图形相似与相似三角形知识点
(完整版)相似三角形基本知识点+经典例题(完美打印版).doc
相似三角形知识点与经典题型知识点 1 有关相似形的概念(1) 形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形 .(2) 如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比( 相似系数 ) .知识点 2 比例线段的相关概念( 1)如果选用同一单位量得两条线段 a,b 的长度分别为 m, n ,那么就说这两条线段的比是amb n ,或写成 a : bm : n .注:在求线段比时,线段单位要统一。
( 2)在四条线段 a, b, c, d 中,如果 a 和 b 的比等于 c 和d 的比,那么这四条线段a,b,c, d 叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的, 如果说 a 是 b, c, d 的第四比例项, 那么应得比例式为:bd .② a ccac : d)中,a 、d 叫比例外项, b 、c 叫比例内项 , a 、c 叫比例前项, b 、d 叫比例后在比例式(a : bbdb=c ,即 a :b b :d 那么 b 叫做 a 、 d 的比例中项, 此时有 b 2项, d 叫第四比例项,如果 ad 。
( 3)黄金分割:把线段AB 分成两条线段 AC , BC ( AC BC ) ,且使 AC 是 AB 和 BC 的比例中项,即AC 2 AB BC ,叫做把线段 AB 黄金分割,点 C 叫做线段 AB 的黄金分割点,其中AC5 1AB ≈20.618 AB .即ACBC 5 1 简记为: 长= 短=5 1ABAC2全 长 2注:黄金三角形:顶角是360 的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点 3 比例的性质( 注意性质立的条件:分母不能为0)( 1) 基本性质:① a : b c : d adbc ;② a : b b : c b 2a c . ad bc ,除注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如了可化为 a : b c : d ,还可化为 a : c b : d , c : d a : b , b : d a : c , b : ad : c , c : a d : b ,d : c b : a , d : b c : a .a b,交换内项)c d (( 2) 更比性质 ( 交换比例的内项或外项) :ac d c ,交换外项( )b db ad b.同时交换内外项)ca (( 3)反比性质 ( 把比的前项、后项交换) :ac bd .b da c( 4)合、分比性质:a c abcd .bdbd注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间b ad c发生同样和差变化比例仍成立.如:a cac 等等.b da b c da bc d( 5)等比性质:如果 ac e m(b d fn 0) ,那么 acem a .bd fnb d f nb注:①此性质的证明运用了“设 k 法”(即引入新的参数 k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:a c e a 2c 3e a 2c 3e a;其中 b 2d 3 f 0.b d f b 2d 3 f b 2d 3 fb知识点 4比例线段的有关定理1. 三角形中平行线分线段成比例定理: 平行于三角形一边的直线截其它两边( 或两边的延长线 ) 所得的对应线段成比例 .A由 DE ∥ BC 可得:注:AD AE 或 BD EC 或 AD AE DB EC AD EA AB ACD EB C①重要结论:平行于三角形的一边, 并且和其它两边相交的直线, 所截的三角形的三边 与原三角形三边 对应成比...... ......例 .②三角形中平行线分线段成比例定理的逆定理: 如果一条直线截三角形的两边( 或两边的延长线 ) 所得的对应线段成比例 . 那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法 , 即:利用比例式证平行线 .③平行线的应用:在证明有关比例线段时,辅助线往往做平行线, 但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比 .2. 平行线分线段成比例定理: 三条平行线截两条直线 , 所截得的对应线段成比例 .A D 已知 AD ∥ BE ∥CF,BE可得ABDE 或 AB DE 或 BC EF 或 BC EF 或 AB BC 等. CFBCEF AC DF AB DE AC DF DE EF注:平行线分线段成比例定理的推论:平行线等分线段定理: 两条直线被三条平行线所截, 如果在其中一条上截得的线段相等, 那么在另一条上截得的线段也相等。
相似三角形知识点大总结
相似三角形知识点大总结知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段的长度分别为,那么就说这两条线段的比是,或写成.注:在求线段比时,线段单位要统一。
(2)在四条线段中,如果的比等于的比,那么这四条线段叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说是的第四比例项,那么应得比例式为:.②a、d叫比例外项,b、c叫比例内项, a、c叫比例前项,b、d叫比例后项,d叫第四比例项,如果b=c,即 那么b叫做a、d的比例中项, 此时有。
(3)黄金分割:把线段分成两条线段,且使是的比例中项,即,叫做把线段黄金分割,点叫做线段的黄金分割点,其中≈0.618.即 简记为:注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①;②.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如,除了可化为,还可化为,,,,,,.(2) 更比性质(交换比例的内项或外项):(3)反比性质(把比的前项、后项交换): .(4)合、分比性质:.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:等等.(5)等比性质:如果,那么.注:①此性质的证明运用了“设法”(即引入新的参数k)这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:;其中.知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE∥BC可得:注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD∥BE∥CF,可得等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
(完整版)相似三角形知识点梳理
相似三角形知识点汇总重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。
一、重要定理(比例的有关性质):二、有关知识点:1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8. 相似三角形的传递性如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2反比性质:c d a b = 更比性质:d b c a a c b d ==或 合比性质:d d c b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理)相似三角形判定的基本模型A 字型 X 字型 反A 字型 反8字型母子型 旋转型 双垂直 三垂直相似三角形判定的变化模型 C B E D A。
相似知识点
相似概念:相似图形形状相同的图形叫做相似图形,全等图形时一种特殊的相似图形。
相似多边形各边对应成比例,各角对应相等的多边形叫做相似多边形.相似多边形的对应角相等,对应边的比相等。
相似比相似多边形对应边的比称为相似比。
相似三角形:相似三角形的定义对应角相等,对应边成比例的两个三角形叫做相似三角形,互为相似形的三角形叫做相似三角形。
相似三角形的判定方法根据相似图形的特征来判断。
(对应边成比例,对应角相等)1.(基本定理)平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
