立体图形的表面积和体积 ppt课件
合集下载
8.3.1棱柱、棱锥、棱台的表面积和体积课件(人教版)
(1) 共得到多少个棱长为1cm的小立方体? (2) 三面是红色的小立方体有多少个?它们的表面积之和是多少? (3) 两面是红色的小立方体有多少个?它们的表面积之和是多少? (4) 一面是红色的小立方体有多少个?它们的表面积之和是多少? (5) 六面均没有颜色的小立方体有多少个?它们的表面积之和是多少?它 们占有多少立方厘米的空间?
解:(3) 两面是红色的小立方体有24个, 表面积之和是144cm2. (4) 一面是红色的小立方体有24个, 表面积之和是144cm2.
(5) 六面均没有颜色的小立方体有8个, 表面积之和是 32cm2,它们占有的空间是8cm3.
练习
- - - - - - - - - - 教材116页
4. 求证:直三棱柱的任意两个侧面的面积和大于第三个侧面的面积.
3
课堂小结
棱柱、棱锥、棱台的表面积
棱柱、棱锥、棱台都是多面体,表面积就是围成多面体各个面的面积的和.
棱柱、棱锥、棱台的体积
棱柱
棱锥
棱台
底面积为 S ,高为 h V棱柱 Sh
底面积为 S ,高为 h
V棱锥
1 3
Sh
上底面积为 S ,下底面积
为 S ,高为 h
V棱台
1 3
h(S
SS S)
如图已知棱长为a的正四面体P-ABC,求它的体积.
多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱 台的表面积就是围成它们的各个面的面积的和. 例1 如图已知棱长为a,各面均为等边三角形的四面体P-ABC,求它的表面积.
P
【解析】因为△PBC是正三角形,其边长为a,
所以
1 SPBC 2 a a sin 60
3 a2. 4
A
解:(3) 两面是红色的小立方体有24个, 表面积之和是144cm2. (4) 一面是红色的小立方体有24个, 表面积之和是144cm2.
(5) 六面均没有颜色的小立方体有8个, 表面积之和是 32cm2,它们占有的空间是8cm3.
练习
- - - - - - - - - - 教材116页
4. 求证:直三棱柱的任意两个侧面的面积和大于第三个侧面的面积.
3
课堂小结
棱柱、棱锥、棱台的表面积
棱柱、棱锥、棱台都是多面体,表面积就是围成多面体各个面的面积的和.
棱柱、棱锥、棱台的体积
棱柱
棱锥
棱台
底面积为 S ,高为 h V棱柱 Sh
底面积为 S ,高为 h
V棱锥
1 3
Sh
上底面积为 S ,下底面积
为 S ,高为 h
V棱台
1 3
h(S
SS S)
如图已知棱长为a的正四面体P-ABC,求它的体积.
多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱 台的表面积就是围成它们的各个面的面积的和. 例1 如图已知棱长为a,各面均为等边三角形的四面体P-ABC,求它的表面积.
P
【解析】因为△PBC是正三角形,其边长为a,
所以
1 SPBC 2 a a sin 60
3 a2. 4
A
8.3.1棱柱、棱锥、棱台的表面积与体积课件(人教版)
(
)
2.几何体的表面积就是其侧面面积与底面面积的和.
(
)
3.棱锥的体积等于底面面积与高之积.
(
)
4.等底、等高的棱柱的体积是棱锥的体积的3倍.
(
)
答案:√,√,×,√.
练习
题型一:棱柱、棱锥、棱台的表面积
例1.已知正四棱台(正四棱锥被平行于底面的平面所截,截面与底面间的部分)上
底面边长为4,侧棱和下底面边长都是8,求它的侧面面积.
解:由题意知, 长方体−’ ’ ’’ = 1 × 1 × 0.5 = 0.5(3 ) ,
1
1
棱锥− = × 1 × 1 × 0.5 = (3 ).
3
6
所以这个漏斗的容积 =
1
2
1
+
6
2
3
= ≈ 0.67(3 ).
