高中数学之导数研究函数的单调性含答案
用导数研究含参函数的单调性典型题型(学生版+解析版)
用导数研究含参函数的单调性一、考情分析函数是高中数学主干知识,单调性是函数的重要性质,用导数研究函数单调性是导数的一个主要应用,可以说在高考导数解答题中单调性问题是绕不开的一个问题,这是因为单调性是解决后续问题的关键,单调性在研究函数图像、比较函数值大小、确定函数的极值与零点、解不等式及证明不等式中都起着至关重要的作用.函数单调性的讨论与应用一直是高考考查的热点、而含有参数的函数单调性的讨论与应用更是高考中的难点.二、解题秘籍连续函数单调区间的分界点就是函数的极值点,也就是导函数的零点,即方程f x =0的根,所以求解含参函数的单调性问题,一般要根据f x =0的根的情况进行分类,分类时先确定导函数是一次型还是二次型1.若导函数是一次型,分类步骤是:①判断是否有根,若没有根,会出现恒成立的情况;②若有根,求出f x =0导的根,并判断根是否在定义域内;若根不在定义域内会出现恒成立的情况;③若根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;2.若导函数是二次型,分类步骤是:①先判断二次型函数是否有根,若没有根,会出现恒成立的情况;②判断根是否在定义域内,若仅有一个根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;③若两个根都在定义域内,需要根据两个根的大小进行讨论,当根的大小确定后,再讨论每个单调区间上的单调性.下面我们根据f x =0的根的情况总结出10类题型及解法,帮助同学们掌握这类问题的求解方法.类型一:f x 定义域不是R,f x =0可化为单根型一次方程思路:根据根是否在定义域内进行分类例1.讨论f x =x-1-a ln x的单调性类型二:f x 定义域不是R,f x =0可化为单根型类一次方程思路:根据方程是否有根及根是否在定义域内进行分类例2.讨论f x =ax-1-aln x+1的单调性例3.讨论f x =14ax4-13x3+12ax2-x+1的单调性类型四:f x 定义域不是R,f x =0可化为单根型二次方程思路:根据方程的根是否在定义域内进行分类例4.讨论f x =x+(1-a)ln x+ax+1的单调性类型五:f x 定义域为R, f x =0可化为双根型二次方程思路:根据根的大小进行分类例5.讨论f x =x2+ax+ae x的单调性类型六:f x 定义域不是R,f x =0可化为双根型二次方程思路:根据根是否在定义域内及根的大小进行分类例6.讨论f x =12x2-a2+1a x+ln x的单调性类型七:f x 定义域是R,f x =0可化为双根型类二次方程思路:根据根的个数及根的大小进行分类例7.讨论f x =ax3-a+32x2+x-1的单调性类型八:f x 定义域不是R,f x =0可化为双根型类二次方程思路:根据根是否在定义域内、根的个数及根的大小进行分类例8.讨论f x =12ax2-a+1x+ln x的单调性类型九:f x =0先化为指数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例9.讨论f x =a x-2e x-12x-12的单调性类型十:f x =0先化为对数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例10.讨论f x =x2-2axln x-12x2+2ax+1的单调性三、典例展示例1.(2023届四川省内江市高三零模考试)已知函数f(x)=x+a ln x,a∈R(1)讨论f x 的单调性;(2)若不等式f x ≤x2+x对任意x∈(1,+∞)恒成立,求a的最大值.例2.(2022届湖北省部分学校高三下学期5月适应性考试)已知函数f x =x+1(ee x-ax2-4ax a∈R为自然对数的底数).(1)若a>0时,求函数f x 的单调区间.(2)是否存在实数a,使得x≥0时,f x ≥xe x+1-ax2+cos x-2ax恒成立?若存在,求出实数a的取值范围;若不存在,说明理由.例3.(2023届湖北省新高三摸底联考)已知a≥0,函数f x =ax+1+ax-ln x.(1)讨论函数f x 的单调性;(2)如果我们用n-m表示区间m,n的长度,试证明:对任意实数a≥1,关于x的不等式f x <2a+1的解集的区间长度小于2a+1.例4.(2022届青海省西宁市高三下学期第三次模拟)已知函数f x =x ln x-a2x2-x+a a∈R.(1)讨论函数f x 在0,+∞上的单调性;(2)已知x1,x2是函数f x 的两个不同的极值点,且x1<x2,若不等式e1+λ<x1x2λ恒成立,求正数λ的范围.四、跟踪检测1.(2023届河南省安阳市高三上学期名校调研摸底考试)已知函数f x =e x-ax+b.(1)当b=0时,讨论f x 的单调性;(2)当a>0时,若f x ≥0,求b的最小值.2.(2023届三省三校高三第一次联考)已知函数f(x)=(1-m)x-ln x.(1)讨论f(x)的单调性;(2)若m=0,设g x =f x +2-xe x在12,1上的最小值为n,求证:(n-3)(n-4)<0 .3.(2022届四川省内江市第六中学高三下学期仿真考试)已知函数f x =x -a -1 e x -x 2+2ax a ∈R .(1)讨论f x 的单调性;(2)从下面两个条件中选一个,判断f m 的符号,并说明理由.①0<a <12,0<m <ln2;②1<a <2,1<m <2.4.(2022届华大新高考联盟名校高考押题卷)设函数f x =1+a ln x x,其中a ∈R .(1)当a ≥0时,求函数f x 的单调区间;(2)若f x ≤x 2,求实数a 的取值范围.5.(2022届湖北省卓越高中千校联盟高三高考终极押题卷)已知f x =a-1ln x+x+a x(1)若a<0,讨论函数f x 的单调性;(2)g x =f x +ln x-a x有两个不同的零点x1,x20<x1<x2,若g2x1+λx22+λ>0恒成立,求λ的范围.6.(2022届河南省许平汝联盟高三下学期核心模拟卷)已知函数f x =ln x-ax2+2a∈R.(1)讨论f x 的单调性;(2)若f x -2-ax≥0在x∈1,e上恒成立,求实数a的取值范围.7.(2022届广东省潮州市瓷都中学高三下学期第三次模拟)已知函数f x =2x3+31+mx2+ 6mx x∈R.(1)讨论函数f x 的单调性;(2)若f1 =5,函数g x =a ln x+1-f xx2≤0在1,+∞上恒成立,求整数a的最大值.8.(2022四川省资阳市高三第一次质量检测)已知函数f(x)=(x-a-1)e x-12ax2+a2x.(1)讨论f(x)的单调性;(2)若f(x)在(-∞,0)上只有一个极值,且该极值小于-e a-1,求a的取值范围.9.(2021重庆市第八中学高三下学期高考适应性考试)已知函数f x =x+ln x-a x,g x =a-2xln x+ x.(1)讨论f x 的单调性;(2)若a∈1,4,记f x 的零点为x1,g x 的极大值点为x2,求证:x1<x2·10.(2021山东省烟台市高三高考适应性练习)已知函数f x =a x2-x-ln x a∈R.(1)讨论函数f x 的单调性;(2)证明:当x>1时,2e x-1ln x≥x2+1 x2-x.用导数研究含参函数的单调性一、考情分析函数是高中数学主干知识,单调性是函数的重要性质,用导数研究函数单调性是导数的一个主要应用,可以说在高考导数解答题中单调性问题是绕不开的一个问题,这是因为单调性是解决后续问题的关键,单调性在研究函数图像、比较函数值大小、确定函数的极值与零点、解不等式及证明不等式中都起着至关重要的作用.函数单调性的讨论与应用一直是高考考查的热点、而含有参数的函数单调性的讨论与应用更是高考中的难点.二、解题秘籍连续函数单调区间的分界点就是函数的极值点,也就是导函数的零点,即方程f x =0的根,所以求解含参函数的单调性问题,一般要根据f x =0的根的情况进行分类,分类时先确定导函数是一次型还是二次型1.若导函数是一次型,分类步骤是:①判断是否有根,若没有根,会出现恒成立的情况;②若有根,求出f x =0导的根,并判断根是否在定义域内;若根不在定义域内会出现恒成立的情况;③若根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;2.若导函数是二次型,分类步骤是:①先判断二次型函数是否有根,若没有根,会出现恒成立的情况;②判断根是否在定义域内,若仅有一个根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;③若两个根都在定义域内,需要根据两个根的大小进行讨论,当根的大小确定后,再讨论每个单调区间上的单调性.下面我们根据f x =0的根的情况总结出10类题型及解法,帮助同学们掌握这类问题的求解方法.类型一:f x 定义域不是R,f x =0可化为单根型一次方程思路:根据根是否在定义域内进行分类例1.讨论f x =x-1-a ln x的单调性分析:f x =x-ax x>0,f x =0根的情况转化为x-a=0x>0根的情况根据a是否在定义域0,+∞内进行分类答案:(1)a≤0,f x >0,f x 在0,+∞上是增函数;(2)a>0,f x 在0,a上是减函数,在a,+∞上是增函数.类型二:f x 定义域不是R,f x =0可化为单根型类一次方程思路:根据方程是否有根及根是否在定义域内进行分类例2.讨论f x =ax-1-aln x+1的单调性分析:f x =ax-1-ax x>0,f x =0根的情况转化为ax-1-a=0在0,+∞上根的情况.步骤一:讨论a=0(无实根);步骤二:讨论a<0,由ax-1-a=0得x=1-aa(不在定义域内);步骤三:讨论a >0,根据1-a a是否在定义域内再分0<a <1,a ≥1.答案:(1)a =0,f x <0,f x 在0,+∞ 上是减函数;(2)a <0,f x <0,f x 在0,+∞ 上是减函数;(3)a >0(i )a ≥1, f x >0,f x 在0,+∞ 上是增函数;(ii )0<a <1,f x 在0,1-a a 上是减函数,在1-a a,+∞ 上是增函数.类型三:f x 定义域为R , f x =0可化为单根型类二次(或高次)方程思路:根据x 的系数符号进行分类例3.讨论f x =14ax 4-13x 3+12ax 2-x +1的单调性分析:f x =x 2+1 ax -1 ,因为x 2+1>0,f x =0根的情况转化为ax -1=0根的情况,步骤一:讨论a >0;步骤二:讨论a =0,注意此时ax -1=-1<0 ;步骤三:讨论a <0,注意不等式两边除以a ,不等式要改变方向.答案:(1)a >0时f x 在1a ,+∞ 上递增,在-∞,1a上递减;(2)a =0时f x 在-∞,+∞ 上递减;(3)a <0时f x 在1a ,+∞ 上递减,在-∞,1a上递增.类型四:f x 定义域不是R ,f x =0可化为单根型二次方程思路:根据方程的根是否在定义域内进行分类例4.讨论f x =x +(1-a )ln x +a x +1的单调性分析:f x =x +1 x -a x 2x >0 ,因为x +1>0,f x =0根的情况转化为x -a =0在0,+∞ 上根的情况.步骤一:讨论a ≤0(x -a =0无实根);步骤二:讨论a >0,由x -a =0得x =a ;答案:(1)a ≤0,f x >0,f x 在0,+∞ 上是增函数;(2)a >0,x >a , f x >0,f x 在a ,+∞ 上是增函数;x <a ,f x <0,f x 在0,a 上是减函数.类型五:f x 定义域为R, f x =0可化为双根型二次方程思路:根据根的大小进行分类例5.讨论f x =x 2+ax +a e x 的单调性分析:f x =x +2 x +a e x ,f x =0根的情况转化为x +2 x +a =0的根的情况,根据-a 与-2的大小进行讨论.步骤一:讨论a <2;步骤二:讨论a =2,注意此时x +2 x +a =x +2 2≥0;步骤三:讨论a >2.答案:(1)a <2,f x 在-∞,-2 ,-a ,+∞ 上是增函数,在-2,-a 上是减函数;(2)a =2,f x 在-∞,+∞ 上是增函数;(3)a >2, f x 在-∞,-a ,-2,+∞ 上是增函数,在-a ,-2 上是减函数.类型六:f x 定义域不是R ,f x =0可化为双根型二次方程思路:根据根是否在定义域内及根的大小进行分类例6.讨论f x =12x 2-a 2+1a x +ln x 的单调性分析:f x =x -a x -1a x x >0 ,f x =0根的情况转化为x -a x -1a=0在0,+∞ 上根的情况.步骤一:讨论a <0(根不在定义域内).步骤二:讨论a >0(根据a ,1a的大小再分0<a <1,a =1,a >1)答案:(1)a <0,f x 在0,+∞ 上是增函数;(2)0<a <1,f x 在0,a ,1a ,+∞ 上是增函数,在a ,1a上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1a ,a ,+∞ 上是增函数,在1a,a 上是减函数.类型七:f x 定义域是R ,f x =0可化为双根型类二次方程思路:根据根的个数及根的大小进行分类例7.讨论f x =ax 3-a +32x 2+x -1的单调性分析:f x =3x -1 ax -1 ,f x =0根的情况转化为3x -1 ax -1 =0根的情况.步骤一:讨论a =0(ax -1=0无实根);步骤二:讨论a <0,此时13>1a ;步骤三:讨论a >0(根据13,1a的大小再分0<a <3,a =3,a >3)答案:(1)a =0,f x 在0,13 上是增函数,在13,+∞ 上是减函数;(2)a <0, f x 在0,1a ,13,+∞ 上是减函数,在1a ,13 上是增函数;(3)0<a <3,f x 在0,13 ,1a ,+∞ 上是增函数,在13,1a上是减函数;(4)a =3,f x 在-∞,+∞ 上是增函数;(5)a >3, f x 在0,1a ,13,+∞ 上是增函数,在1a ,13上是减函数.提醒:对于类二次方程,不要忽略对x 2项的系数为零的讨论类型八:f x 定义域不是R ,f x =0可化为双根型类二次方程思路:根据根是否在定义域内、根的个数及根的大小进行分类例8.讨论f x =12ax 2-a +1 x +ln x 的单调性分析:f x =x -1 ax -1 xx >0 ,f x =0根的情况转化为x -1 ax -1 =0x >0 根的情况.步骤一:讨论a =0(有1个根).步骤二:讨论a <0(1a 不在定义域内)步骤三:讨论a >0(1,1a 均在定义域内,根据1,1a的大小再分0<a <1,a =1,a >1)答案:(1)a ≤0,f x 在0,1 上是增函数,在1,+∞ 上是减函数;(步骤一二合并)(2)0<a <1,f x 在0,1 ,1a ,+∞ 上是增函数,在1,1a 上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1a ,1,+∞ 上是增函数,在1a,1 上是减函数.类型九:f x =0先化为指数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例9.讨论f x =a x -2 e x -12x -1 2的单调性分析:f x =x -1 ae x -1 ,f x =0根的情况转化为x -1 ae x -1 =0根的情况.步骤一:讨论a ≤0(有1个根).步骤二:讨论a >0,f x =x -1 ae x -1 的拟合函数为y =x -1 x +ln a (根据1,-ln a 的大小再分0<a <1e ,a =1e ,a >1e)答案:(1)a ≤0,f x 在-∞,1 上是增函数,在1,+∞ 上是减函数;(2)0<a <1e ,f x 在-∞,1 ,-ln a ,+∞ 上是增函数,在1,-ln a 上是减函数;(3)a =1e ,f x 在-∞,+∞ 上是增函数;(4)a >1e , f x 在-∞,-ln a ,1,+∞ 上是增函数,在-ln a ,1 上是减函数.类型十:f x =0先化为对数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例10.讨论f x =x 2-2ax ln x -12x 2+2ax +1的单调性分析:f x =x -a ln x x >0 的拟合函数为x -a x -1 (根据a 与0,1大小分类)步骤一:讨论a ≤0(x -a >0).步骤二:讨论a >0, (再分0<a <1,a =1,a >1)答案:(1)a ≤0,f x 在0,1 上是减函数,在1,+∞ 上是增函数;(2)0<a <1,f x 在0,a ,1,+∞ 上是增函数,在a ,1 上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1 ,a ,+∞ 上是增函数,在1,a 上是减函数.三、典例展示例1.(2023届四川省内江市高三零模考试)已知函数f (x )=x +a ln x ,a ∈R(1)讨论f x 的单调性;(2)若不等式f x ≤x 2+x 对任意x ∈(1,+∞)恒成立,求a 的最大值.【解析】 (1)f '(x )=1+a x =x +a xx >0 ,当a ≥0时,f '(x )>0恒成立,∴f (x )在(0,+∞)上单调递增;当a <0时,令f '(x )>0得x >-a ,令f '(x )<0得0<x <-a ,∴f (x )在(-a ,+∞)上单调递增,在0,-a 上单调递减;综上所述:当a ≥0时, f (x )在(0,+∞)上单调递增;当a <0时, f (x )在(-a ,+∞)上单调递增,在0,-a 上单调递减;(2)依题意得:f x ≤x 2+x 对任意x ∈(1,+∞)恒成立,等价于a ≤x 2ln x x >1 恒成立.令g x =x 2ln x x >1 ,则g 'x =2x ln x -x ln x 2=x 2ln x -1 ln x2,则当x >e 时,g 'x >0,当1<x <e 时,g 'x <0,又g 'e =0,∴g x 在1,e 上单调递减,在e ,+∞ 上单调递增,∴g x min =g e =2e ,∴a ≤2e ,即a 的最大值为2e .例2.(2022届湖北省部分学校高三下学期5月适应性考试)已知函数f x =x +1 e x -ax 2-4ax a ∈R (e 为自然对数的底数).(1)若a >0时,求函数f x 的单调区间.(2)是否存在实数a ,使得x ≥0时,f x ≥xe x +1-a x 2+cos x -2ax 恒成立?若存在,求出实数a 的取值范围;若不存在,说明理由.【解析】 (1)由题知f (x )=(x +2)e x -2ax -4a =(x +2)e x -2a ,①若0<a <12e2,则ln2a <-2,当x <ln2a 或x >-2时,f (x )>0,当ln2a <x <-2时,f (x )<0,∴f (x )在(-∞,ln2a ),(-2,+∞)上单调递增,在(ln2a ,-2)上单调递减;②若a =12e 2,则ln2a =-2,f (x )≥0,∴f (x )在(-∞,+∞)上单调递增;③若a >12e2,则ln2a >-2,当x <-2或x >ln2a 时,f (x )>0,当-2<x <ln2a 时,f (x )<0,∴f (x )在(-∞,-2),(ln2a ,+∞)上单调递增,在(-2,ln2a )上单调递减.综上所述,当0<a <12e 2时,f (x )的单调增区间为(-∞,ln2a ),(-2,+∞),单调减区间为(ln2a ,-2);当a =12e 2时,f (x )的单调增区间为(-∞,+∞);当a >12e2时,f (x )的单调增区间为(-∞,-2),(ln2a ,+∞),单调减区间为(-2,ln2a ).(2)设g (x )=f (x )-xe x -(1-a )x 2-cos x +2ax =e x -x 2-2ax -cos x (x ≥0),则g (x )=e x -2x -2a +sin x ,设h (x )=e x -2x -2a +sin x (x ≥0),则h (x )=e x +cos x -2,设m (x )=e x +cos x -2(x ≥0),则m (x )=e x -sin x >0,∴m (x )在[0,+∞)上单调递增,∴h (x )=m (x )≥m (0)=0,∴h (x )在[0,+∞)上单调递增,∴g (x )=h (x )≥h (0)=1-2a ,当a ≤12时,g (x )≥0,∴g (x )在[0,+∞)上单调递增,∴g (x )≥g (0)=0;当a >12时,g (0)=1-2a <0,令t (x )=e x -x 2(x >0),则t (x )=e x -2x >0(x >0),所以t (x )在(0,+∞)上单调递增,所以t (x )>t (0)=1,所以e x >x 2(x >0),所以g (6a )=e 6a -14a +sin6a >36a 2-14a -1,设φ(a )=36a 2-14a -1a >12 ,易知φ(a )在12,+∞ 上单调递增,∴φ(a )>36×14-14×12-1=1>0,即g (6a )>0,∴存在x 0∈(0,6a ),使g x 0 =0,当0<x <x 0时,g (x )<0,∴g (x )在0,x 0 上单调递减,此时,g (x )<g (0)=0,不符合题意;综上,存在实数a ,使得当x ≥0时,f (x )≥xe x +(1-a )x 2+cos x -2ax 恒成立,且实数a 的取值范围为-∞,12 .例3.(2023届湖北省新高三摸底联考)已知a ≥0,函数f x =ax +1+a x-ln x .(1)讨论函数f x 的单调性;(2)如果我们用n -m 表示区间m ,n 的长度,试证明:对任意实数a ≥1,关于x 的不等式f x <2a +1的解集的区间长度小于2a +1.【解析】 (1)f x =ax +a +1x-ln x ,定义域为0,+∞ ,f x =a -a +1x 2-1x =ax 2-x -a +1 x 2=x +1 ax -a -1 x 2.