3.如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似。
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
判定三角形相似的思路有平行截线——用基本定理另一对等角有一对等角,找夹边成比例夹角相等由两边对应成比例,找第三边也成比例判定三角形相似的思路有一对直角一对锐角相等直角三角形,找斜边、直角边对应成比例顶角相等等腰三角形,找一对底角相等底和一腰成比例1直角三角形相似判定定理1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
相似三角形的性质1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比都等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方。
位似:位似的定义两个多边形不仅相似,而且对应顶点的连线相交与一点,对应边互相平行(或在同一条直线上),像这样的两个图形叫做位似图形,这个点叫做位似中心。
(相似是一种图形的变换,位似是一种特殊的相似)位似变换的坐标在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或者-k。
九年级数学相似的知识点
九年级数学相似的知识点
1. 相似三角形:了解相似三角形的定义和性质,掌握判定两个三角形是否相似的几何条件,了解相似三角形的比例关系以及应用。
2. 相似多边形:了解相似多边形的定义和性质,掌握判断两个多边形是否相似的几何条件,了解相似多边形的比例关系以及应用。
3. 相似比例:学习相似比例的定义,掌握相似比例的计算和应用,了解相似比例与比例的关系。
4. 相似形状的尺寸关系:通过相似性的特点和比例关系,掌握计算相似形状的尺寸关系,实际应用中解决实际问题。
5. 相似图形的面积和体积:了解相似图形的面积和体积之间的关系,掌握计算相似图形的面积和体积的方法。
6. 相似三角形的三线合一定理:了解相似三角形的三线合一定理,掌握计算相似三角形的高、中线、角平分线以及重心、垂心和外心的方法。
7. 三角形的判定:了解判定三角形是否相似的几何条件,掌握相似三角形中角的性质和边的关系,应用相似三角形解决实际问题。
8. 相似函数的性质:了解相似函数的定义和性质,掌握相似函数的图像特点和变化规律,应用相似函数解决实际问题。
9. 相似变换:了解平移、旋转、翻折和缩放等相似变换的性质,掌握相似变换的基本概念、性质和运算法则,应用相似变换解决实际问题。
10. 相似图形中的角度关系:通过相似图形的角度关系,学习解决相似图形中的角度问题。
以上是九年级数学中与相似相关的知识点,希望对你有帮助!。
图形的相似知识点
图形的相似知识点相似图形是几何学中的重要概念,它指的是在形状和比例上相似的图形。
本文将介绍图形的相似性,并讨论相似图形的性质和应用。
一、相似图形的定义和判断方法相似图形定义:如果两个图形的形状相同,并且对应边的长度比相等,那么这两个图形就是相似图形。
判断相似图形的方法:1.对应角相等法则:如果两个图形的对应角相等,则这两个图形相似。
2.对应边成比例法则:如果两个图形的对应边成比例,则这两个图形相似。
3.综合判断法则:根据对应角和对应边成比例的性质,综合判断两个图形是否相似。
二、相似图形的性质1.对应边成比例:相似图形的对应边的长度比相等。
2.对应角相等:相似图形的对应角相等。
3.面积成比例:相似图形的面积比等于对应边长度比的平方。
三、相似三角形相似三角形是相似图形中最常见的一种情况。
相似三角形有以下性质:1.对应角相等:如果两个三角形的对应角相等,则这两个三角形相似。
2.对应边成比例:如果两个三角形的对应边成比例,则这两个三角形相似。
3.高线成比例:如果两个三角形的高线成比例,则这两个三角形相似。
4.中线成比例:如果两个三角形的中线成比例,则这两个三角形相似。
四、相似图形的应用相似图形的概念在实际生活中有着广泛的应用,例如:1.地图比例尺:地图上的比例尺就是通过相似图形的概念来确定的。
2.影像放大:在影像处理中,可以通过相似图形的概念对影像进行放大或缩小。
3.三角测量:在测量中,可以利用相似三角形的性质来进行间接测量。
4.建筑设计:建筑设计中,相似图形的概念可以帮助设计师确定建筑物的比例和尺寸。
总结:相似图形是几何学中一个重要的概念,它指的是在形状和比例上相似的图形。
我们可以通过对应角相等和对应边成比例等方法来判断图形是否相似。
相似图形的性质包括对应边成比例、对应角相等和面积成比例等。
相似图形在地图制作、影像处理、测量和建筑设计等领域有着广泛的应用。
通过了解相似图形的知识,我们可以更好地理解和应用几何学的基本原理。
(完整版)相似三角形最全讲义(教师版)
相似三角形基本知识知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。
2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。
a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。
a 叫做比的前项,b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如d cb a =4、比例外项:在比例dcb a =(或a :b =c :d )中a 、d 叫做比例外项。
5、比例内项:在比例d c b a =(或a :b =c :d )中b 、c 叫做比例内项。
6、第四比例项:在比例d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。
8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bc ad d cb a =⇔= (两外项的积等于两内项积) 2.反比性质:c da b dc b a =⇒= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a .5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nmf e d c b a ΛΛ,那么b a n f d b m ec a =++++++++ΛΛ. 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。
知识点1 图形相似的定义
知识点1 图形相似的定义定义:我们把形状相同的图形叫做相似图形. (1)两个图形相似,其中一个图形可以看做是由 另一个图形放大或缩小得到的. (2)全等图形可以看成是一种特殊的相似图形, 即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看两个图形是不是相同,与图形的大小、位置无关,这也 是相似图形的本质.【例1】下列图形不是相似图形的是( )A.同一张底片冲洗出来的两张不同尺寸的照片B.用放大镜将一个细小物体图案放大过程中原 有图案C.某人的侧身照片和正面照片D.大小不同的两张同版本中国地图 解析:依据图形相似的定义,某人的侧身照片和正 面照片是两个不同角度的照片,它们的形状不同,因此不是相似图形. 答案:C知识点2 线段成比例注意:在a cb d ,b=c 时,我们把b 叫做a,d 的比例中 项,此时b 2=ad. 点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且ACAB=BC AC =5-12≈0.618,则C 点叫做线段AB 的黄金分割点.【例2】已知线段a 、b 、c 、d 成比例线段,其中 a=2 m ,b=4 m ,c=5 m ,则d=()A.1 mB.10 mC. mD. m解析:根据比例线段的定义得到a∶b=c∶d,然后把a=2 m,b=4 m,c=5 m代入进行计算即可∵线段a、b、c、d是成比例线段∴a∶b=c∶d而a=2 m,b=4 m,c=5 m∴d= bca452⨯= =10 m答案:B知识点3 相似多边形及其性质定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.性质:相似多边形的对应角相等,对应边成比例.注意:(1)仅有角相等,或仅有对应边成比例的两个多边形不一定相似.(2)相似比的值与两个多边形的前后顺序有关.