立体几何的向量法(四)——求点到面距离资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为直线到平面的距离、平行平面的距离一般都转化为点到平面的距离来求,所以我们重点研究点到平面的距离。
一.点到平面的距离:
1.定义:叫做这一点到这个平面的距离.
2.求解方法:
(1)几何法:
①找到(或作出)表示距离的线段;抓住线段(所求距离)所在三角形解之.
②等体积法。
(2)向量法:
已知平面 外一点P,平面 。先求出平面 的法向量 ,在平面内任取一定点A,则点P到平面 的距离d等于 在 上的射影长,
即d=
二、问题探究
1:在长方体ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E是线段AB上的点,且EB=1,求点C到面 的距离.
2:在三棱锥D—ABC中,DA 平面ABC,且AB=BC=AD=1, ABC=90 ,
求点A到面BCD的距离。
课后练习:
1.如图,四棱锥 的底面为直角梯形, ,
, , , 底面 , 为 的中点.
⑴求证:平面 平面 ;
⑵求直线 与平面 所成的角的正弦值;
⑶求点 到平面 的距离.
2、如图,正三棱柱 的所有棱长都为 , 为 中点.
⑴求证: 平面 ;
⑵求二面角 的平面角的正弦值;
⑶求点 到平面 的距离.
(教师“复备”栏或学生笔记栏)
提示:
提示:
此题能否用两种方法求解
学校年级学Biblioteka Baidu导学案
主备审核授课人授课时间班级姓名小组
课题:立体几何的向量法(四)——求点到面的距离新课课时:二
【学习目标】
1、能理解点到面距离的向量公式
2、能在不同图形中用向量法求点到面的距离
【学习过程】
一、自学理解
一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离.
两个平行平面的公垂线段的长度,叫做两个平行平面的距离.
相关文档
最新文档