重复性和再现性

合集下载

汽柴油的重复性和再现性公式

汽柴油的重复性和再现性公式

汽油质量检验项目的重复性和再现性计算公式1、溶剂洗胶质GB/T8019重复性计算:未洗胶质含量r=0.997X0.4,溶剂洗胶质含量r=1.298X0.3 X—重复测定结果的算术平均值。

再现性计算:未洗胶质含量R=1.928X0.4,溶剂洗胶质含量R=2.494X0.3 X—两个独立结果的算术平均值。

2、荧光硫SH/T0742重复性计算:r= 12 .30 (X + 1 0 )0.1X—重复测定结果的算术平均值。

再现性计算: R =3 6. 26 (X + 10 )0.1X—两个独立结果的算术平均值。

3、紫光硫SH/T0689重复性计算:r=0.1867X0.63X—重复测定结果的算术平均值。

再现性计算:R=0.2217X0.92X—两个独立结果的算术平均值。

4、硫醇硫GB/1792重复性计算:r=0.00007+0.027XX—重复测定结果的算术平均值。

再现性计算:R=0.00031+0.042XX—两个独立结果的算术平均值。

5、馏程GB/T6536 ℃1)手工法回收点重复性r、再现性R的计算:10%回收点:S=0.05(T20%平均回收温度-T初馏点平均回收温度)r=(S+2.46)/2.44R=(S+1.39)/0.7650%回收点:S=0.05(T60%平均回收温度-T40%平均回收温度)r=(S+2.46)/2.44R=(S+1.39)/0.7690%回收点:S=0.1(T90%平均回收温度-T80%平均回收温度)r=(S+2.46)/2.44R=(S+1.39)/0.76终馏点:S=(T终馏点平均回收温度-T95%平均回收温度)/(V终馏点平均体积-95)r=(S+1.82)/2.66R=(S+6.95)/2.242)自动法回收点重复性r、再现性R的计算:10%回收点:S=0.05(T20%平均回收温度-T初馏点平均回收温度)r=1.2+1.42SR=3.0+2.64S50%回收点:S=0.05(T60%平均回收温度-T40%平均回收温度)r=1.2+1.42SR=2.9+3.97S90%回收点:S=0.1(T90%平均回收温度-T80%平均回收温度)r=1.1+1.08SR=2.0+2.53S终馏点:r=3.5R=10.56、烃的重复性和再现性计算(1)不含含氧化合物样品的重复性和再现性%(体积分数)(2)含有含氧化合物样品的重复性和再现性%(体积分数)7、苯、甲苯重复性和再现性计算%(体积分数)8、醇类和醚类中氧含量的重复性和再现性计算%(质量分数)9、汽油中Fe和Mn含量的重复性和再现性计算mg/LFe重复性:0.65X0.48再现性:0.55X0.79Mn重复性:0.42X1/2再现性:1.41X1/2/a/20100427/004567.htm柴油质量检验项目的重复性和再现性计算公式1、闭口闪点GB/T261重复性计算:0.029XX—重复测定结果的算术平均值。

重复性与再现性研究(repeatability and reproducibility)

重复性与再现性研究(repeatability and reproducibility)

重复性与再现性研究(repeatability and reproducibility)又名:R&R研究( R&R study),量具R&R( gage R&,R),测量系统分析『measurement system analysis, MSA)概述重复性与再现性研究的分析对象是由仪器或量具组成的测量系统的变异。

测量系统的变异是相对于观测过程的总变异而言的。

重复性与再现性研究的主要目的是使测量的变异足够小,从而确保测量结果能反映真实的过程,因为如果测量变异过大,以致掩盖了过程变异,就不可能了解到产品是否符合要求或是否应该继续设法减小过程变异。

重复性与再现性研究的主要对象是两类变异:重复性——指使用相同仪器重复读数时产生的变异;再现性——由不同操作员做同样的测量工作时产生的变异。

适用场合·当使用仪器或设备进行测量时;·在研究过程变异或过程能力之前;·当要在几种测量方法中选择一种时;·当要对测量方法、程序或培训进行测评或标准化时;·当作为一个周期性持续改进的程序,保证改进过程保持统计受控时。

实施步骤计划1确定所要研究的零件或产品、测量过程和仪器。

2确定需要抽取的样本容量和获得样本的方法。

通常抽取5~10个样品,如果不能始终保持样本的一致性,就要先找到在研究过程中将样本内变异最小化的方法。

3确定研究需要多少名操作员(执行测量工作的人)以及哪几个操作员,通常是1~3人。

4确定每名操作员要进行的实验次数(重复测量),通常2~3次。

5确定校准、测量以及分析的步骤。

测量6校准测量仪器。

7确定抽样的随机次序。

先由第一名操作员按照标准的操作步骤对所有的样品进行测量,记录结果。

8随机产生另一种抽样次序。

和之前一样,让第二名操作员测量全部样品。

不允许操作员看其他人的结果。

不断重复,直到全部的操作员对所有的样品都测量了一次,此时称为完成了一轮实验。

重复性和再现性不确定度

重复性和再现性不确定度

量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。

GR&R是研究重复性和再现性的,是计量型分析。

1.简称:重复性(EV)(equipment variance)设备偏差、(再现性AV)(appriser variance)人員偏差、产品偏差(PV)(products variance),2.重复性(Repeatability):重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:a、相同的测量环境b、相同的测量仪器及在相同的条件下使用c、相同的位置d、在短时间内的重复3.再现性(Reproducibility)是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度.再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。