若a =0,f x =-x +1 x 2<0恒成立,所以f x 在0,+∞ 上单调递减;若a >0,f x =a x +1 x -1-1a x 2,1+1a >0,当x ∈0,1+1a 时,f x <0;当x ∈1+1a ,+∞ 时,f x >0,所以f x 在0,1+1a 上单调递减,在1+1a ,+∞ 上单调递增.综上,a =0时,f x 在0,+∞ 上单调递减;a >0时,f x 在0,1+1a 上单调递减,在1+1a,+∞ 上单调递增.(2)令g x =f x -2a +1 =ax +a +1x -ln x -2a -1,则g 1 =0,因为a ≥1,由(1)知,g x 在0,1+1a 上单调递减,在1+1a ,+∞ 上单调递增,又1+1a >1,所以g 1+1a <0,令h a =g 2a +2 =2a 2-12-ln 2a +2 ,a ∈1,+∞ ,由h a =4a -22a +2=4a 2+4a -1a +1>0恒成立,所以h a 在1,+∞ 上单调递增.又e 3>16,所以e 316>1,即e 324>1.从而h 1 =32-ln4=ln e 324>0,所以h a >h 1 >0,即g 2a +2 >0.因为2a +2>2,1+1a <2,所以2a +2>1+1a ,所以存在唯一x 1∈1+1a ,2a +2 ,使得g x 1 =0,所以g x <0的解集为1,x 1 ,即f x <2a +1的解集为1,x 1 ,又1,x 1 的区间长度为x 1-1<2a +2 -1=2a +1,原命题得证.例4.(2022届青海省西宁市高三下学期第三次模拟)已知函数f x =x ln x -a 2x 2-x +a a ∈R .(1)讨论函数f x 在0,+∞ 上的单调性;(2)已知x 1,x 2是函数f x 的两个不同的极值点,且x 1<x 2,若不等式e 1+λ<x 1x 2λ恒成立,求正数λ的范围.【解析】 (1)f x =x ln x -a 2x 2-x +a ,所以f x =ln x -ax ,令g x =ln x -ax ,故g x =1x -a =1-ax xx >0 .当a ≤0时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,即f x 在0,+∞ 上单调递增;当a >0时,令g x >0,得0<x <1a ,令g x <0,得x >1a ,所以g x 在0,1a 上单调递增,在1a ,+∞ 上单调递减,即f x 在0,1a 上单调递增,在1a,+∞ 上单调递减.综上所述:当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,1a 上单调递增,在1a,+∞ 上单调递减.(2)e 1+λ<x 1x 2λ等价于1+λ<ln x 1+λln x 2,由题意可知x 1,x 2分别是方程f x =0的两个根,即ln x -ax =0的两个根,即ln x 1=ax 1,ln x 2=ax 2,原式等价于1+λ<ax 1+λax 2=a x 1+λx 2 .因为λ>0,0<x 1<x 2,所以原式等价于a >1+λx 1+λx 2,又ln x 1=ax 1,ln x 2=ax 2,作差得,ln x 1x 2=a x 1-x 2 ,即a =ln x 1x 2x 1-x 2,所以原式等价于ln x 1x 2x 1-x 2>1+λx 1+λx 2,因为0<x 1<x 2,所以ln x 1x 2<1+λ x 1-x 2 x 1+λx 2恒成立.令t =x 1x 2,t ∈0,1 ,则不等式ln t <1+λ t -1 t +λ在t ∈0,1 上恒成立,令m t =ln t -1+λ t -1 t +λ,又因为m t =1t -1+λ 2t +λ2=t -1 t -λ2 t t +λ 2,当λ2≥1时,可得t ∈0,1 时,m t >0,所以m t 在0,1 上单调递增,又因为m 1 =0,m t <0在0,1 上恒成立,符合题意;当λ2<1时,可得t ∈0,λ2 时,m t >0,t ∈λ2,1 时,m t <0,所以m t 在0,λ2 上单调递增,在λ2,1 上单调递减,又因为m 1 =0,所以m t 在0,1 上不能恒小于0,不符合题意,舍去.综上所述,若不等式e 1+λ<x 1x 2λ恒成立,只需满足λ2≥1,由于λ>0,所以λ≥1,即实数λ的取值范围为:1,+∞ .四、跟踪检测1.(2023届河南省安阳市高三上学期名校调研摸底考试)已知函数f x =e x -ax +b .(1)当b =0时,讨论f x 的单调性;(2)当a >0时,若f x ≥0,求b 的最小值.【解析】 (1)当b =0时,f x =e x -ax ,f x =e x -a ,当a ≤0时,f x =e x -a >0,f x 在R 上单调递增;当a >0时,令f x =0有x =ln a ,当x ∈-∞,ln a 时,f x <0,f x 单调递减,当x ∈ln a ,+∞ 时,f x >0,f x 单调递增.(2)当a >0时,由(1)若f x ≥0,则f ln a ≥0有解即可,即a -a ln a +b ≥0有解,即b ≥a ln a -a 有解,设g a =a ln a -a ,则g a =ln a ,故当0<a <1时,g a <0,g a 单调递减;当a >1时,g a >0,g a 单调递增.故g min a =ln1-1=-1,故当b ≥a ln a -a min =-1.故b 的最小值为-12.(2023届三省三校高三第一次联考)已知函数f (x )=(1-m )x -ln x .(1)讨论f (x )的单调性;(2)若m =0,设g x =f x +2-x e x 在12,1上的最小值为n ,求证:(n -3)(n -4)<0 .【解析】 (1)f (x )=1-m -1x =(1-m )x -1xx >0 .①当1-m ≤0,即m ≥1时:f (x )<0恒成立.故f (x )在(0,+∞)上单调递减.②当1-m >0,即m <1时:令f (x )<0,即(1-m )x -1x <0,解得:0<x <11-m ;所以f (x )在0,11-m上单调递减,在11-m ,+∞ 上单调递增.综上所述:当m ≥1时:f (x )在(0,+∞)上单调递减;当m <1时:f (x )在0,11-m 上单调递减,在11-m ,+∞ 上单调递增.(2)当m =0时,g x =x -ln x +2-x e x ,x ∈12,1 .g x =1-1x -e x +2-x e x =x -1x +1-x e x =1-x e x -1x .因为m x =e x -1x 在12,1 上单调递增,且m 12 =e -2<0,m 1 =e -1>0.所以必存在点x 0∈12,1 ,使g (x 0)=0,即e x 0=1x 0⇒x 0=-ln x 0且当x ∈12,x 0 时g (x )<0,当x ∈x 0,1 时g (x )>0,所以g (x )在区间12,x 0 上单调递减,在区间x 0,1 上单调递减.所以n =g x min =g x 0 =x 0-ln x 0+2-x 0 e x 0=2x 0+2-x 0x 0=2x 0+2x 0-1.x 0∈12,1 .又因n =2x 0+2x 0-1在12,1 上单调递减.所以2+2-1<n <2×12+2×2-1⇒3<n <4.故(n -3)(n -4)<0恒成立.3.(2022届四川省内江市第六中学高三下学期仿真考试)已知函数f x =x -a -1 e x -x 2+2ax a ∈R .(1)讨论f x 的单调性;(2)从下面两个条件中选一个,判断f m 的符号,并说明理由.①0<a <12,0<m <ln2;②1<a <2,1<m <2.【解析】 (1)f x =(x -a )e x -2x +2a =(x -a )e x -2 ,令f x =0,则x =a 或ln2,若a =ln2,f x ≥0,所以函数f x 在R 上为增函数;若a >ln2,当x >a 或x <ln2时,f x >0,当ln2<x <a 时,f x <0,所以函数f x 在(-∞,ln2)和(a ,+∞)上递增,在(ln2,a )上递减;若a <ln2,当x >ln2或x <a 时,f x >0,当a <x <ln2时,f x <0,所以函数f x 在(-∞,a )和(ln2,+∞)上递增,在(a ,ln2)上递减;综上所述,当a =ln2时,函数f x 在R 上为增函数;当a >ln2时,函数f x 在(-∞,ln2)和(a ,+∞)上递增,在(ln2,a )上递减;当a <ln2时,函数f x 在(-∞,a )和(ln2,+∞)上递增,在(a ,ln2)上递减;(2)选①,当0<a <12,0<m <ln2时,由(1)知f x 在(0,a )上递增,在(a ,ln2)上递减,所以f (m )≤f (a )=-e a +a 2,令g (a )=e a -a -10<a <12 ,则g (a )=e a -1,当0<a <12时,g (a )>0,得函数g (a )在0,12上单调递增,所以g (a )>g (0)=0,即e a -a -1>0,则-e a <-a -1,所以f (a )=-e a +a 2<a 2-a -1=a -12 2-54<-1<0,所以f m <0.选②,当1<a <2,1<m <2时.由(1)得1<a <2时,f x 在1,a 上递减,在a ,2 上递增,又f 1 =-ae -1+2a =2-e a -1<0,f 2 =1-a e 2-4+4a <41-a -4+4a =0,所以当1<x <2时,f x <0,所以f m <0.4.(2022届华大新高考联盟名校高考押题卷)设函数f x =1+a ln x x ,其中a ∈R .(1)当a ≥0时,求函数f x 的单调区间;(2)若f x ≤x 2,求实数a 的取值范围.【解析】 (1)f (x )=1+a ln x x(x >0),f (x )=a -(1+a ln x )x 2=a -1-a ln x x 2.当a =0时,f (x )=a -(1+a ln x )x 2=-1x2<0恒成立,则f x 在0,+∞ 上为减函数,当a >0时,令f (x )>0,可得a -1-a ln x >0,则ln x <a -1a,解得0<x <e a -1a ,令f (x )<0,解得x >e a -1a ,综上,当a =0时,f x 的减区间为0,+∞ ;当a >0时,f x 的单调递增区间为0,ea -1a ,单调递减区间为e a -1a ,+∞ .(2)由f (x )≤x 2,可得x 3-a ln x -1≥0设g (x )=x 3-a ln x -1(x >0),则g (x )=3x 2-a x =3x 3-a x.①当a ≤0时,g x >0,g x 单调递增,而g 12=18-a ln 12-1=-78+a ln2<0,所以不满足题意,②当a >0时,令g (x )=3x 3-a x=0,解得x =3a 3,当x ∈0,3a 3 时,g x <0,g x 为减函数,当x ∈3a 3,+∞ 时,g x >0,g x 为增函数,所以g(x)≥g3a3=13+13ln3a-13a ln a-1.令h(a)=13+13ln3a-13a ln a-1(a>0),h (a)=13+13ln3-13(ln a+1)=13(ln3-ln a),当a∈0,3时,h a >0,h a 为增函数,当a∈3,+∞时,h a <0,g x 为减函数,所以h a ≤h3 =0,又g x ≥h a ≥0.则h a =0,解得a=3,所以实数a的取值范围是3 .5.(2022届湖北省卓越高中千校联盟高三高考终极押题卷)已知f x =a-1ln x+x+a x(1)若a<0,讨论函数f x 的单调性;(2)g x =f x +ln x-a x有两个不同的零点x1,x20<x1<x2,若g2x1+λx22+λ>0恒成立,求λ的范围.【解析】(1)f x 定义域为0,+∞f x =a-11x+1-ax2=x2+a-1x-ax2=x+ax-1x2ⅰ)0<-a<1即-1<a<0时,f x <0⇒-a<x<1,f x >0⇒0<x<-a或x>1ⅱ)-a=1即a=-1时,x∈0,+∞,f x ≥0恒成立ⅲ)-a>1即a<-1,f x <0⇒1<x<-a,f x >0⇒0<x<1或x>-a综上:-1<a<0时,x∈-a,1,f x 单调递减;0,-a、1,+∞,f x 单调递增a=-1时,x∈0,+∞,f x 单调递增a<-1时,x∈1,-a,f x 单调递减;0,1、-a,+∞,f x 单调递增(2)g x =a ln x+x,由题a ln x1+x1=0a ln x2+x2=0,0<x1<x2则a ln x1-ln x2=x2-x1,设t=x1x2∈0,1∴a=x2-x1ln x1-ln x2=x2-x1ln tg x =a x+1∴g2x1+λx22+λ=a2+λ2x1+λx2+1=x2-x1ln t⋅2+λ2x1+λx2+1=2+λ1-t2t+λln t+1>0恒成立t∈0,1,∴ln t<0∴2+λ1-t2t+λ+ln t<0恒成立设h t =2+λ1-t2t+λ+ln t,∴h t <0恒成立h t =1t -2+λ 22t +λ2=2t +λ 2-t 2+λ 2t 2t +λ 2=4t -1 t -λ24 t 2t +λ 2ⅰ)λ2≥4时,t -λ24<0,∴h t >0,∴h t 在0,1 上单调递增∴h t <h 1 =0恒成立,∴λ∈-∞,-2 ∪2,+∞ 合题ⅱ)λ2<4,t ∈0,λ24,∴h t >0,∴h t 在0,λ24上单调递增t ∈λ24,1 时,h t <0,∴h t 在λ24,1 上单调递减∴t ∈λ24,1 ,h t >h 1 =0,不满足h t <0恒成立综上:λ∈-∞,-2 ∪2,+∞6.(2022届河南省许平汝联盟高三下学期核心模拟卷)已知函数f x =ln x -ax 2+2a ∈R .(1)讨论f x 的单调性;(2)若f x -2-a x ≥0在x ∈1,e 上恒成立,求实数a 的取值范围.【解析】 (1)f x 的定义域是0,+∞ ,f x =-2ax 2+1x.①当a ≤0时,f x >0恒成立,所以f x 在0,+∞ 上单调递增;②当a >0时,令f x =0,解得x =2a 2a 或-2a 2a (舍),令f x >0,解得0<x <2a 2a,令f x <0,解得x >2a 2a,所以f x 在0,2a 2a上单调递增,在2a 2a ,+∞ 上单调递减.(2)若f x -2-a x ≥0在x ∈1,e 上恒成立,即ln x -ax 2-2-a x +2≥0在x ∈1,e 上恒成立.令g x =ln x -ax 2-2-a x +2,x ∈1,e ,则g x =1x -2ax -2-a =-2ax 2-2-a x +1x =-ax +1 2x -1 x.当a =0时,g x =ln x -2x +2,g e =ln e -2e +2=3-2e <0,不符合题意;当a >0时,g x <0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递减,又g 1 =0,所以g e <g 1 =0,不符合题意;当a <0时,若-1a≤1,即a ≤-1,g x ≥0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递增,又g 1 =0,所以g x ≥0在x ∈1,e 上恒成立,符合题意.若1<-1a <e ,即-1<a <-1e ,令g x >0,解得-1a <x <e ,令g x <0,解得1<x <-1a ,所以g x 在1,-1a 上单调递减,在-1a ,e 上单调递增,所以g x min =g -1a<g 1 =0,不符合题意;若-1a ≥e ,即-1e≤a <0,g x ≤0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递减,又g 1 =0,所以g e <g 1 =0,不符合题意.综上所述,实数a 的取值范围是-∞,-1 .7.(2022届广东省潮州市瓷都中学高三下学期第三次模拟)已知函数f x =2x 3+31+m x 2+6mx x ∈R .(1)讨论函数f x 的单调性;(2)若f 1 =5,函数g x =a ln x +1 -f x x 2≤0在1,+∞ 上恒成立,求整数a 的最大值.【解析】 (1)f x =6x 2+61+m x +6m =6x 2+1+m x +m =6(x +1)(x +m )若m =1时,f (x )≥0,f (x )在R 上单调递增;若m >1时,-m <-1,当x <-m 或x >-1时,f (x )>0,f (x )为增函数,当-m <x <-1时,f (x )<0,f (x )为减函数,若m <1时,-m >-1,当x <-1或x >-m 时,f (x )>0,f (x )为增函数,当-1<x <-m 时,f (x )<0,f (x )为减函数.综上,m =1时,f (x )在R 上单调递增;当m >1时,f (x )在(-∞,-m )和(-1,+∞)上单调递增,在(-m ,-1)上单调递减;当m <1时,f (x )在(-∞,-1)和(-m ,+∞)上单调递增,在(-1,-m )上单调递减.(2)由f (1)=2+3(1+m )+6m =5,解得 m =0,所以f (x )=2x 3+3x 2,由x ∈(1,+∞)时,ln x +1>0,可知g (x )=a (ln x +1)-2x -3≤0在(1,+∞)上恒成立可化为a ≤2x +3ln x +1在x ∈(1,+∞)上恒成立,设h (x )=2x +3ln x +1(x >1),则h (x )=2(ln x +1)-(2x +3)×1x (ln x +1)2=2ln x -3x (ln x +1)2,设φ(x )=2ln x -3x (x >1),则 φ (x )=2x +3x2>0,所以φ(x )在(1,+∞)上单调递增,又φ(2)=2ln2-32=ln16-32<0,φ52 =2ln 52-65=25ln 52-3 5>0,所以方程h (x )=0有且只有一个实根x 0,且 2<x 0<52,2ln x 0=3x 0,所以在(1,x 0)上,h (x )<0, h (x )单调递减,在x 0,+∞ 上,h (x )>0,h (x )单调递增,所以函数h (x )的最小值为h x 0 =2x 0+3ln x 0+1=2x 0+332x 0+1=2x 0∈4,5 ,从而a ≤2x 0,又a 为整数,所以a 的最大值为4.8.(2022四川省资阳市高三第一次质量检测)已知函数f (x )=(x -a -1)e x -12ax 2+a 2x .(1)讨论f (x )的单调性;(2)若f (x )在(-∞,0)上只有一个极值,且该极值小于-e a -1,求a 的取值范围.【解析】(1)由题意,函数f (x )=(x -a -1)e x -12ax 2+a 2x ,可得f (x )=(x -a )e x -ax +a 2=(x -a )e x -a ,当a ≤0时,e x -a >0,令f (x )<0,解得x <a ;令f (x )>0,解得x >a ,故f (x )在(-∞,a )递减,在(a ,+∞)递增,当a >0时,令f (x )=0,解得x 1=a 或x 2=ln a ,设g (a )=a -ln a ,可得g (a )=a -1a,当a >1时,g (a )>0;当0<a <1时,g (a )<0,故g (x )min =g (1)=1>0,故a >ln a ,由f (x )>0,解得x >a 或x <ln a ,由f (x )<0,解得ln a <x <a ,故f (x )在(-∞,ln a )递增,在(ln a ,a )递减,在(a ,+∞)递增,综上可得:当a ≤0时,f (x )在(-∞,a )递减,在(a ,+∞)递增,a >0时,f (x )在(-∞,ln a )递增,在(ln a ,a )递减,在(a ,+∞)递增;(2)当a <0时,由(1)知,f (x )在(-∞,a )递减,在(a ,+∞)递增,故f x 极小值=f (a )=-e a +12a 3<-e a -1,解得a <-32,当0<a <1时,ln a <0,由(1)知f (x )在x =ln a 处取极大值,设h (a )=f (ln a )=(ln a -a -1)a -12a ln 2a +a 2ln a =a ln a 1-12ln a +a -a 2-a ,则h (a )=-12ln 2a +2a ln a -a ,因为0<a <1,可得ln a <0,所以h (a )<0,h (a )在(0,1)递减,所以h (a )>h (1)=-2>-e a -1,所以0<a <1不合题意,当a ≥1时,ln a ≥0,由(1)知f (x )在(-∞,0)递增,此时f (x )在(-∞,0)无极值,不符合题意,综上可得,实数a 的取值范围是(-∞,-32).9.(2021重庆市第八中学高三下学期高考适应性考试)已知函数f x =x +ln x -a x,g x =a -2x ln x +x .(1)讨论f x 的单调性;(2)若a ∈1,4 ,记f x 的零点为x 1,g x 的极大值点为x 2,求证:x 1<x 2·【解析】(1)f x 的定义域为0,+∞ ,f ′x =1+1x +a x 2=x 2+x +a x 2,当a ≥0时,f ′x >0,f x 在0,+∞ 上单调递增:当a <0时,Δ=1-4a >0,f ′x =0在0,+∞ 上有唯一正根-1+1-4a 2,当x ∈0,-1+1-4a 2时,f ′x <0,单调递减;当x ∈-1+1-4a 2,+∞ 时,f ′x >0,f x 单调递增;综上,当a ≥0时,f x 在0,+∞ 上单调递增;当a <0时,f x 在0,-1+1-4a 2 上单调递减;在-1+1-4a 2,+∞ 上单调递增.(2)由(1)知,当a ∈1,4 时,f x 在0,+∞ 上单调递增,且f 1 =1-a <0,f 2 =2+ln2-a 2>0,所以f x 在0,+∞ 上有唯一零点x 1∈1,2 .又g ′x =-2ln x +a x -1,又a ∈1,4 ,由单调性运算性质可知,g ′x 在0,+∞ 上单调递减,且g ′1 =a -1>0,g ′4 =-2ln4+a 4-1<0,故存在x 0∈1,4 ,使得g ′x 0 =0,即a x 0=2ln x 0+1,当x ∈0,x 0 时,g ′x >0,g x 单调递减;当x ∈x 0,+∞ 时,g ′x <0,g x 单调递增;所以x 0是g x 唯一极大值点,所以x 0=x 2,故a x 2=2ln x 2+1,因此f x 2 =x 2+ln x 2-a x 2=x 2+ln x 2-2ln x 2-1=x 2-ln x 2-1.设h x =x -ln x -1,因为x ∈1,4 ,h ′x =1-1x >0,所以h ′x 在1,4 上单调递增,所以h x >h 1 =0.故有f x 2 >0=f x 1 ,又f x 在0,+∞ 上单调递增,所以x 1<x 2.10.(2021山东省烟台市高三高考适应性练习)已知函数f x =a x 2-x -ln x a ∈R .(1)讨论函数f x 的单调性;(2)证明:当x >1时,2e x -1ln x ≥x 2+1x 2-x.【解析】(1)函数f x 的定义域为0,+∞ ,f x =a 2x -1 -1x =2ax 2-ax -1x.令g x =2ax 2-ax -1.①当a =0时,g x =-1<0,f x =g x x<0,故f x 在0,+∞ 单调递减;②当a ≠0时,g x 为二次函数,Δ=a 2+8a .若Δ≤0,即-8≤a <0,则g x 的图象为开口向下的抛物线且g x ≤0,所以f x ≤0,故f x 在0,+∞ 单调递减;若Δ>0,即a <-8或a >0,令g x =0,得x 1=a -a 2+8a 4a ,x 2=a +a 2+8a 4a.当a <-8时,g x 图象为开口向下的抛物线,0<x 2<x 1,所以当x ∈0,x 2 或x ∈x 1,+∞ 时,g x <0,所以f x <0,f x 单调递减;当x ∈x 2,x 1 时,g x >0,所以f x >0,f x 单调递增;当a >0时,g x 图象为开口向上的抛物线,x 1<0<x 2,所以当x ∈0,x 2 ,g x ≤0,所以f x <0,故f x 单调递减;当x ∈x 2,+∞ 时,g x >0,所以f x >0,f x 单调递增.综上,当a <-8时,f x 在0,a +a 2+8a 4a 和a -a 2+8a 4a ,+∞上单调递减,在a +a 2+8a 4a ,a -a 2+8a 4a上单调递增;当a >0时,f x 在0,a +a 2+8a 4a 单调递减,在a +a 2+8a 4a ,+∞上单调递增;当-8≤a ≤0,f x 在0,+∞ 单调递减;(2)由(1)知,当a =1时,f x 在0,1 单调递减,在1,+∞ 单调递增,因此对∀x >1恒有f x >f 1 ,即x 2-x >ln x .因为0<ln x <x 2-x ,若2e x -1≥x 2+1成立,则2e x -1ln x ≥x 2+1x 2-x 成立.令φx =e x -1-12x 2+1 x ≥1 ,则φ x =e x -1-x ,φ x =e x -1-1.因为x ≥1,所以φ x ≥0,所以φ x 在1,+∞ 单调递增,又φ 1 =0,所以当x ≥1时,φ x ≥0,所以φx 在1,+∞ 单调递增,又φ1 =0,所以对∀x >1恒有φx >φ1 =0,即2e x -1≥x 2+1.1ln x>1x2-x>0,由不等式的基本性质可得2e x-1ln x≥x2+1x2-x.当x>1时,0<ln x<x2-x,则。