新知探索
辨析1:判断正误.
1.几何体的侧面积是指各个侧面的面积之和.
解:(2)设三棱锥 − 1 的高为ℎ,则
三棱锥−
1
1
1 1
3
3 2
2
= ∙ ∆1 ∙ ℎ = × ×
× ( 2) ℎ =
ℎ.
3
3 2 2
6
1
∵三棱锥− = 三棱锥 − = 3 ,
6
1
1
= 3 ,解得ℎ =
3
.
3
∴三棱锥 − 1 的高为
’ =
= ℎ
上底缩小
1 ’
= ( + ’ + )ℎ
3
’ = 0
1
= ℎ
3
例析
例2.如图,一个漏斗的上面部分是一个长方体,下面部分是一个四棱锥,两部
六年级数学下册课件立体图形的表面积和体积苏教版81
底面周长
底面
S侧=ch=πdh=2πrh
圆柱体积的大小与哪些条件有关? 怎样求圆柱的体积呢?
底面积
高
底面r
r
h h
因为长方体的体πr积=底面积 ×高
所以圆柱的体积= 底面积×高
V长方体 =
V圆柱
V=abh
V= = πr ×r × h
= πr ×2 h
πr 2 × h
V=Sh
等底等高的:
1 10 ÷( 1 - 1 )=60(L)
23
答:圆柱的容积是60L。
11.把一个圆柱切成若干等分,拼成一个近似 的长方体。圆柱的侧面积是72平方米,底面 半径是3米。求圆柱的体积是多少?
72÷2×3
圆柱的体积=侧面积÷2×半径 底面积 × 高
12.一个用塑料薄膜覆盖的草莓大棚,长15米, 横截面是一个半径2米的半圆。
这是我们学过的立体图形, 如果把它们分为两类,可以怎么样分呢?
名称 长方体 (a,b,h) (a,a,h)
(a,a,a) 正方体
顶
棱
面
点
12条 8
6个
个 L=4a+4b+4h (相对的面完全相同)
(分为3组,有 S表=(ab+ah+bh) ×2
4长、4宽、4
高)
(有两个相对的面是正
L=4(a+b+h) 方形,其余四个都是
A、 54
B、 18
C 、 0.6 D、 6
四、选择正确答案的序号填入括号里
3. 等高等体积的圆柱和圆锥,圆柱的底面积是6平方厘米,那么圆锥的底面积是( )平方厘米。
B
A、6 C、2
B、18 D、36
立体图形的表面积和体积ppt
• 7、油漆柱子的面积( 圆柱的侧面积 ) • 8、长方体的水池四周和地面抹水泥
( 长方体6个面去掉上面 )
• 9、制作圆柱形的水桶用铁皮多少 ( 圆柱表面积去掉一个圆 )
• 10、电线杆的占地面积( 圆柱底面积 )
实际应用:
1.做一个无盖的长方形状的鱼缸,长8分 米,宽3分米,高5分米,需要玻璃多少平 方分米?
(1)先求油桶的表面积。
3.14×6 ×5+3.14 ×(6÷2)2 ×2
=94.2+56.52
= 150.72(平方分米) (2)再求汽油的重量。
3.14×(6÷2)2 ×5 ×0.7
=141.3×0.7=989.1(千克)
答:(略)
携手共进,齐创精品工程
Thank You
世界触手可及
医学资料
• 仅供参考,用药方面谨遵医嘱
15分米=1.5米 1、求半径:15.7÷3.14÷2=2.5(米)
2、体积:3.14×2.52×1.5×
1 3
=9..2×9.8125=11.775(吨)
答:(略)
实际应用:
4.做一个底面直径6分米,高5分米的油桶,要用 多少平方分米铁皮用这个油桶装汽油,如果每升 汽油重0.7千克,可装汽油多少千克?
