.由正方形的性质可得AB=AD.BC=CD.∠ABE=∠BCD=∠ADF=90°.可证得△ABE≌△ADF(SAS).可得∠BAE=∠DAF.AE =AF.从而可得∠EAF=90°.根据等腰三角形三线合一可得点M为EF中点.由AN⊥EF可证得△AEM≌△AFM(SAS).△EMN≌△FMN(SAS).可得EN =FN.设DN=x.则EN=FN=x+5.CE=x+3.由勾股定理解得x=12.可得AB=CD=20.由勾股定理可得AE=5.从而可得AM=EM=FM=.由勾股定理可得MN=.即可求解.【解析】如图.连接AE.AF.EN.∵四边形ABCD为正方形.∴AB=AD.BC=CD.∠ABE=∠BCD=∠ADF=90°.∵BE=DF.∴△ABE≌△ADF(SAS).∴∠BAE=∠DAF.AE=AF.∴∠EAF=90°.∴△EAF为等腰直角三角形.∵AN⊥EF.∴EM=FM.∠EAM=∠F AM=45°.∴△AEM≌△AFM(SAS).△EMN≌△FMN(SAS).∴EN=FN.设DN=x.∵BE=DF==8.∴CD=CN+DN=x+8.∴EN=FN=DN+DF=x+5.CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3.在Rt△ECN中.由勾股定理可得:CN2+CE2=EN2.即82+(x+3)2=(x+5)2.解得:x=12.∴AB=CD=x+8=20.EN=x+5=17.在Rt△ABE中.由勾股定理可得:AE===5.∴AM=EM=FM==.在Rt△EMN中.由勾股定理可得:MN===.∴AN=AM+MN=+=4.故答案为:4.【点评】本题考查正方形的性质.勾股定理.等腰三角形的性质.全等三角形的判定与性质等知识点.解题的关键是正确作出辅助线.构建全等三角形解决问题.34.(2022•武汉)如图.在Rt△ABC中.∠ACB=90°.AC>BC.分别以△ABC的三边为边向外作三个正方形ABHL.ACDE.BCFG.连接DF.过点C作AB的垂线CJ.垂足为J.分别交DF.LH于点I.K.若CI=5.CJ=4.则四边形AJKL的面积是80.【分析】过点D作DM⊥CI于点M.过点F作FN⊥CI于点N.由正方形的性质可证得△ACJ≌△CDM.△BCJ≌△CFN.可得DM=CJ.FN=CJ.可证得△DMI ≌△FNI.由直角三角形斜边上的中线的性质可得DI=FI=CI.由勾股定理可得MI.NI.从而可得CN.可得BJ与AJ.即可求解.【解析】过点D作DM⊥CI.交CI的延长线于点M.过点F作FN⊥CI于点N.∵△ABC为直角三角形.四边形ACDE.BCFG为正方形.过点C作AB的垂线CJ.CJ=4.∴AC=CD.∠ACD=90°.∠AJC=∠CMD=90°.∠CAJ+∠ACJ=90°.BC=CF.∠BCF=90°.∠CNF=∠BJC=90°.∠FCN+∠CFN=90°.∴∠ACJ+∠DCM=90°.∠FCN+∠BCJ=90°.∴∠CAJ=∠DCM.∠BCJ=∠CFN.∴△ACJ≌△CDM(AAS).△BCJ≌△CFN(AAS).∴AJ=CM.DM=CJ=4.BJ=CN.NF=CJ=4.∴DM=NF.∴△DMI≌△FNI(AAS).∴DI=FI.MI=NI.∵∠DCF=90°.∴DI=FI=CI=5.在Rt△DMI中.由勾股定理可得:MI===3.∴NI=MI=3.∴AJ=CM=CI+MI=5+3=8.BJ=CN=CI﹣NI=5﹣3=2.∴AB=AJ+BJ=8+2=10.∵四边形ABHL为正方形.∴AL=AB=10.∵四边形AJKL为矩形.∴四边形AJKL的面积为:AL•AJ=10×8=80.故答案为:80.【点评】本题考查正方形的性质.勾股定理.全等三角形的判定与性质等知识点.解题的关键是正确作出辅助线.利用全等三角形的性质进行求解.35.(2022•孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三.股修四.经隅五”.观察下列勾股数:3.4.5.5.12.13.7.24.25.….这类勾股数的特点是:勾为奇数.弦与股相差为1.柏拉图研究了勾为偶数.弦与股相差为2的一类勾股数.如:6.8.10.8.15.17.….若此类勾股数的勾为2m(m≥3.m为正整数).则其弦是m2+1(结果用含m的式子表示).【分析】根据题意得2m为偶数.设其股是a.则弦为a+2.根据勾股定理列方程即可得到结论.【解析】∵m为正整数.∴2m为偶数.设其股是a.则弦为a+2.根据勾股定理得.(2m)2+a2=(a+2)2.解得a=m2+1.综上所述.其弦是m2+1.故答案为:m2+1.【点评】本题考查了勾股数.勾股定理.熟练掌握勾股定理是解题的关键.36.(2022•台州)如图.在△ABC中.∠ACB=90°.D.E.F分别为AB.BC.CA的中点.若EF的长为10.则CD的长为10.【分析】根据三角形中位线定理求出AB.根据直角三角形斜边上的中线的性质即可求出CD.【解析】∵E.F分别为BC.CA的中点.∴EF是△ABC的中位线.∴EF=AB.∴AB=2EF=20.在Rt△ABC中.∠ACB=90°.D为AB中点.AB=20.。
2022年中考数学真题-专题16 解直角三角形(1)(全国通用解析版)
专题16 解直角三角形一、选择题(2022·天津)1. tan 45︒的值等于( )A. 2B. 1C.D. 【答案】B【解析】【分析】根据三角函数定义:正切=对边与邻边之比,进行求解.【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∴∠B =90°-45°=45°,∴△ABC 是等腰三角形,AC =BC , ∴根据正切定义,tan 1BC A AC∠==, ∵∠A =45°,与tan 451︒=,故选 B .【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键. (2022·四川乐山)2. 如图,在Rt ABC 中,90C ∠=︒,BC =,点D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )A. B. 3 D. 2【答案】C【解析】 【分析】先根据锐角三角函数值求出AC =5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得AD 求出CD .【详解】解:在Rt ABC 中,90C ∠=︒,BC =, ∴1tan 2BC A AC ∠==∴2AC BC ==由勾股定理得,5AB ===过点D 作DE AB ⊥于点E ,如图,∵1tan 2A ∠=,1tan 3ABD ∠=, ∴11,,23DE DE AE BE == ∴11,,23DE AE DE BE == ∴1123AE BE = ∴32BE AE =∵5,AE BE += ∴352AE AE += ∴2,AE =∴1DE =,在Rt ADE ∆中,222AD AE DE =+∴AD =∵AD CD AC +==∴CD AC AD =-==故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.(2022·浙江杭州)3. 如图,已知△ABC 内接于半径为1的⊙O ,∠BAC =θ(θ是锐角),则△ABC 的面积的最大值为( )A. ()cos 1cos θθ+B. ()cos 1sin θθ+C. ()sin 1sin θθ+D. ()sin 1cos θθ+ 【答案】D【解析】【分析】要使△ABC 的面积S =12BC •h 的最大,则h 要最大,当高经过圆心时最大. 【详解】解:当△ABC 的高AD 经过圆的圆心时,此时△ABC 的面积最大, 如图所示,∵AD ⊥BC ,∴BC =2BD ,∠BOD =∠BAC =θ,在Rt △BOD 中,sin θ= 1BD BD OB =,cos θ=1OD OD OB =, ∴BD =sin θ,OD =cos θ,∴BC =2BD =2sin θ,AD =AO +OD =1+cos θ,∴S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ). 故选:D .【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法.(2022·云南)4. 如图,已知AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A. 713B. 1213C. 712D. 1312【答案】B【解析】 【分析】先根据垂径定理求出12CE CD =与再根据余弦的定义进行解答即可. 【详解】解:∵AB 是⊙O 的直径,AB ⟂CD .与112,902CE CD OEC ==∠=︒,OC =12AB =13, 与12cos 13CE OCE OC ∠==. 故选:B .【点睛】此题考查的是垂径定理,锐角三角函数的定义,熟练掌握垂径定理,锐角三角函数的定义是解答此题的关键.(2022·陕西)5. 如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A. B. C. D. 【答案】D【解析】 【分析】先解直角ABC 求出AD ,再在直角ABD △中应用勾股定理即可求出AB .【详解】解:∵26BD CD ==,∴3CD =,∵直角ADC 中,tan 2C ∠=,∴tan 326AD CD C =⋅∠=⨯=,∴直角ABD △中,由勾股定理可得,AB == 故选D .【点睛】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.(2022·浙江金华)6. 一配电房示意图如图所示,它是一个轴对称图形,已知6m BC =,ABC α∠=,则房顶A 离地面EF 的高度为( )A. (43sin )m α+B. (43tan )m α+C. 34m sin α⎛⎫+ ⎪⎝⎭ D. 34m tan a ⎛⎫+ ⎪⎝⎭ 【答案】B【解析】 【分析】过点A 作AD ⊥BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案.【详解】解:过点A 作AD ⊥BC 于D ,如图所示:∵它是一个轴对称图形, ∴132BD DC BC ===m , tan 3AD AD BD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查了解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.(2022·浙江丽水)7. 如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F ,FG AD ∥交AE 于点G ,若1cos 4B =,则FG 的长是( )A. 3B. 83 D. 52【答案】B【解析】 【分析】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题干所给条件可知,AG =FG ,EG =GP ,利用∠AGP =∠B 可得到cos ∠AGP =14,即可得到FG 的长;【详解】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题意可知,AB=BC=4,E是BC的中点,∴BE=2,又∵1 cos4B=,∴BH=1,即H是BE的中点,∴AB=AE=4,又∵AF是∠DAE的角平分线,AD∥FG,∴∠F AG=∠AFG,即AG=FG,又∵PF∥AD,AP∥DF,∴PF=AD=4,设FG=x,则AG=x,EG=PG=4-x,∵PF∥BC,∴∠AGP=∠AEB=∠B,∴cos∠AGP=12PGAG=22xx-=14,解得x=83;故选B.【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.(2022·四川广元)8. 如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为()A.C.25【答案】B【解析】【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∥AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos ∠APC =cos ∠EDC 即可得答案.