导数与函数的单调性附答案
1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)解析:选D.由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-1<x <2; ②f ′(x )<0时,x <-1或x >2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )解析:选C .根据信息知,函数f (x )在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C .3.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D.由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析:选A .因为f (x )=x sin x , 所以f (-x )=(-x )sin(-x )=x sin x =f (x ). 所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3. 又x ∈⎝⎛⎭⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数. 所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3.所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A . 5.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)解析:选B .由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2. 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B .6.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)7.(2018·张掖第一次诊断考试)若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-ax +1,因为函数f (x )在区间(12,3)上单调递减,所以f ′(x )≤0在区间(12,3)上恒成立,所以⎩⎪⎨⎪⎧f ′(12)≤0f ′(3)≤0,即⎩⎪⎨⎪⎧14-a 2+1≤09-3a +1≤0,解得a ≥103,所以实数a 的取值范围为[103,+∞).答案:[103,+∞)8.(2017·高考江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a-1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数,又f ′(x )=3x 2-2+e x +1ex ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增,所以不等式f (a -1)+f (2a 2)≤0⇔f (a -1)≤-f (2a 2)=f (-2a 2)⇔a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂。
第21讲 利用导数研究函数的单调性(解析版)
第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。
高一数学利用导数研究函数的单调性试题答案及解析
高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.已知函数(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;【答案】(1)详见解析(2).【解析】(1)求出函数的导数,只要解导数的不等式即可,根据导数与0的关系判断函数的单调性;(2)函数f(|x|)是偶函数,只要f(x)>0对任意x≥0恒成立即可,等价于f(x)在[0,+∞)的最小值大于零.试题解析:解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是. 4(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在依题意,,又.综合①,②得,实数的取值范围是.【考点】1.利用导数求闭区间上函数的最值;2.利用导数研究函数的单调性..3.已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).【答案】(1)f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)ⅰ. 7分ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。
若时, f(x)有极大值点,无极小值点。
【解析】(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,,故,f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
(完整版)导数讨论含参单调性习题(含详解答案).doc
1.设函数.( 1)当时,函数与在处的切线互相垂直,求的值;( 2)若函数在定义域内不单调,求的取值范围;( 3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.( 1)讨论的单调性;( 2)当时,证明:;( 3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).( 1)当时,若在其定义域内为单调函数,求的取值范围;( 2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.( 1)讨论函数的单调性;( 2)若存在两个极值点,求证:无论实数取什么值都有.5 .已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数 .( 1)求的值;( 2)若在及所在的取值范围上恒成立,求的取值范围;6.已知函数ln , x ,其中.f x ax x F x e ax x 0, a 0( 1)若f x 和 F x 在区间 0,ln3 上具有相同的单调性,求实数 a 的取值范围;( 2)若a , 1 ,且函数 g x xe ax 1 2ax f x 的最小值为 M ,求 M 的e2最小值 .7.已知函数 f ( x) e x m ln x .( 1)如x 1 是函数 f (x) 的极值点,求实数m 的值并讨论的单调性 f (x) ;( 2)若x x0是函数f ( x)的极值点,且f ( x) 0 恒成立,求实数m 的取值范围(注:已知常数 a 满足 a ln a 1 ) .8.已知函数 f x ln 1 mx x2mx ,其中0 m 1 .2( 1)当m 1时,求证: 1 x 0 时, f x x3;3( 2)试讨论函数y f x 的零点个数.9.已知e 是自然对数的底数 , F x 2e x 1 x ln x, f x a x 1 3 .(1)设T x F x f x , 当a 1 2e 1时, 求证: T x 在 0, 上单调递增;(2)若x 1, F x f x , 求实数a的取值范围 .10 .已知函数f x e x ax 2(1)若a 1 ,求函数f x 在区间[ 1,1]的最小值;(2)若a R, 讨论函数 f x 在 (0, ) 的单调性;(3)若对于任意的x1, x2 (0, ), 且 x1 x2,都有 x2 f ( x1) a x1 f ( x2 ) a 成立,求 a 的取值范围。
高三复习:导数与函数的单调性、极值最值(含解析答案)
3.2导数与函数的单调性、极值、最值知识梳理:1.函数的单调性在某个区间(a,b)内,如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递增;如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法:一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤:3.函数的最值试一试:1.函数f(x)=x2-2ln x的单调减区间是________.2.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.考点二 利用导数求函数的极值例2 设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点; (2)若f (x )为R 上的单调函数,求a 的取值范围.考点三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.变式1 已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.考点4 含有参数的分类讨论例4:已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间; (2)当a >0时,求函数f (x )在[1,2]上的最小值.课堂练习:1.函数f (x )=e x -x 的单调递增区间是________.2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 4.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间; (3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.导数与函数的单调性、极值、最值后作业1.函数y =(3-x 2)e x 的单调递增区间是________.2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.5.函数y =12x 2-ln x 的单调递减区间为________.6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.9.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.10.设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.导数与函数的单调性、极值、最值教师版知识梳理 1.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤: ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值. 试一试1.函数f (x )=x 2-2ln x 的单调减区间是________. 答案 (0,1)解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.答案(-1,+∞)解析设m(x)=f(x)-(2x+4),∵m′(x)=f′(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.思维点拨函数的单调性和函数中的参数有关,要注意对参数的讨论.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上单调递增,若a>0,令e x-a≥0,则e x≥a,x≥ln a.因此当a≤0时,f(x)的单调增区间为R,当a>0时,f(x)的单调增区间为[ln a,+∞).(2)∵f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.∴e-2<e x<e3,只需a≥e3.当a=e3时,f′(x)=e x-e3<0在x∈(-2,3)上恒成立,即f(x)在(-2,3)上为减函数,∴a≥e3.故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数. 思维升华 (1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零.应注意此时式子中的等号不能省略,否则漏解. 考点二 利用导数求函数的极值 例2设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.(2014·福建三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.解 由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减, 在区间[ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .思维升华 (1)求解函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算(2)可以利用列表法研究函数在一个区间上的变化情况.变式已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.例4:已知函数f(x)=ln x-ax (a∈R).(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),[2分]①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).[4分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a , 单调递减区间为⎣⎡⎭⎫1a ,+∞.[6分] (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln2-2a .[8分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[10分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.[12分] 又f (2)-f (1)=ln2-a ,所以当12<a <ln2时,最小值是f (1)=-a ;当ln2≤a <1时,最小值为f (2)=ln2-2a .[14分] 综上可知,当0<a <ln2时,函数f (x )的最小值是-a ;当a ≥ln2时,函数f (x )的最小值是ln2-2a .[16分]1.函数f (x )=e x -x 的单调递增区间是________. 解析:∵f (x )=e x -x ,∴f ′(x )=e x -1, 由f ′(x )>0,得e x -1>0,即x >0. 答案:(0,+∞)2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.解析:因为f (x )在区间[1,e]上取得最小值4,所以至少满足f (1)≥4,f (e)≥4,解得m ≤-3e.又f ′(x )=x +mx 2,且x ∈[1,e],所以f ′(x )<0, 即f (x )在[1,e]上单调递减,所以f (x )min =f (e)=1-me=4,即m =-3e. 答案:-3e3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数, ∴Δ=4-12 m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 4.(创新题)已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23. (1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围. 解:(1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×⎝⎛⎭⎫23-1,解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c . 则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1), 列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝⎛⎭⎫-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立. 只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞). 作业1.函数y =(3-x 2)e x 的单调递增区间是________. 答案 (-3,1)解析 y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3), 由y ′>0⇒x 2+2x -3<0⇒-3<x <1,故函数y =(3-x 2)e x 的单调递增区间是(-3,1).2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 因为f ′(x )=2x (x +1)-(x 2+a )(x +1)2,因为函数f (x )在x =1处取得极大值,所以f ′(1)=3-a4=0,所以a =3.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x(x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________. 答案 -13解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13.5.函数y =12x 2-ln x 的单调递减区间为________.答案 (0,1]解析 y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′≤0,得0<x ≤1.∴函数的单调递减区间为(0,1].6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.解 因为f ′(x )=-1x 2+1x =x -1x2,令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞), f ′(x ),f (x )随x 的变化情况如下表:所以x =1时,f (x )的极小值为1,无极大值. f (x )的单调递增区间为(1,+∞), 单调递减区间为(0,1).7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1]. 由已知f (x )+f ′(x )>1,可得到g ′(x )>0, 所以g (x )为R 上的增函数; 又g (0)=e 0·f (0)-e 0-1=0, 所以e x ·f (x )>e x +1, 即g (x )>0的解集为{x |x >0}.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ). 若x <0,则1-e x >0,∴f ′(x )<0; 若x >0,则1-e x <0,∴f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立. 即实数m 的取值范围为(-∞,2-e 2).)9.(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1), 即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.10.(2014·山东)设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞). f ′(x )=x 2e x -2x e x x 4-k (-2x 2+1x ) =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 所以g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点. 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2.解得e<k <e 22.。