【例3】如图,四边形ABCD和四边形EFGH相似,求∠α、∠β的大小和EH 的长度解:∵四边形ABCD和四边形EFGH相似,∴∠α=∠B=83°,∠D=∠H=118°,∠β=360°-(83°+78°+118°)=81°,EH:AD=HG:DC∴EH24 2118=∴EH=28(cm).答:∠=83°,∠=81°,EH=28cm.ABC 相似,且 △DEF 的最大边长为20,则△DEF 的周长为 解:∵△DEF ∽△ABC ,△ABC 的三边之比为2:3:4 ∴△DEF 的三边之比为2:3:4 又∵△DEF 的最大边长为20∴△DEF 的另外两边分别为10、15 ∴△DEF 的周长为10+15+20=45 答案:45知识点1 相似三角形的判定定理1平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 因为DE ∥BC ,所以图中△ABC ∽△ADE.【例1】如图所示,已知在ABCD中,E 为AB 延长线 上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中各对相似三角形,并求出相应的相似比.解:∵四边形ABCD是平行四边形∴AB//CD,AD//BC∴△BEF∽△CDF,△BEF∽△AED∴△BEF∽△CDF∽△AED∴当△BEF∽△CDF时,相似比k1=BE/CD=1/3 ;当△BEF∽△AED时,相似比K2=BE/AE=1/4;当△CDF∽△AED时,相似比K3=CD/AE=3/4 .知识点2 相似三角形的判定定理2三边成比例的两个三角形相似.这种判定方法是常用的判定方法,也就是说两个三角形只要三条对应边的比相等,就可判定这两个三角形相似.C知识点1 相似三角形的判定定理3两边成比例且夹角相等的两个三角形相似.如图所示,在△ABC与△DEF中,∠B=∠E,23AB BCDE EF==,可判定△ABC∽△DEF.注意在利用该方法时,相等的角必须是已知两对应边的夹角,才能使这两个三角形相似,不要错误地认为是任意一角对应相等,两个三角形就相似.注意:在两个直角三角形中,若两组直角边的比相等,则这两个直角三角形相似.【例1】如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?知识点2 相似三角形的判定定理4两角分别相等的两个三角形相似如图所示,如果∠A=∠A′,∠B=∠B′,那么△ABC∽△A1B1C1.注意:在两个直角三角形中,若有一个锐角对应相等,则这两个直角三角形相似.知识点3 相似三角形的判定定理的综合运用判定三角形相似的几种基本思路:(1)条件中若有平行线,可采用相似三角形基本定理;(2)条件中若有一对等角,可再找一对等角或再找夹边成比例;(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)条件中若有等腰关系,可找顶角相等或一对底角相等,也可找底和腰对应成比例.知识点1 性质一:相似三角形对应线段的比等于似比相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.已知一个三角形三边长为8,6,12,另一个三角形有一条边为4,要使这两个三角形相似,则另外两边长分别为.知识点2 性质二:相似三角形周长的比等于相似比两个相似三角形对应中线的比为1:4,它们的周长之差为27cm,则较大的三角形的周长为cm.解:令较大的三角形的周长为x cm 小三角形的周长为(x-27)cm由两个相似三角形对应中线的比为1:4得1:4=(x-27):x,解得x=36 cm答案:36知识点3 相似三角形面积的比等于相似比的平方两个相似三角形的周长是2:3,它们的面积之差是60cm2,那么它们的面积之和是.解:∵两个相似三角形的周长是2:3∴它们的相似比为2:3,面积的比为4:9设两个三角形的面积分别为4k,9k由题意得,9k-4k=60,解得k=12∴两个三角形的面积分别为48cm2,108cm2∴它们的面积之和是48+108=156cm2答案:156cm2。
九年级相似知识点归纳
九年级相似知识点归纳一、数学方面的相似知识点归纳1. 相似三角形相似三角形是指具有相同形状但不同大小的三角形。
相似三角形的性质包括:对应角相等,对应边成比例。
利用这些性质,我们可以求解各种与相似三角形相关的问题。
2. 相似比与比例相似比是指相似图形(包括三角形和多边形)的对应边的比值。
比例是指两个数之间的相对关系。
在解题中,我们需要用到相似比和比例来确定图形的相似性质以及求解未知数。
3. 相似多边形相似多边形是指具有相同形状但不同大小的多边形。
相似多边形的性质与相似三角形类似,对应角相等,对应边成比例。
我们可以利用相似多边形的性质来求解各类相关问题。
二、科学方面的相似知识点归纳1. 生物相似性在生物学中,相似性是指不同物种之间在形态特征、生理功能等方面存在相似之处。
相似性可以用来推断物种之间的亲缘关系,进行分类和进化研究。
2. 物理相似性在物理学中,相似性是指两个事物在某些性质上的相似程度。
物理相似性的研究可以帮助我们更好地理解和预测不同物体或系统的行为,比如利用相似性原理可以在实验室中进行模型实验,进而推广到真实情况。
3. 化学相似性在化学领域,相似性是指化合物或元素之间具有相似的化学性质或结构特征。
化学相似性可以用来预测物质的性质、反应行为,以及设计新的化合物或材料。
三、语文方面的相似知识点归纳1. 同义词与近义词同义词是指意思相同或相近的词语,而近义词指意思相近但不完全相同的词语。
在写作中,我们可以利用同义词和近义词来丰富文章的表达方式,避免重复使用相同的词汇。
2. 反义词与对义词反义词是指意思相反的词语,而对义词指相对应关系的词语。
在阅读理解和写作中,我们需要对反义词和对义词进行准确理解,以便正确地领会作者的意图和准确表达自己的思想。
3. 成语与俗语成语是特定社会和历史背景下形成的固定词组,具有特定的意义。
俗语是反映民间传统和智慧的短小词句。
在语文学习中,我们需要理解和运用成语和俗语,以提升语言表达的准确性和韵律感。
图形的相似知识点总结
图形的相似知识点总结图形的相似是初中数学中的重要内容,它是指在形状相似的两个图形中,对应的角相等,对应的边成比例。
在学习图形的相似知识点时,我们需要掌握以下几个方面的内容:1. 相似三角形的判定方法。
相似三角形的判定方法有三种,分别是AAA判定、AA判定和SAS判定。
AAA判定是指两个三角形的对应角相等,则这两个三角形相似;AA判定是指两个三角形的一个角对应相等,且这两个角所对的边成比例,则这两个三角形相似;SAS判定是指两个三角形的一个角对应相等,且这两个角所对的边成比例,再加上这两个角的夹角相等,则这两个三角形相似。
2. 相似三角形的性质。
相似三角形的性质包括对应角相等、对应边成比例和周长比的性质。
对应角相等是相似三角形的最基本的性质,它是相似三角形的判定条件之一;对应边成比例是指相似三角形中对应边的比值相等;周长比是指相似三角形的周长之比等于对应边的比值。
3. 相似三角形的应用。
相似三角形的应用非常广泛,它可以用来解决很多实际问题。
例如在测量高楼的高度时,可以利用相似三角形的性质,通过测量阴影和物体的高度来计算高楼的高度;在工程中,利用相似三角形的性质可以进行测量和设计;在日常生活中,也可以利用相似三角形的性质来解决一些实际问题。
4. 相似多边形的性质和判定。
相似多边形是指对应角相等,对应边成比例的多边形。
相似多边形的性质和判定与相似三角形类似,也包括对应角相等、对应边成比例和周长比的性质。
相似多边形的判定方法是通过观察对应边的比值是否相等来判断。
5. 相似图形的应用。
相似图形的应用也非常广泛,它可以用来解决很多实际问题。
在地图测量中,可以利用相似图形的性质来计算地图上两点之间的距离;在建筑设计中,可以利用相似图形的性质来进行比例放大或缩小;在艺术设计中,也可以利用相似图形的性质来进行比例变换。
总结,图形的相似是数学中的重要内容,它涉及到相似三角形和相似多边形的判定方法、性质和应用。
通过对图形的相似知识点进行总结和学习,可以帮助我们更好地理解和应用这一部分的数学知识,提高数学解题能力和实际问题的解决能力。
相似三角形的性质及判定知识点总结经典题型总结