计算下面图形的表面积和体积。单位:米
6
10
1、表面积: 侧面:3.14 ×6 ×10=188.4(平方米) 底面:3.14 ×(6 ÷2)2×2
= 3.14 ×32×2
=56.52(平方米)
2、体积:
3.14 ×(6 ÷2)2 ×10 =3.14 ×32×10 =28.26 ×10 =282.6(立方米)
8×3+8×5×2+3×5×2 =24+80+30 =134(平方分米)
苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件
6π [S=2π×1×2+2π×12=6π.]
栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.
栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.
立体图形的表面积与体积
o
h
o
体 r
积: 1 ∏r²·h 3
苹果的体积有多大? 苹果的体积有多大?
〈分析:苹果的体积等于上升的水 分析: 的体积, 的体积,只需求出上升部分水的体 积就求出了苹果的体积。 积就求出了苹果的体积。〉
15×12×2=360(立
方厘米) 方厘米)
(思考:若题目中不是苹果而 思考: 是一个圆柱体。 单位:厘米 是一个圆柱体。且知道其地底 单位 面积, 面积,如何求这个圆柱体的 高?)
六年级数学总复习
立体图形的表面积和体 积
赵军
我们学过那些立体几何图形?
h a
o
a b a a
o
h r
h
o
r
表面积:2(ab+ah+bh) h a b 体 积:a×b×h
表面积:6a 2 a a a 体 积:a 3
o
表面积:2×底面积+侧面积 h r (2∏r²+2∏r·h) 体
北师大版小学数学六年级下册 总复习2-5 立体图形的表面积和体积 教学课件
上课时衣着要整洁,不得穿无袖背心、吊带 上衣、超短裙、拖鞋等进入教室。
尊敬谢老师,服谢从任课老师大管理。 家
不做与课堂教学无关的事,保持课堂良好纪 律秩序。
听课时有问题,应先举手,经教师同意后, 起立提问。
上课期间离开教室须经老师允许后方可离开。
上课必须按座位表就坐。
5×5×6=150(平方厘米) 答:做出这个化妆品盒至少需要150平方厘米纸板。
一个游泳池从里面量长是80米,宽是60米,深是
2.5米,在它的内壁四周和底部涂抹水泥,如果每平
方米需要水泥6千克,那么一共需要水泥多少千克?
(80×2.5×2+60×2.5×2+80×60)×6
=(400+300+4800)×6 =5500×6 =33000(千克) 答:一共需要水泥33000千克。
变,则体积扩大到原来的( 4 )倍。
7.把12立方分米的水倒入一个长3分米、宽2分米、
高4分米的长方体玻璃缸内,水面距缸口有( 2 ) 分米。
8.一个正方体的棱长总和是60厘米,那么它的表
面积是( 150 )平方厘米,体积是( 125 )立方厘米。
9.把一根长48厘米的铁丝做成一个长方体的框架
(接头处不计)。已知长、宽、高的比为3∶2∶1, 则这个长方体最大一个面的面积是( 24 )平方 厘米。
10.一个圆柱的侧面展开图是正方形,已知它的底 面周长是31.4厘米,则它的高是( 31.4 )厘米。
二、我是聪明的小法官
1.两个圆柱的侧面积相等,它们的底面周长也一
定相等。 ( × )
2.正方体、长方体、圆柱体都可以用它们各自
的底面积乘高求得体积。( √ )
3.圆柱体的底面半径扩大到原来的2倍,高也扩大
尊敬谢老师,服谢从任课老师大管理。 家
不做与课堂教学无关的事,保持课堂良好纪 律秩序。
听课时有问题,应先举手,经教师同意后, 起立提问。
上课期间离开教室须经老师允许后方可离开。
上课必须按座位表就坐。
5×5×6=150(平方厘米) 答:做出这个化妆品盒至少需要150平方厘米纸板。
一个游泳池从里面量长是80米,宽是60米,深是
2.5米,在它的内壁四周和底部涂抹水泥,如果每平
方米需要水泥6千克,那么一共需要水泥多少千克?