【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∥AB ,∴∠APC =∠EDC .在△DCE 中,有22215EC =+=,222425DC =+=,22345DE =+=, ∴22252025EC DC DE +=+==,∴DCE ∆是直角三角形,且90DCE ∠=︒,∴cos ∠APC =cos ∠EDC =5DC DE = 故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.(2022·湖北随州) 9. 如图,已知点B ,D ,C 在同一直线的水平,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,CD a =,则建筑物AB 的高度为( )A. tan tan a αβ- B. tan tan a βα- C. tan tan tan tan a αβαβ- D. tan tan tan tan a αββα- 【答案】D【解析】【分析】设AB =x ,利用正切值表示出BC 和BD 的长,CD =BC -BD ,从而列出等式,解得x 即可.【详解】设AB =x ,由题意知,∠ACB =α,∠ADB =β, ∴tan x BD β=,tan x BC α=, ∵CD =BC -BD , ∴tan tan x x a αβ-=, ∴tan tan tan tan a x αββα=-,即AB =tan tan tan tan a αββα-, 故选:D .【点睛】本题考查了解直角三角形,熟记锐角三角函数的定义是解题的关键.二、填空题(2022·山东泰安)10. 如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).【答案】4.4m##4.4米【解析】【分析】根据题意可得AD ∥CP ,从而得到∠ADB =30°,利用锐角三角函数可得tan 0.46m AB AD ADB =⨯∠=≈,从而得到BC =AF +CF -AB =2.54m ,即可求解.【详解】解:根据题意得:AD ∥CP ,∵∠DPC =30°,∴∠ADB =30°,∵0.8m AD =,∴tan 0.80.46m AB AD ADB =⨯∠=≈, ∵AF =2m ,CF =1m ,∴BC =AF +CF -AB =2.54m , ∴ 2.54 4.4m tan tan 30BC CP BPC ︒==≈∠, 即CP 的长度为4.4m .故答案为:4.4m .【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键.(2022·天津)11. 如图,在每个小正方形的边长为1的网格中,圆上的点A ,B ,C 及DPF ∠的一边上的点E ,F 均在格点上.(与)线段EF 的长等于___________;(与)若点M ,N 分别在射线,PD PF 上,满足90MBN ∠=︒且BM BN =.请用无.刻度..的直尺,在如图所示的网格中,画出点M ,N ,并简要说明点M ,N 的位置是如何找到的(不要求证明)___________.【答案】 与. 与. 见解析【解析】【分析】(与)根据勾股定理,从图中找出EF 所在直角三角形的直角边的长进行计算;(与)由图可找到点Q ,EQ BQ EF BF ====,即四边形EFBQ 是正方形,因为90BM BN MBN =∠=︒,,所以BQM BFN ∆≅∆,点M 在EQ 上,BM 、BN 与圆的交点为直径端点,所以EQ 与PD 交点为M ,通过BM 与圆的交点G 和圆心O 连线与圆相交于H ,所以H 在BN 上,则延长BH 与PF 相交点即为N .【详解】解:(与)从图中可知:点E 、F 水平方向距离为3,竖直方向距离为1,所以EF =;(与)连接AC ,与竖网格线相交于点O ,O 即为圆心;取格点Q (E 点向右1格,向上3格),连接EQ 与射线PD 相交于点M ;连接MB 与O 相交于点G ;连接GO 并延长,与O 相交于点H ;连接BH 并延长,与射线PF 相交于点N ,则点M ,N 即为所求,理由如下:连接,BQ BF由勾股定理算出BQ QE EF BF =====由题意得90MQB QEF BFE QBF ∠=∠=∠=∠=︒,∴四边形BQEF 为正方形,在Rt BQM 和Rt BFN 中,BQ BF =,1tan tan 3QBA FBC ∠=∠=, QBA FBC ∴∠=∠,AOG COH ∠=∠,AG CH ∴=,ABG HBC ∴∠=∠,MBQ NBF ∴∠=∠()Rt BQM Rt BFN ASA ∴≌BM BN ∴=,90QBM MBF MBF FBN ∠+∠=∠+∠=︒90MBN ∴∠=,从而确定了点,M N 的位置.【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.(2022·江苏扬州)12. 在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为__________.【答案】12- 【解析】【详解】解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c⎛⎫+= ⎪⎝⎭,求出12a c -=或12a c -=(舍去),∴在Rt ABC 中:in s a c A ==,. 【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt ABC 中,sin A A ∠=的对边斜边 ,cos A A ∠=的邻边斜边,tan A A A ∠=∠的对边的邻边. (2022·湖南衡阳)13. 回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首.王安石曾赋诗联“万里衡阳雁,寻常到此回”.峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽.某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,10m AE =,30BDG ∠=︒,60BFG ∠=︒.已知测角仪DA 的高度为1.5m ,则大雁雕塑BC 的高度约为_________m .(结果精确到0.1m 1.732≈)【答案】10.2【解析】【分析】先根据三角形外角求得30DBF BDG ∠=∠=,再根据三角形的等角对等边得出BF=DF=AE =10m ,再解直角三角形求得BG 即可求解.【详解】解:与30BDG ∠=︒且60BFG ∠=︒,与30DBF BFG BDG ∠=∠-∠=︒,与∠=∠DBF BDG ,即10m BF DF AE ===.与sin 608.66m BG BF ︒=⋅=≈,与8.66 1.510.2m BC BG GC BG DA =+=+=+≈,故答案为:10.2m .【点睛】本题考查了三角形的外角性质、等腰三角形的判定、解直角三角形的应用,熟练掌握等腰三角形的判定和解直角三角形的解题方法是解答的关键. (2022·浙江嘉兴)14. 如图,在ABC 中,∠ABC =90°,∠A =60°,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为_________.【解析】 【分析】先求解33,,3AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC60,90,A ABC ∠=︒∠=︒ 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.(2022·浙江绍兴)15. 如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】 【分析】过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由△ACN ≌△CDM 可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得△NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt △CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD , ∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =Rt △ECD 中,CD =AC ,CE =2CD , Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦,2425250x x -+=,()()4550x x --=,x =5或x =54, ∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键. (2022·山东泰安)16. 如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.【答案】(20m +【解析】【分析】过D 作DF ⊥BC 于F ,DH ⊥AB 于H ,设DF =x m ,CF m ,求出x =10,则BH =DF =,CF =,DH =BF ,再求出AH DH ,即可求解.【详解】解:过D作DF⊥BC于F,DH⊥AB于H,∴DH=BF,BH=DF,∵斜坡的斜面坡度i=1∴:DF CF=m,设DF=x m,CF∴CD=220==,x∴x=10,∴BH=DF=10m,CF=,∴DH=BF=(m),∵∠ADH=30°,∴AH10=+m),∴AB=AH+BH=20103(m),+.故答案为:(20m【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.(2022·江苏连云港)⨯正方形网格中,ABC的顶点A、B、C都在网格线上,且都是17. 如图,在66小正方形边的中点,则sin A=_________.【答案】45【解析】【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC =, ∴4sin =5CE A AC =, 故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.(2022·四川凉山)18. 如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ⊥CD 于点C ,BD ⊥CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为_______.【答案】43【解析】【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解,则4 tan tan3OCAACα===,故答案为:43.【点睛】本题考查了相似三角形的判定与性质、正切等知识点,正确找出两个相似三角形是解题关键.(2022·四川凉山)19. 如图,在边长为1的正方形网格中,⊙O是△ABC的外接圆,点A,B,O在格点上,则cos∠ACB的值是________.【解析】【分析】取AB中点D,由图可知,AB=6,AD=BD=3,OD=2,由垂径定理得OD⊥AB,则OB==cos∠DOB=13ODOB==,再证∠ACB=∠DOB,即可解.【详解】解:取AB中点D,如图,由图可知,AB=6,AD=BD=3,OD=2,∴OD⊥AB,∴∠ODB=90°,∴OB==cos∠DOB=13ODOB==,∵OA=OB,∴∠BOD=12∠AOB,∵∠ACB=12∠AOB,∴∠ACB=∠DOB,∴cos∠ACB= cos∠DOB=13,故答案为:13.【点睛】本题考查勾股定理,垂径定理,圆周角定理,解直角三角形,取AB中点D,得Rt△ODB是解题的关键.(2022·山东滨州)20. 在Rt△ABC中,∠C=90°,AC=5,BC=12,则sin A=______.【答案】12 13【解析】【分析】根据题意画出图形,进而利用勾股定理得出AB的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∵∠C =90°,AC =5,BC =12,∴AB =13,∴sin A =1213BC AB =. 故答案为:1213. 