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不必然相同.相似图形之间的相互变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”必然是“相似形”,“相似形”不必然是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等A 'B 'C 'CB A中考要求 知识点睛相似三角形的性质及判定如图,ABC △与A B C '''△相似,那么有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 ABC △与A B C '''△相似,那么有AB BC ACk A B B C A C ===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,那么有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,那么有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,那么有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,那么有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有A 'B 'C 'CB AM 'MA 'B 'C 'C BAH 'H AB C C 'B 'A'D 'D A 'B C 'C B AAB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,那么有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AH S BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所组成的三角形与原三角形相似. 2.若是一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.若是一个三角形的两边和另一个三角形的两边对应成比例,而且夹角相等,那么这两个三角形相似. 4.若是一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.若是一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(经常使用但要证明)7.若是一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;若是它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的要紧方式有“三点定形法”. 1.横向定型法A 'B 'C 'CBAH 'H AB C C 'B 'A '欲证AB BCBE BF =,横向观看,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的极点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个极点.因此只需证ABC EBF △∽△. 2.纵向定型法欲证AB DEBC EF=,纵向观看,比例式左侧的比AB 和BC 中的三个字母A B C ,,恰为ABC △的极点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个极点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰着三点共线或四点中没有相同点的情形,现在可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻觅相似三角形.这种方式确实是等量代换法.在证明比例式时,经常使用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
第二十七章_相似知识点
第二十七章 相似知识体系 第一节 图形的相似1.比例线段:①.如果a/b=c/d ,那么ad=bc ;②.如果ad=bc ,且bd≠0,那么a/b=c/d ; 如果a/b=c/d ,那么(a+b)/b=(c+d)/d 。
2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
3.相似图形:形状相同的图形叫做相似图形①.相似图形的大小不一定相等。
形状、大小都相等的图形叫做全等图形②.全等图形是相似图形的特殊情况③.图形的相似具有传递性:如果图形A 与图形B 相似,图形B 与图形C 相似,那么图形A 与图形C 相似。
4.相似多边形的特征:①.对应边成比例,对应角相等②.两个相似多边形对应边的比叫做这两个多边形的相似比5.相似多边形的识别:如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似6.黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。
A P B即:如图,如果点P 把线段AB 分成两条线段AP 和BP ,使得BP AP AP AB=,那么线段AB 被点P 黄金分割,线段AP 与AB 的比叫做黄金比,点P 叫做线段AB 的黄金分割点,即51AP AB -=. 第二节 相似三角形1.相似三角形的概念:两个对应角相等,对应边成比例的三角形叫做相似三角形。
即:如图,△ABC 和△A 'B 'C ',其中∠A=∠A ',∠B=∠B ',∠C=∠C ',B A ''AB =C B BC ''=A C CA '', 则有△ABC ∽△A 'B 'C '。
1.定义法 对应角相等,对应边成比例的三角形相似2.判定定理①平行于三角形一边的直线和其他两条相交,所构成的三角形与原三角形相似 3.判定定理②如果三角形的三组对应边相等,那么这两个三角形相似 4.判定定理③如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似 5.判定定理④ 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似 第二:腰和底对应成比例的两个等腰三角形相似。
相似三角形及其判定(知识点串讲)(解析版)
专题11 相似三角形及其判定知识网络重难突破知识点相似三角形的判定一、相似三角形的判定方法①定义:各角对应相等,各边对应成比例.②平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③有两个角对应相等.④两边对应成比例,且夹角相等.⑤三边对应成比例.二、相似三角形基本图形1、8字型有一组隐含的等角(对顶角),此时需从已知条件或图中隐含条件通过证明得另一对角相等(AB、CD不平行,∠A=∠C)(AB∥CD)2.A字型有一个公共角(图①、图②)或角有公共部分(图③,∠DAF+∠BAD=∠DAF+∠EAF),此时需要找另一对角相等或相等角的两边对应成比例3.双垂直型有一个公共角及一个直角 (图①为母子型的特殊形式AC2=AD·AB仍成立,另CD2=AD·BD)4.三垂直型结论推导,如图①,∠D+∠DBA=∠E+∠EBC=∠DBA+∠EBC=90°,∴∠EBC=∠D,∠E=∠DBA,且一组直角相等,用任意两组等角即可证得三角形相似【典例1】(2019秋•保山期末)如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【点拨】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解析】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.【典例2】如图,BD、CE是△ABC的两条高,AM是∠BAC的平分线,交BC于M,交DE于N,求证:(1)△ABD∽△ACE;(2)=.【点拨】(1)先根据有两组角对应相等的两个三角形相似,判定△ABD∽△ACE;(2)先相似三角形的性质,得出=,再根据∠DAE=∠BAC,判定△ADE∽△ABC,进而得到=,再根据∠CAM=∠EAN,判定△ACM∽△AEN,得到=,最后等量代换即可得到=.【解析】证明:(1)∵BD、CE是△ABC的两条高,∴∠ADB=∠AEC=90°,∵∠DAE=∠BAC,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴=,即=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,且∠ACB=∠AED,∵AM是∠BAC的平分线,∴∠CAM=∠EAN,∴△ACM∽△AEN,∴=,∴=.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:有两组角对应相等的两个三角形相似,两组对应边的比相等且夹角对应相等的两个三角形相似.