在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。

也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。

当然,这样的试验就叫做再现性实验。

4.测量结果的重复性:是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”。

上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。

而表示测量结果分散性的量,最为常用的是实验标准。

重复性条件。

质言之,就是在尽量相同的条件下,包括程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。

测量系统分析MSAGRR

测量系统分析MSAGRR

测量系统分析MSAGRRMSA(测量系统分析)GRR(重复性与再现性)是一种统计方法,用于评估测量系统的准确性和可靠性。

在质量控制和过程改进中,准确的测量是确保产品或过程符合规范要求的关键因素。

本文将详细介绍MSAGRR的概念、目的、步骤以及如何进行数据分析。

一、MSAGRR概念MSAGRR是通过测量系统进行多次测量,并评估测量数据重复性和再现性的一种方法。

重复性是指在相同条件下,同一测量人对同一测量对象进行多次测量得到的结果的一致性;再现性是指在相同条件下,不同的测量人对同一测量对象进行多次测量得到的结果的一致性。

MSAGRR利用统计分析的方法确定各个组成部分对测量结果的影响程度,进而评估测量系统的准确性和可靠性。

二、MSAGRR目的MSAGRR的目的是评估测量系统的准确性和可靠性,确定测量系统是否适用于特定的质量控制和过程改进需求。

通过进行MSAGRR分析,可以识别出测量系统中的问题,进而采取相应的措施进行改进,以提高测量数据的准确性和可靠性。

三、MSAGRR步骤1.确定测量目标:明确需要评估的测量系统和测量对象,明确需要测量的特定要素。

2.收集数据:选择代表性的样本,并由多个测量人在相同条件下对同一测量对象进行多次测量。

每个测量人至少进行10次测量。

3.分析数据:使用统计软件和工具对收集到的数据进行分析,包括计算测量系统的重复性、再现性和误差等指标。

4.判断测量系统的准确性和可靠性:根据分析结果,判断测量系统是否满足质量控制和过程改进的要求。

5.提出改进建议:如果分析结果显示测量系统存在问题,需要提出相应的改进建议,并采取相应的措施进行改进,以提高测量系统的准确性和可靠性。

四、数据分析MSAGRR的数据分析主要包括以下几个方面:1.重复性和再现性分析:分别计算测量系统的重复性和再现性指标。

重复性指标通常采用方差分析方法进行计算,包括组内变异和总变异;再现性指标通常采用方差分析方法进行计算,包括测量人变异和总变异。

重复性和再现性分析报告

重复性和再现性分析报告

重复性和再现性分析报告引言一、重复性的定义和意义重复性是指在相同或相似条件下,独立重复进行实验并得到的结果之间的一致性。

重复性的高低可以反映实验方法的可靠性和稳定性。

对于一个研究结果来说,如果其重复性很好,那么我们可以相信这个结果是真实可信的。

重复性的低下可能导致科研成果的无效性和误导性。

由于科学研究是建立在先前研究结果的基础上的,如果先前的研究结果无法重复,那么后续的研究可能会受到影响,甚至会导致整个科学领域的信誉问题。

二、再现性的定义和意义再现性是指在不同的实验条件下,通过独立的实验来得到相似的结果。

再现性的高低可以反映实验结果是否普遍适用于不同的场景和情况。

如果一个研究结果具有良好的再现性,那么我们可以相信该结果不仅仅适用于特定的情况,而且可以推广到更广泛的领域。

再现性是科学研究的核心价值之一、科学研究的目标是发现可重复和可推广的规律和真理,只有当研究结果具有良好的再现性时,我们才能对其进行广泛应用和推广。

三、评估重复性和再现性的方法评估重复性和再现性需要采用科学严谨的方法,以下是几种常见的评估方法:1.独立重复实验:通过独立的实验来验证原始研究结果是否可重复。

为了保证实验的独立性,可以由不同的研究团队或不同的实验室来进行。

2.统计分析:使用统计学方法对多个独立实验的结果进行分析,计算其一致性和可信度。

常用的统计指标包括标准差、相关系数等。

3.文献回顾:通过回顾相关的文献和先前的研究结果,评估重复性和再现性的程度。

还可以参考其他研究者的验证实验结果来判断一个研究的可靠性。

四、重复性和再现性在科学研究中的重要性1.提高研究结果的可靠性:重复性和再现性可以保证研究结果的可靠性和稳定性,避免因为一次实验的偶然性而引起的误解和错误。

2.确保科学方法的有效性:通过重复性和再现性分析,可以评估和验证科学方法的有效性和稳定性。

如果一个方法在多个实验中都能得到相似的结果,那么它就可以被广泛应用。

3.促进科学发展:只有具有良好的重复性和再现性的研究结果才能被广泛接受和应用,从而促进科学知识的进一步发展。

测量系统分析---5 重复性和再现性 GRR

测量系统分析---5 重复性和再现性 GRR
注1:评价人的个数一般在3或3个以上,现假设是A,B,C三个评 价人。 注2: 零件数能代表实际的或期望的变差范围,一般来说大于或 等于10,现假设是10个. 2. 校准量具。