高二数学利用导数研究函数的单调性试题答案及解析
高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.当x变化时,f′(x),f(x)的变化情况如下:x(0,)(,+∞)-0+由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,=h(2)=-,所以a≤-.所以h(x)在[1,2]上为减函数,h(x)min故实数a的取值范围为{a|a≤-}.【考点】1.利用导数求函数的单调区间;2.根据函数的单调性求参数.2.函数的部分图象大致为( ).【答案】D【解析】,为奇函数,图像关于原点对称,排除选项B;,所以排除选项A;当时,,所以排除选项C;故选选项D.【考点】函数的图像.3.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性4.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.5.已知在R上开导,且,若,则不等式的解集为()A.B.C.D.【答案】B【解析】令,则,由,则,在上为增函数,,所以的解集为,故选B.【考点】函数的单调性与导数的关系.6.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是 ( )A.B.C.D.【答案】D.【解析】先根据可确定,进而可得到在时单调递增,结合函数,分别是定义在上的奇函数和偶函数可确定在时也是增函数.于是构造函数知在上为奇函数且为单调递增的,又因为,所以,所以的解集为,故选D.【考点】利用导数研究函数的单调性.7.在上可导的函数的图形如图所示,则关于的不等式的解集为().A.B.C.D.【答案】A【解析】由图象可知f′(x)=0的解为x=-1和x=1函数f(x)在(-∞,-1)上增,在(-1,1)上减,在(1,+∞)上增∴f′(x)在(-∞,-1)上大于0,在(-1,1)小于0,在(1,+∞)大于0当x<0时,f′(x)>0解得x∈(-∞,-1)当x>0时,f′(x)<0解得x∈(0,1)综上所述,x∈(-∞,-1)∪(0,1),故选A.【考点】函数的图象;导数的运算;其他不等式的解法.8.函数,若对于区间[-3,2]上的任意x1,x2,都有 | f(x1)-f (x2)|≤ t,则实数t的最小值是()A.20B.18C.3D.0【答案】A【解析】所以在区间,单调递增,在区间单调递减.,,,,可知的最大值为20 .故的最小值为20.【考点】利用导数求函数的单调性与最值.9.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1)极大值为(2)【解析】(1)先求导,根据在时有极值,则,可求得的值。
高三数学利用导数研究函数的单调性试题
高三数学利用导数研究函数的单调性试题1.函数在内单调递减,则实数a的范围为.【答案】.【解析】∵函数f(x)=x3-ax2+4在(0,2)内单调递减,∴f′(x)=3x2-2ax≤0在(0,2)内恒成立,即在(0,2)内恒成立,∵∴,答案为.【考点】利用导数研究函数的单调性.2.设函数,其中(1)讨论在其定义域上的单调性;(2)当时,求取得最大值和最小值时的的值.【答案】(1)在和内单调递减,在内单调递增;(2)所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.【解析】(1)对原函数进行求导,,令,解得,当或时;从而得出,当时,.故在和内单调递减,在内单调递增.(2)依据第(1)题,对进行讨论,①当时,,由(1)知,在上单调递增,所以在和处分别取得最小值和最大值.②当时,.由(1)知,在上单调递增,在上单调递减,因此在处取得最大值.又,所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.(1)的定义域为,.令,得,所以.当或时;当时,.故在和内单调递减,在内单调递增.因为,所以.①当时,,由(1)知,在上单调递增,所以在和处分别取得最小值和最大值.②当时,.由(1)知,在上单调递增,在上单调递减,因此在处取得最大值.又,所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.【考点】1.含参函数的单调性;2.含参函数的最值求解.3.设函数f(x)=ln x-ax,g(x)=e x-ax,其中a为实数.若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围.【答案】(e,+∞)【解析】解:令f′(x)=-a=<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数.同理,f(x)在(0,a-1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a-1,+∞),从而a-1≤1,即a≥1.令g′(x)=e x-a=0,得x=ln a.当x<ln a时,g′(x)<0;当x>ln a时,g′(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e.综上,a的取值范围为(e,+∞).4.已知函数.(1)当时,求曲线在点处的切线方程;(2)求函数的单调区间;(3)若对任意的都有恒成立,求实数的取值范围.【解析】(1)当时,,求出导函数,所以曲线在处的切线斜率,又,进而得出切线方程;(2)易得函数的定义域为,对函数进行求导得,令并在定义域范围内解之,即,再对其分和进行分类讨论,求得函数的单调增区间,函数的单调增区间在定义域内的补集即为函数的单调减区间;由题意得:对任意,使得恒成立,只需在区间内,,对进行分类讨论,从而求出的取值范围.(1)时,曲线在点处的切线方程(2)①当时, 恒成立,函数的递增区间为②当时,令,解得或(舍去)x( 0,)-+所以函数的递增区间为,递减区间为(3)由题意知对任意的,,则只需对任意的,①当时,在上是增函数,所以只需,而,所以满足题意;②当时,,在上是增函数, 所以只需而,所以满足题意;③当时,,在上是减函数,上是增函数,所以只需即可,而,从而不满足题意;综合①②③实数的取值范围为.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;导数在最大值、最小值中的应用.5.函数f(x)=x3+ax2+3x﹣9,已知f(x)在x=﹣3时取得极值,则a=()A.2B.3C.4D.5【答案】D【解析】∵f′(x)=3x2+2ax+3,又f(x)在x=﹣3时取得极值∴f′(﹣3)=30﹣6a=0则a=5.故选D6.已知函数在区间[-1,2]上是减函数,那么b+c( )A.有最大值B.有最大值-C.有最小值D.有最小值-【答案】B【解析】由f(x)在[-1,2]上是减函数,知,x∈[-1,2],则15+2b+2c0b+c.7.已知函数.(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.【答案】(1)m=1(讨论见解析);(2)见解析.【解析】(1).由x=0是f(x)的极值点得f '(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞),.函数在(-1,+∞)上单调递增,且f '(0)=0,因此当x∈(-1,0)时, f '(x)<0;当x∈(0,+∞)时, f '(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时, f(x)>0.当m=2时,函数在(-2,+∞)上单调递增.又f '(-1)<0, f '(0)>0,故f '(x)=0在(-2,+∞)上有唯一实根,且.当时, f '(x)<0;当时, f '(x)>0,从而当时,f(x)取得最小值.)=0得=,,由f '(x故.综上,当m≤2时, f(x)>0.8.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是()A.①③B.①④C.②③D.②④【答案】C【解析】∵f(x)=x3-6x2+9x-abc.∴f′(x)=3x 2-12x+9=3(x-1)(x-3),令f′(x)=0,得x=1或x=3.依题意有,函数f(x)=x3-6x2+9x-abc的图象与x轴有三个不同的交点,故f(1)f(3)<0,即(1-6+9-abc)(33-6×32+9×3-abc)<0,∴0<abc<4,∴f(0)=-abc<0,f(1)=4-abc>0,f(3)=-abc<0,故②③是对的,应选C.9.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].10.已知f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围.【答案】(1)当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)(-∞,0].【解析】(1)∵f(x)=e x-ax-1(x∈R),∴f′(x)=e x-a.令f′(x)≥0,得e x≥a.当a≤0时,f′(x)>0在R上恒成立;当a>0时,有x≥ln a.综上,当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)由(1)知f′(x)=e x-a.∵f(x)在R上单调递增,∴f′(x)=e x-a≥0恒成立,即a≤e x在R上恒成立.∵x∈R时,e x>0,∴a≤0,即a的取值范围是(-∞,0].11.若函数存在极值,则实数的取值范围是( )A.B.C.D.【答案】A【解析】∵函数存在极值点,∴有解,∴∴∵时,,∴,故选A.【考点】应用导数研究函数的单调性、极值.12.已知函数的图象如图所示(其中是函数的导函数)下面四个图象中,的图象大致是 ( )【答案】C【解析】由函数的图象可知,当时,在上是增函数,同理可得在上是减函数,在上是减函数,故选C.【考点】导数与函数的单调性.13.已知R,函数e.(1)若函数没有零点,求实数的取值范围;(2)若函数存在极大值,并记为,求的表达式;(3)当时,求证:.【答案】(1);(2);(3)详见试题解析.【解析】(1)令得,∴.再利用求实数的取值范围;(2)先解,得可能的极值点或,再分讨论得函数极大值的表达式;(3)当时,,要证即证,亦即证,构造函数,利用导数证明不等式.试题解析:(1)令得,∴. 1分∵函数没有零点,∴,∴. 3分(2),令,得或. 4分当时,则,此时随变化,的变化情况如下表:当时,取得极大值; 6分当时,在上为增函数,∴无极大值. 7分当时,则,此时随变化,的变化情况如下表:当时,取得极大值,∴ 9分(3)证明:当时, 10分要证即证,即证 11分令,则. 12分∴当时,为增函数;当时为减函数,时取最小值,,∴.∴,∴. 14分【考点】1.函数的零点;2.函数的导数与极值;3.不等式的证明.14.若=上是减函数,则的取值范围是___________.【答案】【解析】转化为在上恒成立,即在上恒成立,令,所以,则的取值范围是.【考点】1.导数判断函数的单调性;2.不等式恒成立.15.已知为函数图象上一点,O为坐标原点,记直线的斜率.(1)若函数在区间上存在极值,求实数m的取值范围;(2)当时,不等式恒成立,求实数的取值范围;(3)求证:.【答案】(1);(2);(3)详见解析.【解析】(1)在函数定义域范围内求函数的极值,则极值点在内;(2)首先根据条件分离出变量,由转化成求的最小值(利用二次求导判单调性);(3)结合第(2)问构造出含的不等关系,利用裂项相消法进行化简求和.试题解析:(1)由题意, 1分所以 2分当时,;当时,.所以在上单调递增,在上单调递减,故在处取得极大值. 3分因为函数在区间(其中)上存在极值,所以,得.即实数的取值范围是. 4分(2)由得,令,则. 6分令,则,因为所以,故在上单调递增. 7分所以,从而在上单调递增,所以实数的取值范围是. 9分(3)由(2) 知恒成立,即 11分令则, 12分所以,, ,.将以上个式子相加得:,故. 14分【考点】1.函数极值、最值的求法;2.函数单调性的判定;3.恒成立问题的转化.16.已知函数,.(Ⅰ)求的极值;(Ⅱ)当时,若不等式在上恒成立,求的取值范围.【答案】(Ⅰ)有极大值为;(Ⅱ).【解析】(Ⅰ)首先明确函数的定义域,然后利用求导的方法研究函数的单调性,进而确定函数的极值;(Ⅱ)利用转化思想将原不等式转化为在上恒成立,然后借助构造函数求解函数的最大值进而探求的取值范围.试题解析:(Ⅰ)函数的定义域为。
0729高三数学利用导数研究函数的单调性-过家福(答案)
所以 g x 是 1, 上的单调增函数,
2
因此 g x 在 1, 上的最小值是 g 1 e e1 2a .
3 由于存在 x0 1, ,使 e x0 e x0 a( x0 3x0 ) 0 成立,当且仅当最小值 g 1 0 ,
g '( x0 ) (e x0 )2 1 3a( x0 2 1) . 当 x0 1 时, g '( x0 ) 0 ; . e x0
当 x0 1 时, x02 1 0 , (e x0 )2 1 0 ,则 g '( x0 ) 0 . 故在区间 [1, ) 上, g '( x0 ) 0 ,即函数 g ( x0 ) 为 [1, ) 的增函数, 则 gmin ( x0 ) g (1) e e1 2a 0 ,解得 a 分解路径 2:参数分离可以吗?
则 g ( x 0 ) 0 在 x0 1, 3 上恒成立,故 g ( x 0 )min g (1)
e e1 , 2
3
故a
e e1 . 2
难题分解 2:如何根据求得的参数 a 的取值范围比较 ea 1 与 a e 1 的大小? 分解路径 1: (取对数) e a 1 与 a e1 均为正数,同取自然底数的对数, 即比较 (a 1)ln e 与 (e 1)ln a 的大小,即比较
ln e ln a 与 的大小. e 1 a 1
1 1 ln x ln x x 构造函数 h( x) , ( x 1) ,则 h( x) ( x 1)2 x 1
再设 m( x) 1
1 1 x ln x , m( x) 2 ,从而 m( x) 在 (1, ) 上单调递减, x x ln x 在 (1, ) 上单调递 x 1
高三数学利用导数研究函数的单调性试题答案及解析
高三数学利用导数研究函数的单调性试题答案及解析1.我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y=φ(x)lnf(x),两边求导得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].运用此方法可以探求得y=x的单调递增区间是________.【答案】(0,e)【解析】由题意知y′=x (-ln x+·)=x·(1-ln x),x>0,>0,x>0,令y′>0,则1-ln x>0,所以0<x<e.2.已知函数f(x)=(ax+1)e x.(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.【答案】(1)见解析(2)当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.【解析】解:依题意,函数的定义域为R,f′(x)=(ax+1)′e x+(ax+1)(e x)′=e x(ax+a+1).(1)①当a=0时,f′(x)=e x>0,则f(x)的单调递增区间为(-∞,+∞);②当a>0时,由f′(x)>0,解得x>-,由f′(x)<0,解得x<-,则f(x)的单调递增区间为(-,+∞),f(x)的单调递减区间为(-∞,-);③当a<0时,由f′(x)>0,解得x<-,由f′(x)<0解得,x>-,则f(x)的单调递增区间为(-∞,-),f(x)的单调递减区间为(-,+∞).(2)①当时,)上是减函数,在(-,0)上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-)=-a·;②当时,即当0<a≤1时,f(x)在[-2,0]上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-2)=.综上,当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.3.函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.【答案】1【解析】f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3,f′(x)<0;x<1或x>3,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.4.设,曲线在点处的切线与直线垂直.(1)求的值;(2)若对于任意的,恒成立,求的范围;(3)求证:【解析】(1)求得函数f(x)的导函数,利用曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,即可求a的值;(2)先将原来的恒成立问题转化为lnx≤m(x−),设g(x)=lnx−m(x−),即∀x∈(1,+∞),g(x)≤0.利用导数研究g(x)在(0,+∞)上单调性,求出函数的最大值,即可求得实数m的取值范围.(3)由(2)知,当x>1时,m=时,lnx<(x−)成立.不妨令x=,k∈N*,得出[ln(2k+1)−ln(2k−1)]<,k∈N*,再分别令k=1,2,,n.得到n个不等式,最后累加可得.(1) 2分由题设,∴,. 4分(2),,,即设,即.6分①若,,这与题设矛盾. 7分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 8分当时,方程,设两根为,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得∴∴ ---------------14分【考点】1.利用导数研究曲线上某点切线方程;2.导数在最大值、最小值问题中的应用.5.已知函数.(1)当时,证明:当时,;(2)当时,证明:.【答案】(1)证明过程详见解析;(2)证明过程详见解析.【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将当时,转化为,对函数求导,利用单调递增,单调递减,来判断函数的单调性来决定函数最值,并求出最值为0,即得证;第二问,先将转化为且,利用导数分别判断函数的单调性求出函数最值,分别证明即可.(1)时,,令,,∴在上为增函数 3分,∴当时,,得证. 6分(2)令,,时,,时,即在上为减函数,在上为增函数 9分∴①令,,∴时,,时,即在上为减函数,在上为增函数∴②∴由①②得. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的最值.6.已知函数.(1)当a=l时,求的单调区间;(2)若函数在上是减函数,求实数a的取值范围;(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.【答案】(1)单调递减区间为,单调递增区间为;(2);(3)存在实数.【解析】(1)把代入函数解析式得,且定义域为,利用导数法可求出函数的单调区间,由,分别解不等式,,注意函数定义域,从而可求出函数的单调区间;(2)此问题利用导数法来解决,若函数在上是减函数,则其导函数在上恒成立,又因为,所以函数,必有,从而解得实数的取值范围;(3)利用导数求极值的方法来解决此问题,由题意得,则,令,解得,通过对是否在区间上进行分类讨论,可求得当时,有,满足条件,从而可求出实数的值.(1)当时,. 2分因为函数的定义域为,所以当时,,当时,.所以函数的单调递减区间为,单调递增区间为. 4分(2)在上恒成立.令,有, 6分得,. 8分(3)假设存在实数,使有最小值3,. 9分当时,在上单调递减,,(舍去); 10分②当时,在上单调递减,在上单调递增.,解得,满足条件; 12分③当时,在上单调递减,,(舍去). 13分综上,存在实数,使得当时,有最小值3. 14分【考点】1.导数性质;2.不等式求解;3.分类讨论.7.设函数f(x)=x-2msin x+(2m-1)sin xcos x(m为实数)在(0,π)上为增函数,则m的取值范围为()A.[0,]B.(0,)C.(0,]D.[0,)【答案】A【解析】∵f(x)在区间(0,π)上是增函数,∴f′(x)=1-2mcos x+2(m-)cos 2x=2[(2m-1)cos2x-mcos x+1-m]=2(cos x-1)[(2m-1)cos x+(m-1)]>0在(0,π)上恒成立,令cos x=t,则-1<t<1,即不等式(t-1)[(2m-1)t+(m-1)]>0在(-1,1)上恒成立,①若m>,则t<在(-1,1)上恒成立,则只需≥1,即<m≤,②当m=时,则0·t+-1<0,在(-1,1)上显然成立;③若m<,则t>在(-1,1)上恒成立,则只需≤-1,即0≤m<.