【典例3】(2019秋•七里河区期末)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【点拨】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解析】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.【变式训练】1.(2020•浙江自主招生)如图,在4×4的正方形网格中,画2个相似三角形,在下列各图中,正确的画法有()A.1个B.2个C.3个D.4个【点拨】根据相似三角形的判定定理逐一判断即可得.【解析】解:第1个网格中两个三角形对应边的比例满足==,所以这两个三角形相似;第2个网格中两个三角形对应边的比例==,所以这两个三角形相似;第3个网格中两个三角形对应边的比例满足===,所以这两个三角形相似;第4个网格中两个三角形对应边的比例==,所以这两个三角形相似;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握三角形相似的判定并根据网格结构判断出三角形的三边的比例是解题的关键2.(2019秋•奉化区期末)如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是()A.△CGE∽△CBP B.△APD∽△PGD C.△APG∽△BFP D.△PCF∽△BCP【点拨】由相似三角形的判定依次判断可求解.【解析】解:∵∠CPD=∠A=∠B,且∠APD=∠B+∠PFB=∠APC+∠CPD,∴∠APC=∠BFP,且∠A=∠B,∴△APG∽△BFP,故选项C不合题意,∵∠A=∠CPD,∠D=∠D,∴△APD∽△PGD,故选项B不合题意,∵∠B=∠CPD,∠C=∠C,∴△PCF∽△BCP,故选项D不合题意,由条件无法证明△CGE∽△CBP,故选项A符合题意,故选:A.【点睛】本题考查了相似三角形的判定,牢固掌握相似三角形的判定是本题的关键.3.(2019秋•萧山区期末)如图,∠ACB=∠BDC=90°.要使△ABC∽△BCD,给出下列需要添加的条件:①AB∥CD;②BC2=AC•CD;③,其中正确的是()A.①②B.①③C.②③D.①②③【点拨】利用相似三角形的判定依次判断即可求解.【解析】解:①若AB∥CD,∴∠ABC=∠BCD,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故①符合题意;②若BC2=AC•CD,∴,且∠ACB=∠BDC=90°,无法判定△ABC∽△BCD,故②不符合题意;③若,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故③符合题意;故选:B.【点睛】本题考查了相似三角形的判定,灵活掌握相似三角形的判定方法是本题的关键.4.(2019秋•新华区校级月考)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD【点拨】设正方形ABGH的边长为1,先运用勾股定理分别求出HB、HC的长,将其三边按照从大到小的顺序求出比值,再分别求出四个选项中每一个三角形三边的比值,根据三组对应边的比相等的两个三角形相似求解即可.【解析】解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.【点睛】本题考查了相似三角形的判定,判定两个三角形相似的一般方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题还可以利用方法(3)进行判定.5.(2018秋•秀洲区期末)如图,点D在△ABC的边AC上,若要使△ABD与△ACB相似,可添加的一个条件是∠ABD=∠C(答案不唯一)(只需写出一个).【点拨】两组对应角相等,两三角形相似.在本题中,两三角形共用一个角,因此再添一组对应角即可【解析】解:要使△ABC与△ABD相似,还需具备的一个条件是∠ABD=∠C或∠ADB=∠ABC等.故答案为:∠ABD=∠C(答案不唯一).【点睛】此题考查了相似三角形的判定.注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.6.(2019秋•崇川区校级月考)如图,∠A=∠B=90°,AB=7,BC=3,AD=2,在边AB上取点P,使得△P AD与△PBC相似,则满足条件的AP长为 2.8或1或6.【点拨】根据相似三角形的性质分两种情况列式计算:①若△APD∽△BPC②若△APD∽△BCP.【解析】解:∵∠A=∠B=90°①若△APD∽△BPC则=∴=解得AP=2.8.②若△APD∽△BCP则=∴=解得AP=1或6.∴则满足条件的AP长为2.8或1或6.故答案为:2.8或1或6.【点睛】本题考查了相似三角形的判定与性质,明确相关判定与性质及分类讨论,是解题的关键.7.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【点拨】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【解析】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019春•广陵区校级月考)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,并请说明理由.【点拨】(1)理由等角的余角相等证明∠MBA=∠NMC,然后根据直角三角形相似的判定方法可判断Rt△ABM∽Rt△MCN;(2)利用勾股定理可得到AM=2,由于Rt△ABM∽Rt△MCN,利用相似比可计算出MN=,接着证明=,从而可判断Rt△ABM∽Rt△AMN.【解析】(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠MAB=90°,∴∠MBA=∠NMC,∴Rt△ABM∽Rt△MCN;(2)解:当M点运动到BC为中点位置时,Rt△ABM∽Rt△AMN.理由如下:,∵四边形ABCD为正方形,∴AB=BC=4,BM=MC=2,∴AM=2,∵Rt△ABM∽Rt△MCN,∴==2,∴MN=AM=,∵==,==,∴=,而∠ABM=∠AMN=90°,∴Rt△ABM∽Rt△AMN.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了正方形的性质.巩固训练1.(2019•崇明区一模)如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A.∠B=∠D B.∠C=∠AED C.=D.=【点拨】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解析】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点睛】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.2.(2020•上虞区校级一模)已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有()对.A.6 B.5 C.4 D.3【点拨】根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△BFE∽△DF A.△BDF∽△BAD.【解析】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△BFE,△BFE∽△DF A,△BDC∽△DF A,△BDF∽△BAD.理由:∵△ABC和△BDE是正三角形,∴∠A=∠C=∠ABC=60°,∠E=∠BDE=∠EBD=60°,∴△ABC∽△EDB,可得∠EBF=∠DBC,∠E=∠C,∴△BDC∽△BFE,∴∠BDC=∠BFE=∠AFD,∴△BDC∽△DF A,∴△BFE∽△DF A,∵∠DBF=∠ABD,∠BDF=∠BAD,∴△BDF∽△BAD.故选:B.【点睛】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,得出结论.3.(2019秋•市中区期末)如图,Rt△ABC中,∠C=90°,∠B=60°,BC=4,D为BC的中点,E为AB 上的动点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE与△ABC相似时,t的值为4或7或9.