EV---Equipment Variation 设备变差----重复性: AV---Appraiser Variation 评价者变差---再现性: PV---Part Variation 零件的变差--------产品偏差:
与评价人之间的交互作用和由于量具造成的重复误差。但 计算复杂,需掌握一定程度的统计学知识。
-7-
第五章
重复性和再现性
GRR分析方法---极差法
例:2个评价人对5个零件进行测量。在研究中,两个评价人各将每 个零件测量一次。每个零件的极差是评价人A获得测量值和B获得 测量值之间的绝对差值。计算极差的和与平均极差。通过将平均极 差均值乘以1/d2*得到标准偏差.
计算A评价者测试数据的平均值 计算B评价者测试数据的平均值
计算C评价者测试数据的平均值 计算全部评价者所测数据的平均值 计算单个零件的平均值 计算零件全距Rp 计算最大与最小量测值班的差异 计算零件全距的极差R的平均值
-12-
6 7
8 9 10 11
=Max(Xa,Xb, Xc)-Min(Xa,Xb,Xc) =( Ra + Rb + Rc ) / 3
第五章
重复性和再现性
GRR分析方法
● 极差法 (全距法) 特点:简单快捷,能提供整体大概概况 ● 均值极差法(全距及平均值法)(包括控制图法) 特点:可将测量系统的变差分成两个部分-----重复性和再
现性,而不是他们的交互作用
● ANOVE法--方差分析法(变异数分析法) 特点:是一种标准统计技术,可算出零件、评价人、零件

量具重复性与再现性

量具重复性与再现性

量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。

GR&R是研究重复性和再现性的,是计量型分析。

一、重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件分别为:
1、相同的测量环境;
2、相同的测量仪器及在相同的条件下使用;
3、相同的位置;
4、在短时间内的重复。

二、再现性是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度。

再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。

在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。

也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。

当然,这样的试验就叫做再现性实验。

量具测量值重复性与再现性的评定[讲解]

量具测量值重复性与再现性的评定[讲解]

量具测量值重复性与再现性的评定一、相关概念1、重复性:传统上把重复性看作“评价人内变异性”。

重复性是指由一个评价人,用同一种测量仪器,多次测量同一零件的同一特性时获得的测量变差。

它是设备本身固有的变差和性能,通常指设备变差,尽管这样容易使人误解。

但事实上,重复性是在确定的测量条件下连续试验得到的普通原因(随机变差)变差。

当测量环境固定和已定义时,即确定了-固定的零件、仪器、标准、方法、操作者、环境和假设条件时,对于重复性最佳的术语是系统内部变差。

除了设备内部变差以外,重复性也包括在特定测量误差模型下任何情况下的内部变差。

2、再现性:传统上把再现性看作“评价人之间”的变异。

再现性通常定义为由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。

手动仪器受操作者技术影响常常是实际情况,然而,在测量过程(即自动操作系统)中操作者就不是主要的变差源了。

由于这个原因,为此,再现性被看作是测量系统之间或测量条件之间的平均变差。

二、数据来源本案例数据节选自深圳市佳宝隆科技有限公司《重复性与再现性分析报告》,为避免重复,笔者采取了其中的前两次测定,结果如下:操作者测量序号 1 2 3 4 5 6 7 8 9 10A 1 31.99 31.98 31.98 31.99 31.99 31.98 31.99 31.98 31.99 31.992 32.00 31.99 31.99 32.00 31.98 31.99 32.00 31.99 31.99 32.00B 1 32.00 31.99 31.99 31.99 31.99 31.98 31.99 31.98 31.99 31.992 31.99 31.99 31.99 32.00 31.99 31.99 32.00 31.99 31.99 32.00C 1 31.99 31.99 31.99 31.99 31.99 31.98 31.99 31.98 31.99 31.992 32.00 31.99 31.99 32.00 31.98 31.99 32.00 31.99 31.99 32.00在该实验中,n=10,k=3,m=2。

如何提高测量结果的可重复性和再现性

如何提高测量结果的可重复性和再现性

如何提高测量结果的可重复性和再现性在科学研究、工程实践以及日常生活的各种测量活动中,获得准确、可靠且具有一致性的测量结果至关重要。

测量结果的可重复性和再现性是评估测量质量的关键指标。

可重复性指的是在相同条件下,由同一测量者对同一被测量进行多次测量所得结果的一致性;再现性则是指在不同条件下(如不同测量者、不同测量设备、不同测量时间等)对同一被测量进行测量所得结果的一致性。