(80×2.5×2+60×2.5×2+80×60)×6
=(400+300+4800)×6 =5500×6 =33000(千克) 答:一共需要水泥33000千克。
变,则体积扩大到原来的( 4 )倍。
7.把12立方分米的水倒入一个长3分米、宽2分米、
高4分米的长方体玻璃缸内,水面距缸口有( 2 ) 分米。
8.一个正方体的棱长总和是60厘米,那么它的表
面积是( 150 )平方厘米,体积是( 125 )立方厘米。
9.把一根长48厘米的铁丝做成一个长方体的框架
(接头处不计)。已知长、宽、高的比为3∶2∶1, 则这个长方体最大一个面的面积是( 24 )平方 厘米。
10.一个圆柱的侧面展开图是正方形,已知它的底 面周长是31.4厘米,则它的高是( 31.4 )厘米。
二、我是聪明的小法官
1.两个圆柱的侧面积相等,它们的底面周长也一
定相等。 ( × )
2.正方体、长方体、圆柱体都可以用它们各自
的底面积乘高求得体积。( √ )
3.圆柱体的底面半径扩大到原来的2倍,高也扩大
小升初专题复习-立体图形的表面积和体积(课件)人教版六年级下册数学
六、(江苏·盐城)如下图,用涂色部分做一个圆柱体(接头处不计),这 个圆柱体的体积是多少立方厘米?(9 分)
解:设圆柱的底面直径为 d 厘米。 3.14d+d=41.4 d=10
3.14×(10÷2)2×(10×2)=1570(cm3)
答:这个圆柱体的体积是 1570 立方厘米。
第18课时 立体图形的表面积和体 积
名称 长方体 正方体
圆柱
圆锥
图形
字母意义
表面积公
体积公式
a——长 b——宽
h——高 S 表——表面积 S 表=22((aabb++aahh++bbhh))V=aabbhh =S 底 h
S 底——底面积 V——体积
a——棱长 S 表——表面积 V——体积 S 底——底面积
6.小明新买了一管容积约为 45 cm3 的牙膏,牙膏圆形出口的直径为 6 mm。 他早晚各刷一次牙,每次挤出的牙膏长约 20 mm。这管牙膏估计能用
( 42 )天。(π 取 3) 7.一个长方体木料,横截面是边长 10 厘米的正方形,从这根木料上截 下 6 厘米长的一段,切削成一个最大的圆锥,圆锥的体积是( 157 )立 方厘米,削去部分的体积是( 443 )立方厘米。 8.(江苏·南京)一个圆锥和一个圆柱的底面积相等,体积的比是 1∶12。
4.(浙江·绍兴)学校体育馆底层用 10 根圆柱形柱子支撑着,每根柱子
高 3 m,底面直径为 5 dm,油漆这些柱子的面积是( 47.1 )m2。 5.如右图,如果这两个图形分别绕各自 3 cm 的边旋转一周,可以形成 一个圆锥和一个圆柱。圆柱的体积为( 150.72 )cm3,圆锥的体积为 ( 50.24 )cm3。
【答案】(1)60÷1.5=40(m) 60×40×2=4800(m3) 答:这个游泳池最多能蓄水 4800 立方米。 (2)60×40+(60×2+40×2)×2=2800(m2) 答:抹水泥的面积是 2800 平方米。
《长方体和正方体的表面积、体积》完整版ppt课件
21
0.4m
做一个微波炉的包装箱, 至少要用多少平方米的硬纸板?
这里要求的是这个长方 体包装箱的表面积。
上、下每个面,长_0_._7_m_,宽_0_._5_m_,面积是_0_._3_5_m__2; 前、后每个面,长_0_._7_m_,宽_0_._4_m_,面积是_0_._2_8_m__2; 左、右每个面,长_0_._5_m_,宽_0_._4_m_,面积是_0_._2_m__2_。
精选ppt课件2021
7
折叠后,哪些图形能围成左侧的正 方体?在括号中画“√”。
(√)
(√)
(×)
精选ppt课件2021
8
亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易 衣柜换布罩(如下图,没有底面)。至少需要用布多少 平方米?