【点拨】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,当∠EDB=90°或∠DEB=90°,得出△BDE和△ABC相似,可求得BE的长,则可求得t的值.【解析】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,∴AB=2BC=8,∵D为BC中点,∴BD=2,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=t,BE=BC﹣AE=8﹣t,当∠EDB=90°时,则有AC∥ED,∴△BDE∽△BCA,∵D为BC中点,∴E为AB中点,此时AE=4,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4.(2019秋•海淀区期末)如图,⊙O是△ABC的外接圆,D是的中点,连结AD,BD,其中BD与AC 交于点E.写出图中所有与△ADE相似的三角形:△CBE,△BDA.【点拨】根据两角对应相等的两个三角形相似即可判断.【解析】解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•成都模拟)如图,BC是⊙O的弦,A是劣弧BC上一点,AD⊥BC于D,若AB+AC=10,⊙O的半径为6,AD=2,则BD的长为2或4.【点拨】作直径AE,连接CE,证明△ABD∽△AEC,得,设AB=x,则AC=10﹣x,列方程可得AB的长,最后利用勾股定理可解答.【解析】解:作直径AE,连接CE,∴∠ACE=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠ACE,∵∠B=∠E,∴△ABD∽△AEC,∴,设AB=x,则AC=10﹣x,∵⊙O的半径为6,AD=2,∴,解得:x1=4,x2=6,当AB=4时,BD===2,当AB=6时,BD===4,∴BD的长是2或4;故答案为:2或4.【点睛】本题考查了圆周角定理,相似三角形的性质和判定,正确作辅助线,构建相似三角形是本题的关键.6.(2020•雨花区校级一模)如图,AB为⊙O的直径,点C、D在⊙O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.【点拨】(1)由垂径定理可知∠AEC=90°,然后根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质可知AC2=AE•AB,从而可求出AE=,再由勾股定理以及垂径定理即可求出CD的长度.【解析】解:(1)∵AC=AD,AB是⊙O的直径,∴CD⊥AB,∴∠AEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BAC=∠BAC+∠B=90°,∴∠ACE=∠B,∴△ACE∽△ABC.(2)由(1)可知:,∴AC2=AE•AB,∵AC=3,BC=4,∴由勾股定理可知:AB=5,∴AE=,∴由勾股定理可知:CE=,∴由垂径定理可知:CD=2CE=.【点睛】本题考查相似三角形,解题的关键是熟练运用勾股定理,相似三角形的性质与判定,圆周角定理,本题属于中等题型.7.(2018秋•姜堰区校级月考)如图,点B、D、E在一条直线上,BE与AC相交于点F,==.(1)求证:∠BAD=∠CAE;(2)若∠BAD=21°,求∠EBC的度数:(3)若连接EC,求证:△ABD∽△ACE.【点拨】(1)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;(2)根据相似三角形的性质即可得到结论;(3)根据相似三角形的判定和性质即可得到结论.【解析】(1)证明:∵==.∴△ABC~△ADE;∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE;(2)解:∵△ABC~△ADE,∴∠ABC=∠ADE,∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,∴∠EBC=∠BAD=21°;(3)证明:连接CE,∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE,∵=.∴△ABD∽△ACE.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019秋•江阴市期中)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ的面积是cm2;(3)直接写出t为何值时,△BPQ是等腰三角形;(4)连接AQ,CP,若AQ⊥CP,直接写出t的值.【点拨】(1)由勾股定理可求AB的长,分两种情况讨论,由相似三角形的性质可求解;(2)过点P作PE⊥BC于E,由平行线分线段成比例可得PE=3t,由三角形的面积公式列出方程可求解;(3)分三种情况讨论,由等腰三角形的性质可求解;(4)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10cm,∵△BPQ与△ABC相似,且∠B=∠B,∴或,当时,∴,∴t=1,当,∴,∴t=;(2)如图1,过点P作PE⊥BC于E,∴PE∥AC,∴,∴PE==3t,∴S△BPQ=×(8﹣4t)×3t=,∴t1=或t2=;(3)①当PB=PQ时,如图1,过P作PE⊥BQ,则BE=BQ=4﹣2t,PB=5t,由(2)可知PE=3t,∴BE===4t,∴4t=4﹣2t,∴t=②当PB=BQ时,即5t=8﹣4t,解得:t=,③当BQ=PQ时,如图2,过Q作QG⊥AB于G,则BG=PB=t,BQ=8﹣4t,∵△BGQ∽△ACB,∴,∴解得:t=.综上所述:当t=或或时,△BPQ是等腰三角形;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图3所示:则PB=5t,∵AC⊥BC∴△PMB∽△ACB,∴=∴BM=4t,PM=3t,且BQ=8﹣4t,BC=8,∴MC=8﹣4t,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴∴t=【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.。
相似三角形的判定及相似基本图形
3.相似三角形的判定方法
判定定理1,2,3.
SSS,SAS,AA
A
相似三角形的传递性.
E D A
D
E
B B C
C
知识应用:
1、 如图1,已知:DE∥BC,EF ∥AB,则图中共 3 有_____ 对三角形相似.
2、如图2在△ABC中,若点D、E分别是AB、AC的 中点,则各对相似三角形的相似比分别是多少?
A AA D F
B
E
CBB BBFra bibliotekA ① α
③ αF ② F
E α 60 ° α 60 ° E EE
αF
C
60 α° 60 ° α
α 60 60 ° α° C C C
1.已知:D为BC上一点, ∠B= ∠C= ∠EDF=60°,BE=6,CD=3,CF=4,
7 则AF=_______
A
E F
B
D
C
2.矩形ABCD中,把DA沿AF对折,使D与 善于在复杂图形 CB边上的点E重合,若AD=10, AB= 8,
A A
D
E
D O B
E
B F 图1
C
图2
C
相似三角形基本图形的回顾:
A D B D E B C E
E A B
D C
A
C
△ADE绕点A 旋转
E
A
D
点
重 移 合 到 A 与 点 ∠ACB=Rt∠ CD⊥AB
B
C A D
D B
E C
B
C
复杂图形 分解 基本图形
如图,AC是平行四边形ABCD的对角线,且AE=EF=FC, CD=12,求CN
E
九年级数学相似三角形知识点总结及例题讲解
1. 平行线分线段成比例定理
例.
已知 l 1∥ l 2∥ l 3,
A Dl
B El
: 三条平行线截两条直线
1 2
, 所得的 对应线段成比 .
C
Fl
可得 AB
DE AB 或
DE 等.
BC EF AC DF
2. 推论 : 平行于三角形一边的直线截其它两边
3
( 或两边的延长线 ) 所得的对应线段成比例 .
注意 :(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法.
(2) 应用等比性质时,要考虑到分母是否为零.
(3)
可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.