提高测量结果的可重复性和再现性对于保证数据质量、做出正确的决策以及推动技术进步都具有重要意义。

下面我们将探讨一些有效的方法来提高测量结果的可重复性和再现性。

一、测量设备的校准和维护测量设备的准确性和稳定性是获得可靠测量结果的基础。

定期对测量设备进行校准,使其与已知的标准值进行比对和调整,能够确保设备在测量过程中提供准确的读数。

校准应按照规定的周期和标准程序进行,并且要使用可追溯至国家标准的校准标准。

同时,对测量设备进行良好的维护也是必不可少的。

保持设备的清洁、干燥,防止受到撞击和过度磨损,定期检查设备的零部件是否正常工作,及时更换老化或损坏的部件,都有助于延长设备的使用寿命和保持其测量性能。

二、测量环境的控制测量环境的变化可能会对测量结果产生显著影响。

例如,温度、湿度、气压、电磁场等环境因素都可能导致测量误差。

因此,要尽可能地控制测量环境,使其保持稳定和一致。

在进行精密测量时,可以使用恒温恒湿箱、电磁屏蔽室等设备来创造稳定的测量环境。

对于一些对环境因素较为敏感的测量,还需要在测量过程中实时监测环境参数,并对测量结果进行相应的修正。

三、测量方法的标准化采用标准化的测量方法是提高测量结果可重复性和再现性的重要手段。

标准化的测量方法通常经过了广泛的验证和实践,能够有效地减少测量过程中的不确定性和误差。

在制定测量方法时,应详细描述测量的步骤、操作要点、数据处理方法等,确保不同的测量者在遵循该方法时能够得到一致的结果。

同时,测量方法应根据技术的发展和实际应用的需求不断进行更新和完善。

重复性和再现性

重复性和再现性

量具重复性‎与再现性分‎析:GR&R 是用来检定‎检测产品的‎人员是否具‎备识别产品‎特性的能力‎,正常的产品‎是否会误判‎,不正常的产‎品是否会漏‎判,也就是检定‎“检测系统是‎否正常”的一个工具‎。

GR&R是研究重‎复性和再现‎性的,是计量型分‎析。

1.简称:重复性(EV)(equip‎m ent varia‎n ce)设备偏差、(再现性AV‎)(appri‎s er varia‎n ce)人員偏差、产品偏差(PV)(produ‎c ts varia‎n ce),2.重复性(Repea‎t abil‎i ty):重复性是用‎本方法在正‎常和正确操‎作情况下,由同一操作‎人员,在同一实验‎室内,使用同一仪‎器,并在短期内‎,对相同试样‎所作多个单‎次测试结果‎,在95%概率水平两‎个独立测试‎结果的最大‎差值。

在中国仪器‎中当测量条‎件是在以下‎4个状况下‎实验时,相同的待测‎量的测量结‎果有一致性‎的称为重复‎性,4个条件如‎下:a、相同的测量‎环境b、相同的测量‎仪器及在相‎同的条件下‎使用c、相同的位置‎d、在短时间内‎的重复3.再现性(Repro‎d ucib‎i lity‎)是指两个不‎同的实验室‎对同一物料‎进行测定两‎个分析结果‎接近的程度‎.再现性的值‎总是大于或‎等于重复性‎,因为再现性‎的测量结果‎把重复性引‎起的偏差考‎虑进去了。

在很多实际‎工作中,最重要的再‎现性指由不‎同操作者、采用相同的‎方法、仪器,在相同的环‎境条件下,检测同一被‎测物的重复‎检测结果之‎间的一致性‎,即检测条件‎的改变只限‎于操作者的‎改变。

也就是说别‎人用你说的‎方法和仪器‎也能做出同‎样的结果来‎,这就是试验‎的再现性。

当然,这样的试验‎就叫做再现‎性实验。

4.测量结果的‎重复性:是指“在相同测量‎条件下,对同一被测‎量进行连续‎多次测量所‎得结果之间‎的一致性”。

上述定义中‎的“一致性”是定量的,可以用重复‎性条件下对‎同一量进行‎多次测量所‎得结果的分‎散性来表示‎。

重复性和再现性

重复性和再现性

量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。

GR&R是研究重复性和再现性的,是计量型分析。

1.简称:重复性(EV)(equipment variance)设备偏差、(再现性AV)(appriser variance)人員偏差、产品偏差(PV)(products variance),2.重复性(Repeatability):重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:a、相同的测量环境b、相同的测量仪器及在相同的条件下使用c、相同的位置d、在短时间内的重复3.再现性(Reproducibility)是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度.再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。

在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。

也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。

当然,这样的试验就叫做再现性实验。

4.测量结果的重复性:是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”。

上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。

而表示测量结果分散性的量,最为常用的是实验标准。

重复性条件。

质言之,就是在尽量相同的条件下,包括程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。

重复性与再现性

重复性与再现性

重复性(r)与再现性(R)2009-8-28 9:33:25精密度:在确定条件下,将测试方法实施多次,求出所得结果之间的一致程度。

精密度的大小常用偏差表示。

精密度的高低还常用重复性(Repeatability)和再现性(Reproducibility)表示。

1)重复性(r)定性定义:用相同的方法,同一试验材料,在相同的条件下获得的一系列结果之间的一致程度。

相同的条件是指同一操作者,同一设备,同一实验室和短暂的时间间隔。

定量定义:一个数值,在上述条件下得到的两次实验结果之差的绝对值以某个指定的概率低于这个数值。

除非另有说明,一般指定的概率为0.95。

{重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作两个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

