模解析函数及其性质
高中数学-函数概念及其性质知识总结
![高中数学-函数概念及其性质知识总结](https://img.taocdn.com/s3/m/5d7233ca58fb770bf68a552e.png)
数学必修1函数概念及性质(知识点陈述总结)(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注重:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注重:求出不等式组的解集即为函数的定义域。
)2.构成函数的三要素:定义域、对应关系和值域再注重:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y= f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
高常考题—函数的性质(含解析)
![高常考题—函数的性质(含解析)](https://img.taocdn.com/s3/m/033cfc28e009581b6ad9eb3b.png)
函数的性质一、题型选讲题型一 、 函数的奇偶性正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.填空题,可用特殊值法解答,但取特值时,要注意函数的定义域.例1、(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x --D .2x例2、(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15例3、(2020届浙江省台州市温岭中学3月模拟)若函数()2ln 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()1f x <的x 的取值范围为( ) A .11,1e e -⎛⎫- ⎪+⎝⎭B .10,1e e -⎛⎫⎪+⎝⎭C .1,11e e -⎛⎫⎪+⎝⎭D .11,(1,)1e e -⎛⎫-⋃+∞ ⎪+⎝⎭例4、【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =题型二、函数的单调性已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减.例5、(江苏省如皋市2019-2020学年高三上学期10月调研)已知函数22,1()1,1ax x x f x ax x ⎧+≤=⎨-+>⎩在R 上为单调増函数,则实数a 的取值范围为________.例6、函数()()212log 4f x x =-的单调递增区间是例7、(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.题型三、 函数的周期性1、若()f x 是一个周期函数,则()()f x T f x +=,那么()()()2f x T f x T f x +=+=,即2T 也是()f x 的一个周期,进而可得:()kT k Z ∈也是()f x 的一个周期2、函数周期性的判定:(1)()()f x a f x b +=+:可得()f x 为周期函数,其周期T b a =- (2)()()()f x a f x f x +=-⇒的周期2T a = (3)()()()1f x a f x f x +=⇒的周期2T a = (4)()()f x f x a k ++=(k 为常数)()f x ⇒的周期2T a = (5)()()f x f x a k ⋅+=(k 为常数)()f x ⇒的周期2T a =例8、(2019通州、海门、启东期末)已知函数f(x)的周期为4,且当x ∈(0,4]时,f(x)=⎩⎨⎧cos πx 2,0<x≤2,log 2⎝⎛⎭⎫x -32,2<x≤4.则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12的值为________.例9、(2017南京三模)已知函数f (x )是定义在R 上且周期为4的偶函数. 当x ∈[2,4]时,f (x )=|log 4(x -32)|,则f (12)的值为 ▲ .题型四 函数的对称性函数的对称性要注意一下三点:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