0.75×0.5+0.5×1.6×2+0.75×1.6×2 =0.375+1.6+2.4 =4.375(m2) 答:至少需要用布4.375m2。
★解法一:
7×5 ×5-7 ×5 ×3 =175 -105 =70(立方分米)
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3) =35 ×2 =70(立方分米)
答:这个铁球的体积是70立方分米。
精选ppt课件2021
44
一根长方体木料,长5m,横截面的 面积是0.06m2。这根木料的体积是多少?
精选ppt课件2021
24
计量体积要用体积单位,常用的体积单位有: 立方厘米,立方分米和立方米。
可以分别写成cm3,dm3和m3。 (1)棱长是1cm的正方体,体积是1cm3。
一个手指尖的体积 大约是1cm3。
1cm3
(2)棱长是1dm的正方体,体积是1dm3。
人教版小学数学六年级下册总复习ppt课件立体图形的表面积体积
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
判断
1)一个圆柱形水桶的体积就是它的容积
……………………………………( ×)
2)正方体的棱长扩大2倍,体积就扩大8
?
你能推想一下下面的立体 图形的体积可以怎样计算吗?
填空: 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
(1)把一个圆柱削成一个最大的圆锥,圆柱 体积是圆锥体积的( 3倍 ),圆锥体积是圆 柱(体2)积一的个(圆锥13 和)一。个圆柱的体积相等,底面 积也相等。这个圆锥的高是圆柱的高的 ( 3 )倍。 (3)一个正方体的棱长5厘米,这个正方体 的棱长总和是( 60 )厘米。 (4)把一段长3米的长方体木料平均截成3 段,表面积增加8平方厘米,原来这段木料的 体积是( 600 )立方厘米。
2、你能解决下面生活中的问题吗?
1)一个圆柱形水池,直径是20米,深2米. ①这个水池占地面积是多少? 3.14×(20÷2)2 ②挖成这个水池,共需挖土多少立方米?
3.14×(20÷2)2 ×2 ③在池内四周和池底抹一层水泥,水 泥面的面积是多少平方米?
3.14×20×2+ 3.14×(20÷2)2
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
图形与几何ppt课件
)
)。 )。
)。 ),
选择
⑴ 一个圆柱与一个圆锥的体积等底等高,圆柱的体
积是24立方分米,圆 等底等高的圆柱和圆锥体积之和是12.56立方厘米,
圆锥的体积是(
)立方厘米。
A. 37.68
B. 3.14 C.6.28
(3)用两个棱长为2分米的小正方体拼成一个长方体,
苏教版小学数学六年级下册
总复习2:图形与几何 立体图形的表面积和体积
立 体 图 形
群
拿出课前对立体图形表面积和
学 体积的计算方法的整理成果,与你 共 的好伙伴分享一下,并说说你是怎
样整理的?取长补短,也可做一定
享 的改动,使整理更全面具体。
独学静思
回忆推导过程:
这些计算公式是怎样推导出来的?在脑海里回忆一下。
体积=底面积×高
圆锥的体积
圆锥的体积=
= Sh
圆锥的体积
等底等高,圆柱圆锥 的体积平均分成4份 锥1 差2 柱3 和4
同学们,练习与实践啦!
在括号里填合适的单位
(1)一间卧室地面的 面积是15(
(2)一瓶牛奶大约有250(
(3)一间教室的空间大约是144(
(4)一台微波炉的体积是92(
容积是25(
长方体的表面积减少(
)平方分米。
A.4
B.6
C.8
综合应用
一根长方体木材长20分米,把截成4个相等的小长方体体, 表面积增加了18.84平方分米.横截面的面积是多少平方 分米?
综合应用
一个长方体的鱼缸,长40厘米,宽40厘米,高35厘米,它 的左侧玻璃打碎了,要重新配一块,重新配上的玻璃是多少 平方厘米?这个鱼缸能装多少升水?