综上所述,所求实数m的取值范围是[0,].8.已知e为自然对数的底数,设函数f(x)=xe x,则()A.1是f(x)的极小值点B.﹣1是f(x)的极小值点C.1是f(x)的极大值点D.﹣1是f(x)的极大值点【答案】B【解析】f(x)=xe x⇒f′(x)=e x(x+1),令f′(x)>0⇒x>﹣1,∴函数f(x)的单调递增区间是[﹣1,+∞);令f′(x)<0⇒x<﹣1,∴函数f(x)的单调递减区间是(﹣∞,﹣1),故﹣1是f(x)的极小值点.故选:B.9.若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.【答案】[5,7]【解析】f′(x)=x2-ax+(a-1),由题意,f′(x)≤0在(1,4)恒成立且f′(x)≥0在(6,+∞)恒成立,即a≥x+1在(1,4)上恒成立且a≤x+1在(6,+∞)上恒成立,所以5≤a≤7.10.已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;【答案】当-1<m≤0时单调递增区间是和(1,+∞),单调递减区间是;当m≤-1时,单调递增区间是和,单调递减区间是【解析】函数的定义域为,f′(x)=x-+(m-1)=.①当-1<m≤0时,令f′(x)>0,得0<x<-m或x>1,令f′(x)<0,得-m<x<1,∴函数f(x)的单调递增区间是和(1,+∞),单调递减区间是;②当m≤-1时,同理可得,函数f(x)的单调递增区间是和,单调递减区间是.11.若函数f(x)=x2+ax+在上是增函数,则a的取值范围是________.【答案】a≥3【解析】f′(x)=2x+a-≥0在上恒成立,即a≥-2x在上恒成立.令g(x)=-2x,求导可得g(x)在上的最大值为3,所以a≥3.12.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞)D.(-3,1)【答案】D【解析】y'=-2xe x+(3-x2)e x=e x(-x2-2x+3)>0x2+2x-3<0-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).13.若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.【答案】-4【解析】∵f(x)=x3-x2+ax+4,∴f′(x)=x2-3x+a.又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a=-1×4=-4.14.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].15.已知函数,(1)求函数的单调区间;(2)若方程有且只有一个解,求实数m的取值范围;(3)当且,时,若有,求证:.【答案】(1)的递增区间为,递减区间为和;(2);(3)详见解析.【解析】(1)对求导可得,令,或,由导数与单调性的关系可知,所以递增区间为,递减区间为;(2)若方程有解有解,则原问题转化为求f(x)的值域,而m只要在f(x)的值域内即可,由(1)知,,方程有且只有一个根,又的值域为,;(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即,同理,又,,且在上单调递减,,即.试题解析:(1),令,即,解得,令,即,解得,或,的递增区间为,递减区间为和. 4分(2)由(1)知,, 6分方程有且只有一个根,又的值域为,由图象知8分(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即, 11分,又,,且在上单调递减,,即. 13分【考点】1.导数在函数单调性上的应用;2. 导数与函数最值.16.某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。
高二数学利用导数研究函数的单调性试题答案及解析
高二数学利用导数研究函数的单调性试题答案及解析1.已知(1)如果函数的单调递减区间为,求函数的解析式;(2)对一切的,恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)三个二次间的关系,其实质是抓住二次函数的图像与横坐标的交点、二次不等式解集的端点值、二次方程的根是同一个问题.解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,结合二次函数的图象来解决;(2)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到;(3)(3)对于恒成立的问题,常用到两个结论:(1)(2)试题解析:解:(1)由题意的解集是即的两根分别是.将或代入方程得..……4分(2)由题意:在上恒成立即可得设,则令,得(舍)当时,;当时,当时,取得最大值, =-2.的取值范围是.【考点】(1)利用函数的单调性求函数解析式;(2)利用导数解决横成立的问题.2.函数的单调递增区间是().A.B.C.D.【答案】C【解析】,;令,得,即函数的单调递增区间是.【考点】利用导数研究函数的单调性.3.已知为定义在(0,+∞)上的可导函数,且恒成立,则不等式的解集为.【答案】【解析】因为为定义在(0,+∞)上的可导函数,且恒成立,所以在上恒成立,即在上为减函数;可化为,所以,解得.【考点】解抽象不等式.4.已知函数f(x)是偶函数,在上导数>0恒成立,则下列不等式成立的是( ).A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)【答案】B【解析】因为函数在上,所以函数在上为增函数;又因为为偶函数,所以,,所以,即.【考点】函数的奇偶性.5.函数有极值点,则的取值范围是()A.B.C.D.【答案】D【解析】∵函数有极值点,∴f(x)的导数 f′(x)=x2-2x+a=0有两个实数根,∴,故选D.【考点】函数存在极值的条件.6.若定义在R上的函数f(x)的导函数为,且满足,则与的大小关系为().A.<B.=C.>D.不能确定【答案】C【解析】构造函数,则,因为,所以;即函数在上为增函数,则,即.【考点】利用导数研究函数的单调性.7.函数是定义在上的奇函数,且.(1)求函数的解析式;(2)证明函数在上是增函数;(3)解不等式:.【答案】(1)(2)证明见解析(3)【解析】(1)(由是定义在上的奇函数,利用可求得,再由可求得,即可求得;(2)由(1)可得,即得函数在上是增函数;(3)由,再利用为奇函数,可得,即可求得结果.试题解析:(1)是定义在上的奇函数,;又,,;(2),,即,∴函数在上是增函数.(3),又是奇函数,,在上是增函数,,解得,即不等式的解集为.【考点】函数的奇偶性;利用导数判断函数单调性.8.已知定义域为R的函数,且对任意实数x,总有/(x)<3则不等式<3x-15的解集为()A.(﹣∞,4)B.(﹣∞,﹣4)C.(﹣∞,﹣4)∪(4,﹢∞)D.(4,﹢∞)【答案】【解析】设,则所求的不等式解集可理解为使的解集.的导函数为,根据题意可知对任意实数恒成立,所以在上单调递减.则,令,则根据单调递减可知:.【考点】导数法判断单调性;根据单调性解不等式.9.在区间内不是增函数的是()A.B.C.D.【答案】D【解析】选项中,时都有,所以在上为单调递增函数,所以在是增函数;选项在,而在上为增函数,所以在是增函数;选项,令得或,所以在为增函数,而,所以在上增函数;选项,令,得。
高考数学 导数与函数的单调性、极值与最值 教案 含解析题
第二节 导数在研究函数中的应用第1课时 系统知识牢基础——导数与函数的单调性、极值与最值知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上单调递增. (2)若f ′(x )<0,则f (x )在这个区间上单调递减. (3)若f ′(x )=0,则f (x )在这个区间上是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接. (3)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[重温经典]1.(多选·教材改编题)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( ) A .在区间(-2,1)上f (x )是增函数 B .在区间(2,3)上f (x )是减函数 C .在区间(4,5)上f (x )是增函数 D .当x =2时,f (x )取到极大值 答案:BCD2.(教材改编题)函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1] D .(-∞,-1]和[1,+∞)答案:A3.(易错题)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞ B .⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞ D .⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.5.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0. 答案:(0,+∞)6.设函数f (x )在(a ,b )上的导函数为f ′(x ),f ′(x )在(a ,b )上的导函数为f ″(x ),若在(a ,b )上,f ″(x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=x 44-t 3x 3+32x 2在(1,4)上为“凸函数”,则实数t 的取值范围是________.解析:由f (x )=x 44-t 3x 3+32x 2可得f ′(x )=x 3-tx 2+3x ,f ″(x )=3x 2-2tx +3,∵f (x )在(1,4)上为“凸函数”,∴x ∈(1,4)时,3x 2-2tx +3<0恒成立,∴t >32⎝⎛⎭⎫x +1x 恒成立. 令g (x )=32⎝⎛⎭⎫x +1x ,∵g (x )在(1,4)上单调递增, ∴t ≥g (4)=518.∴实数t 的取值范围是⎣⎡⎭⎫518,+∞. 答案:⎣⎡⎭⎫518,+∞知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒] (1)极值点不是点,若函数f (x )在x 1处取得极大值,则x 1为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.[重温经典]1.(多选)(2021·福州模拟)下列函数中,存在极值点的是( ) A .y =x -1xB .y =2|x |C .y =-2x 3-xD .y =x ln x解析:选BD 由题意函数y =x -1x ,则y ′=1+1x2>0,所以函数y =x -1x 在(-∞,0),(0,+∞)内单调递增,没有极值点;函数y =2|x |=⎩⎪⎨⎪⎧2x ,x ≥0,2-x ,x <0,根据指数函数的图象与性质可得,当x <0时,函数y =2|x |单调递减,当x >0时,函数y =2|x |单调递增,所以函数y =2|x |在x =0处取得极小值;函数y =-2x 3-x ,则y ′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =x ln x ,则y ′=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,函数单调递减,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,函数单调递增,当x =1e 时,函数取得极小值,故选B 、D.2.(教材改编题)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( ) A .1 B .2 C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.3.(教材改编题)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.4.(多选)材料:函数是描述客观世界变化规律的重要数学模型,在现行的高等数学与数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的,如函数f(x)=x x(x>0),我们可以作变形:f(x)=x x=eln x x=e x ln x=e t(t=x ln x),所以f(x)可看作是由函数f(t)=e t和g(x)=x ln x复合而成的,即f(x)=x x(x>0)为初等函数.根据以上材料,对于初等函数h(x)=x 1x(x>0)的说法正确的是()A.无极小值B.有极小值1C.无极大值D.有极大值e 1 e解析:选AD根据材料知:h(x)=x 1x=e1ln xx=e1ln xx,所以h′(x)=e 1ln xx·⎝⎛⎭⎫1x ln x′=e1ln xx·⎝⎛⎭⎫-1x2ln x+1x2=1x2e1ln xx(1-ln x),令h′(x)=0得x=e,当0<x<e时,h′(x)>0,此时函数h(x)单调递增;当x>e时,h′(x)<0,此时函数h(x)单调递减.所以h(x)有极大值且为h(e)=e 1e,无极小值.5.若x=-2是函数f(x)=(x2+ax-1)e x的极值点,则f′(-2)=________,f(x)的极小值为________.解析:由函数f(x)=(x2+ax-1)e x可得f′(x)=(2x+a)e x+(x2+ax-1)e x,因为x=-2是函数f(x)的极值点,所以f′(-2)=(-4+a)e-2+(4-2a-1)e-2=0,即-4+a+3-2a=0,解得a=-1.所以f′(x)=(x2+x-2)e x.令f′(x)=0可得x=-2或x=1.当x<-2或x>1时,f′(x)>0,此时函数f(x)为增函数,当-2<x<1时,f′(x)<0,此时函数f(x)为减函数,所以当x=1时函数f(x)取得极小值,极小值为f(1)=(12-1-1)×e1=-e.答案:0-e6.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)知识点三 函数的最值1.在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.2.若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[提醒] 求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.(教材改编题)函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-eD .0解析:选B 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值f (1)=ln 1-1=-1.2.(教材改编题)函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 3.(教材改编题)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 答案:3+π64.(易错题)已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________. 答案:(-4,-2)5.函数f (x )=x e -x ,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x -x e -x =e -x (1-x ). 令f ′(x )=0,得x =1(e -x >0), 又f (1)=1e >0,f (0)=0,f (4)=4e 4>0,所以f (x )的最小值为0. 答案:06.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332。
高中数学--函数的单调性与导数-Word版含答案
函数的单调性与导数选择题1、函数f(x)=xlnx的单调递增区间是( )A(01) B(1+∞)C D【解析】选D因为f(x)=xlnx(x>0)所以f′(x)=lnx+1令f′(x)>0得lnx+1>0即x>所以函数f(x)的单调递增区间是2、下列函数中在(0+∞)内为增函数的是( )Ay=sinx By=xe2Cy=x3-x Dy=lnx-x【解析】选B对于Ay=sinx在(0+∞)内有增有减对于By′=(xe2)′=e2>0故y=xe2在(0+∞)内是增函数;对于Cy′=3x2-1=3当x∈时y′<0;故y=x3-x在上是减函数对于Dy′=-1=当x∈(1+∞)时y′<0故y=lnx-x在(1+∞)上是减函数3、(2016·临沂高二检测)已知函数y=f(x)的图象是如图四个图象之一且其导函数y=f′(x)的图象如图所示则该函数的图象是( )【解析】选B由函数y=f(x)的导函数y=f′(x)的图象知f(x)的图象是上升的且先由“平缓”变“陡峭”再由“陡峭”变“平缓”观察图象可得B正确4、若f(x)=e<a<b则( )Af(a)>f(b) Bf(a)=f(b)Cf(a)<f(b) Df(a)f(b)>1【解题指南】先判断f(x)的单调性再比较f(a)与f(b)的大小【解析】选A因为f′(x)==当x∈(e+∞)时1-lnx<0所以f′(x)<0所以f(x)在(e+∞)内为单调递减函数故f(a)>f(b)5、(2016·烟台高二检测)若a>0且f(x)=x3-ax在B(-11]C(-11) D上是单调函数求a的取值范围【解析】f′(x)=(2x-2a)e x+(x2-2ax)e x=e x令f′(x)=0即x2+2(1-a)x-2a=0解得x1=a-1-x2=a-1+其中x1<x2当x变化时f′(x)f(x)的变化情况见下表:x (-∞x1) x1(x1x2) x2(x2+∞) f′(x) + 0 - 0 +f(x) ↗↘↗因为a≥0所以x1<-1x2≥0f(x)在(x1x2)上单调递减由此可得f(x)在上是单调函数的充要条件为x2≥1即a-1+≥1解得a≥故所求a的取值范围为10(2016·青岛高二检测)已知函数y=f(x)=x3+bx2+cx+d的图象经过点P(02)且在点M(-1f(-1))处的切线方程为6x-y+7=0(1)求函数y=f(x)的解析式(2)求函数y=f(x)的单调区间【解析】(1)由y=f(x)的图象经过点P(02)知d=2所以f(x)=x3+bx2+cx+2f′(x)=3x2+2bx+c由在点M(-1f(-1))处的切线方程为6x-y+7=0知-6-f(-1)+7=0即f(-1)=1f′(-1)=6所以即解得b=c=-3故所求的解析式是y=f(x)=x3-3x2-3x+2(2)f′(x)=3x2-6x-3令f′(x)>0得x<1-或x>1+;令f′(x)<0得1-<x<1+故f(x)=x3-3x2-3x+2的单调递增区间为(-∞1-)和(1++∞)单调递减区间为(1-1+)1已知对任意实数x有f(-x)=-f(x)g(-x)=g(x)且当x>0时有f′(x)>0g′(x)>0则当x<0时有( )Af′(x)>0g′(x)>0 Bf′(x)>0g′(x)<0Cf′(x)<0g′(x)>0 Df′(x)<0g′(x)<0【解析】选B由题知f(x)是奇函数g(x)是偶函数根据奇偶函数图象特点知当x<0时f(x)的单调性与x>0时相同g(x)的单调性与x>0时恰好相反因此当x<0时有f′(x)>0g′(x)<0 2(2016·南昌高二检测)设f(x)g(x)分别是定义在R上的奇函数和偶函数当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0则不等式f(x)g(x)<0的解集是( )A(-30)∪(3+∞) B(-30)∪(03)C(-∞-3)∪(3+∞) D(-∞-3)∪(03)【解析】选D因为′=f′(x)g(x)+f(x)g′(x)所以当x<0时′>0所以f(x)·g(x)在(-∞0)上是增函数又g(-3)=0所以f(-3)g(-3)=0所以当x∈(-∞-3)时f(x)g(x)<0;当x∈(-30)时f(x)g(x)>0又因为f(x)g(x)分别是定义在R上的奇函数和偶函数所以f(x)g(x)在R上是奇函数其图象关于原点对称所以当x∈(03)时f(x)g(x)<0综上选D【补偿训练】(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数f(-1)=0当x>0时xf′(x)-f(x)<0则使得f(x)>0成立的x的取值范围是( )A(-∞-1)∪(01) B(-10)∪(1+∞)C(-∞-1)∪(-10) D(01)∪(1+∞)【解析】选A记函数g(x)=则g′(x)=因为当x>0时xf′(x)-f(x)<0故当x>0时g′(x)<0所以g(x)在(0+∞)上单调递减;又因为函数f(x)(x∈R)是奇函数故函数g(x)是偶函数所以g(x)在(-∞0)上单调递增且g(-1)=g(1)=0当0<x<1时g(x)>0则f(x)>0;当x<-1时g(x)<0则f(x)>0综上所述使得f(x)>0成立的x的取值范围是(-∞-1)∪ (01)二、填空题(每小题5分共10分)3(2016·泰安模拟)如果函数f(x)=2x2-lnx在定义域内的一个子区间(k-1k+1)上不是单调函数那么实数k的取值范围是【解析】显然函数f(x)的定义域为(0+∞)y′=4x-=由y′>0得函数f(x)的单调递增区间为;由y′<0得函数f(x)的单调递减区间为由于函数在区间(k-1k+1)上不是单调函数所以解得1≤k<答案:4(2016·盐城高二检测)若函数f(x)=(mx-1)e x在(0+∞)上单调递增则实数m的取值范围是【解析】因为f′(x)=(mx+m-1)e x由题意得f′(x)≥0在(0+∞)上恒成立令g(x)=mx+m-1则解得m≥1答案:令f′(x)=0得x1=1x2=a-1因为f(x)在(14)内为减函数所以当x∈(14)时f′(x)≤0;因为f(x)在(6+∞)内为增函数所以当x∈(6+∞)时f′(x)≥0所以4≤a-1≤6解得5≤a≤7所以实数a的取值范围为方法二:f′(x)=x2-ax+a-1因为f(x)在(14)内为减函数所以当x∈(14)时f′(x)≤0;因为f(x)在(6+∞)内为增函数所以当x∈(6+∞)时f′(x)≥0所以即解得5≤a≤7所以实数a的取值范围为6(2015·驻马店高二检测)已知函数f(x)=(ax2+x-1)e x其中e是自然对数的底数a∈R(1)若a=1求曲线f(x)在点(1f(1))处的切线方程(2)若a=-1求f(x)的单调区间【解析】(1)因为f(x)=(x2+x-1)e x所以f′(x)=(2x+1)e x+(x2+x-1)e x=(x2+3x)e x所以曲线f(x)在点(1f(1))处的切线斜率为k=f′(1)=4e又因为f(1)=e所以所求切线方程为y-e=4e(x-1)即4ex-y-3e=0(2)f(x)=(-x2+x-1)e x因为f′(x)=-x(x+1)e x令f′(x)<0得x<-1或x>0f′(x)>0得-1<x<0所以f(x)的减区间为(-∞-1)(0+∞)增区间为(-10)关闭Word文档返回原板块。