复数的运算与解析函数
![复数的运算与解析函数](https://img.taocdn.com/s3/m/b6044721a66e58fafab069dc5022aaea988f416a.png)
复数的运算与解析函数复数是数学中一个重要的概念,它由实部和虚部组成,可以用形如a+bi的表示方式来表示。
复数在数学和物理等领域有着广泛的应用,特别是在电路分析、信号处理和量子力学等领域中起着关键的作用。
本文将探讨复数的基本运算以及解析函数的概念与性质。
一、复数的基本运算复数的基本运算包括加法、减法、乘法和除法。
下面分别介绍这些运算及其性质。
1. 复数的加法设有两个复数z1=a1+ib1和z2=a2+ib2,它们的和为:z1+z2=(a1+a2)+(b1+b2)i2. 复数的减法两个复数相减的结果为:z1-z2=(a1-a2)+(b1-b2)i3. 复数的乘法两个复数相乘的结果为:z1*z2=(a1*a2-b1*b2)+(a1*b2+a2*b1)i4. 复数的除法两个复数相除的结果为:z1/z2=(a1*a2+b1*b2)/(a2^2+b2^2)+((a2*b1-a1*b2)/(a2^2+b2^2))i二、解析函数解析函数是复数域到复数域的映射,其定义如下:设f(z)=u(x,y)+iv(x,y)是定义在复平面上一个区域D上的函数,其中u(x,y)和v(x,y)是实函数,如果对于D内任意一点z_0的任意一个邻域内有极限lim(h->0)[f(z0+h)-f(z0)]/h,并且该极限与z_0的取法无关,那么称f(z)是D上的解析函数。
解析函数有一些基本性质,如:1. 解析函数在其定义域内连续且可微;2. 解析函数的实部和虚部是调和函数;3. 解析函数的虚部的梯度是实部的旋度的相反数。
解析函数在物理、工程和科学计算等领域中具有重要的应用。
在电路分析中,解析函数被广泛应用于交流电路的计算与分析。
在信号处理中,解析函数用于分解信号的谱分析和滤波。
在量子力学中,解析函数与波函数的概念密切相关。
总结:本文介绍了复数的基本运算和解析函数的概念与性质。
复数的运算包括加法、减法、乘法和除法,它们都具有一定的规律和性质。
高等数学中的解析函数及其应用
![高等数学中的解析函数及其应用](https://img.taocdn.com/s3/m/939e4fb96429647d27284b73f242336c1eb93098.png)
高等数学中的解析函数及其应用解析函数是数学中重要的一种函数类型,它在物理学、工程学、经济学等各个领域都得到了广泛的应用。
本文将介绍解析函数的定义、性质及其在实际中的应用。
一、解析函数的定义在复平面上,若函数$f(z)$在某一点$z_0$的邻域内连续,并且在这一点的邻域内存在$f(z)$的导数,则称函数$f(z)$在$z_0$处可导。
若$f(z)$在复平面上的每一点都可导,则称$f(z)$在复平面上解析。
解析函数可以表示为$u(x,y) + iv(x,y)$的形式,其中$u(x,y)$和$v(x,y)$是实函数。
二、解析函数的性质1. 解析函数的虚部和实部都是调和函数。
2. 解析函数满足柯西-黎曼条件,即$u_x=v_y$,$u_y=-v_x$。
3. 若$f(z)$在某一点$z_0$处解析,则在这一点的某个邻域内,$f(z)$可以用其泰勒级数展开。
4. 解析函数的微分、积分等运算仍是解析函数。
5. 解析函数有无数个解析函数的原函数。
三、解析函数的应用1. 物理学中的应用在电磁场理论中,解析函数的虚部通常代表磁通量,实部代表电势。
因此,解析函数在处理电场和磁场交互作用、分析电磁波等方面得到了广泛的应用。
2. 工程学中的应用在控制论和信号处理中,解析函数特点的$\text{Parseval}$定理和希尔伯特变换常常被用于信号处理和滤波等方面。
3. 经济学中的应用在经济学中,解析函数常常被用于分析复杂的经济现象,如股票价格的预测、货币市场的预测等。
4. 其他领域的应用除此之外,解析函数还被广泛应用于自然科学、生物学、地质学以及计算机图形处理等领域。
总之,解析函数是一类重要的函数类型,它的许多性质和特点广泛应用于各个领域。
掌握解析函数可以对我们的研究和分析工作带来重要的帮助,也可以帮助我们更好地理解各个领域的知识和技能。
解析函数
![解析函数](https://img.taocdn.com/s3/m/6490e008763231126edb115b.png)