常用的容积单位有哪些?它们间的进率是多少?
2025届高考一轮复习《基本立体图形、简单几何体的表面积与体积》课件
可知 AC1⊥O1M,O1M=0.6,那么 tan∠CAC1=CACC1=OAO1M1 ,
高考一轮总复习•数学
第27页
即 12=A0O.61, 解得 AO1=0.6 2, 根据对称性可知圆柱的高为 3-2×0.6 2≈1.732-1.2×1.414=0.035 2>0.01, 所以能够被整体放入正方体内,故 D 符合题意. 故选 ABD.
高考一轮总复习•数学
第26页
设 OE∩AC=E,可知 AC= 2,CC1=1,AC1= 3,OA= 23,
那么
tan∠CAC1=CACC1=OAOE,即
1 =OE, 23
2
解得 OE= 46,且 462=38=294>295=0.62,
即 46>0.6,
所以以 AC1 为轴可能对称放置底面直径为 1.2 m 圆柱,若底面直径为 1.2 m 的圆柱与正 方体的上下底面均相切,设圆柱的底面圆心为 O1,与正方体的下底面的切点为 M,
圆台
体积 V= Sh =πr2h
V=
1 3Sh
=13πr2h=13πr2
l2-r2
V=13(S 上+S 下+ S上S下)h
=13π(r21+r22+r1r2)h
第11页
高考一轮总复习•数学
名称 棱柱 棱锥 棱台 球
体积 V= Sh
1 V= 3Sh V=13(S 上+S 下+ S上S下)h V=43πR3
= 直观图
2 4S
原图形.
高考一轮总复习•数学
以三角形为例说明原因:
第36页
S
直观图=12B′C′·O′A′·sin
高考一轮总复习•数学
第24页
解析:(1)由圆台定义知,以直角梯形垂直于底边的腰为旋转轴,其余三边旋转一周形 成的面围成的旋转体是圆台,故 A 错误;
高考一轮总复习•数学
第27页
即 12=A0O.61, 解得 AO1=0.6 2, 根据对称性可知圆柱的高为 3-2×0.6 2≈1.732-1.2×1.414=0.035 2>0.01, 所以能够被整体放入正方体内,故 D 符合题意. 故选 ABD.
高考一轮总复习•数学
第26页
设 OE∩AC=E,可知 AC= 2,CC1=1,AC1= 3,OA= 23,
那么
tan∠CAC1=CACC1=OAOE,即
1 =OE, 23
2
解得 OE= 46,且 462=38=294>295=0.62,
即 46>0.6,
所以以 AC1 为轴可能对称放置底面直径为 1.2 m 圆柱,若底面直径为 1.2 m 的圆柱与正 方体的上下底面均相切,设圆柱的底面圆心为 O1,与正方体的下底面的切点为 M,
圆台
体积 V= Sh =πr2h
V=
1 3Sh
=13πr2h=13πr2
l2-r2
V=13(S 上+S 下+ S上S下)h
=13π(r21+r22+r1r2)h
第11页
高考一轮总复习•数学
名称 棱柱 棱锥 棱台 球
体积 V= Sh
1 V= 3Sh V=13(S 上+S 下+ S上S下)h V=43πR3
= 直观图
2 4S
原图形.
高考一轮总复习•数学
以三角形为例说明原因:
第36页
S
直观图=12B′C′·O′A′·sin
高考一轮总复习•数学
第24页
解析:(1)由圆台定义知,以直角梯形垂直于底边的腰为旋转轴,其余三边旋转一周形 成的面围成的旋转体是圆台,故 A 错误;
六年级数学下册课件-7.2.6立体图形的表面积和体积(1)136-苏教版
解决实际问题
(一)选出正确的算式。
3.用96分米长的钢管焊接一个正方体 的广告灯箱框架,如果在这个灯箱侧面 蒙上广告宣传纸,至少需要多少平方分 米?(接头处均忽略不计)
( A)
A. (96÷12)2×4 C. (96÷6)2×4
B. (96÷12)2×2
解决实际问题
(二)列式计算。 1.一根通风管用去铁皮28面积在生活中的应用
解决实际问题
(一)选出正确的算式。
1.圆柱形队鼓的侧面由铝皮围成,上下
底面蒙的是羊皮。做一个这样的队鼓, 2.6dm
(1)至少需要铝皮多少平方分米?