}2)再现性(R)定性定义:用相同的方法,同一试验材料,在不同的条件下获得的单个结果之间的一致程度。

不同的条件指不同操作者、不同实验室、不同或相同的时间。

定量定义:一个数值,用相同的方法,同一试验材料,在上述的不同条件下得到的两次试验结果之间的绝对值以某个指定的概率低于这个数值。

除非另外指出,一般指定的概率为0.95。

{再现性是用本方法在正常和正确操作情况下,由两名操作人员,在不同实验室内,对相同试样各作单次测试结果,在95%概率水平两个独立测试结果的最大差值}三个表示精密度的概念,在国外的文献中常见:1. 平行性(replicability):同一实验室,分析人员、分析方法均相同,对同一样品进行的多个平行样品之间的相对标准偏差;2. 重复性(repeatability):同一实验室,分析人员用相同的分析法在短时间内对同一样品重复测定结果之间的相对标准偏差;3. 再现性(reproducibility):不同实验室的不同分析人员用相同分析对同一被测对象测定结果之间的相对标准偏差。

GRR简单介绍

GRR简单介绍

GRR简单介绍重复性和再现性是科学研究中非常重要的概念,特别是在实验设计和结果验证方面。

本文将对重复性和再现性进行简单介绍,重点阐述其定义、意义以及如何提高实验的重复性和再现性。

1.重复性的定义和意义重复性是指在相同的条件下,重复进行相同实验,得到的结果是否一致。

简单来说,就是看同一个实验能否连续重复多次,结果是否一致。

重复性是科学研究的基础,一个科学实验的结果必须能够重复才能被认为有效。

无法重复的实验结果可能是由于实验设计、操作或者其他干扰因素导致的误差。

重复性的意义在于验证实验结果的可靠性和准确性,确定结果的稳定性,消除因外部因素的影响。

只有在实验结果具有很高的重复性时,我们才能对实验结果的正确性有较高的信心。

2.再现性的定义和意义再现性是指在不同的条件下,使用相同的方法对同一现象进行观测或实验,是否能够得到一致的结果。

简而言之,再现性是指研究结果是否在不同的条件下可复制。

再现性是科学研究结果的可靠性和有效性的保证。

只有当一个实验的结果在不同的实验条件下都能够再现,才能够让其他研究者接受和信任这个结果。

再现性的意义在于验证研究结果的普适性和泛化能力,即是否可以在更广泛的条件下得到相同的结论。

一个研究结果只有在多个实验中都能够再现才能够真正具有可靠性和可信度。

3.如何提高实验的重复性和再现性3.1.实验设计良好的实验设计是保证实验重复性和再现性的基础。

合理的实验设计应具备以下特点:-控制变量:控制实验过程中其他可能影响结果的变量,保证实验稳定性;-随机分组:将实验对象随机分组,减少不确定性;-复盲实验:对于需要主观评估的实验,采用复盲实验,避免主观因素的干扰;-样本量计算:通过统计学方法计算样本量,确保结果的可信度。

3.2.数据处理和统计分析良好的数据处理和统计分析方法是提高实验重复性和再现性的关键。

以下是一些常用的方法:-统计分析:通过合适的统计学方法对实验数据进行分析,减少随机误差;- 内部一致性分析:例如Cronbach's α值用于评估测试的内部一致性;-外部效度分析:例如与已有研究结果进行对比,检验实验结果的一致性和稳定性。

量具的重复性与再现性GR

量具的重复性与再现性GR

量具的重復性與再現性GR&RGR&R=Gauge Repeatability and Reproducibility 量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。

GR&R是研究重复性和再现性的,是计量型分析。

1.简称:重复性(EV)(equipment variance)设备偏差、(再现性AV)(appriser variance)人員偏差、产品偏差(PV)(products variance),2.重复性(Repeatability):重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:a、相同的测量环境b、相同的测量仪器及在相同的条件下使用c、相同的位置d、在短时间内的重复3.再现性(Reproducibility)是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度.再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。

在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。

也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。

当然,这样的试验就叫做再现性实验。

4.测量结果的重复性:是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”。

上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。

重复性和再现性

重复性和再现性

量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。

GR&R是研究重复性和再现性的,是计量型分析。

1.简称:重复性(EV)(equipment variance)设备偏差、(再现性AV)(appriser variance)人員偏差、产品偏差(PV)(products variance),2.重复性(Repeatability):重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:a、相同的测量环境b、相同的测量仪器及在相同的条件下使用c、相同的位置d、在短时间内的重复3.再现性(Reproducibility)是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度.再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。