复数的模 r = z ,辐角 ϕ = Arg z 辐角主值 0 ≤ arg z < 2π
Arg z = arg z + 2kπ ,
3.指数表示 3.指数表示
k = 0(±1) ± ∞
e
iϕ
cosϕ + i sin ϕ iϕ z = re
4.几何表示的补充 4.几何表示的补充 定义无穷远点: 定义无穷远点: z = ∞和复平面上一点对应 全复平面: 全复平面: 引入该无穷远点的平面 有限复平面: 有限复平面: 不含无穷远点
y
虚轴
z( x, y)
z = x +i y ↔( x, y) ↔Oz
O
实轴
x
复平面
2.三角表示(极坐标系 (r,ϕ) ) 2.三角表示( 三角表示
z = r(cosϕ + i sin ϕ)
x = r cosϕ , y = r sin ϕ
r = x2 + y2 ϕ = arctan y / x
②
③
具体步骤: 具体步骤:
扩充: 扩充:
① ②
引入新对象: 引入新对象:复数 引入新对象的运算: 引入新对象的运算: 代数运算、初等超越运算、极限、 代数运算、初等超越运算、极限、 微积分…… 微积分……
③
具体应用
内容安排: 内容安排:
第一、二、三章解决前两个问题 第一、 第四章留数定理探讨复变函数的应用 第五章讨论广义函数 普通点函数概念的扩充) (普通点函数概念的扩充)
y ① ∆z=∆x •z
② ∆z=i∆y o x
f (z + ∆z) − f (z) f ′(z) = lim ∆z→0 ∆z
②
u( x, y + ∆y) −u(x, y) = lim ∆y→0 i ∆y
解析函数平方模
![解析函数平方模](https://img.taocdn.com/s3/m/d2cf7d61bf23482fb4daa58da0116c175f0e1e03.png)
解析函数平方模解析函数平方模是数学中的一个重要概念,它在多个领域中都有广泛的应用。
本文将从数学角度对解析函数平方模进行详细解析,探讨其定义、性质以及应用。
我们来介绍一下解析函数的概念。
解析函数是指在某个区域内处处可导的复函数。
解析函数平方模是指解析函数在复平面上每个点的函数值的平方的模。
具体来说,如果我们有一个解析函数f(z),其中z=x+iy是复平面上的一个点,那么解析函数平方模就是|f(z)|^2。
解析函数平方模具有一些重要的性质。
首先,解析函数平方模是一个实函数,即它的取值都是实数。
其次,解析函数平方模在整个复平面上是连续的。
此外,如果解析函数f(z)在某个区域内恒等于常数c,那么解析函数平方模在该区域内也恒等于|c|^2。
最后,解析函数平方模在整个复平面上是有界的,即存在一个实数M,使得对于任意的复数z,都有|f(z)|^2≤M。
解析函数平方模在实际问题中有着广泛的应用。
其中一个重要的应用是在电磁场理论中。
在电磁场理论中,我们经常需要计算电场和磁场的强度。
而电场和磁场的强度可以通过解析函数平方模来表示。
具体来说,如果我们有一个解析函数f(z),那么电场的强度可以表示为|f(z)|^2,而磁场的强度可以表示为|f(z)|^2的导数。
另一个重要的应用是在量子力学中。
在量子力学中,波函数是描述粒子的重要工具。
而波函数的模的平方可以通过解析函数平方模来表示。
具体来说,如果我们有一个解析函数f(z),那么波函数的模的平方可以表示为|f(z)|^2。
除了在电磁场理论和量子力学中的应用,解析函数平方模还在其他领域中有着广泛的应用。
例如,在图像处理中,我们经常需要计算图像的亮度。
而图像的亮度可以通过解析函数平方模来表示。
具体来说,如果我们有一个解析函数f(z),那么图像的亮度可以表示为|f(z)|^2。
解析函数平方模是数学中一个重要的概念,它在多个领域中都有广泛的应用。
本文从数学角度对解析函数平方模进行了详细解析,介绍了其定义、性质以及应用。
第二章解析函数
![第二章解析函数](https://img.taocdn.com/s3/m/8dfe2d601ed9ad51f01df2ca.png)
f ( w) g ( z ), 其中 w g ( z ).
(e)
1 f ( z ) , 其中w f ( z )与z ( w)是 ( w)
两个互为反函数的单值 函数且 ( w) 0
说明
如果函数w=f(z)在区域B内的每一点可导, 则称f(z)在区域B内可导:
例2.1.4
讨论函数 w f ( z ) | Im z 2 | 在点 z0 0 处的可导性.