2022年高考数学利用导数研究函数的单调性专项练习含答案
专题10 利用导数研究函数的单调性一、单选题(本大题共10小题,共50.0分)1. 已知函数f(x)=e |2x|−4ax 2,对任意x 1,x 2∈(−∞,0]且x 1≠x 2,都有 (x 2−x 1)(f(x 2)−f(x 1))<0,则实数a 的取值范围是 ( )A. (−∞,e2]B. (−∞,−e2]C. [0,e2]D. [−e2,0]2. f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0,对任意正数a ,b ,若a <b ,则必有( )A. af(b)<bf(a)B. bf(a)<af(b)C. bf(b)<af(a)D. af(a)<bf(b)3. 已知函数f(x)=e x −ax 2(a ∈R)有三个不同的零点,则实数a 的取值范围是( )A. (e4,+∞)B. (e2,+∞)C. (e 24,+∞)D. (e 22,+∞)4. 已知定义域为R 的奇函数y =f(x)的导函数为y =f′(x),当x >0时,xf′(x)−f(x)<0,若a =f(e)e,b =f(ln2)ln2,c =f(−3)−3,则a,b,c 的大小关系正确的是( )A. a <b <cB. b <c <aC. a <c <bD. c <a <b5. 函数f(x)的图象如图所示,则不等式(x −2)f′(x)>0的解集为( )A. (2,+∞)B. (−∞,−1)C. (−∞,−1) ∪(1,2)D. (−1,1)∪(2,+∞)6. 已知函数f(x)=e x−x 22−1,若f(x)≥kx 在x ∈[0,+∞)时总成立,则实数k 的取值范围是( )A. (−∞,1]B. (−∞,e]C. (−∞,2e]D. (−∞,e 2]7. 设点P 为函数f(x)=12x 2+2ax 与g(x)=3a 2lnx +b(a >0)的图像的公共点,以P 为切点可作直线与两曲线都相切,则实数b 的最大值为( )A. 23e 23B. 32e 23C. 23e 32D. 32e 328.已知函数f(x)=13x3+mx2+nx+2,其导函数f′(x)为偶函数,f(1)=−23,则函数g(x)=f′(x)e x在区间[0,2]上的最小值为()A. −3eB. −2eC. eD. 2e9.已知函数f(x)=xe x−mx+m2(e为自然对数的底数)在(0,+∞)上有两个零点,则m的范围是()A. (0,e)B. (0,2e)C. (e,+∞)D. (2e,+∞)10.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a>0,且a≠1),f(1)g(1)+f(−1)g(−1)=103,若数列{f(n)g(n)}的前n项和大于363,则n的最小值为()A. 4B. 5C. 6D. 7二、单空题(本大题共4小题,共20.0分)11.设定义域为R的函数f(x)满足f′(x)>f(x),则不等式e x−1f(x)<f(2x−1)的解集为__________.12.若函数f(x)=xx2+a (a>0)在[1,+∞)上的最大值为√33,则a的值为________.13.已知函数f(x)=a−x2(0<x<√a)在其图象上任意一点P(t,f(t))处的切线,与x轴、y轴的正半轴分别交于M,N两点,设△OMN(O是坐标原点)的面积为S(t),当t=t0时,S(t)取得最小值,则√at0的值为.14.函数f(x)的定义域为R,f(0)=2,对于任意的x∈R,f(x)+f’(x)>1,则不等式e x f(x)>e x+1的解集为__________.三、解答题(本大题共3小题,共30分)15.已知函数f(x)=12x2−(a+1)x+alnx+1.(Ⅰ)若x=3是f(x)的极值点,求f(x)的单调区间;(Ⅱ)若f(x)≥1恒成立,求a的取值范围.16.已知函数f(x)=ax+lnx,g(x)=e x−1−1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.17.已知函数f(x)=ax +lnx,g(x)=12bx2−2x+2,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数ℎ(x)=f(x)+g(x),当a=0时,ℎ(x)在(0,1)上有且只有一个极值点,求实数b的取值范围.专题10 利用导数研究函数的单调性一、单选题(本大题共10小题,共50.0分)18. 已知函数f(x)=e |2x|−4ax 2,对任意x 1,x 2∈(−∞,0]且x 1≠x 2,都有 (x 2−x 1)(f(x 2)−f(x 1))<0,则实数a 的取值范围是 ( )A. (−∞,e2]B. (−∞,−e2]C. [0,e2]D. [−e2,0]【答案】A【解析】解:因为对任意x 1<0,x 2<0,都有(x 2−x 1)[f (x 2)−f (x 1)]<0, 所以函数f (x )在(−∞,0]单调递减. 又因为f(x)=e |2x|−4ax 2=e −2x −4ax 2, 所以f′(x )=−2e −2x −8ax ,因此−2e −2x −8ax ≤0对(−∞,0]恒成立, 即4a ≤−e −2x x对(−∞,0]恒成立. 令ℎ(x )=−e −2x x,则ℎ′(x )=e −2x (2x+1)x 2,因此当x ∈(−∞,−12)时,ℎ′(x )<0,函数ℎ(x )是减函数; 当x ∈(−12,0)时,ℎ′(x )>0,函数ℎ(x )是增函数, 所以当x =−12时,函数ℎ(x )有最小值ℎ(−12)=2e , 因此4a ≤2e ,即a ≤e2. 故选A .19. f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0,对任意正数a ,b ,若a <b ,则必有( )A. af(b)<bf(a)B. bf(a)<af(b)C. bf(b)<af(a)D. af(a)<bf(b)【答案】C【解析】解:设g(x)=xf(x),(x >0), 则g′(x)=[xf(x)]′=xf′(x)+f(x)<0, ∴函数g(x)在(0,+∞)上是减函数, ∵a <b ,∴g(a)>g(b)即bf(b)<af(a)故选C.20.已知函数f(x)=e x−ax2(a∈R)有三个不同的零点,则实数a的取值范围是()A. (e4,+∞) B. (e2,+∞) C. (e24,+∞) D. (e22,+∞)【答案】C【解析】解:令f(x)=e x−ax2=0,当x=0时显然不成立,故a=e xx2,令g(x)=e xx2,则问题转化为直线y=a与g(x)=exx2的图象有三个交点,∵g′(x)=(x−2)e xx3,令g′(x)=0,解得x=2,∴当x<0或x>2时,g′(x)>0,g(x)在(−∞,0),(2,+∞)上单调递增,当0<x<2时,g′(x)<0,g(x)在(0,2)上单调递减,g(x)在x=2处取极小值,g(2)=e24,作出g(x)的图象如下:要使直线y=a与曲线g(x)=e xx2有三个交点,,则a>e24,故实数a的取值范围是.故选C.21.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x>0时,xf′(x)−f(x)<0,若a=f(e)e ,b=f(ln2)ln2,c=f(−3)−3,则a,b,c的大小关系正确的是()A. a<b<cB. b<c<aC. a<c<bD. c<a<b 【答案】D【解析】解:构造函数g(x)=f(x)x,∴g′(x)=xf′(x)−f(x)x 2,当x >0时,∵xf′(x)−f(x)<0, ∴g′(x)<0,∴函数g(x)在(0,+∞)单调递减. 又∵函数f(x)为奇函数, ∴g(x)=f(x)x是偶函数,∴c =f(−3)−3=g(−3)=g(3),∵a =f(e)e=g(e),b =f(ln2)ln2=g(ln2),ln2<1<e <3,∴g(3)<g(e)<g(ln2), ∴c <a <b , 故选D .22. 函数f(x)的图象如图所示,则不等式(x −2)f′(x)>0的解集为( )A. (2,+∞)B. (−∞,−1)C. (−∞,−1) ∪(1,2)D. (−1,1)∪(2,+∞)【答案】D【解析】解:由图知,f(x)的单调递增区间为(−∞,−1),(1,+∞),单调递减区间为(−1,1),所以在区间(−∞,−1)及(1,+∞)上,f′(x)>0,在(−1,1)上,f′(x)<0, 又(x −2)f′(x)>0, 所以{x −2>0f′(x)>0或{x −2<0f′(x)<0, 得x >2或−1<x <1,即不等式(x −2)f′(x)>0的解集为(−1,1)∪(2,+∞). 故选D .23.已知函数f(x)=e x−x22−1,若f(x)≥kx在x∈[0,+∞)时总成立,则实数k的取值范围是()A. (−∞,1]B. (−∞,e]C. (−∞,2e]D. (−∞,e2]【答案】A【解析】解:当x=0时,f(x)≥kx显然恒成立;当x>0时,f(x)≥kx即为e x−12x2−kx−1≥0,设g(x)=e x−12x2−kx−1(x>0),则g′(x)=e x−x−k,令ℎ(x)=g′(x)=e x−x−k,ℎ′(x)=e x−1>0,∴函数g′(x)在(0,+∞)上为增函数,①当k≤1时,g′(x)>g′(0)=1−k≥0,故函数g(x)在(0,+∞)上为增函数,∴g(x)>g(0)=0,即f(x)≥kx成立;②当k>1时,g′(0)=1−k<0,g′(k)=e k−2k>0,故存在x0∈(0,k),使得g′(x0)= 0,∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,则g(x)<g(0)=0,即f(x)<kx,不符题意;综上所述,实数k的取值范围为(−∞,1].故选:A.24.设点P为函数f(x)=12x2+2ax与g(x)=3a2lnx+b(a>0)的图像的公共点,以P为切点可作直线与两曲线都相切,则实数b的最大值为()A. 23e23 B. 32e23 C. 23e32 D. 32e32【答案】B【解析】解:设P(x0,y0),由于点P为两曲线的公切点,则12x02+2ax0=3a2lnx0+b.又在点P处的切线斜率相同,则f′(x0)=g′(x0),即x0+2a=3a2x0,即(x0+3a)(x0−a)= 0.又a>0,x0>0,所以x0=a,于是b=52a2−3a2lna,其中a>0.设ℎ(x)=52x2−3x2lnx,其中x>0,则ℎ′(x)=2x(1−3lnx),其中x>0,所以ℎ(x)在(0,e 13)内单调递增,在(e13,+∞)内单调递减,所以实数b 的最大值为ℎ(e 13)=32e 23.故选B .25. 已知函数f(x)=13x 3+mx 2+nx +2,其导函数f′(x)为偶函数,f(1)=−23,则函数g(x)=f′(x)e x 在区间[0,2]上的最小值为( )A. −3eB. −2eC. eD. 2e【答案】B【解析】f′(x)=x 2+2mx +n , 要使导函数f′(x)为偶函数,则m =0, 故f(x)=13x 3+nx +2,则f(1)=13+n +2=−23,解得n =−3, 所以f′(x)=x 2−3,故g(x)=e x (x 2−3),g′(x)=e x (x 2−3+2x)=e x (x −1)(x +3), 当x ∈[0,1)时,g′(x)<0,当x ∈(1,2]时,g′(x)>0.所以函数g(x)在区间[0,1)上单调递减,在区间(1,2]上单调递增, 所以函数g(x)在区间[0,2]上的最小值为g(1)=e ×(1−3)=−2e . 故选B .26. 已知函数f(x)=xe x −mx +m 2(e 为自然对数的底数)在(0,+∞)上有两个零点,则m 的范围是( )A. (0,e)B. (0,2e)C. (e,+∞)D. (2e,+∞)【答案】D【解析】解:由f(x)=xe x −mx +m 2=0得xe x =mx −m 2=m(x −12),当x =12时,方程不成立,即x ≠12, 则m =xe xx−12,设ℎ(x)=xe xx−12,(x >0且x ≠12),则ℎ′(x)=(xe x )′(x−12)−xe x(x−12)2=e x (x 2−12x−12)(x−12)2=12e x(x−1)(2x+1)(x−12)2,∵x >0且x ≠12,∴由ℎ′(x)=0得x =1,当x >1时,ℎ′(x)>0,函数为增函数,当0<x <1且x ≠12时,ℎ′(x)<0,函数为减函数, 则当x =1时函数取得极小值,极小值为ℎ(1)=2e ,当0<x <12时,ℎ(x)<0,且单调递减,作出函数ℎ(x)的图象如图: 要使m =xe xx−12有两个不同的根,则m >2e 即可,即实数m 的取值范围是(2e,+∞), 方法2:由f(x)=xe x −mx +m 2=0得xe x =mx −m 2=m(x −12),设g(x)=xe x ,ℎ(x)=m(x −12),g′(x)=e x +xe x =(x +1)e x ,当x >0时,g′(x)>0,则g(x)为增函数,设ℎ(x)=m(x −12)与g(x)=xe x 相切时的切点为(a,ae a ),切线斜率k =(a +1)e a , 则切线方程为y −ae a =(a +1)e a (x −a), 当切线过(12,0)时,−ae a =(a +1)e a (12−a),即−a =12a +12−a 2−a ,即2a 2−a −1=0,得a =1或a =−12(舍),则切线斜率k =(1+1)e =2e ,要使g(x)与ℎ(x)在(0,+∞)上有两个不同的交点,则m >2e , 即实数m 的取值范围是(2e,+∞) 故选:D .27. 已知f(x),g(x)都是定义在R 上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a >0,且a ≠1),f(1)g(1)+f(−1)g(−1)=103,若数列{f(n)g(n)}的前n 项和大于363,则n 的最小值为( )A. 4B. 5C. 6D. 7【答案】C【解析】解:∵f(x)=a x ⋅g(x)(a >0且a ≠1),∴f(x)g(x)=a x , 又∵f′(x)g(x)>f(x)g′(x), ∴(f(x)g(x))′=f′(x)g(x)−f(x)g′(x)g 2(x)>0,∴f(x)g(x)=a x 是增函数, ∴a >1, ∵f(1)g(1)+f(−1)g(−1)=103.∴a +a −1=103,解得a =13或a =3, 综上得a =3.∴数列{f(n)g(n)}是等比数列,f (n )g (n )=3n . ∵数列{f(n)g(n)}的前n 项和大于363, ∴3+32+33+⋯+3n =3(1−3n )1−3=12(3n+1−3)>363,即3n+1>729,∴n +1>6,解得n >5. ∴n 的最小值为6. 故选C .二、单空题(本大题共4小题,共20.0分)28. 设定义域为R 的函数f (x )满足f′(x )>f (x ),则不等式e x−1f (x )<f (2x −1)的解集为__________. 【答案】(1,+∞) 【解析】解:设F(x)=f(x)e x,则F ′(x)=f ′(x)−f(x)e x,∵f ′(x)>f(x),∴F ′(x)>0,即函数F(x)在定义域R 上单调递增, ∵e x−1f(x)<f(2x −1), ∴f(x)e x<f(2x−1)e 2x−1,即F(x)<F(2x −1),∴x <2x −1,即x >1,∴不等式e x−1f(x)<f(2x −1)的解集为(1,+∞), 故答案为(1,+∞).29. 若函数f(x)=xx 2+a (a >0)在[1,+∞)上的最大值为√33,则a 的值为________.【答案】√3−1【解析】解:f′(x)=x 2+a−2x2(x2+a)2=a−x2(x2+a)2,当x>√a时,f′(x)<0,f(x)单调递减,当−√a<x<√a时,f′(x)>0,f(x)单调递增,当x=√a时,f(x)=√a2a =√33,√a=√32<1,不合题意.∴f(x)最大值=f(1)=11+a=√33,a=√3−1,经检验a=√3−1满足题意.故答案为√3−1.30.已知函数f(x)=a−x2(0<x<√a)在其图象上任意一点P(t,f(t))处的切线,与x轴、y轴的正半轴分别交于M,N两点,设△OMN(O是坐标原点)的面积为S(t),当t=t0时,S(t)取得最小值,则√at0的值为.【答案】√3【解析】解:因为f(x)=a−x2(0<x<√a),所以f′(x)=−2x,所以在点P处的切线的斜率为k=f′(t)=−2t,又f(t)=a−t2,所以在点P处切线方程为y−(a−t2)=−2t(x−t),令x=0,得y N=a+t2,令y=0得x M=t2+a2t,所以是坐标原点)的面积为:S(t)=12(a+t2)·t2+a2t=14·t4+2at2+a2t=14(t3+2at+a2t),所以S′(t)=14(3t2+2a−a2t2)=14·3t4+2at2−a2t2,由S′(t)=0,得t=√a3,当0<t<√a3时,S′(t)<0,函数S(t)单调递增,当t>√a3时,S′(t)<0,函数S(t)单调递增,所以当t=√a3时,S(t)取得最小值,此时t0=√a3,所以√a t 0=√a √a 3=√3.故答案为√3.31. 函数f(x)的定义域为R ,f(0)=2,对于任意的x ∈R ,f(x)+f’(x)>1,则不等式e x f(x)>e x +1的解集为__________.【答案】(0,+∞)【解析】解:构造函数g (x )=e x ·f (x )−e x ,则g ′(x )=e x ·f (x )+e x ·f ′(x )−e x=e x [f (x )+f ′(x )]−e x >e x −e x =0,∴g (x )=e x ·f (x )−e x 为R 上的增函数,∵g (0)=e 0·f (0)−e 0=1,∴不等式e x ·f(x)>e x +1转化为g (x )>g (0),∴x >0.则解集为(0,+∞).故答案为(0,+∞).三、解答题(本大题共3小题,共30分)32. 已知函数f(x)=12x 2−(a +1)x +alnx +1.(Ⅰ)若x =3是f(x)的极值点,求f(x)的单调区间;(Ⅱ)若f(x)≥1恒成立,求a 的取值范围.【答案】解:(Ⅰ)由题意知函数的定义域为(0,+∞),f′(x)=x −(a +1)+a x, ∵x =3是f(x)的极值点,∴f′(3)=3−(a +1)+a 3=0,解得a =3,当a =3时,f′(x)=(x−1)(x−3)x ,当x 变化时,故f(x)在(0,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增;(Ⅱ)要使得f(x)≥1恒成立,即当x>0时,12x2−(a+1)x+alnx≥0恒成立,设g(x)=12x2−(a+1)x+alnx,则g′(x)=x−(a+1)+ax=(x−1)(x−a)x,(ⅰ)当a≤0时,由g′(x)<0得单减区间为(0,1),由g′(x)>0得单增区间为(1,+∞),故g(x)min=g(1)=−a−12≥0,得a≤−12;(ii)当0<a<1时,由g′(x)<0得单减区间为(a,1),由g′(x)>0得单增区间为(0,a),(1,+∞),此时g(1)=−a−12<0,∴不合题意;(iii)当a=1时,g(x)在(0,+∞)上单调递增,此时g(1)=−a−12<0,∴不合题意;(iv)当a>1时,由g′(x)<0得单减区间为(1,a),由g′(x)>0得单增区间为(0,1),(a,+∞),此时g(1)=−a−12<0,∴不合题意.综上所述,a的取值范围为(−∞,−12].33.已知函数f(x)=ax+lnx,g(x)=e x−1−1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.【答案】解:(1)函数f(x)定义域是(0,+∞),f′(x)=a+1x =ax+1x,当a≥0时,f′(x)>0,函数f(x)在(0,+∞)单调递增,无减区间;当a<0时,函数f(x)在(0,−1a )单调递增,在(−1a,+∞)单调递减,(2)由已知e x−1−lnx−ax−1+a≥0在x≥1恒成立,令F(x)=e x−1−lnx−ax−1+a,x≥1,则F′(x)=e x−1−1x−a,易得F′(x)在[1,+∞)递增,∴F′(x)≥F′(1)=−a,①当a≤0时,F′(x)≥0,F(x)在[1,+∞)递增,所以F(x)≥F(1)=0成立,符合题意.②当a>0时,F′(1)=−a<0,且当x=ln(a+1)+1时,F′(x)=a+1−1x−a=1−1x>0,∴∃x0∈(1,+∞),使F′(x0)=0,即∃x∈(1,x0)时F′(x)<0,F(x)在(1,x0)递减,F(x)<F(1)=0,不符合题意.综上得a≤0.34.已知函数f(x)=ax +lnx,g(x)=12bx2−2x+2,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数ℎ(x)=f(x)+g(x),当a=0时,ℎ(x)在(0,1)上有且只有一个极值点,求实数b的取值范围.【答案】解:的定义域是(0,+∞),且 f′(x)=−ax2+1x=x−ax2;①若a⩽0,则f′(x)>0,f(x)的单调增区间是(0,+∞),②若a>0,令f′(x)=0,得x=a,当0<x<a时,f′(x)<0,当x>a时,f′(x)>0,∴f(x)的单调减区间是(0,a),单调增区间是(a,+∞);综上,当a⩽0时,f(x)的单调增区间是(0,+∞),无单调减区间;当a>0时,f(x)的单调减区间是(0,a),单调增区间是(a,+∞);(2)a=0时,,∴ℎ′(x)=bx−2+1x =bx2−2x+1x ,∵ℎ(x)在(0,1)上有且只有一个极值点,则ℎ′(x)=0在(0,1)上有唯一实数解,且两侧异号,由ℎ′(x)=0,得bx2−2x+1=0;令p(x)=bx2−2x+1,则p(x)在(0,1)上有且只有一个零点,易知p(0)=1>0,①当b =0,由p(x)=0,得x =12,满足题意;②当b >0时,由{Δ=4−4b >0p (1)=b −1<0,解得0<b <1;③当b <0时,{Δ=4−4b >0p (1)=b −1<0,得b <1,故b <0; 综上所述,ℎ(x)在(0,1)上有且只有一个极值点时,b <1. 故实数b 的取值范围为(−∞,1).。