【点睛】在直角三角形中求正弦函数值是本题的考点,根据勾股定理求出AB 的长是解题的关键.(2022·湖北黄冈)21. 如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为________m .(sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,结果保留整数).【答案】16【解析】【分析】过D 点作DE AB ⊥于点E ,则6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,设AE x =,则DE x =,BC x =,6AB AE BE x =+=+,在Rt ABC 中,6tan tan 58 1.60AB x ACB BC x+∠=︒==≈,解得10x ≈,进而可得出答案.【详解】解:如图,过D 点作DE AB ⊥于点E ,设AE x =,根据题意可得:AB BC ⊥,DC BC ⊥,∴90AED BED ABC DCB ∠=∠=∠=∠=︒,∴四边形BCDE 是矩形,∵从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离,乙建筑物的高度CD 为6,∴6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,∴9045EAD ADE ∠=︒-∠=︒,∴EAD ADE ∠=∠,∴DE AE x ==,∴BC DE x ==,∴6AB AE BE x =+=+,在Rt ABC 中,tan ∠=AB ACB BC 即6tan 58 1.60x x+︒=≈, ∴6tan tan 58 1.60AB x ACB BC x+∠=︒==≈ 解得10x ≈,经检验10x ≈是原分式方程的解且符合题意,∴()616AB x m =+≈.故答案为:16.【点睛】本题考查解直角三角形的应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识.熟练掌握锐角三角函数的定义是解答本题的关键.(2022·四川广元)22. 如图,直尺AB 垂直竖立在水平面上,将一个含45°角的直角三角板CDE 的斜边DE 靠在直尺的一边AB 上,使点E 与点A 重合,DE =12cm .当点D 沿DA 方向滑动时,点E 同时从点A 出发沿射线AF 方向滑动.当点D 滑动到点A 时,点C 运动的路径长为 _____cm .【答案】(24-【解析】【分析】由题意易得2CD CE DE ===,则当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,然后可得D C N E C M ''''≌,进而可知点D 沿DA 方向下滑时,点C ′在射线AC 上运动,最后问题可求解.【详解】解:由题意得:∠DEC =45°,DE =12cm ,∴2CD CE DE ===, 如图,当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,∵∠DAM =90°,∴四边形NAMC ′是矩形,∴90NC M '∠=︒,∴90D C N NC E NC E E C M ''''''''∠+∠=∠+∠=︒,∴D C N E C M ''''∠=∠,∵,90D C E C D NC E MC ''''''''=∠=∠=︒,∴D C N E C M ''''≌,∴C N C M ''=,∵C N AB '⊥,C M AF '⊥,∴AC '平分∠NAM ,即点D 沿DA 方向下滑时,点C ′在射线AC 上运动,∴当C D AB ''⊥时,此时四边形C D AE '''是正方形,CC ′的值最大,最大值为(12cm AD AC -=-,∴当点D 滑动到点A 时,点C 运动的路径长为((21224cm ⨯-=-;故答案为(24-.【点睛】本题主要考查正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理,熟练掌握正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理是解题的关键.(2022·湖北宜昌) 23. 如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是_____.【答案】85︒##85度【解析】【分析】过C 作CF DA ∥交AB 于F ,根据方位角的定义,结合平行线性质即可求解.【详解】解:C岛在A岛的北偏东50︒方向,∴∠=︒,50DACC岛在B岛的北偏西35︒方向,35∴∠=︒,CBE∥交AB于F,如图所示:过C作CF DA∴∥∥,DA CF EBFCA DAC FCB CBE∴∠=∠=︒∠=∠=︒,50,35∴∠=∠+∠=︒,85ACB FCA FCB故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.三、解答题(2022·江苏宿迁)24. 如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保冒根号).【答案】(20)m.【解析】【分析】过点A作AE⊥CD于点E,则四边形ABDE是矩形,DE=AB=20m,在Rt△ADE中,求出AE的长,在Rt△ACE中,∠AEC=90°,求出CE的长,即可得到CD的长,得到信号塔的高度.【详解】解:过点A作AE⊥CD于点E,由题意可知,∠B=∠BDE=∠AED=90°,∴四边形ABDE是矩形,∴DE=AB=20m,在Rt△ADE中,∠AED=90°,∠DAE=30°,DE=20m,∵tan∠DAE=DE AE,∴20tan tan30DEAEDAE===∠︒,在Rt△ACE中,∠AEC=90°,∠CAE=45°,∴△ACE是等腰直角三角形,∴CE AE=m,∴CD=CE+DE=(20)m,∴信号塔的高度为(20)m.【点睛】此题考查了解直角三角形的应用仰角俯角问题、矩形的判定和性质、等腰直角三角形的判定和性质、特殊角的锐角三角函数等知识,借助仰角俯角构造直角三角形与矩形是解题的关键.(2022·天津)25. 如图,某座山AB 的项部有一座通讯塔BC ,且点A ,B ,C 在同一条直线上,从地面P 处测得塔顶C 的仰角为42︒,测得塔底B 的仰角为35︒.已知通讯塔BC 的高度为32m ,求这座山AB 的高度(结果取整数).参考数据:tan350.70tan 420.90︒≈︒≈,.【答案】这座山AB 的高度约为112m【解析】【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解.【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan AC APC PA∠=, ∴tan AC PA APC=∠. 在Rt PAB 中,tan AB APB PA ∠=, ∴tan AB PA APB=∠. ∵AC AB BC =+, ∴tan tan AB BC AB APC APB+=∠∠. ∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-. 答:这座山AB 的高度约为112m .【点睛】本题考查三角函数测高,解题的关键在运用三角函数的定义表示出未知边,列出方程.(2022·浙江湖州)26. 如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.【答案】AC =4,sin A =35【解析】【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∵∠C =90°,AB =5,BC =3,∴4AC ==.3sin 5BC A AB ==. 【点睛】本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.(2022·新疆)27. 周米,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度.小希站在自家阳台上,看对面一栋楼顶部的仰角为45︒,看这栋楼底部的俯角为37︒,已知两楼之间的水平距离为30m ,求这栋楼的高度.(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)【答案】这栋楼的高度为:52.5米【解析】【分析】如图,过A 作AE ⊥BC 于E ,在Rt △AEB 和Rt △AEC 中,根据正切的概念分别求出BE 、EC ,计算即可.【详解】解:过A 作AE BC ⊥于E ,∴90AEB AEC ∠=∠=︒由依题意得:45,37,30EAB CAE CD AE ∠=︒∠=︒==,Rt AEB 和Rt AEC 中, ∵tan BAE BE AE ∠=,tan CE CAE AE∠= ∴tan 4530130BE AE =⨯︒=⨯=,tan37300.7522.5CE AE =⨯︒≈⨯=∴3022.552.5BC BE CE =+=+=∴这栋楼的高度为:52.5米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟练运用锐角三角函数的定义是解题的关键.(2022·湖南邵阳)28. 如图,一艘轮船从点A 处以30km/h 的速度向正东方向航行,在A 处测得灯塔C 在北偏东60︒方向上,继续航行1h 到达B 处,这时测得灯塔C 在北偏东45︒方向上,已知在灯塔C 的四周40km 内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由. 1.414≈ 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【解析】【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可.【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt与BCD 中,∠CDB =90°,∠DBC =45°,tan ∠DBC =CD BD ,即CD BD =1 ∴CD =BD设BD =CD =x km ,在Rt与ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即303x x =+ 解得x,∵40.98km>40km∴这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义.(2022·湖南怀化)29. 某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4与与.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.1.73≈1.41)【答案】不穿过,理由见解析【解析】【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可.【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x ,在Rt △ACD 中,∠ACD=45°,∴∠CAD=45°,∴AD=CD =x .在Rt △ABD 中,tan 30AD BD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键. (2022·四川成都)30. 2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)【答案】约为19cm【解析】【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.(2022·四川泸州)31. 如图,海中有两小岛C ,D ,某渔船在海中的A 处测得小岛C 位于东北方向,小岛D 位于南偏东30°方向,且A ,D 相距10 nmile .该渔船自西向东航行一段时间后到达点B ,此时测得小岛C位于西北方向且与点B 相距 nmile.求B ,D 间的距离(计算过程中的数据不取近似值).【答案】B,D间的距离为14nmile.【解析】【分析】如图,过点D作DE⊥AB于点E,根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10 nmile,BC nmile.