【解】 首先考察 C-R 条件是否满足. 根据 有
f ( z) | Im z 2 | 2 | xy | u( x, y) iv ( x, y)
u ( x, y ) 2 | xy |
两个例子:1. 求dzn/dz=nzn-1
2. 求证w= z 在z平面上处处连续,但 处处不可导
可导必连续。
例 2.1.1 用导数的定义证明公式: n nz n1 (n 为正整数) (z )
【证明】设 f ( z) z ,故
n
f ( z z ) f ( z ) ( z z ) z n(n 1) n 2 n 1 z[nz z z (z )n 1 ] 2 f ( z z ) f ( z ) lim nz n 1 z 0 z
二、复变函数导数存在的充要条件
可导条件
分析
f ( z) f ( z) lim f ' ( z0 ) lim x x0 x x0 z z y y y y
0 0
C-R条件
ux = vy vx = -uy
f ( z ) u iv u v lim i x x0 x x0 z x x x y y lim
多项式),除去使Q(z)=0的点外处处解析。
解析函数最大模原理的应用
![解析函数最大模原理的应用](https://img.taocdn.com/s3/m/745708879fc3d5bbfd0a79563c1ec5da50e2d6c5.png)
解析函数最大模原理的应用什么是解析函数最大模原理?解析函数最大模原理(Maximum Modulus Principle)是复分析中的一条重要定理,它揭示了解析函数在复平面上的性质。
该原理指出:如果函数在某个区域内解析且非常数,那么在这个区域内,函数的模的最大值必然出现在这个区域的边界上。
应用一:边界问题解析函数最大模原理的一个重要应用是用来解决边界问题。
在数学领域的很多问题中,我们经常需要研究函数在某个区域的边界上的性质。
例如,在电磁场分析中,我们常常需要研究电场在导体表面的分布情况。
利用解析函数最大模原理,我们可以得到导体表面上的电场分布情况。
在利用解析函数最大模原理处理边界问题时,我们通常需要先找到最大模值出现的位置,根据最大模值出现的位置来推导出函数在这个位置的性质。
这样的分析方法对于很多问题都非常有效。
应用二:特殊函数的性质解析函数最大模原理还可以用来研究一些特殊函数的性质。
例如,我们可以利用该原理来证明勒让德多项式的根在单位圆内的性质。
勒让德多项式是应用广泛的一类特殊函数,它的根在单位圆内的性质对于很多领域的问题都具有重要意义。
通过研究特殊函数的性质,我们可以更好地理解函数的本质及其在实际问题中的应用。
利用解析函数最大模原理,我们可以更深入地研究特殊函数的性质,并得到一些有意义的结论。
应用三:极大模值的计算在实际问题中,有时我们需要求解函数在某个区域内的极大模值。
利用解析函数最大模原理,我们可以通过研究函数的边界性质来估计其极大模值。
例如,在工程领域中,我们常常需要研究电路中的信号传输问题。
在信号传输中,我们希望信号能够保持尽可能小的衰减,在信号传输过程中也需要确保信号的幅度不会过大。
利用解析函数最大模原理,我们可以通过研究信号的传播路径来估计信号的衰减情况,从而更好地设计电路系统。
应用四:函数的解析延拓解析函数最大模原理还可以用来研究函数的解析延拓问题。
解析延拓是指将函数在某个有限区域内的解析性质延拓到更大的区域中。
第1章 函数
![第1章 函数](https://img.taocdn.com/s3/m/c3e498e7a32d7375a5178093.png)
R p0q
R
C
C C0 C1q
q
图 1-6
例 4 单利模型
单利是金融业务中的一种利息,某人在银行存入现金 2
万元,年利率为 10%,问 3 年之后本利和多少?
解 设初始本金 P ,年利率 r ,利息c ,单利I ,本利
和 A,存款 t 年.