(B )
6dm
A. 6÷2×3.14×2.6 C. 6×2.6
B. 6×3.14×2.6
(2)至少需要羊皮多少平方分米?( C)
A. 62×3.14×2
B. (6÷2)2×3.14
C. (6÷2) 2×3.14×2
解决实际问题
(一)选出正确的算式。
2.一个长方体游泳池,长20米, 宽10米,深2米。在这个游泳池 四壁及底面贴上瓷砖,要贴多少
平方米? ( C )
A. (20×10+20×2+10×2)×2 B. 20×10+20×2+10×2 C. 20×10+(20×2+10×2) ×2
计),已知管口直径10厘米。这根通风管有多长?
底面周长
高(长) 侧面积
解决实际问题
(二)列式计算。 2.一个用塑料薄膜覆盖的蔬菜大棚,长10米,横截面是
一个半径2米的半圆。 (1)这个大棚的种植面积最大是多少?
(2)搭建这个大棚至少要用塑料薄膜多少平方米?(含两 端的面积)
解决有关表面积的实际问题时要 注意哪些问题?
小学数学苏教版六年级下册
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、你能解决下面生活中的问题吗?
1)一个圆柱形水池,直径是20米,深2米. ①这个水池占地面积是多少? ②挖成这个水池,共需挖土多少立方米? ③在池内四周和池底抹一层水泥,水泥 面的面积是多少平方米?
①3.14× (20÷2)2 =314(平方米)
②314×2=628(立方米)
③3.14×20×2+314=439.6(平方米)
立体图形的表面积和体积
a
h
hb a
a a
r
长方体表面积= (ab+ah+bh) ×2
正方体表面积= 6a2
圆 柱 侧 面 积 = 2лrh
圆 柱 表 面 积 = 2лrh+ 2лr 2
动画
动画
下面的几种情况,你来判断一下分别求得是什 么?
1、油漆柱子的面积 (圆柱的侧面积) 2、给教室粉刷白灰
(长方体6个面去掉一个面)
7 6
判断,错的说明理由。 (1)一个正方体的棱长是6厘米,Байду номын сангаас的 表面积和体积相等。(× ) (2)圆锥体积与圆柱体积的比是1:3。 (×) (3)把一个圆柱体沿中间截成两个小圆 柱体后,它的表面积和体积都是原来的 1/2。( ×) (4)一个圆柱削成一个最大的圆锥,削 去部分是剩下圆锥体积的2倍。( √ )
2、解决问题 我朋友买了一套新房,她告诉了我她家客
厅的一些数据(长6米,宽4米,高3米)。请 同学们帮老师算一算装修时所需的部分材料。 (1)客厅准备用边长是(100×100)平方厘 米规格的方砖铺地面,需要多少块? (2)准备粉刷客厅的四周和顶面,除去门、 窗、电视墙等10平方米不粉刷外,实际粉刷的 面积是多少平方米? (3)朋友装修新房时,所选的木料是直径40 厘米,长是3米的圆木自己加工,大约需要5根。 求装修新房时所需木料的体积?
3、制作圆柱形的油桶用铁皮多少?
(圆柱表面积)
h
a
b
a aa
hh
ss
V= abh V=
a3
V= sh
V=
1
3
sh
V = sh
正方体、长方体和圆柱有什 么相似的地方呢?
V柱=s h
1
V锥= s h
3
14、哪个纸盒所用的硬纸板面积大?
6 4
8
6 66
哪个盒子的容积大?