再根据锐角三角函数即可求出B,D 间的距离.【详解】解:如图,过点D作DE⊥AB于点E,根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10 nmile,BCnmile.在Rt△ABC中,AC=BC,∴AB BC=16(nmile),在Rt△ADE中,AD=10 nmile,∠EAD=60°,∴DE=AD•sin60°=10×2=(nmile),AE=12AD=5 (nmile),∴BE=AB-AE=11(nmile),∴BD=14(nmile),答:B,D间的距离为14nmile.【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.(2022·浙江台州)32. 如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB 长3m ,求梯子顶部离地竖直高度BC .(结果精确到0.1m ;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【答案】梯子顶部离地竖直高度BC 约为2.9m .【解析】【分析】根据竖直的墙与梯子形成直角三角形,利用锐角三角函数即可求出AC 的长.【详解】解:在Rt △ABC 中,AB =3,∠ACB =90°,∠BAC =75°,∴BC =AB ⋅sin75°≈3×0.97=2.91≈2.9(m).答:梯子顶部离地竖直高度BC 约为2.9m .【点睛】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数. (2022·湖南湘潭)33. 湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DH AH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数据:1.732≈)【答案】72cm【解析】【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解.【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠,60BAE CAD ∴∠=∠=︒1cos60102AE AB AB ∴=︒⨯==,BE ==,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌90BDC ∠=︒45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈0.618DH DH AD∴≈+ 解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈答:最少需要准备72cm 长的伞柄【点睛】本题考查了解直角三角形的应用,掌握直角三角形中边角关系是解题的关键.(2022·湖南常德)34. 第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道50AF =米,弧形跳台的跨度7FG =米,顶端E 到BD 的距离为40米,HG BC ∥,40AFH ∠=︒,25EFG ∠=︒,36ECB ∠=︒.求此大跳台最高点A 距地面BD 的距离是多少米(结果保留整数).(参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin 250.42︒≈,cos250.91︒≈,tan 250.47︒≈,sin360.59︒≈,cos360.81︒≈,tan360.73︒≈)【答案】70【解析】【分析】过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形,可得HB MN =,在Rt AHF △中,求得AH ,根据,tan tan tan EM EM EM FM MG EFG EGF ECB ===∠∠∠,7FG =,求得FM ,进而求得MN ,根据AB AH HB AH MN =+=+即可求解.【详解】如图,过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形, HB MN ∴=,50AF =,40AFH ∠=︒,在Rt AHF △中,sin 500.6432AH AF AFH =⋅∠≈⨯=米,HG BC ∥,EGF ECB ∴∠=∠25EFG ∠=︒,36ECB ∠=︒,7FG =,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠ 70.470.73EM EM ∴+=, 解得2EM ≈,顶端E 到BD 的距离为40米,即40EN =米40238MN EN EM ∴=-=-=米.323870AB AH HB AH MN ∴=+=+=+=米.【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.(2022·湖北宜昌)35. 知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足5372α︒≤≤︒.如图,现有一架长4m 的梯子AB 斜靠在一竖直的墙AO 上.(1)当人安全使用这架梯子时,求梯子顶端A 与地面距离的最大值;(2)当梯子底端B 距离墙面1.64m 时,计算ABO ∠等于多少度?并判断此时人是否能安全使用这架梯子?(参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈,sin660.91︒≈,cos660.41︒≈,tan66 2.25︒≈)【答案】(1)梯子顶端A 与地面的距离的最大值3.8米(2)66ABO ∠=︒,人能安全使用这架梯子【解析】【分析】(1)AB 的长度固定,当∠ABO 越大,OA 的高度越大,当72α=︒时,AO 取最大值,此时,根据与ABO 的正弦三角函数计算出OA 长度即可;(2)根据AB =4,OB =1.64,利用∠ABO 的余弦函数值,即可求出∠ABO 的大小,从而得到答案.【小问1详解】∵5372α︒≤≤︒当72α=︒时,AO 取最大值,在Rt AOB 中,sin AO ABO AB∠=, ∴sin 4sin7240.95 3.8AO AB ABO =∠=︒≈⨯=,所以梯子顶端A 与地面的距离的最大值3.8米.【小问2详解】在Rt AOB 中,cos BO ABO AB∠=,。
中考数学专题练习 解直角三角形(含解析)(2021年整理)
2017年中考数学专题练习解直角三角形(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专题练习解直角三角形(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专题练习解直角三角形(含解析)的全部内容。
解直角三角形一、选择题(共13小题,每小题4分,满分52分)1.在△ABC中,已知AB=5,AC=3,BC=4,则下列结论中正确的是()A.sinA=B.cosB=C.tanA=D.tanB=2.如图,△ABC为边长是5的等边三角形,点E在AC边上,点F在AB边上,ED⊥BC,且ED=AE,DF=AF,则CE的长是()A.B.C.20+10D.20﹣103.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A. B.C.D.24.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,下列关系式中错误的是()A.b=c•cosB B.b=a•tanB C.a=c•sinA D.a=b•cotB5.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③ C.①②④ D.②③④6.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0) B.(,﹣) C.(﹣,﹣) D.(﹣,﹣)7.如图,AB为⊙O的直径,CA切⊙O于A,CB交⊙O于D,若CD=2,BD=6,则sinB=()A.B.C. D.8.在Rt△ABC中,∠C=90°,AB=13,BC=5,则tanA=()A.B.C.D.9.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.10.如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB 方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A.6(+1)m B.6(﹣1)m C.12(+1)m D.12(﹣1)m11.已知α为等边三角形的一个内角,则cosα等于()A.B. C. D.12.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地( )A. m B.100m C.150m D. m13.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B.C.D.二、填空题(共10小题,每小题5分,满分50分)14.化简= .15.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1:1。
专题16 全等三角形判定和性质问题(解析版)2021年中考数学必考34个考点高分三部曲
专题16 全等三角形判定和性质问题1.全等三角形:能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
2.全等三角形的表示全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3.全等三角形的性质:全等三角形的对应角相等、对应边相等。
4.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
5.直角三角形全等的判定:HL定理:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例题1】(2020•贵州省安顺市)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【解答】选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;专题知识回顾专题典型题考法及解析选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.【例题2】(2020•黑龙江省齐齐哈尔市)如图,已知在△ABC和△DEF中,△B=△E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC△△DEF,则还需添加的一个条件是_________(只填一个即可).【答案】AB=DE.【解析】添加AB=DE;△BF=CE,△BC=EF,在△ABC和△DEF中,,△△ABC△△DEF(SAS)【例题3】(2020•铜仁)如图,AB=AC,AB△AC,AD△AE,且△ABD=△ACE.求证:BD=CE.【答案】见解析。
中考数学专题——解直角三角形及其应用知识点及典型例题(含详细答案)