例如,函数 y sin x 在(,) 内是有界的,因为对任意 x (,),存在M =1,使得|sin x|≤1 恒成立.
1.1.5内容小结
1. 函数的概念 2. 分段函数 3. 反函数 4. 函数的四种特性
第1章 函数
1.2 初等函数
1.2.1 基本初等函数 1.2.2 复合函数 1.2.3 初等函数 1.2.4 内容小结
若当q q0 时,Pr (q0 ) 0 .则q0 称为损益分岐点(又称保
本点或盈亏平衡点).由
P r
(q 0
)
0
,解出q0
,即得损益分岐点
模型:
C
q0
P0
0
C1
损益分岐点q0 的经济意义 可由图 1-6 来说明.
由 图 1-6 可 知 , 当 产 量 q q0 时,总成本高于收益,因此
亏损;当q q0 时,收益高于总
(2)要使 1 x2 有意义,必须使1 x2 ≥0 即x2 1 ,
x 1,因此 函数定义域是[1,1] (3)这是两个函数之和的定义域,先分别求出每个函
数的定义域,然后求其公共部分即可,使函数 1 有意 4 x2
义,必须满足4 x2 0,即x 2 而使函数 x 2 有意义,必须满足 x 2 0 即x 2 因此,函数的定义域是 (2,2) ∪(2,) ( 4 ) lg(1 x2 ) 的 定 义 域 满 足 不 等 式1 x2 0 , 解 得
《函数模型的应用》(第2课时)
![《函数模型的应用》(第2课时)](https://img.taocdn.com/s3/m/68312a7ed4d8d15abf234e37.png)
函数模型的应用(第2课时)一、内容和内容解析(一)内容教科书例5和例6,用函数建立数学模型解决实际问题的基本过程.(二)内容解析函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.本节课是函数模型的应用的第2课时,是在学生学习了函数的概念和性质,学习了幂函数、指数函数、对数函数后的综合应用.结合对投资回报和选择奖励模型两个问题的分析,通过比较指数函数、对数函数、线性函数等函数模型的增长速度的差异,进一步理解直线上升、指数爆炸、对数增长的含义,并依此选择合适的函数类型构建数学模型、刻画现实问题的变化规律.本节课的学习,既是前面学习过的函数有关知识的综合应用,也可以让学生体会建立数学模型解决实际问题的一般过程,在此过程中,激发应用数学的意识,逐步形成分析问题、解决问题的能力,提升数学抽象、数学建模等素养.根据上述分析,确定本节教学的教学重点:选择合适的函数类型构建数学模型,体会建立数学模型解决实际问题的一般过程.二、目标和目标解析1.目标能将具体的实际问题化归为函数问题,并能通过分析函数图象及表格数据了解相应的对数函数、线性函数、指数函数的变化差异,正确选择合适的函数模型解决实际问题,提升数学抽象、数学建模等素养.2.目标解析达成上述目标的标志是:(1)能明确教科书例5中的数量关系,指出每个方案的函数模型,为将实际问题抽象为数学问题并化归为函数模型做准备;(2)能从教科书中的例题条件出发,根据“对数增长”“直线上升”“指数爆炸”的含义,数形结合地辨别三种函数的增长差异,从而选择不同的函数模型;(3)在选择或建立函数模型解决实际问题的过程中,围绕“是什么数学问题”“选什么函数模型”“为什么要选某个函数模型”“怎么解答实际问题”,提升学生的数学抽象和数学建模素养.三、教学问题诊断分析首先,学生在本节课之前已经结合实例学习了几类函数的概念、图象和性质,并应用它们解决学科内的一些问题和一些简单的实际问题.但是面对较复杂的实际问题,如何将其转化为数学问题,特别是如何选择函数模型来刻画实际问题,大多数学生既缺乏这方面的经验,也缺乏数学抽象的能力,以及对不同函数模型增长差异的深刻认识.教学可以多从两个方面帮助学生克服困难,一是根据实际问题的条件建立等量关系,从而将实际问题抽象为数学问题;二是从数和形出发,定性和定量地分析实际问题的变化规律,从而选择合适的函数模型.其次,在利用函数模型解决问题的过程中,大多数学生还没有养成利用信息技术根据函数模型进行运算求解的良好习惯.在教学中,可以鼓励学生使用信息技术进行复杂的运算求解,作图画表,多元联系地表示数学对象并分析问题,从而逐步形成利用信息技术研究实际问题的意识.