在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。

也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。

当然,这样的试验就叫做再现性实验。

4.测量结果的重复性:是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”。

上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。

而表示测量结果分散性的量,最为常用的是实验标准。

重复性条件。

质言之,就是在尽量相同的条件下,包括程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。

重复性与再现性

重复性与再现性

再现性(Reproducibility) 定义在改变了的测量条件下,对同一被测量的测量结果之间的一致性,称为测量结果的再现性。

再现性又称为复现性、重现性。

在给出再现性时,应详细地说明测量条件改变的情况,包括:测量原理、测量方法、观测者、测量仪器、参考测量标准、地点、使用条件及时间。

这些内容可以改变其中一项、多项或全部。

同测量重复性一样,这里的"一致性"也是定量的,可以用再现性条件下对同一量进行重复测量所得结果的分散性来表示,例如用再现性标准差来表示。

再现性标准差有时也称为组间标准差。

作用测量结果重复性和再现性的区别是显而易见的。

虽然都是指同一被测量的测量结果之间的一致性,但其前提不同。

重复性是在测量条件保持不变的情况下,连续多次测量结果之间的一致性;而再现性则是指在测量条件改变了的情况下,测量结果之间的一致性。

在很多实际工作中,最重要的再现性指由不同操作者、采用相同测量方法、仪器,在相同的环境条件下,测量同一被测量的重复测量结果之间的一致性,即测量条件的改变只限于操作者的改变。

用例仪表技术性能指标的一种,它表示在同一工作条件下,在规定时间(一般为较长时间)内,对同一输入值从两个相反方向(上升和下降)上重复测量的输出值之间的相互一致程度。

再现性包括滞环、死区、漂移和重复性。

重复性定义重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

在中国仪器超市中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:1、相同的测量环境2、相同的测量仪器及在相同的条件下使用3、相同的位置4、在短时间内的重复测量结果的重复性是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”(5.6条)。

上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。

重复性和再现性分析

重复性和再现性分析

0.058
过程标准差 0.0777 从之前的研究中取得
%GRR
100
*
GRR 过程标准差
75.5%
表7:量具研究(极差法)
为了确定测量变差占过程标准差的多少 百分比, 可通过把GRR乘以100,再除以过程标准差, 即可将GRR转化成百分数。在以上范例中(参 见表7),该特性的过程标准差为0.0777,因
12
2
-0.11 -1.13
1.09 0.20 -1.07 -0.67 0.01 -0.56 1.45 -1.77
13
3
-0.15 -0.96
0.67 0.11 -1.45 -0.49 0.21 -0.49 1.87 -2.16
14
平均值
15
极差
16
零件
平均值
17
R Ra __ Rb __ Rc __ /评价人数 __
进行研究 尽管评价人的人数、测量次数及零件数量 均可会不同,但下面的讨论呈现进行研究 的最佳情况。参见图12中的GRR数据表, 详细的程序如下:
1)取得一个能代表过程变差实际或预期范围的样 本,为n>5个零件的样本。
2)给评价人编号为A、B、C等,并将零件从1到 n进行编号,但零件编号不要让评价人看到。
2
2
0.41 -0.68 1.17 0.50 -0.92 -0.11 0.75 -0.20 1.99 -1.25
3
3
0.64 -0.58 1.27 0.64 -0.84 -0.21 0.66 -0.17 2.01 -1.31
4
平均值
Xa
5
极差
Ra
6
B
1
0.08 -0.47 1.19 0.01 -0.56 -0.20 0.47 -0.63 1.80 -1.68

重复性与再现性的定义

重复性与再现性的定义

重复性:传统上把重复性看作“评价人内变异性”。

重复性是指由一个评价人,用同一种测量仪器,多次测量同一零件的同一特性时获得的测量变差。

它是设备本身固有的变差和性能,通常指设备变差(EV),尽管这样容易使人误解。

但事实上,重复性是在确定的测量条件下连续试验得到的普通原因(随机变差)变差。

当测量环境固定和已定义时,即确定了-固定的零件、仪器、标准、方法、操作者、环境和假设条件时,对于重复性最佳的术语是系统内部变差。

除了设备内部变差以外,重复性也包括在特定测量误差模型下任何情况下的内部变差。

√在固定的和规定的测量条件下连续(短期)实验变差;√通常指E.V - 设备变差;√仪器(量具)的能力或潜能;√系统内变差。

再现性:传统上把再现性看作“评价人之间”的变异。

再现性通常定义为由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。

手动仪器受操作者技术影响常常是实际情况,然而,在测量过程(即自动操作系统)中操作者就不是主要的变差源了。

由于这个原因,为此,再现性被看作是测量系统之间或测量条件之间的平均变差。

√由不同的评价人使用同一量具,测量一个零件的一个特性时产生的测量平均值的变差;√对于产品和过程条件,可能是评价人、环境(时间)或方法的误差;√通常指A.V-评价人变差;√系统间(条件)变差;√ASTM E456-96包括重复性、实验室、环境及评价人影响。