解直角三角形及其应用【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边(如∠A,a) ∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a=4; (2)a=1,3b=.【答案】(1)∠A=90°-∠B=90°-60°=30°.由tanbBa=知,tan4tan6043b a B==⨯=g°.由cosaBc=知,48cos cos60acB===°.(2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°. ∵ 222a b c +=,∴ 2242c a b =+==.2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30b c=°,∴ 1202c =.∴ c =40.由勾股定理知222a cb =-.∴ 2224020a =-,203a =.举一反三:(1)已知a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=25 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是»AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值;(3)在(2)的条件下,求弦AB 的长.【答案】(1)∵ »»AD CD =,∴ ∠1=∠2,又BC 是⊙O 的直径,∴ ∠BAC =∠BDC =90°. ∴ △ABE ∽△DBC.(2)由△ABE ∽△DBC ,∴ ∠AEB =∠DCB . 在Rt △BDC 中,BC =52,CD =52,∴ BD =225BC CD -=, ∴ sin ∠AEB =sin ∠DCB =525552BD BC ==. (3)在Rt △BDC 中,BD =5,又∠1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DE DB AD=,∴ 2AD DE DB =g . 又∵ 52CD AD ==,∴ CD 2=(BD -BE)·BD , 即25(5)52BE ⎛⎫=- ⎪ ⎪⎝⎭g ,∴ 354BE =.在Rt △ABE 中,AB =BE .sin ∠AEB =32355452⨯=. 举一反三:如图,在△ABC 中,AC=12cm ,AB=16cm ,sinA=13. (1)求AB 边上的高CD ;(2)求△ABC 的面积S ;(3)求tanB .【答案】(1)CD=4cm ;(2)S=32 cm 2;(3)tanB=+224.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532,在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【巩固练习】一、选择题1.在△ABC 中,∠C =90°,4sin 5A =,则tan B =( ). A .43 B .34 C .35 D .452.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .7cos35°C .7cos 35°D .7tan 35°3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ).A .53米B .10米C .15米D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h αg6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若3cos5BDC∠=,则BD的长是( ).A.4 cm B.6 cm C.8 cm D.10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( ).A.30海里 B.40海里 C.50海里 D.60海里第6题第7题第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是( ).A.2003m B.20033m C.1003m D.100m二、填空题9.如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=35,则tan∠B的值为______.10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AGAF的值为________.第9题第10题第11题11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE 沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3(即AB:BC=1:3),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. 如图所示,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(3≈1.732,结果保留一位小数).17.如图所示是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度.(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:2≈1.41,3≈1.73)【答案与解析】 一、选择题 1.【答案】B ;【解析】如图,sin A =45BC AB =,设BC =4x .则AB =5x .根据勾股定理可得AC =223AC AB BC x =-=,∴ 33tan 44AC x B BC x ===. 2.【答案】C ;【解析】在Rt △ABC 中,cos BCB AB=.∴ BC =ABcosB =7cos 35°. 3.【答案】A ; 【解析】由tan BCi A BC===1:3知,353AC BC ==g (米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =.二、填空题9.【答案】23;【解析】在Rt△ACM中,sin∠CAM=35,设CM=3k,则AM=5k,AC=4k.又∵ AM是BC边上的中线,∴ BM=3k,∴ tan∠B=4263 AC kBC k==.10.【答案】32;【解析】由已知条件可证△ACE≌△CBD.从而得出∠CAE=∠BCD.∴∠AFG=∠CAE+∠ACD=∠BCD+∠ACD=60°,在Rt△AFG中,3sin602 AGAF==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴ DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴ BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴ AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt △ABC 中,∵ 13AB BC =,AB =2,∴ 23BC =. 在Rt △AFD 中,DF =DE-EF =x-2.∴ 23(2)tan tan 30DF x AF x DAF -===-∠°∵ AF =BE =BC+CE . ∴ 33(2)233x x -=+,解得6x =. 答:树DE 的高度为6米.16.【答案与解析】根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得3tan 30BD BC BD ==°. 又∵ BC-AB =AC .∴ 320BD BD -=,∴ BD =2031-≈27.3(m). 答:该古塔的高度约为27.3m .17.【答案与解析】(1)在Rt △DCE 中,∠CED =60°,DE =76,∵ sin ∠CED =DC DE,∴ DC =DE ×sin ∠CED =383(厘米) 答:垂直支架CD 的长度为383厘米.(2)设水箱半径OD =x 厘米,则OC =(383)x +厘米,AO =(150)x +厘米, ∵ Rt △OAC 中,∠BAC =30°∴ AO =2×OC ,即:150+x =2(383)x +厘米,AO =(150+x)厘米, 解得:150763x =-≈18.52≈18.5(厘米)答:水箱半径OD 的长度约为18.5厘米.。
八年级数学常考点精练(苏科版):专题16 直角三角形斜边上的中线(解析版)
专题16直角三角形斜边上的中线知识点一直角三角形斜边上的中线性质1.直角三角形斜边上的中线等于斜边的_____.【答案】一半【解析】【详解】试题解析:根据在直角三角形中,斜边上的中线等于斜边的一半得解.故答案为一半.2.Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于_____.【答案】5【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=12AB,∵AB=10,∴CD=12×10=5.故答案为5.【点睛】本题考查了直角三角形斜边上的中线的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.3.如图,在Rt ABC△中,斜边AB上的中线5CD ,则AB ________.【答案】10【解析】【分析】根据直角三角形斜边上中线性质得出AB =2CD ,代入求出即可.【详解】解:∵CD 是直角三角形ABC 斜边AB 上的中线,CD =5,∴AB =2CD =10,故答案为:10.【点睛】本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上的中线等于斜边的一半.4.如图, ABC 中,90ACB ,CD 是AB 边上的中线,且12CD AB ,则AB 的长为______.【答案】8【解析】【分析】根据在直角三角形中,斜边上的中线等于斜边的一半解答.【详解】解:∵∠ACB =90°,D 是AB 边的中点,12CD AB ,∵12CD AB 8AB 故答案为:8.【点睛】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.5.若直角三角形斜边上的高是4cm ,斜边上的中线是5m ,则这个直角三角形的面积是_____.【答案】20m 2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求出斜边的长,再根据三角形的面积公式列式计算即可得解.【详解】解:∵直角三角形斜边上的中线长是5m∴斜边长为10m∵直角三角形斜边上的高是4m ∴这个直角三角形的面积=12×10×4=20m 2故答案为20m 2【点睛】本题考查直角三角形斜边上中线的性质,熟记直角三角形斜边上的中线等于斜边的一半是解题的关键.6.如图,在Rt ABC 中,90ACB ,点D 是AC 上一点,连接BD ,P 点是BD 的中点,若D A BA ,8AD ,则CP 的长为().A .8B .4C .16D .6【答案】B【解析】【分析】由题意推出BD =AD ,然后在Rt △BCD 中,CP =12BD ,即可推出CP 的长度.【详解】∵D A BA ,∴BD =AD=8,∵P 点是BD 的中点,90ACB∴CP =12BD =4,故选:B .【点睛】本题主要考查等腰三角形的判定和性质、直角三角形斜边上的中线的性质,关键在于根据已知推出BD =AD ,求出BD 的长度.7.如图,AD 是ABC 的角平分线,点E 为AC 的中点,连结DE .若10AB AC ,8BC ,则CDE △的周长为()A .20B .12C .14D .13【答案】C【解析】【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,CD=BD ,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=12AC ,然后根据三角形的周长公式列式计算即可得解.【详解】解:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD ⊥BC ,CD=BD=12BC=4,∵点E 为AC 的中点,∴DE=CE=12AC=5,∴△CDE 的周长=CD+DE+CE=4+5+5=14.故选:C .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.知识点二斜边上中线分割直角三角形成两个等腰三角形8.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A =26°,则∠BDC 的度数是()A .26°B .38°C .42°D .52°【答案】D【解析】【分析】根据直角三角形斜边上中线定理得出CD=AD,求出∠DCA=∠A,根据三角形的外角性质求出求出即可.