高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型一:利用导数研究函数的单调性
题型一:利用导数研究函数的单调性1、讨论函数的单调性(或区间)1.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;【答案】(1)答案见解析;(2)0a ≤.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-= 当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增. (2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x 在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.2.已知函数32()f x x x mx =+-.(1)若函数()f x 在2x =处取到极值,求曲线()y f x =在(1,())f x 处的切线方程;(2)讨论函数()f x 的单调性.【答案】(1)113y x =--;(2)()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 【详解】(1)依题意,2()32f x x x m '=+-,(2)1240f m '=+-=,解得16m =,经检验,16m =符合题意;故32()16f x x x x =+-,2()3216f x x x '=+-,故(1)21614f =-=-,(1)11f '=-,故所求切线方程为1411(1)y x +=--,即113y x =--;(2)依题意2()32f x x x m '=+-,412m ∆=+,若0∆,即13m -时,()0f x ',()f x 在R 上单调递增;若0∆>,即13m >-时,令()0,f x x '===令12x x == 故当()1,x x ∈-∞时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,故函数()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 3.已知函数()ln a f x x x=+(a 为常数) (1)讨论函数()f x 的单调性;【答案】(1)0a ≤时,(0,)+∞递增,0a >时,在(0,)a 递减,(,)a +∞递增;【详解】(1)函数定义域是(0,)+∞,221()a x a f x x x x-'=-=, 0a ≤时,()0f x '>恒成立,()f x 在(0,)+∞上是增函数;0a <时,0x a <<时,()0f x '<,()f x 递减,x a >时,()0f x '>,()f x 递增.2、根据函数的单调性求参数的取值范围1.已知函数321()23f x ax x x =+-+,其中a R ∈. (1)若函数()f x 恰好有三个单调区间,求实数a 的取值范围;【答案】(1)()()1,00,a ∈-+∞; 【详解】(1)由321()23f x ax x x =+-+,得2()21f x ax x '=+-. ∵()f x 存在三个单调区间∴()0f x '=有两个不相等的实数根,即2210ax x .∴00a ≠⎧⎨∆>⎩,即0440a a ≠⎧⎨+>⎩,故()()1,00,a ∈-+∞.2.已知函数()321f x x ax =++,a R ∈. (1)讨论函数()f x 的单调区间;(2)若函数()f x 在区间2,03⎛⎫- ⎪⎝⎭内是减函数,求a 的取值范围; (3)若函数()f x 的单调减区间是2,03⎛⎫- ⎪⎝⎭,求a 的值. 【答案】(1)答案见解析(2)[)1,+∞(3)1(1) 由题意知,22()323()3a f x x ax x x '=+=+, 当0a =时,2()30f x x '=≥恒成立,所以()f x 的单调递增区间是()-∞+∞,; 当0a >时,令2()0()(0)3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(),(0)3a -∞-+∞,,,单调递减区间为2(0)3a -,, 当0a <时,令2()0(0)()3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(0)()3a -∞-+∞,,,,单调递减区间为2(0)3a -,; (2)由(1)知,当0a >时,有22(0)(0)33a -⊆-,,,所以2233a -≤-, 解得1a ≥,即a 的取值范围为[1)+∞,; (3)由(1)知,当0a >时,有22(0)(0)33a -=-,,,所以2233a -=-, 解得1a =.3.已知函数()3f x x ax =-+,a R ∈(1)若()f x 在)1,⎡+∞⎣上为单调减函数,求实数a 取值范围;【答案】(1)3a ≤;(2)最大值为0,最小值为16-.【详解】解:(1)因为()3f x x ax =-+,则()'23f x x a =-+.依题意得()'230f x x a =-+≤在[)1,x ∈+∞恒成立,∴23a x ≤在[)1,x ∈+∞恒成立. 因为当1≥x 时,233x ≥,所以 3a ≤.(2)当12a =时,()312f x x x =-+,()()()'2312322f x x x x =-+=-+-,令'0f x 得[]123,0x =∉-,22x =-,所以当32x -<<-时,()'0f x <,()f x 单调递减,当20x -<<时,()'>0f x ,()f x 单调递增,又()327369f -=-=-,()282416f -=-=-,()00f =.∴()f x 在[]3,0-上最大值为0,最小值为16-.。
高三数学利用导数研究函数的单调性试题
高三数学利用导数研究函数的单调性试题1.(本小题满分13分)设函数(为常数,是自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在内存在两个极值点,求的取值范围.【答案】(I)的单调递减区间为,单调递增区间为.(II)函数在内存在两个极值点时,k的取值范围为.【解析】(I)函数的定义域为,由可得,得到的单调递减区间为,单调递增区间为.(II)分,,,时,讨论导函数值的正负,根据函数的单调性,明确极值点的有无、多少.试题解析:(I)函数的定义域为,由可得,所以当时,,函数单调递减,当时,,函数单调递增.所以的单调递减区间为,单调递增区间为.(II)由(I)知,时,函数在内单调递减,故在内不存在极值点;当时,设函数,因为,当时,当时,,单调递增,故在内不存在两个极值点;当时,得时,,函数单调递减,时,,函数单调递增,所以函数的最小值为,函数在内存在两个极值点;当且仅当,解得,综上所述,函数在内存在两个极值点时,k的取值范围为.【考点】应用导数研究函数的单调性、极值,分类讨论思想,不等式组的解法.2.函数f(x)=x+eln x的单调递增区间为________.【答案】(0,+∞)【解析】函数定义域为(0,+∞),f′(x)=1+>0,故单调增区间是(0,+∞).3.已知函数函数在处取得极值1.(1)求实数b,c的值;(2)求在区间[-2,2]上的最大值.【答案】(1)(2)详见解析.【解析】(1)根据分段函数可知,时,,根据函数在处,取得极值1,可知,,求出与,并且回代函数,验证能够满足在处函数取得极值;(2)当时,函数,,求函数的极值点,与端点值,判定最大值,当时,,,设,显然大于0,所以只要讨论三种情况的正负,取得函数的单调性,闭区间内求最大值,再与的最大值比较大小.(1)由题意当时,,当时,,依题意得,经检验符合条件. 4分(2)由(1)知,当时,,,令得当变化时,的变化情况如下表:+—由上表可知在上的最大值为. 7分当时,.,令,当时,显然恒成立,当时,在单调递减,所以恒成立.此时函数在上的最大值为;当时,在上,当时, 在上所以在上,函数为单调递增函数.∴在最大值为,,故函数在上最大值为.综上:当时,在上的最大值为;当时, 在最大值为. 12分【考点】1.利用导数求函数的极值;2.利用导致求函数的最值.4.已知函数f(x)=ax3+(a-2)x+c的图象如图所示.(1)求函数y=f(x)的解析式;(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.【答案】(1)f(x)=x3-x+3(2)[1,+∞)【解析】(1)∵f′(x)=ax2+a-2,由图可知函数f(x)的图象过点(0,3),且f′(1)=0.得即∴f(x)=x3-x+3.(2)∵g(x)=-2ln x=kx--2ln x,∴g′(x)=k+-=.∵函数y=g(x)的定义域为(0,+∞),∴若函数y=g(x)在其定义域内为单调增函数,则函数g′(x)≥0在(0,+∞)上恒成立,即kx2+k-2x≥0在区间(0,+∞)上恒成立.即k≥在区间(0,+∞)上恒成立.令h(x)=,x∈(0,+∞),则h(x)==≤1(当且仅当x=1时取等号).∴k≥1.∴实数k的取值范围是[1,+∞).5.已知函数其中a是实数.设,为该函数图象上的两点,且.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且,求的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.【答案】(1)[-1,0),(0,+∞)(2)1(3)(-ln2-1,+∞)【解析】(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A处的切线斜率为,点B处的切线斜率为,故当点A处的切线与点B处的切线垂直时,有.当x<0时,对函数f(x)求导,得.因为,所以,所以.因此当且仅当,即且时等号成立.所以函数f(x)的图象在点A,B处的切线互相垂直时,的最小值为1.(3)当或时,,故.当时,函数f(x)的图象在点处的切线方程为,即.当时,函数f(x)的图象在点处的切线方程为,即.两切线重合的充要条件是由(1)式及知,.由(1)(2)式得,.设,则.所以是减函数.则.所以.又当且趋近于-1时,无限增大,所以a的取值范围是.故当函数f(x)的图象在点A,B处的切线重合时,a的取值范围是.6.已知函数f(x)=ln x+ax(a∈R).(1)求f(x)的单调区间;(2)设g(x)=x2-4x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【答案】(1) f(x)的单调递增区间为,单调递减区间为 (2)【解析】(1)f′(x)=a+= (x>0).①当a≥0时,由于x>0,故ax+1>0,f′(x)>0,所以f(x)的单调递增区间为(0,+∞).②当a<0时,由f′(x)=0,得x=-.在区间上,f′(x)>0,在区间上,f′(x)<0,所以函数f(x)的单调递增区间为,单调递减区间为.(2)由题意得f(x)max <g(x)max,而g(x)max=2,由(1)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,f=-1+ln=-1-ln(-a),所以2>-1-ln(-a),解得a<-.故a的取值范围为.7.设f(x)=-x3+x2+2ax.(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.【答案】(1) a>- (2) f(x)max = 【解析】(1)f(x)=-x 3+x 2+2ax,∴f'(x)=-x 2+x+2a,当x ∈[,+∞)时,f'(x)的最大值为f'()=+2a.函数f(x)在(,+∞)上存在单调递增区间,即导函数在(,+∞)上存在函数值大于零成立, ∴+2a>0a>-.(2)已知0<a<2,f(x)在[1,4]上取到最小值-,而f'(x)=-x 2+x+2a 的图象开口向下,且对称轴为x=, ∴f'(1)=-1+1+2a=2a>0, f'(4)=-16+4+2a=2a-12<0,则必有一点x 0∈[1,4]使得f'(x 0)=0,此时函数f(x)在[1,x 0]上单调递增,在[x 0,4]上单调递减, f(1)=-++2a=+2a>0,∴f(4)=-×64+×16+8a=-+8a, ∴-+8a=-,得a=1,此时,由f'(x 0)=-+x 0+2=0得x 0=2或-1(舍去), 所以函数f(x)max =f(2)=.8. 若函数f(x)=x 3-x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________. 【答案】-4【解析】∵f(x)=x 3-x 2+ax +4,∴f′(x)=x 2-3x +a.又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a =-1×4=-4.9. 函数y =x 2-ln x 的单调减区间是 ( ). A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)【答案】B【解析】y ′=x -,且x >0, 令y ′=x -≤0,解之得0<x ≤1. ∴函数的单调减区间为(0,1]10. 没函数在(0,+)内有定义,对于给定的正数K ,定义函数,取函数,恒有,则A .K 的最大值为B .K 的最小值为C .K 的最大值为2D .K 的最小值为2【答案】B 【解析】由,,得;当时,,当时,,即在时取到最大值,而恒成立,所以,故的最小值为,选B.【考点】应用导数研究函数的单调性及最值,不等式恒成立问题.11.设函数,若时,有极小值,(1)求实数的取值;(2)若数列中,,求证:数列的前项和;(3)设函数,若有极值且极值为,则与是否具有确定的大小关系?证明你的结论.【答案】(1);(2)详见解析;(3)不具有.【解析】(1)对函数求导,再由极小值的定义,代入得到导数为0以及相应的函数值,从而得到;(2)由上问得到数列为递增的数列,所以,将代入即可得证;(3)先对函数求导,计算得极小值点.再通过作出比较大小,即构造函数.再计算该函数的极小值,又因为.从而的极值与不具有明确的大小关系.试题解析:(1) 1分3分4分(2)由条件和第(1)问可知,函数在上单调递增, 5分7分(3),由有极值且的定义域为可知:异号,极小值点为, 8分9分令,构造函数,由条件和第(1)问可知:时,有极小值而 11分所以可能大于0或可能等于0或可能小于0,即的极值与不具有明确的大小关系. 13分【考点】1.函数的求导法则;2.函数的单调性;3.极值;4.作差法比较大小.12.若函数有大于零的极值点,则的取值范围是_________.【答案】【解析】,令,∴,∴.【考点】函数的极值.13.已知定义在上的函数,其中为常数.(1)当是函数的一个极值点,求的值;(2)若函数在区间上是增函数,求实数的取值范围;(3)当时,若,在处取得最大值,求实数的取值范围.【答案】(1);(2);(3) .【解析】(1) 本小题首先由可得,因为是是函数的一个极值点,所以;(2) 本小题首先利用导数的公式和法则求得,根据函数在区间上是增函数,讨论参数的不同取值对单调性的影响;(3)本小题首先求得,然后求得导数,然后讨论单调性,求最值即可.试题解析:(1)由可得因为是是函数的一个极值点,所以(2)①当时,在区间上是增函数,所以符合题意②当时,,令当时,对任意的,,所以符合题意当时,时,,所以,即符合题意综上所述,实数的取值范围为(3)当时,所以令,即显然设方程的两个实根分别为,则不妨设当时,为极小值所以在上的最大值只能是或当时,由于在上是递减函数,所以最大值为所以在上的最大值只能是或由已知在处取得最大值,所以即,解得又因为,所以实数的取值范围为【考点】1.导数公式与法则;2.函数的单调性;3.等价转化.14.若函数在上的导函数为,且不等式恒成立,又常数,满足,则下列不等式一定成立的是 .①;②;③;④.【答案】①【解析】令,.,因为,所以,即在上是增函数.由得,即,所以.所以①成立,③不成立;再令,.所以,因为不能确定是否大于0,所以单调性不能确定,即不知道与的大小关系,所以②④不一定成立.因此本题填①.【考点】利用导数研究函数的单调性、导数的运算法则、利用函数单调性比较大小15.设函数,其中为常数。
14导数、利用导数研究函数的单调性(含答案)
14导数:利用导数研究函数的单调性1.函数的单调性与导数的关系2.确定不含参数的函数单调区间的步骤(1)确定函数f(x)的定义域.(2)求f′(x).(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间.(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.3.确定含参数的函数的单调性的基本步骤(1)确定函数f(x)的定义域.(2)求f′(x),并尽量化为乘积或商的形式.(3)令f′(x)=0,①若此方程在定义域内无解,考虑f′(x)恒大于等于0(或恒小于等于0),直接判断单调区间.如举例说明中a≥1时,f′(x)>0,a≤0时,f′(x)<0.②若此方程在定义域内有解,则用之分割定义域,逐个区间分析f′(x)的符号确定单调区间.如举例说明中0<a<1时,f′(x)=0有一个实根练习1.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是( )答案 C解析由y=f′(x)的图象易得,当x<0或x>2时,f′(x)>0;当0<x<2时,f′(x)<0.所以函数y=f(x)在(-∞,0)和(2,+∞)上单调递增,在(0,2)上单调递减,故选C.2.f(x)=x3-6x2的单调递减区间为( )A.(0,4) B.(0,2)C.(4,+∞) D.(-∞,0)答案 A解析f′(x)=3x2-12x=3x(x-4),由f′(x)<0得0<x<4,所以f(x)的单调递减区间为(0,4).3.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)答案 D解析函数f(x)=(x-3)e x的导数为f′(x)=[(x-3)e x]′=e x+(x-3)e x =(x-2)e x.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)e x>0,解得x>2.4.函数f(x)=e x-e x,x∈R的单调递增区间是( )A.(0,+∞) B.(-∞,0)C.(-∞,1) D.(1,+∞)答案 D解析 依题意得f ′(x )=e x -e.由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=e x -e>0,解得x >1.5.函数f (x )=3xx 2+1的单调递增区间是___________. 解析 函数f (x )的定义域为R ,f ′(x )=31-x 2x 2+12=31-x 1+xx 2+12.要使f ′(x )>0,只需(1-x )(1+x )>0,解得x ∈(-1,1).6.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5. 但-1∉(0,+∞),舍去. 当x ∈(0,5)时,f ′(x )<0; 当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).7.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是.答案 ⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2解析 因为f (x )=x sin x +cos x ,所以f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )>0,得x cos x >0. 又因为-π<x <π,所以-π<x <-π2或0<x <π2, 所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.8.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .①当a ≥1时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增;②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a, 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0; 当x ∈⎝⎛⎭⎪⎫1-a2a ,+∞时,f ′(x )>0, 故f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a2a ,+∞上单调递增. 