本节课的教学难点是如何选择合适的函数类型建立实际问题的数学模型.四、教学支持条件分析为了帮助学生克服选择实际问题的函数模型,并利用所得函数模型解决问题的困难,教学应充分利用信息技术的计算、作图、列表功能,处理实际数据,便捷地求解,让学生将主要精力投入到定性和定量地分析问题上,针对不同函数模型动态地研究其变化规律.五、教学过程设计(一)例题教学例1 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?问题1:请初步选择一种你认为合适的投资方案.追问:(1)你能根据例题提供的三种投资方案的描述,分析出其中的常量、变量及其相互关系,并建立三种投资方案所对应的函数模型吗?(2)三个方案的本质是三个不同的函数模型,如何选择一个标准来比较它们的差异,从而选择合适的函数模型?(3)根据例1中的表格提供的数据,你对三种投资方案分别表现出的回报资金的增长差异有什么认识?(4)你能借助计算工具作出函数图象,并根据图象描述一下三种方案的特点吗?师生活动:教师可提出进一步的问题,指导学生分析其中的数量关系,引导学生正确写出三种投资方案所对应的每天回报金额关于天数的函数关系式.再利用表格和图象比较分析三种函数模型的增长情况,作出需要分投资天数进行选择的初步判断.设计意图:例题教学除了关注例题本身承载的教学目的外,还要注意不同层次的学生在学习上的差异,本例设问意在分层次、有针对性地给出不同的台阶,做到“总体引导,分层指导”,结合学生的实际情况,利用追问逐步深入.追问(1)意在指导学生将实际问题转化为数学问题;追问(2)意在引导学生根据不同函数的增长差异选择合适的函数模型;追问(3)意在引导学生利用数表对三种模型的增长情况进行分析,借助增加量初步发现当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,尤其是引导学生通过观察增加量体会指数函数的增长速度;追问(4)意在借助计算结果与图象直观理解“对数增长”“直线上升”“指数爆炸”的实际含义,并通过描述三种方案的特点,为下一个问题埋下伏笔.问题2:仅仅分析每天的回报数就能准确作出选择吗?请结合教科书152页边空的问题进一步思考:关于三种投资方案的选择,你应当如何判断?追问:教科书152页边空的问题中,是根据投资天数作出不同方案的选择,划分天数的标准是什么?这种划分正确吗?师生活动:教师可根据学生的思考,指出计算每月回报的增加量(或增长率)是对数据的基本处理方法,本例提供的表格和图象都可以直观看出三种函数模型的增长差异,但要具体到投资的天数,回报的增加量还不足以作为选择投资方案的依据,然后利用下述追问引导学生选择累计的回报数进行判断,作出正确的回答.最后,在问题2的基础上,给出本题的完整解答.设计意图:教师进一步引导学生分析影响方案选择的因素,使学生认识到要作出正确选择,除了考虑每天的收益外,还要考虑一段时间内累计的回报.最后借助计算工具,得出总收益并作出正确判断.例2某公司为了实现1 000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.三个奖励模型:y=0.25x,,其中哪个模型能符合公司的要求?问题3:根据题目条件,你认为应该选择哪个奖励模型才符合公司的要求?追问:(1)公司提出的要求与函数的什么性质有关?这对选择函数模型有什么帮助?(2)函数图象能直观反映函数的性质特征,从而可以直观判断函数模型是否符合公司的要求.为此,你能否作出函数图象,并通过观察作出初步的判断吗?师生活动:教师可以在学生思考问题1的基础上,提出追问中的问题,进一步指导学生结合题目条件,分析例题中隐藏的数量关系,引导学生根据函数的图象与性质确定符合公司要求的函数模型.设计意图:这里依然关注教学的生成,继续在总体指导下有针对性地给出不同台阶的分层问题.追问(1)意在引导学生关注实际问题的变化规律,并建立与函数性质的联系,为选择合适模型做好准备;追问(2)意在引导学生作出函数图象,并结合函数性质作出初步判断,从而实现将实际问题向函数模型转化.问题4:你能说明选择模型的理由,并给出本题的解答吗?