【详解】解:∵∠ACB=90 ,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=26 ,∴∠BDC=∠A+∠DCA=26 +26 =52 .故选:D.【点睛】本题考查了对三角形的外角性质,直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠DCA的度数是解此题的关键.9.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=_____.【答案】50°【解析】【分析】由“直角三角形的两个锐角互余”得到∠A=50°,根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【详解】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.【点睛】本题考查了直角三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半.10.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.【答案】30【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=BD,∵BC=BD,∴CD=BC=BD,∴△BCD是等边三角形,∴∠B=60°,∴∠A=30°.故答案为30.【点睛】考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.11.如图,△ABC中,若∠ACB=90°,∠B=56°,D是AB的中点,则∠ACD=_____°.【答案】34°.【解析】【分析】由∠ACB=90°,D是AB的中点,可得出CD=BD=AD,结合∠B的度数可得出∠BCD的度数,再由∠ACD和∠BCD互余可求出∠ACD的度数.【详解】解:∵∠ACB=90°,D是AB的中点,∴CD=BD=AD=12AB,∴∠BCD=∠B=56°,∴∠ACD=∠ACB﹣∠BCD=90°﹣56°=34°.故答案为34°.【点睛】本题考查了直角三角形斜边上的中线以及等腰三角形的性质,牢记“在直角三角形中,斜边上的中线等于斜边的一半”是解题的关键.12.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=______.【答案】10°【解析】【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【详解】∵∠ACB=90 ,∠B=50 ,∴∠A=40 ,∵∠ACB=90 ,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50 ,∠DCA=∠A=40 ,由翻折变换的性质可知,∠B′CD=∠BCD=50 ,∴∠ACB′=∠B′CD−∠DCA=10 ,故答案为10 .【点睛】本题考查直角三角形斜边上的中线.知识点三斜边上的中线应用13.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为5km ,则M ,C 两点间的距离为()A .2kmB .2.5kmC .3kmD .4km【答案】B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半直接可以得出答案.【详解】∵AC ,BC 互相垂直,ABC 是直角三角形,M ∵是AB 的中点, 1 2.52CM AB ,故选B .【点睛】本题考查了直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出12CM AB 是解此题的关键.14.如图,有一架梯子斜靠在与地面(OM )垂直的墙(ON )上,在墙角(点O 处)有一只猫紧紧盯住位于梯子(AB )正中间(点P 处)的老鼠,等待与老鼠距离最小时扑捉,把梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,若梯子A 端沿墙下滑,且梯子B 端沿地面向右滑行.在此滑动过程中,猫与老鼠的距离()A .不变B .变小C .变大D .无法判断【解析】【分析】根据直角三角形斜边的中线等于斜边的一半,即可解答.【详解】如图,连接OP ,由题意可知:点P 为AB 的中点,∠AOB =90 ,在Rt AOB 中,12OP AB ,若梯子A 端沿墙下滑,且梯子B 端沿地面向右滑行.在此滑动过程中,OP 始终等于AB 的一半,故OP 的长不变,即猫与老鼠的距离不变.故选:A【点睛】本题主要考查了直角三角形形斜边中线的性质,解题的关键是熟练掌握直角三角形形斜边中线的性质,并会利用数学建模思想.知识点四共斜边的两个直角三角形的斜边上的中线相等15.如图,四边形ABCD 中,90ACB ADB ,取AB 中点E ,连接DE ,CE ,CD ,则EDC △为______三角形.【答案】等腰【解析】【分析】根据题意结合直角三角形中“斜中半”定理即可推出结论.由题ABC ADB,均为直角三角形,且都以AB为斜边,∵E为AB的中点,∴1122CE AB DE AB CE DE,,,即:EDC为等腰三角形,故答案为:等腰.【点睛】本题考查直角三角形中“斜中半”定理,理解并灵活运用定理是解题关键.16.如图,点C为线段AB的中点,90AMB ANB,则CMN△是_______________三角形.【答案】等腰【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵90AMB ANB∴在Rt△ABM中,C是斜边AB上的中点,∴MC=12AB,同理在Rt△ABN中,CN=12AB,∴MC=CN∴CMN△是等腰三角形,故答案为:等腰.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.三、解答题(共0分)17.如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.(1)已知∠A=30°,求∠ACB的度数;(2)已知∠A=40°,求∠ACB的度数;(3)已知∠A=x°,求∠ACB的度数;(4)请你根据解题结果归纳出一个结论.【答案】(1)90°;(2)90°;(3)90°;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【解析】【分析】(1)(2)(3)利用等腰三角形及三角形内角和定理即可求出答案;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【详解】解:(1)∵在△ABC中,CD是AB上的中线,且DA=DC,∠A=30°∴∠ACD=30°∵∠CDB是△ACD的外角∴∠CDB=60°∵DB=CD∴∠DCB=∠B=60°∴∠ACB=∠ACD+∠DCB=30°+60°=90°;(2)若∠A=40°,同(1),可知∠ACD=40°,∠CDB=40°+40°=80°∠DCB=12(180°﹣∠CDB)=12(180°﹣80°)=50°∴∠ACB=∠ACD+∠DCB=40°+50°=90°;(3)若∠A=x°,同(1),可知∠ACD=x°,∠CDB=x°+x°=2x°∠DCB=12(180°﹣∠CDB)=12(180°﹣2x°)=90°﹣x°,故∠ACB=∠ACD+∠DCB=x°+90°﹣x°=90°;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直线三角形斜边上的中线的性质.18.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点.(1)求证:△MEF是等腰三角形;(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.【答案】(1)见解析,(2)40°【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半证明EM=FM即可;(2)根据等腰三角形两底角相等求出∠BMF,∠CME,然后根据平角等于180°列式计算即可求出∠EMF.【详解】(1)证明:∵CF⊥AB,BE⊥AC,M为BC的中点,∴EM=12BC,FM=12BC,∴BM=FM,∴△MEF是等腰三角形;(2)∵BM=FM,∠ABC=50°,∴∠MBF=∠MFB=50°,∴∠BMF=180°﹣2×50°=80°,∵CM=EM,∠ACB=60°,∴∠MCE=∠MEC=60°,∴∠CME=180°﹣2×60°=60°,∴∠EMF=180°﹣∠BMF﹣∠CME=40°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.19.如图,已知ABC 的高BD CE 、相交于点O M N ,、分别是BC AO 、的中点,求证:MN 垂直平分DE .(括号中需写本学期新学理由)【答案】见解析【解析】【分析】联结EN DN EM DM 、、、,根据直角三角形斜边中线等于斜边一半可得EN DN EM DM ,,进而判断M N 、在线段DE 的垂直平分线上,即可证明MN 垂直平分DE【详解】证明:联结EN DN EM DM 、、、,∵BD AC ,CE AB ,∴90AEC ADB BEC BDC ,∵M N 、是BC AO 、的中点,∴1111,,,2222EN AO DN AO EM BC DM BC (直角三角形斜边中线等于斜边一半),∴EN DN EM DM ,,∴M N 、在线段DE 的垂直平分线上(垂直平分线的逆定理),∴MN 垂直平分DE .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,垂直平分线的判定,掌握以上性质定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题16 解直角三角形一、单选题(共36分)1.(本题3分)(2021·福建南平市·九年级一模)已知:22sin 32cos α1+=,则锐角α等于( ) A .32B .58C .68D .以上结论都不对【答案】A【解析】)sin 2α+cos 2α=1)α是锐角,)α=32°)故选A)2.(本题3分)(2021·福建南平市·九年级一模)如图,在边长为1的小正方形组成的网格中,)ABC 的三个顶点均在格点上,则tan)ABC 的值为( )A .35B .34CD .1【答案】B【分析】根据网格结构找出)ABC 所在的直角三角形,然后根据锐角的正切等于对边比邻边列式即可.【详解】解:)ABC 所在的直角三角形的对边是3,邻边是4,所以,tan)ABC =34. 故选B .【点睛】本题考查了锐角三角函数的定义,熟练掌握网格结构找出直角三角形是解题的关键.3.(本题3分)(2021·上海九年级专题练习)在Rt ABC ∆中,90C ∠=︒,3BC =,4AC =,那么tan A 的值等于( )A .34B .43C .35D .45【答案】A【分析】在直角三角形中,锐角的正切等于对边比邻边,由此可得tan A .【详解】解:如图90C ∠=︒,3tan 4BC A AC ∴==. 故选:A.【点睛】本题主要考查了锐角三角函数中的正切,熟练掌握正切的表示是解题的关键.4.(本题3分)(2021·上海奉贤区·九年级一模)在 Rt ABC ∆中,90C =∠,如果33,4AC cosA == ,那么 AB 的长为( )A .94B .4C .5D .254【答案】B【分析】 根据cosA 34==AC AB ,即可得出AB 的值 【详解】解:在Rt)ABC 中,)C=90°,AC=3,又),osA 34c ==AC AB )AB=4故选:B .【点睛】本题考查锐角三角函数的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(本题3分)(2021·四川成都市·成都实外九年级开学考试)已知海面上一艘货轮A 在灯塔B 的北偏东30方向,海监船C 在灯塔B 的正东方向5海里处,此时海监船C 发现货轮A 在它的正北方向,那么海监船C 与货轮A 的距离是( )A.10海里B.C.5海里D海里【答案】B【分析】根据题意先建立直角三角形,然后结合三角函数中正切的定义求解即可.【详解】根据题意建立如图所示Rt)ABC,其中)C=90°,)B=60°,BC=5,)560==⨯︒=AC BC tan B tan故选:B.