知识点三:黄金分割
1) 定义 :在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC(AC>BC ),如果 AC AB
ad bc
(两外项的积等于两内项积)
2. 反比性质:
ac bd
bd a c ( 把比的前项、后项交换 )
3. 更比性质 ( 交换比例的内项或外项 ) :
ac bd
a b ,(交换内项 ) cd d c ,(交换外项 ) ba d b .(同时交换内外项 ) ca
4. 合比性质
a
:
c
bd
ab b
cd (分子加(减)分母 , 分母不变)
例 4、矩形 ABCD 中, BC=3AB , E、F,是 BC 边的三等分点,连结 AE 、 AF 、AC ,问图中是否存在非全 等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式
例 5、△ ABC 中,在 AC 上截取 AD ,在 CB 延长线上截取 BE ,使 AD=BE ,求证: DF AC=BC FE
九年级下册数学相似-知识点总结
九年级下册数学相似-知识点总结数学是一门让人们头疼的学科,尤其是在九年级下册的数学中,相似这个概念可能是让学生犯迷糊的一个知识点。
相似是几何学中一个非常重要的概念,它在解决几何问题时经常被运用。
在本文中,我将对九年级下册数学中与相似有关的知识进行总结和归纳,希望能够为同学们带来一些帮助。
1. 相似的基本概念相似指的是两个或多个图形在形状上相同,但是大小不同的情况。
当两个图形相似时,它们的对应边长之比相等,而对应的角度也相等。
这就是相似的基本概念。
在解决相似问题时,我们通常会用到比例和比例的性质。
2. 相似三角形相似三角形是相似的一个重要例子。
在解决相似三角形的问题时,我们可以利用三角形内角、相似三角形边长的比例关系,运用相似三角形的性质解题。
此外,还可以运用相似三角形的性质证明一些结论,如直角三角形斜边上的中线等于斜边的一半。
3. 相似的判定条件在判断两个图形是否相似的情况下,我们有一些判定条件可以依据。
其中一个常见的判定条件是AA相似判定法,也就是两个图形的对应角相等。
另一个常见的判定条件是三边比例相等判定法,也就是两个图形的三条边对应的比值相等。
这些判定条件可以帮助我们在解决相似问题时迅速确定是否相似。
4. 相似比例的运用相似比例是解决相似问题的关键。
当我们确定了两个相似图形之间的比例关系后,我们可以利用相似比例计算未知边长或角度,并解决与相似有关的各种几何问题。
在运用相似比例时,我们需要注意单位的转换和计算的准确性。
5. 长方体与正方体的相似在相似的概念中,长方体与正方体的相似问题也是常见的。
当两个立体图形相似时,它们的对应面的积之比等于对应边长的比值的平方。
我们可以运用这一性质解决立体几何中的相似问题,例如求解一个长方体与正方体的边长比例。
总结起来,在九年级下册的数学学习中,相似是一个重要的几何概念,掌握相似的基本概念、判定条件和相似比例的运用是解决相似问题的关键。
要注意运用相似比例时的单位转换和计算准确性。
图形相似与相似三角形知识点
图形相似与相似三角形知识点相似是指形状相同但大小不同的两个图形,类似于放大或缩小后的图像。
相似的两个图形具有以下特点:•对应顶点角度相等•对应边比例相等•对应边平行因此,我们可以根据这些共同点判断两个图形是否相似。
相似三角形相似三角形是指具有相似形状的三角形,但是它们的边长不一定相等。
相似三角形的判断条件为:•AAA准则:两个三角形的三个内角相等,则它们相似。
•AA准则:两个三角形的两个内角相等,则它们相似。
•SAS准则:两个三角形的一对边和它们夹角相等,则它们相似。
其中,SAS准则是使用最广泛的判断方式,因为它是判断两个三角形是否相似的最有效方法。
相似三角形的性质相似三角形有许多重要的性质,以下是其中一些:•对应边比例相等。
对于相似三角形ABC和DEF,有AB/DE = AC/DF = BC/EF,其中AB和DE、AC和DF、BC和EF分别是对应边。
•相似三角形的高线、中线、角平分线和垂直平分线也是相似的。
例如,如果三角形ABC和DEF相似,则它们的高线、中线、角平分线和垂直平分线也相似。
•相似三角形的面积比等于对应边比的平方。
例如,如果三角形ABC 和DEF相似,则它们的面积比为S(ABC)/S(DEF) = (AB/DE)^2 = (AC/DF)^2 = (BC/EF)^2。
解决实际问题相似三角形的知识可以有效地应用于实际问题中。
以下是一些示例:•使用相似三角形来计算高度:当需要计算无法直接获得高度的对象高度时,可以利用相似三角形的原理来计算。
例如,一位工程师需要计算一栋建筑物的高度,但是他无法直接获得建筑物的高度。
在这种情况下,他可以站在一个已知的位置并利用三角函数(正切)计算出地平线上某个点的角度。
然后,他可以测量人的高度并利用相似三角形来计算出建筑物的高度。
•使用相似三角形来计算距离:当需要计算无法直接获得距离的对象距离时,可以利用相似三角形的原理来计算。
例如,一位地质学家需要计算一个峭壁的高度和距离,但他无法测量峭壁高度和距离。
相似图形知识点总结文库
相似图形知识点总结文库一、相似图形的定义相似图形是指两个或多个图形之间的形状相同,但大小可能不同的情况。
在几何中,通常用符号∼表示两个相似图形之间的关系。
例如,若图形A和图形B是相似的,则可以表示为A∼B。
相似图形的定义可以用比例来表达,即如果两个三角形ABC和DEF是相似的,那么它们的对应边的比例是相等的,即AB/DE=BC/EF=AC/DF。
二、相似图形的判定1. AAA相似判定法:如果两个三角形的对应角相等,那么它们是相似的。
2. AA相似判定法:如果两个三角形的两个对应角相等,那么它们是相似的。
3. SSS相似判定法:如果两个三角形的对应边成比例,那么它们是相似的。
4. 直接判定法:如果两个四边形的对应边成比例,那么它们是相似的。
在判定相似图形时,可以根据题目条件选择不同的方法进行判定,以确定两个或多个图形之间是否是相似的关系。
三、相似图形的性质1. 相似三角形的性质:(1) 相似三角形的对应角相等;(2) 相似三角形的对应边成比例;(3) 相似三角形的高线成比例;(4) 相似三角形的中位线成比例。
2. 相似四边形的性质:(1) 相似四边形的对应角相等;(2) 相似四边形的对应边成比例。
3. 相似图形的周长、面积与比例关系:(1) 如果两个图形相似,那么它们的周长之比等于它们的任意一条边的比;(2) 如果两个图形相似,那么它们的面积之比等于它们的任意一条边的比的平方。
四、相似图形的应用1. 图形的放大与缩小:在工程设计、地图制作等领域,相似图形的概念经常被用来进行图形的放大与缩小,以便得到需要的大小。
2. 测量与估算:利用相似图形的性质,可以利用已知的尺寸进行图形的测量与估算,从而得到未知尺寸的大小。
3. 面积与体积的计算:利用相似图形的面积与比例关系,可以方便地计算出图形的面积与体积。
4. 几何问题的解决:在几何问题中,利用相似图形的性质,可以更快速地解决一些有关形状和比例的问题,如建筑设计、城市规划等。
图形关系知识点总结
图形关系知识点总结一、相似三角形1. 定义:如果两个三角形的对应角相等,那么我们称它们为相似三角形。
2. 判定条件:两个三角形相似的充分必要条件是它们的对应角相等。
3. 相似三角形的性质:a. 对应边成比例:如果两个三角形是相似的,那么它们的对应边长成比例。
b. 相似三角形的高成比例定理:相似三角形的高与边的长度成比例。
c. 相似三角形点到边的距离成比例:相似三角形中的相似三角形的对应边上的高分别成比例。
4. 相似三角形的判定方法:a. 角-角-相似定理:如果两个三角形的两个角分别相等,则这两个三角形是相似的。
b. 三角形的高分成比例定理:如果两个三角形的高分成比例,则这两个三角形是相似的。
二、全等三角形1. 定义:如果两个三角形的对应边和对应角分别相等,那么我们称它们为全等三角形。
2. 判定条件:两个三角形全等的充分必要条件是它们的对应边和对应角分别相等。
3. 全等三角形的性质:全等三角形的所有对应元素都相等。
4. 全等三角形的判定方法:a. 边-边-边全等定理:如果两个三角形的三边分别相等,则这两个三角形是全等的。
b. 边-角-边全等定理:如果两个三角形的一对对应边和夹角分别相等,则这两个三角形是全等的。
c. 角-边-角全等定理:如果两个三角形的两对对应角和一对对应边分别相等,则这两个三角形是全等的。
三、平行四边形1. 定义:四边形的对边分别平行,两对对角相等的四边形叫做平行四边形。
2. 平行四边形性质:a. 对边平行性质:在平行四边形中,对边是平行的。
b. 对角相等性质:在平行四边形中,对角相等。
c. 对角平分性质:在平行四边形中,对角平分。
d. 传递性:如果一方是平行四边形,那么这一方的异边,对角也是平行四边形。
3. 平行四边形的判定方法:a. 对边平行定理:如果四边形的一对对边平行,那么这个四边形是平行四边形。
b. 对角相等定理:如果四边形的一对对角相等,那么这个四边形是平行四边形。
四、直角三角形1. 定义:含有一个直角的三角形叫做直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形相似与相似三角形知识点解读
知识点1..相似图形的含义
把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无
关.例1.放大镜中的正方形与原正方形具有怎样的关系呢?