■ASTM(美国实验及材料协会)的定义超出上述定义范围,它不仅包括评价人不同,而量具、实验室和环境(温度、湿度)也不同,同时在再现性计算中还包括重复性。

转载请注明出自( 六西格玛品质网 ),本贴地址:/thread-192895-1-1.html。

重复性和再现性

重复性和再现性
实验结果的解Байду номын сангаас和解释
实验结果的准确性:确保实验数据的可靠性和准确性,避免误差和偏差。
实验结果的可重复性:实验结果是否能够被其他研究者重复验证,是判断实验结果可靠性的重要标准。
实验结果的解读:对实验结果进行深入分析和解读,探究实验结果背后的原因和意义。
实验结果的解释:对实验结果给出合理的解释和推测,探究实验结果与理论之间的联系。
Part Three
重复性和再现性的关系
重复性和再现性的联系
添加标题
添加标题
添加标题
添加标题
重复性是指在相同条件下,实验结果的再现程度,即实验结果的可靠性。
重复性和再现性是相关概念,都涉及到实验结果的可靠性和可重复性。
再现性是指在不同条件下,实验结果的再现程度,即实验结果的可重复性。
重复性和再现性的联系在于,一个好的实验应该具备良好的重复性和再现性,以确保实验结果的可靠性和可重复性。
重复性和再现性的协同作用
重复性和再现性的协同作用在科学实践中的应用
重复性和再现性在科学结论中的贡献
重复性和再现性如何提高科学研究的可信度
重复性和再现性在科学实验中的重要性
Part Four
重复性和再现性的影响因素
实验设计
实验操作
实验设计:确保实验条件的一致性,避免误差和干扰因素
实验材料:选择可靠的实验材料,保证实验结果的可靠性
汇报人:XX
强化情感:重复的情感表达可以加深人们对某种情感或情绪的体验,使其更加深刻和持久。
提高技能:通过重复练习来提高技能水平,使人们更加熟练和准确地掌握某种技能或动作。
重复性的应用场景
科学研究:重复实验以验证结果的可靠性
质量控制:确保产品或服务的稳定性和一致性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



R 1.19



0.07 1.19


0.058
过程标准差 0.0777 从之前的研究中取得
%GRR
100
*
GRR 过程标准差


75.5%
表7:量具研究(极差法)
为了确定测量变差占过程标准差的多少 百分比, 可通过把GRR乘以100,再除以过程标准差, 即可将GRR转化成百分数。在以上范例中(参 见表7),该特性的过程标准差为0.0777,因

GRR
可以使用不同的方法进行计量型量具的研究。 本节将详细讨论三种可接受的方法。它们是:
极差法(Range method)
均值—极差法(Average and Range method)
方差分析法(ANOVA method)
除极差法之外,其它方法所用的研究数据的设计
评价人A
评价人B
评价人C
图14:平均值图—“非重迭画出”
极差图(Range Chart)
极差图被用来确定过程是否受控。原因是不 论测量误差可能有多大,控制限将包含该误 差。这就是为什么需要在进行适切的测量系 统研究之前,需要识别并消除特殊原因变差 的原因。
将由每个评价人对每个零件多次测量读值的 极差,画在一个包括了极差平均值和控制限 的标准极差图上。从被画在图上数据的分析, 可以得到一些有用的解释。如果所有的极差 均受控,则说明所有评价人都进行了相同的 工作。
稳定性是以一个点或多个点超出了控制限来确定; 评价人之间或零件之间。稳定性分析要 考虑到实用 性和统计的含义。
极差图可帮助确定:
与重复性有关的统计控制 评价人之间对每个零件的测量过程一致性。
1.2
1
UCL
0.8
极 0.6

0.4
0.2 0
12
——评价人A ——评价人B
3 4 5 6 7 8 9 10 ——评价人C
3)对量具进行校准,如果这是正常测量系统程序 中的一部分的话。让评价人A以随机顺序测量 n个零件,并将结果记录在第1行。
4)让评价人B和C依次测量这些一亲的n个零件, 不要让他们知道别人的读值;然后将结果分别 的记录在第6行和第11行。
5)用不同的随机测量顺序重复以上循环,并将数 据记录在第2、7和12行;注意将数据记录在适 当的栏位中,例如:如果首先被测量的是零件 7,然后将数据记录在标有零件7的栏位中。如 果需要进行三次测量,则重复以上循环,并将 数据记录在第3、8和13行中。
7
2
0.25 -1.22
0.94 1.03 -1.20 0.22 0.55 -0.08 2.12 -1.62
8
3
0.07 -0.68
1.34 0.20 -1.28 0.06 0.83 -0.34 2.19 -1.50
9
平均值
Xb
10
极差
Rb
11
C
1
0.04 -1.38 0.88 0.14 -1.46 -0.29 0.02 -0.46 1.77 -1.49
12
2
-0.11 -1.13
1.09 0.20 -1.07 -0.67 0.01 -0.56 1.45 -1.77
13
3
-0.15 -0.96
0.67 0.11 -1.45 -0.49 0.21 -0.49 1.87 -2.16
14
平均值
15
极差
16
零件
平均值
17
R Ra __ Rb __ Rc __ /评价人数 __
6)当测量大型零件或不可能同时获得数个零件时, 第3步到第5步将变更成以下顺序:
✓让评价人A测量第一个零件并将读值记录在第1行; 让平价人B测量第一个零件并将读值记录在第6行; 让评价人C测量第一个零件并将读值记录在第11行。
✓让评价人A重新测量第一个零件并将读值记录在第2行; 评价人B重新测量第一个零件并将读值记录在第7行; 评价人C重复测量第一个零件并将读值记录在第12行。 如果需要进行三次测量,则重复以上循环,并将数值 记录在第3、8和13行中。
1
数 值
0
-1
-2 零件 1
234 5678
图17:零件的链图
9 10
对上图进行分析可知:没有奇异数据或不一致的零件。
散点图(Scatter Plot)
将个别的读值依评价人所测量的零件绘制图 表,以获得下列的理解:
评价人之间的一致性
呈现可能的分离
零件——评价人之间的相互作用 对图18进行分析可知:没有指出任何明显的分
如果某个评价人是在控制限之外,则说明他 使用的方法与其它人不一致。
如果所有的评价人均有一些超出控制范围的 点,则说明该测量系统对评价人的技巧较敏 感,需要进行改进以获得有效的数据。
图表应该不是显示数据对于评价人或零件关系的图 形。
极差不是对数据的排序。不能像一般控制图趋势分 析来使用,即使画出来的数据点是用线条连接的。
零件 1 2 3 4 5
评价人A 0.85 0.75 1.00 0.45 0.50
评价人B 0.80 0.70 0.95 0.55 0.60
极差(A,B) 0.05 0.05 0.05 0.10 0.10
极差平均值 R Ri 0.35 0.07
55
GRR