【点睛】本题考查解直角三角形的实际应用,准确根据题意构建直角三角形并灵活运用三角函数求解是解题关键.6.(本题3分)(2021·上海松江区·九年级一模)如图,一艘船从A处向北偏东30°的方向行驶10千米到B 处,再从B处向正西方向行驶20千米到C处,这时这艘船与A的距离()A.15千米B.10千米C.D.千米【答案】C【分析】根据题意,利用30BAD ∠=︒,根据锐角三角函数求出AD 和BD 的长,从而得到CD 的长,再用勾股定理求出AC 的长.【详解】解:如图,根据题意,10AB km =,30BAD ∠=︒, )1sin 301052BD AB km =⋅︒=⨯=,cos30102AD AB =⋅︒=⨯=, )20BC km =,)15CD km =,)AC =.故选:C .【点睛】本题考查解直角三角形,解题的关键是掌握利用锐角三角函数解直角三角形的方法.7.(本题3分)(2021·上海九年级专题练习)已知在Rt ABC 中,90︒∠=C ,B β∠=,5AB =,那么AC 的长为( )A .5cos βB .5sin βC .5cos βD .5sin β【答案】B【分析】根据锐角三角函数的定义即可求出答案.【详解】解:在Rt)ABC 中, sinβ=AC AB, )AC=AB•sinβ=5sinβ,故选:B .【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.(本题3分)(2021·上海浦东新区·九年级一模)已知在Rt ABC ∆中,90C ∠=︒,,2A BC α∠==,那么AB 的长等于( )A .2sin αB .2sin αC .2cos αD .2cos α【答案】A【分析】根据锐角三角函数的定义得出sinA =BC AB,代入求出即可. 【详解】解:)在Rt)ABC 中,)C =90°,)A =α,BC =2, )sinA =BC AB, )AB =sin BC A =2sin α, 故选:A .【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键.9.(本题3分)(2021·上海金山区·九年级一模)若α是锐角,()2sin 152α+=,那么锐角α等于( ) A .15 B .30 C .45 D .60 【答案】B【分析】由sin45°=2可得()15α+=45°即可确定α. 【详解】解:,()2sin 15α+=α是锐角 )()15α+=45°,即α=30°.故选:B .【点睛】本题主要考查特殊角的三角函数值,根据特殊角的三角函数值确定()15α+=45°成为解答本题的关键. 10.(本题3分)(2021·云南九年级一模)如图,30ABC ∠=︒,边BA 上有一点D ,4DB =,以点D 为圆心,以DB 长为半径作弧交BC 于点E ,则BE =( )A .B .4C .D .8【答案】A【分析】连接DE ,过点D 作DF BC ⊥于点F ,解直角三角形BDF 求出BF=【详解】解:连接DE ,过点D 作DF BC ⊥于点F ,在Rt BDF 中,304ABC BD ∠=︒=,,由cos BF ABC BD ∠=得cos 4BF BD ABC =⋅∠==依题意可得:DB DE =,)BDE 是等腰三角形;)DF BC ⊥, )12BF EF BE ==(等腰三角形三线合一);)2BE BF ==故选:A【点睛】此题主要考查了垂径定理和解直角三角形,求出BF=11.(本题3分)(2021·上海普陀区·九年级一模)如图,在)ABC 中,)C =90°.若AB =3,BC =2,则sin A 的值为( )A .23BCD 【答案】A【分析】根据在直角三角形中,正弦为对边比斜边,可得答案.【详解】解:)ABC 中,)C =90°,AB =3,BC =2,得sin A =2 3BC AB =, 故选A .【点睛】本题考查三角函数,熟记公式是解题关键.12.(本题3分)(2021·西安铁一中滨河学校九年级一模)如图)在)ABC中)AC )8))ABC )60°))C )45°)AD )BC )垂足为D ))ABC 的平分线交AD 于点E )则AE 的长为A B .C .3 D .【答案】C【分析】由已知可知)ADC 是等腰直角三角形,根据斜边AC=8可得Rt)ABD 中,由)B=60°,可得BD=tan 60AD ︒,再由BE 平分)ABC ,可得)EBD=30°)从而可求得DE 长,再根据AE=AD -DE 即可 【详解】)AD)BC)))ADC 是直角三角形,))C=45°)))DAC=45°))AD=DC))AC=8))在Rt)ABD 中,)B=60°))BD=tan 60AD ︒=3) )BE 平分)ABC)))EBD=30°)=3))AE=AD -DE=33=) 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.二、填空题(共12分)13.(本题3分)(2021·上海九年级专题练习)已知某斜坡的坡度1:3,当铅垂高度为3米时,水平宽度为_________________米【答案】9【分析】根据斜坡是铅垂高度与水平距离的比值,而这个斜坡的坡度为1:3,铅垂高度为3米,从而求出斜坡的水平宽度.【详解】解:)斜坡的坡度为1:3,其铅垂高度为3米,)这个斜坡的水平宽度为:3×3=9米,故答案为:9.【点睛】本题考查解直角三角形的应用中的坡度坡角问题,解题的关键是明确坡度是指斜坡的铅直高度与水平距离的比值.14.(本题3分)(2021·上海九年级一模)在ABC 中,90C ∠=︒,如果cot 2A ∠=,3BC =,那么AC =________________.【答案】6【分析】 直接根据cot AC A BC ∠=,将已知条件代入,便可求出AC. 【详解】 )cot AC A BC∠==2,3BC =, )cot 326AC BC A =⋅∠=⨯=,故答案为:6.【点睛】本题考查余切的定义,正确掌握余切的公式是解题的关键.15.(本题3分)(2021·上海徐汇区·九年级一模)如图,点P 在线段BC 上,AB BC ⊥,DP AP ⊥, CD DP ⊥,如果10BC =,2AB =, 1tan 2C =,那么 DP 的长是 _____ .【答案】5【分析】由已知条件,根据同角的余角相等得APB C ∠=∠,根据1tan 2C =得1tan 2AB APB BP ==∠,求出4BP =,得出6PC =,利用1tan 2C =和勾股定理即可得DP 的长. 【详解】解:)AB BC ⊥,DP AP ⊥,CD DP ⊥,)90B APD PDC ∠=∠=∠=︒,90C DPC ∠+∠=︒,90APB DPC ∠+∠︒=,)APB C ∠=∠, )1tan 2C =, )1tan tan 2AB APB C BP ===∠, )2AB =,10BC =,)4BP =,6PC =,设DP 的长是x , )1tan 2DP C CD ==, )22CD DP x ==,)222PC DP CD =+,即()22262x x =+,解得x =,故答案为:5. 【点睛】本题考查三角函数-正切,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题. 16.(本题3分)(2021·上海九年级专题练习)如图,在Rt ABC ∆中,90,3,4,ACB AC BC CD ∠=︒==是ABC∆的角平分线,将Rt ABC∆绕点A旋转,如果点C落在射线CD上,点B落在点E处,连接ED,那么AED∠的正切值为_______________________.【答案】3 7【分析】如图,过点D作DG)AC于G,可得DG//BC,即可证明)AGD))ACB,可得34AG ACDG BC==,由CD是角平分线可得)ACD=45°,可得CG=DG,进而可求出AG的长,根据勾股定理即可求出AD的长,根据旋转的性质可得AC′=AC,AE=AB,根据等腰三角形的性质可得)CC′A=45°,可得)CAC′=90°,可得旋转角为90°,可得)DAE=90°,利用勾股定理可求出AB的长,根据正切的定义即可得答案.【详解】如图,过点D作DG)AC于G,))ACB=90°,)DG//BC,))AGD))ACB,可得34 AG ACDG BC==,)CD是角平分线,))ACD=45°,)CG=DG,)AC=3,AC=AG+CG,)34DG+CG=3,即74DG=3,解得:DG=127,)AG=97,157,)将Rt ABC∆绕点A旋转,如果点C落在射线CD上,)AC′=AC,AE=AB,))CC′A=)ACD=45°,))CAC′=90°,)旋转角为90°,))DAE=90°,)AC=3,BC=4,)AB=5,tanAD ADAEDAE AB∠===37.故答案为:37【点睛】本题考查旋转的性质、相似三角形的判定与性质及三角函数的定义,正确得出旋转角为90°并熟练掌握相关性质及定义是解题关键.三、解答题(共52分)17.(本题4分)(2021·全国九年级专题练习)计算:21|1|2sin45(3.14)2π-︒⎛⎫-+-- ⎪⎝⎭.【答案】4-【分析】根据绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂进行运算即可.【详解】201|12sin 45(3.14)2π-︒⎛⎫--+-- ⎪⎝⎭12142=-⨯+-114=--4=-【点睛】本题考查了绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂,熟知以上运算是解题的关键. 18.(本题4分)(2021·哈尔滨市萧红中学九年级一模)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,AB 是以网络线的交点(格点)为端点的线段;(1)将线段AB 向右平移5个单位,再向上平移3个单位得到线段CD ,请画出线段CD ;(2)以线段CD 为一边,作一个菱形CDEF ,连接DF ,使2tan 3CDF ∠=,点E ,F 也为格点. 【答案】(1)见解析;(2)见解析【分析】(1)直接利用平移的性质得出C ,D 点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【详解】(1)如图所示:线段CD 即为所求;(2)如图所示:菱形CDEF 即为所求.【点睛】本题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.19.(本题4分)(2021·福建南平市·九年级一模)如图,在Rt)ABC 中,设a ,b ,c 分别为)A ,)B ,)C 的对边,)C =90°,b =8,)A 的平分线AD)B ,a ,c 的值.【答案】)B =30°,a =c =16【分析】根据锐角三角函数,可以求得)CAD 的度数,从而可以得到)CAB 的度数,然后即可得到)B 的度数,再根据锐角三角函数即可得到a 、c 的值.【详解】解:))C =90°,b =8,)CAB 的平分线AD = )cos)CAD AC AD ===))CAD =30°,))CAB =60°,))B =30°,)c =2b =16,a 30b tan ===︒即)B =30°,ac =16.【点睛】本题考查了解直角三角形,解答本题的关键是明确题意,利用锐角三角函数解答.20.(本题4分)(2021·福建南平市·九年级一模)计算:(1)sin 45cos30sin 60(1sin 30)32cos 60︒︒︒︒︒+---; (21124cos30||2-︒-+-. 【答案】(1)4;(2)1 【分析】 (1)直接利用特殊角的三角函数值以及二次根式的性质分别化简,然后求和得出答案;(2)直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简,然后求和得出答案.【详解】解:(1)原式221322=-⨯112-)12=44=-4=; (2)原式12-4122⨯+12-12=1.【点睛】本题考查了特殊角的三角函数值、负整数指数幂、实数的运算,正确化简各数是解答本题的关键.21.(本题4分)(2021·上海黄浦区·九年级一模)计算:225 32sin60 tan301cot301cos4︒︒-+-︒-︒【答案】5 2【分析】根据各个特殊角的三角函数值和实数的运算法则计算即可.