综上所述,当a ≥1时,f (x )在(0,+∞)上单调递增; 当a ≤0时,f (x )在(0,+∞)上单调递减; 当0<a <1时,f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝ ⎛⎭⎪⎫1-a2a ,+∞上单调递增.9.已知函数f (x )=(x -1)e x -x 2,g (x )=a e x -2ax +a 2-10(a ∈R ).(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数h(x)=f(x)-g(x)(x>0)的单调性.解(1)由题意,得f′(x)=x e x-2x,则f′(1)=e-2.又f(1)=-1,故所求切线方程为y-(-1)=(e-2)(x-1),即y=(e-2)x+1-e.(2)由已知,得h(x)=f(x)-g(x)=(x-a-1)e x-x2+2ax-a2+10.此函数的定义域为(0,+∞).则h′(x)=e x+(x-a-1)e x-2x+2a=(x-a)(e x-2).①若a≤0,则x-a>0.当0<x<ln 2时,h′(x)<0,当x>ln 2时,h′(x)>0.所以h(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增.②若0<a<ln 2,则当0<x<a或x>ln 2时,h′(x)>0.当a<x<ln 2时,h′(x)<0.所以h(x)在(0,a)上单调递增,在(a,ln 2)上单调递减,在(ln 2,+∞)上单调递增.③若a=ln 2,则h′(x)≥0,所以h(x)在(0,+∞)上单调递增.④若a>ln 2,则当0<x<ln 2或x>a时,h′(x)>0;当ln 2<x<a时,h′(x)<0.所以h(x)在(0,ln 2)上单调递增,在(ln 2,a)上单调递减,在(a,+∞)上单调递增.10.设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是?解析∵f′(x)g(x)+f(x)g′(x)>0,即[f(x)g(x)]′>0.∴f(x)g(x)在(-∞,0)上单调递增,又f(x),g(x)分别是定义在R上的奇函数和偶函数,∴f(x)g(x)为奇函数,f(0)g(0)=0,∴f(x)g(x)在(0,+∞)上也是增函数.∵f(3)g(3)=0,∴f(-3)g(-3)=0.∴f(x)g(x)>0的解集为(-3,0)∪(3,+∞).11.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间, 所以当x ∈(0,+∞)时, 1x-ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1. 又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞). (2)因为h (x )在[1,4]上单调递减, 所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max , 而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716,又因为a ≠0,所以a 的取值范围是 ⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞). 12.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )答案 D解析 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 项符合题意.13.已知函数f (x )=x 3+ax ,则“a >0”是“f (x )在R 上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当a ≥0时,f ′(x )=3x 2+a ≥0,f (x )在R 上单调递增,“a >0”是“f (x )在R 上单调递增”的充分不必要条件.故选A.14.已知函数f (x )=3x +2cos x ,若a =f (32),b =f (2),c =f (log 27),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a答案 D解析 ∵f (x )=3x +2cos x 的定义域为R ,f ′(x )=3-2sin x >0,∴f (x )为R 上的单调递增函数.又y =log 2x 为(0,+∞)上的单调递增函数,∴2=log 24<log 27<log 28=3.∵y =3x 为R 上的单调递增函数,∴32>31=3,∴2<log 27<3 2.∴f (2)<f (log 27)<f (32),即b <c <a .15.若函数f (x )=e x -(a -1)x +1在(0,1)上单调递减,则a 的取值范围为( )A.(e+1,+∞) B.[e+1,+∞)C.(e-1,+∞) D.[e-1,+∞)答案 B解析由f(x)=e x-(a-1)x+1,得f′(x)=e x-a+1.因为函数f(x)=e x -(a-1)x+1在(0,1)上单调递减,所以f′(x)=e x-a+1≤0在(0,1)上恒成立,即a≥e x+1在(0,1)上恒成立,令g(x)=e x+1,x∈(0,1),则g(x)在(0,1)上单调递增,所以g(x)<g(1)=e+1.所以a≥e+1.所以实数a的取值范围为[e+1,+∞).故选B.16.已知定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)<0,其中f′(x)是函数f(x)的导函数.若2f(m-2019)>(m-2019)f(2),则实数m的取值范围为( )A.(0,2019) B.(2019,+∞)C.(2021,+∞) D.(2019,2021)答案 D解析令h(x)=f xx,x∈(0,+∞),则h′(x)=xf′x-f xx2.∵xf′(x)-f(x)<0,∴h′(x)<0,∴函数h(x)在(0,+∞)上单调递减,∵2f(m-2019)>(m-2019)f(2),m-2019>0,∴f m-2019m-2019>f22,即h(m-2019)>h(2).∴m-2019<2且m-2019>0,解得2019<m<2021.∴实数m的取值范围为(2019,2021).17.已知f(x)=1+ln x2ax(a≠0,且a为常数),求f(x)的单调区间.解因为f(x)=1+ln x2ax(a≠0,且a为常数),所以f′(x)=-2a ln x2ax2=-ln x2ax2,x>0.所以①若a>0,当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.即a>0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).②若a<0,当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.即a <0时,函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1). 18.已知函数f (x )=x 3+ax 2+2x -1.(1)若函数f (x )在区间[1,3]上单调递增,求实数a 的取值范围; (2)若函数f (x )在区间[-2,-1]上单调递减,求实数a 的取值范围. 解 由f (x )=x 3+ax 2+2x -1,得f ′(x )=3x 2+2ax +2.(1)因为函数f (x )在区间[1,3]上单调递增,所以f ′(x )≥0在[1,3]上恒成立.即a ≥-3x 2-22x 在[1,3]上恒成立.令g (x )=-3x 2-22x ,则g ′(x )=-3x 2+22x 2,当x ∈[1,3]时,g ′(x )<0,所以g (x )在[1,3]上单调递减,所以g (x )max =g (1)=-52,所以a ≥-52.(2)因为函数f (x )在区间[-2,-1]上单调递减,所以f ′(x )≤0在[-2,-1]上恒成立,即a ≥-3x 2-22x 在[-2,-1]上恒成立,由(1)易知,g (x )=-3x 2-22x 在[-2,-1]上单调递减,所以a ≥g (-2),即a ≥72.。
高二数学利用导数研究函数的单调性试题
高二数学利用导数研究函数的单调性试题1.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小值为()A.1B.C.D.【答案】B【解析】设P,点P到直线y=x-2的距离==,设=(),所以==,当<0时,<0,当>0时,>0,则在(0,1)是减函数,在(1,+)上是增函数,则当=1时,取极小值也是最小值=2,此时=,故选B.考点:点到直线的距离公式,导数的综合运用2.直线与函数的图像有三个相异的交点,则的取值范围为()A.B.C.D.【答案】A【解析】得列表:x(-,-1)-1(-1,1)1(1,+ ) ++y画出大到图象可得:-2<a<2,故选A.【考点】函数的极值.3.已知函数有极大值和极小值,则的取值范围为()A.-12B.-36C.-1或2D.-3或6【答案】D【解析】,函数有极大值与极小值,则,即方程有两个不等的根,所以,解得或.【考点】函数的极值.4.若不等式对恒成立,则实数的取值范围是 .【答案】【解析】显然x=1时,有|a|≥1,a≤-1或a≥1.令g(x)=ax3-lnx,g′(x)=3ax2−==g(1)当a≤-1时,对任意x∈(0,1],g′(x)=<0,g(x)在(0,1]上递减,g(x)min=a≤-1,此时g(x)∈[a,+∞),|g(x)|的最小值为0,不适合题意.当a≥1时,对任意x∈(0,1],g′(x)==0,∴x=函数在(0,)上单调递减,在(,+∞)上单调递增∴|g(x)|的最小值为g()=+ ,解得:a≥∴实数a 取值范围是[,+∞),故答案为.【考点】导数知识的运用,函数的单调性与最值,分类讨论的数学思想,函数恒成立问题.5.函数的单调减区间为___________.【答案】【解析】因为,解得,因此函数的单调减区间为.【考点】导数求单调区间6.设函数(1)试问函数能否在处取得极值,请说明理由;(2)若,当时,函数的图像有两个公共点,求的取值范围.【答案】(1)函数不能在处取得极值,理由详见试题解析;(2)的取值范围是.【解析】(1)先对函数求导,因为函数在实数上单调递增,故函数不可再处取得极值.(2)函数与的图像在有两个公共点,即方程在有两解,结合函数的单调性可求的取值范围.(1),当时,,而此时,函数在实数上单调递增,故函数不可再处取得极值.(2)当时,,函数与的图像在有两个公共点,即方程在有两解,方程可转化为,设,则,令,解得,所以函数在递增,在上递减.,所以要使得方程有两解需.【考点】导函数的综合应用、构造思想、转化与化归思想.7.已知若,使得成立,则实数的取值范围是_______.【答案】【解析】由题可知的最大值为,又,当时,减函数,当时,,为增函数,所以有最小值为.若,使得成立,只需.【考点】利用导数判断函数的单调性.8.若函数在区间内是增函数,则实数的取值范围是A.B.C.D.【答案】B【解析】,在区间内是增函数,在区间内恒成立,由,故【考点】导数与单调性,恒成立问题9.(本小题满分15分)若函数在时取得极值,且当时,恒成立.(1)求实数的值;(2)求实数的取值范围.【答案】(1)(2)【解析】(1)由题意,是方程的一个根,设另一个根是,则,所有(2)所以,,令,解得+0-0+极大值又,所以,当时,。
高二数学函数的单调性与导数试题答案及解析
高二数学函数的单调性与导数试题答案及解析1.已知函数(Ⅰ)求的单调区间;(Ⅱ)求上的最值.【答案】解:(I)令得若则,故在上是增函数,在上是增函数若则,故在上是减函数。
3分(II)。
6分【解析】本试题主要是考查了导数在研究函数中的运用。
(1)求解导数,利用导数的正负来判定函数的单调增减区间(2)在第一问的基础上可知在上是增函数,在上是增函数因此在上先减后增,则可知函数的最值。
2.设函数,且为的极值点.(Ⅰ) 若为的极大值点,求的单调区间(用表示);(Ⅱ)若恰有两解,求实数的取值范围.【答案】解:,又所以且,。
2分(I)因为为的极大值点,所以当时,;当时,;当时,所以的递增区间为,;递减区间为.。
4分(II)①若,则在上递减,在上递增恰有两解,则,即,所以;②若,则,因为,则,从而只有一解;③若,则,, 则只有一解.综上,使恰有两解的的范围为.。
10分【解析】本试题主要是考查了导数在研究函数中的运用。
(1)因为为的极大值点,则可以得到参数b,c的关系式,并利用导数求解的单调区间,(2)因为的递增区间为,;递减区间为,那么对于参数c进行讨论,进而分析函数图像与x轴的位置关系。
3.(Ⅰ)设函数,证明:当时,;(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为。
证明:。
注:可用(Ⅰ)的结论。
【答案】解:(Ⅰ)。
1分当时,,所以为增函数,又,因此当时,。
3分(Ⅱ)。
5分又,,…,所以。
6分由(Ⅰ)知,当时,,因此。
7分在此式中令,则即。
8分所以。
9分【解析】本试题主要是考查了导数在研究函数中的运用。
利用导数的符号判定单调性得到最值证明不等式恒成立。
同时利用函数的最值结论来分析证明不等式的综合运用。
4.设函数,,则的最大值为____________,最小值为_________。
【答案】【解析】解:因为,利用导数符号与函数单调性关系可知道f(x)的最大值,最小值分别为5.设函数,其中。
专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)
导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。
常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。
二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题02 导数研究函数的单调性1.已知函数f(x)=ax3+6x2-3x+1在区间(1,2)上是减函数,则实数a的取值范围是()A.B.C.D.【答案】A【解析】∵,∴.∵在区间上是减函数,∴上恒成立,即上恒成立.∵,∵,∴.∴实数的取值范围为.故选A.2.函数的定义域为对任意,则的解集为()A.B.C.D.【答案】B【解析】令,则,所以上的增函数,又,故的解是的解,所以的解为.故等价于,所求解集为,故选B.3.设函数上可导的偶函数,且,当,满足,则的解集为()A.B.C.D.【答案】B【解析】令,因为函数上是可导的偶函数,所以上也是偶函数又当时,上是增函数选B.4.已知函数,则的增区间为()A.B.C.D.【答案】B【解析】∵,∴.由,得,解得.∴函数的增区间为.故选B.5.函数上单调递增,则实数的取值范围为()A.B.C.D.【答案】D【解析】因为函数连续可导且单调递增,所以恒成立,分离参数得恒成立,即,故选D。
6.已知函数的图象如图所示(其中是函数的导函数),下面四个图象中的图象大致是( )A.B.C.D.【答案】C【解析】由函数y=xf′(x)的图象可知:当x<﹣1时,xf′(x)<0,f′(x)>0,此时f(x)增当﹣1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.故选C..7.设函数在区间[a-1,a+1]上单调递减,则实数a的取值范围是( )A.[-∞,2)B.(1,2]C.(0,3]D.(4,+∞]【答案】B【解析】函数的定义域为,由函数的解析式可得:,据此可得函数的单调递减区间为,单调递增区间为,结合题意有:,解得:,即实数a的取值范围是(1,2].本题选择B选项.8.函数的定义域为R,,对任意的,都有成立,则不等式的解集为A.B.C.D.R【答案】A【解析】原不等式化为,令,则,对任意的,都有成立,恒成立,在R上递减,,的解集为,故选:A.9.若函数y在(1,+∞)上单调递增,则a的取值范围是()A.a B.a>-2C.a D.a>-1【答案】A【解析】依题意,函数在上有,即恒成立,由于,故,所以.故选A.10.已知函数的图像如图所示,则函数的单调递增区间为()A.B.C.D.R【答案】B【解析】当时,,由图像可知,对应的取值范围是,故选B.11.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f ′(x)的图象可能是()A.B.C.D.【答案】A【解析】根据的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有选项符合,故本题选A.12.设函数f(x)是定义在区间上的函数,f'(x)是函数f(x)的导函数,且,则不等式的解集是( )A.B.(1,+∞)C.(-∞,1)D.(0,1)【答案】D【解析】构造函数,则,由,所以,即上单调递增。
因为,则不等式,可变为,则,所以,所以,故选D13.若函数上是减函数,则实数的取值范围是______。
【答案】【解析】∵函数,∴,∵函数在实数R上是减函数,∴的解集是R,∴△=16+12a≤0,解得a,∴实数a的取值范围是(﹣∞,].故答案为:(﹣∞,].14.函数的单调减区间是_____________.【答案】【解析】由题意得函数的定义域为R.∵,∴,由,解得.∴函数的单调减区间是.故答案为:.15.已知函数f(x)=2lnx-ax2,若α,β都属于区间[1,4],且β-α=1,f(α)=f(β),则实数a的取值范围是________.【答案】【解析】解:f′(x)=(x>0)当a≤0 时,f′(x)>0恒成立,则f(x)在(0,+∞)上递增,则f(x)不可能有两个相等的函数值.故a>0;由题设f(α)=f(β)则=考虑到β﹣α=1,即2lnα﹣2lnβ+a(α+β)=0∴2lnα﹣2ln(α+1)+α(2+1)=0,∈[1,3]设h(x)=2lnx﹣2ln(x+1)+α(2x+1)x∈[1,3],a>0,则h'(x)=在上恒成立,∴h(x)在[1,3]上递增,h(x)在[1,3]有零点,则,∴,∴故实数a的取值范围是.16.已知y=f(x)是定义在R上的函数,且f(1)=1,f’(x)>1,则f(x)>x的解集是_____.【答案】(1,+∞)【解析】解:设g(x)=f(x)﹣x,则g′(x)=f′(x)﹣1,∵f(1)=1,f′(x)>1,∴g′(x)=f′(x)﹣1>0,即g(x)单调递增,且g(1)=f(1)﹣1=0,当x>1时,g(x)>g(1),即f(x)﹣x>0,则f(x)>x,即f(x)>x的解集是(1,+∞),故答案为:(1,+∞)17.函数过点.(1)求函数的单调区间(2)求函数在区间上的最大值和最小值。
【答案】(1)的增区间为,减区间为.(2)【解析】(1)点在函数的图象上,∴,解得,∴,∴,当时,,当时,.所以的增区间为,减区间为.(2)由(1)可得:函数在区间上单调递减,在区间上单调递增.∴,又,∴.18.设函数,其中.(1)若,求函数在处的切线方程;(2)讨论的单调区间.【答案】(1);(2)a>0时,f(x)的增区间为(﹣∞,),(,+∞),减区间为();a≤0时,f(x)的单调递增区间为(﹣∞,+∞),无减区间.【解析】(1)当a=1,b=2时,f(x)=x3﹣x-2,f′(x)=3x2﹣1,则切线斜率k=f′(1)=2,f(1)=1﹣1-2=-2,则切点为(1,-2),∴函数f(x)在(1,f(1))处的切线方程为y+2=2(x﹣1),即y=2x-4;(2)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),无减区间.②当a>0时,令f′(x)=3x2﹣a=0,解得x或x,当x或x时,f′(x)=3x2﹣a>0,f(x)为增函数,当时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,),(,+∞),减区间为();19.已知函数,讨论函数的单调区间.【答案】见解析【解析】由题意得函数定义域为,,当时,令,得,当时,单调递减;当时,单调递增。
同理当时,当时,单调递减;当时,单调递增。
当时,在定义域内大于0恒成立,所以单调递增20.已知函数.(1)判断函数的单调性;(2)若的图象总在直线y=a的上方,求实数a的取值范围.【答案】(1)见解析;(2).【解析】(1)当时,为增函数;当时,为减函数.(2)依题意得,不等式对于恒成立.令,则.当时,,则上的增函数;当时,,则上的减函数.所以的最小值是,从而的取值范围是.21.已知函数.(1)讨论的单调性;(2)若,不等式有且只有两个整数解,求的取值范围. 【答案】(1)当时,函数单调递减;当时,函数单调递增,在单调递减;当时,函数单调递增,在单调递减。
(2)【解析】(1)函数的定义域为②当时,函数上是减函数;②当时,,当,函数单调递增,当时,,函数单调递减。
③当时,,当时,,函数递减,当时,,函数单调递增。
综上所述:当时,函数单调递减;当时,函数单调递增,在单调递减;当时,函数单调递增,在单调递减。
(2)令,求导得令所以是R上的增函数,而说明函数在R上存在唯一零点此时函数上单调递减,在上单调递增,易证当时,,当时,(1)若时,,此时有无穷多个整数解,不符合题意;(2)若时,即,因为函数上单调递减,在上单调递增所以时,,所以无整数解,不符合题意;(3)当,即此时,故0,1是的两个整数解,又只有两个正整数解,因此,解得所以综上所述的取值范围为.22.已知函数(1)求函数的单调区间;(2)若,证明:【答案】(1)见解析;(2)见证明【解析】解:(1)函数的定义域为,求导得,令,令g’(x)>0,解得-1<x<0,令g’(x)<0解得x>0,所以单调增区间为减区间为。
g(x)<g(0)=0,即f’(x)<0在定义域上恒成立,所以的单调减区间为;(2)证明:将不等式变形为,因为,即不等式等价于,由(1)有所以上单调递减,所以要证原不等式成立,需证当x>0时,x<e x-1,令,则,可知h’(x)>0在恒成立,即h(x)在上单调递增,故h(x)>h(0)=0,即x<e x-1,故f(x)>f(e x-1),即,即.。