R
d
* 2

7)如果评价人处于不同的班次,可以使用一个替代 的方法。让评价人A测量所有10个零件,将将读值记 录在第1行;然后让评价人A按照不同的顺序重新测 量,并把读值记录在第2行和第3行。评价人B和评价 人C也同样做。
量具重复性和再现性数据收集表
评价人/


测量次数
1
2
3
4
5
6
7
8
9
10
平均值
1
A
1
0.29 -0.56 1.34 0.47 -0.80 0.02 0.59 -0.31 2.26 -1.36
l 零件——评价人之间的相互作用 对图19进行分析可知:没有呈现任何明显的分离, 但指出评价人B可能有较大的变差。
3 2
评1 价0 人
-1
A
-2
-3
3
2
评1 价0 人
-1
B
-2
1 2 3 4 5 6 7 8 9 10 零件 3
2
评1 价0 人
-1
C
-2
-3 1 2 3 4 5 6 7 8 9 10 零件
离,但指出评价人C的读值可能比其它人的小。
2
数1 值
0
-1
零件
-2
rt 1
2
数1 值
0
-1
零件
-2
rt 6
2
3
4
5
7
8
图18:散点图
9
评价人
A
10
BC
振荡图(Whiskers Chart)
在振荡图中,依评价人所测量的零件画出读 值中的最高值、最低值以及平均值(见图19), 通过这图可理解。
l 评价人之间的一致性
此:

%GRR
100
*
GRR 过程标准差


75.5%
现在已确定了这测量系统的%GRR,就应该对这 结果进行解释。在表7中,%GRR被确定为75.7%, 于是结论是需对测量系统进行改进。
平均值和极差法
平均值和极差法(X&R)是一种可 同时对测量系统提供重复性和再现 性的估计值的研究方法。与极差法 不同,这方法允许将测量系统的变 差分解成两个独立的部分:重复性 和再现性,但不能确定它们两者的 相互作用。
18 X DIFF 最大值 X __ 最小值 X __
19
*UCLR R D4
图12:量具重复性和再现性数据收集表
Xc Rc
X RP
R
2次测量时D4=3.27, 3次测量时D4=2.58。UCLR代表个别值的 限值。圈出那些超出限值的点,查明原因并采取纠正措施; 让相同的评价人使用相同的量具原来的方法重新读值,或 剔除这些数值并由其余的数值重新平均和计算R,以及控制 限值。
进行研究 尽管评价人的人数、测量次数及零件数量 均可会不同,但下面的讨论呈现进行研究 的最佳情况。参见图12中的GRR数据表, 详细的程序如下:
1)取得一个能代表过程变差实际或预期范围的样 本,为n>5个零件的样本。
2)给评价人编号为A、B、C等,并将零件从1到 n进行编号,但零件编号不要让评价人看到。
稳定状态这一前提条件。
尽管再现性通常被解释为评价者变差,但有些情
况下该变差会出其它原因造成。例如对重复性研 究是必要的,对于一些过程中没有人为评价人的 测量系统,如果所有的零件由相同的设备来搬运、 夹具及测量,则再现性为零。
极差法
极差法是一种经修正的计量型量具研究方法, 它能对测量变差提供一个快速地的近似值。 这方法只能对测量系统提供变差的整体情况, 不能将变差分解成重复性和再现性。它通常 用来快速地检查以验证GRR是否有变化。
平均值图(Average Chart)
以零件编号顺序画出由每个评价人对每个零件多次读值 的平均值。该图可以用来确认评价人之间的一致性。
如果以极差的平均值计算所确定的总平均值和控制限也 画出来了,则这产生的平均值图可用来显示测量系统的 “实用性”。
控制限以内的区域表示测量的敏感性(干扰)。由于研 究中所使用的零件组代表了过程变差,大约一半或一半 以上的平均值应该落在控制限之外。如果数据呈现这样 的图形,则测量系统应该是适合进行检验出零件之间的 变差,以及能为过程的分析和控制提供有用的信息;如 果少于一半的数据点落在控制限之外,则测量系统的有 效分辨率不足,或这样本不能代表预期的过程变差。
相关文档
最新文档