【详解】解:225 32sin60 tan301cot301cos4︒︒-+-︒-︒=2212⎝⎭-+-⎛⎝⎭=321411332⎛-+-⎝⎭=3312--=52.【点睛】此题考查的是特殊角的三角函数值的混合运算,掌握各个特殊角的三角函数值是解题关键.22.(本题4分)(2021·上海九年级一模)计算()01cot3012sin60cos60tan30︒--︒+︒+︒.【分析】根据特殊三角函数值化简即可求解.【详解】()01cot3012sin60cos60tan30︒--︒+︒+︒1212-⨯+11【点睛】此题主要考查不同特殊角三角函数值的混合运算,解题的关键是熟知特殊三角函数值.23.(本题4分)(2021·哈尔滨市萧红中学九年级一模)先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中x=tan60°.【答案】3x【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【详解】22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭212(2)22(2)x x xx x x x+--⎛⎫=-⋅⎪---⎝⎭322xx x-=⋅-3x=,当tan60x=︒=原式==【点睛】本题主要考查了分式的化简求值以及特殊角的三角函数值,正确掌握分式的混合运算法则是解题关键.24.(本题4分)(2021·山东济宁市·九年级一模)先化简,再求代数式的值.222()111a aa a a++÷+--,其中a =tan60°﹣2sin30°.【答案】31a + 【分析】 根据分式的运算法则,先进行化简,根据特殊锐角三角函数值求出a,再代入化简式子.【详解】解:原式()()()()22211111a a a a a a a a ⎡⎤-+-=+⋅⎢⎥+-+-⎢⎥⎣⎦()()3111a a a a a -=⋅+-, 31a =+, tan602sin30a =-)1a =,∴原式=== 【点睛】 本题考核知识点:分式混合运算,特殊锐角三角函数值.解题关键点:掌握分式运算法则,熟记特殊三角函数值.25.(本题5分)(2021·广东江门市·九年级二模)如图,小山上有一座120m 高的电视发射塔AB ,为了测量小山的高度BC ,在山脚某处D 测得山顶的仰角为22°,测得塔项的仰角为45°.求小山的高.(已知:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)(结果精确到0.1m )【答案】80米【分析】设BC 为x 米,则AC =(120+x )米,通过解直角)DBC 和直角)ACE 列出关于x 的方程,利用方程求得【详解】解:设BC为x米,则AC=(120+x)米,由条件知:)CDB=22°,)ADC=45°,在Rt)DBC中,tan22°=BCDC=xCD≈0.40,)DC=52x(米).在直角)ACD中,tan45°=ACCD=1.)AC=CD,即120+x=52 x,解得x=80,答:小山BC的高度为80米.【点睛】本题主要考查了三角函数的应用,准确分析计算是解题的关键.26.(本题5分)(2021·山东淄博市·九年级一模)如图,连接A市和B市的高速公路是AC高速和BC高速,现在要修一条新高速AB,在施工过程中,决定在A、B两地开凿隧道,从而将两地间的公路进行改建,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC =80千米,)A=45°,)B=30°.(1)开通隧道前,汽车从A地到B地要走多少干来?(结果保留根号)(2)开通隧道后,汽车从A地到B地少走多少千米?(结果保留根号)【答案】(1)()千米;(2)()千米.【分析】(1)开通隧道前,汽车从A地到B地要走()千米;(2)开通隧道后,汽车从A地到B地可以走(+40)千米.解:(1)作CD)AB于D点,由题意可知:BC=80千米.)A=45°,)B=30°,)CD=12BC=40千米,))A=45°,))ACD是等腰直角三角形,)AD=CD=40千米,)AC=2CD=402(千米),)AC+BC=80+402(千米),即开通隧道前,汽车从A地到B地要走(80+402)千米;(2)由(1)知CD=40千米,)CD)AB,)A=45°,))ACD是等腰直角三角形,)AD=CD=40千米,))B=30°,)BD=3CD=403(千米),)AB=403+40(千米),答:开通隧道后,汽车从A地到B地可以走(403+40)千米.【点睛】本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.27.(本题5分)(2021·西安铁一中滨河学校九年级一模)问题提出(1)如图),在ABC 中,120A ∠=︒,5AB AC ==,则ABC 的外接圆半径R 的值为______; 问题探究(2)如图),O 的半径为13,弦24AB =,M 是AB 的中点,P 是O 上一动点,求PM 的最大值; 问题解决(3)如图)所示,AB ,AC ,BC 是某新区的三条规划路,其中6AB km =,3AC km =,60BAC ∠=︒,BC 所对的圆心角为60︒,新区管委会想在BC 路边建物资总站点P ,在AB ,AC 路边分别建物资分站点E ,F ,也就是,分别在BC ,线段AB 和AC 上选取点P ,E ,F .由于总站工作人员每天都要将物资在各物资站点间按P E F P →→→的路径进行运输,因此,要在各物资站点之间规划道路PE ,EF 和FP .为了快捷、环保和节约成本.要使得线段PE ,EF ,FP 之和最短,试求PE EF FP ++的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).【答案】(1)5;(2)当P ,O ,M 三点共线时,取等号,此时PM 有最大值,最大值为18.(3)9P E EF P F ''++=【分析】(1)如答图),设点O 是ABC 的外接圆的圆心,可得OA OB OC ==.由120BAC ∠=︒,5AB AC ==,可证明,60,OA BC BAO CAO ⊥∠=∠=︒ 证明ABO 是等边三角形,从而可得答案;(2)如答图),连接OA ,OM ,OP ,由M 是AB 的中点,证明OM AB ⊥,12AM BM ==.再求解5OM ==.13518PM OP OM ≤+=+=,从而可得答案;(3)如答图),设点O 为BC 所在圆的圆心,连接AP ,OP ,分别以AB ,AC 所在直线为对称轴,作点P 关于AB ,AC 的对称点M ,N ,连接MN ,交AB 于点E ,交AC 于点F ,连接PE ,PF ,OA ,OB ,OC ,BC ,证明120MAN ∠=︒,M ,P ,N 在以点A 为圆心,AP 为半径的圆上.设AP r =,过A 作AG MN ⊥于,G 则1,2MG NG MN == 60,MAG ∠=︒ 求解2sin 60MN r =⋅︒=.证明PE EF PF ME EF FN MN ++=++==.可得当AP 最小时,PE EF PF ++可取得最小值.证明点P 在OA 上时,AP 可取得最小值,再求解OA ==【详解】 (1)解:如答图),设点O 是ABC 的外接圆的圆心,)OA OB OC ==.)120BAC ∠=︒,5AB AC ==,,60,OA BC BAO CAO ∴⊥∠=∠=︒)ABO 是等边三角形,)5OA OB AB ===,即5R =.(2)解:如答图),连接OA ,OM ,OP ,)M 是AB 的中点,)由垂径定理可知OMAB ⊥,1122AM BM AB ===. )13OA =,)由勾股定理可知5OM =.)点P 为O 上一动点,)13518PM OP OM ≤+=+=,)当P ,O ,M 三点共线时,取等号,此时PM 有最大值,最大值为18.(3)解:如答图),设点O 为BC 所在圆的圆心,连接AP ,OP ,分别以AB ,AC 所在直线为对称轴,作点P 关于AB ,AC 的对称点M ,N ,连接MN ,交AB 于点E ,交AC 于点F ,连接PE ,PF ,OA ,OB ,OC ,BC ,)AM AP AN ==,)MAB PAB ∠=∠,NAC PAC ∠=∠,)60BAC PAB PAC MAB NAC ∠=∠+∠=∠+∠=︒,)120MAN ∠=︒,)M ,P ,N 在以点A 为圆心,AP 为半径的圆上.设AP r =,过A 作AG MN ⊥于,G 则1,2MG NG MN == 60,MAG ∠=︒ 由sin ,MGMAG AM ∠= )1sin 602MN AM =⋅︒,即1sin 602MN r =⋅︒,则2sin 60MN r =⋅︒=.)由轴对称的性质可得:PE ME =,PF FN =,)PE EF PF ME EF FN MN ++=++==.)当AP 最小时,PE EF PF ++可取得最小值.)AP OP OA +≥,)AP OA OP ≥-,即点P 在OA 上时,AP 可取得最小值,设AO 与BC 交于点P ',)6AB =,3AC =,60BAC ∠=︒,)90ACB ∠=︒,)由勾股定理可知BC ==,30,ABC ∠=︒)60BOC ∠=︒,OB OC =,)OBC 是等边三角形,)60OBC ∠=︒,OB BC ==,)90ABO ABC OBC ∠=∠+∠=︒,)由勾股定理可知OA ==)OP OB '==)AP r OA OP ''==-=,)9P E EF P F MN ''++===.【点睛】本题考查的是三角形的三边之间的关系,等边三角形的性质与判定,轴对称的性质,勾股定理的应用,同圆的半径相等,垂径定理的应用,解直角三角形,掌握以上知识是解题的关键.28.(本题5分)(2021·上海崇明区·九年级一模)如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,点D 为斜边AB 的中点,ED AB ⊥,交边BC 于点E ,点P 为射线AC 上的动点,点Q 为边BC 上的动点,且运动过程中始终保持PD QD ⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.【答案】(1)证明见解析;(2)253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭;(3)256或53 【分析】(1)根据ED AB ⊥,PD QD ⊥得A DEQ ∠=∠,ADP EDQ ∠=∠,即可得ADP EDQ △△. (2)先根据相似三角形的性质、中点性质以及锐角三角函数的概念得出tan EQ ED ED B AP AD BD===,求出34EQ x =,再根据BQ BE EQ =-,列出函数关系式,化简即可. (3)先证PDF BDQ △△,再分3种情况讨论,分别求出AP 的长. 【详解】解:(1) PD QD ⊥,ED AB ⊥)A DEQ ∠=∠,ADP EDQ ∠=∠,)ADP EDQ △△. (2)ADP EDQ △△, )EQ ED AP AD = 又点D 为斜边AB 的中点,)AD BD = ,EQ ED ED AP AD BD== 又ED AB ⊥在Rt BDE 中tan =ED ED EQ B BD AD AP ==, 又6tan =8AC BC DE B BD ==,由勾股定理得:BC =10 D 为AB 中点, )BD =5, DE =154,由勾股定理得:BE =254 AP x =, 可得34EQ x =,BQ BE EQ =-,253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭. (3)tan tan DQ ED ED FPD B DP AD BD∠====, )FPD B ∠=∠, 又)PDF BDQ ∠=∠,)PDF BDQ △△, )PDF 为等腰三角形时,BDQ △亦为等腰三角形.若DQ BQ =,12cos BD B BQ=, 542253544x =-, 解得256x . 若BD BQ =,253544x -=, 解得53x =. )若DQ BD =,2180B DQB BDQ B BDQ ︒∠+∠+∠=∠+∠<,此种情况舍去.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质和判定,三角函数,正确和熟练应用相似三角形的性质得到各线段之间的数量关系是解决本题的关键.。