分析:要注意镜中的正方形与原正方形的形状没有改变.
解:是相似图形。
因为它们的形状相同,大小不一定相同.
例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号).
解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.
知识点2.比例线段
对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,
即aa
bb
(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.解读:(1)四条线段a,b,c,d 成比例,记作
即比例线段有顺序性.aa
bb
(或a:b=c:d),不能写成其他形式,
(2)在比例式aa
bb
(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为
比例内项,d是第四比例项.(3)
如果比例内项是相同的线段,即aa
bb
或a:b=b:c,那么线段b 叫做线段和的比例中
项。
(4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a 和b统一为一个单位,c 和d 统一为另一个单位也可以,因为整体表示两个比相等.
a
例3.已知线段a=2cm,b=6mm, 求.
b
分析:求a
b
即求与长度的比,与的单位不同,先统一单位,再求比.
例4.已知a,b,c,d 成比例,且a=6cm,b=3dm,d=3
2
dm,求c的长度.
分析:由a,b,c,d 成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d 统一单位后代入求c.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形学数学用数学专页报第 1 页共4 页版权所有@少智报·数学专页
A 1
B 1
C 1
D 1 的最大边长为 30,则四边形 A 1 B 1 C 1 D 1 的最小边长是多少? 分析:四边形 ABCD 与四边形 A 1 B 1 C 1
D 1 相似,且它们的相似比为对应的最大边长的比,
即为 1
3
,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边的长.
知识点 4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角
形. 解读:(1)相似三角形是相似多边形中的一种; (2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同; (4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比.
注意:①相似比是有顺序的,比如△ABC ∽△A 1 B 1 C 1 ,相似比为 k,若△A 1
B 1
C 1
∽△ ABC ,则相似比为 1
k。
②若两个三角形的相似比为 1,则这两个三角形全等,全等三角形
是相似三角形的特殊情况。
若两个三角形全等,则这两个三角形相似;若两个三角形相似, 则这两个三角形不一 定全等.
例 6.如图,已知△ADE ∽△ABC ,DE=2,点 D ,E 分 别是 AB ,AC 的中点吗?
B
C
注意
:解决
此类问题应注意两方面:(1)相似比的顺序性,(2)图形的识别.
解:因为△ADE ∽△ABC ,所以
DE AD AE BC AB AC ,因为 DE 2 1 BC 4 2
, 所以 AD AE 1 AB AC 2
,所以 D ,E 分别是 AB ,AC 的中点.
知识点 5.相似三角的判定方法
(1) 定义:对应角相等,对应边成比例的两个三角形相似;
(2) 平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原
三角形相似.
(3) 如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角
形相似.
(4) 如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么
这两个三角形相似.
(5) 如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三
角形相似. (6) 直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 经过归纳和总结,相似三角形有以下几种基本类型: ① 平行线型
学数学用数学专页报第 2 页共4 页版权所有@少智报·数学专页
常见的有如下两种,D E ∥BC ,则△ADE ∽△ABC
B
C
② 相交线型
常见的有如下四种情形,如图,已知∠1=∠B ,则由公共角∠A 得,△ADE ∽△ABC
C
如下左图,已知∠1=∠B ,则由公共角∠A 得,△ADC ∽△ACB 如下右图,已知∠B=∠D ,则由对顶角∠1=∠2 得,△ADE ∽△ABC
B
C
③ 旋转型
已知∠BAD=∠CAE ,∠B=∠D ,则△ADE ∽△ABC ,下图为常见的基本图形.
C
④ 母子型
已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD .
学数学 用数学专页报
第 3 页 共 4 页
版权所有@少智报·数学专页
解决相似三角形问题,关键是要善于从复杂的图形中分解出(构造出)上述基本图 形.
例 7.如图,点 D 在△ABC 的边 AB 上,满足怎样的条件时,△ACD 与△ABC 相似? 试分别加以列举.
A D 2
1
B
C
分析:此题属于探索性问题,由相似三角形的判别方法可知,△ACD 与△ABC 已有 公共角∠A ,要使此两个三角形相似,可根据相似三角形的判别方法寻找一个条件即可.
解:当满足以下三个条件之一时,△ACD ∽△ABC 条件一:∠1=∠B ;条件二:∠2=∠ACB ;条件三:
AD AC
AC AB ,即
AC
2 =A D·AB .
知识点 6.相似三角形的性质
(1) 对应角相等,对应边的比相等;
(2) 对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3) 相似三角形周长之比等于相似比;面积之比等于相似比的平
方. 例 8.如图,已知△ADE ∽△ABC ,AD=8,BD=4,BC=15,EC=7
(1) 求 DE 、AE 的长;
(2) 你还能发现哪些线段成比例.
A
E
D C B
分析:此题重点考查由两个三角形相似,可得到对应边成例,即
DE AD AE
解:(
1)∵△ADE ∽△AB C , ∴
BC AB AC
DE
AD AE
BC AB AC
.
∵,AD=8,BD=4,BC=15,EC=7 设 DE=x ,则
8 x
12 15
, ∴12x=8×15, x=10; 设 AE=a,则 a 8 a 7 12 , ∴a=14. (2)
AAAA
BBBB
例 9.已知△ABC ∽△A 1 B 1
C 1,, AB 2
= ,△ABC 的周长为 20cm ,面积为
40cm . A 1B 1 3 求(1)△A 1 B 1 C 1 的周长;(2)△A
1 B 1
C 1 的面积. 分析:根据相似三角形周长之比等于相似比;面积之比等于相似比的平方求解.
易求出△A 1 B 1 C 1 的周长为 30cm; △A 1 B 1
C 1 的面积
90cm 2
2
学数学用数学专页报第 4 页共4 页版权所有@少智报·数学专页。