追问:(1)你是如何判定所选择的奖励模型是否符合要求?(2)能否给出本题的解答过程?师生活动:教师在学生尝试给出解答的基础上,通过追问中的问题作进一步的指导,帮助学生从画函数图象入手,通过观察函数的图象,得出初步的判断,再通过具体计算求解得出正确结果.设计意图:教师进一步引导学生分析实际问题,并根据函数性质选择合适的函数模型,给出正确解答.追问(1)意在引导学生指出判断依据;追问(2)意在指导学生确认解题基本思路,从而学习运用函数观点分析问题.(二)课堂练习问题:完成教科书第154页练习1,2.师生活动:教师结合两道例题的教学情况让学生进行练习,并根据学生的解答情况,给出应有的指导,或提供正确的解答.设计意图:促进学生进一步应用函数解决实际问题,并从中评价学生达成教学目标的情况.(三)小结问题5:通过解答以上两道例题的实际问题,并结合教科书中的例3和例4,你能归纳出用建立函数模型解决实际问题的基本过程吗?设计意图:总结用建立函数模型解决实际问题的基本过程,提升解决实际问题的能力.(四)布置作业必做题:教科书习题4.5第11,12题;选做题:教科书习题4.5第14题.六、目标检测设计1.为了能在规定时间内完成预期的运输量,某运输公司提出了五种运输方案,每种方案的运输量Q与时间t的关系如下图所示.运输效率(单位时间内的运输量)逐步提高的图象编号是______________.设计意图:考查在具体背景下,根据不同函数模型的增长特点选择合适的函数图象刻画实际问题.2.某工厂今年前三个月生产某种产品的产量分别为1万件、1.2万件、1.3万件.现有三种函数模型用于描述产量y(单位:万件)关于月份x的关系:y=ax+b,y=ax2+bx+c,.若4月份的产量为1.37万件,请问哪个体质量为m kg,当燃料质量为m kg 时,该火箭的最大速度为2ln2 km/s,当燃料质量为m(e-1) kg时,该火箭的最大速度为2 km/s.(1)写出该火箭最大速度y与燃料质量x的函数关系式;(2)当燃料质量为多少时,火箭的最大速度可达12km/s?设计意图:考查建立函数模型,并利用所得函数模型解决实际问题.。
高中数学 14种函数图像和性质知识解析 新人教A版必修1
![高中数学 14种函数图像和性质知识解析 新人教A版必修1](https://img.taocdn.com/s3/m/4893d02c50e2524de4187e86.png)
高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
其图像的画法是按定义域的划分分别作图。
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A版必修第一册
![新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A版必修第一册](https://img.taocdn.com/s3/m/9540f352f705cc175427093b.png)
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A 版必修第一册3.1.1 函数的概念(教师独具内容)课程标准:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.在此基础上学习用集合与对应的符号语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求一些简单函数的定义域.教学重点:1.理解函数的定义,会求一些简单函数的定义域和值域.2.明确函数的两个要素,了解同一个函数的定义,会判定两个给定的函数是否是同一个函数.教学难点:1.对应关系f 的正确理解,函数符号y =f (x )的理解.2.抽象函数的定义域.3.一些简单函数值域的求法.【知识导学】知识点一 函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有□01唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作□02y =f (x ),x ∈A .其中,x 叫做□03自变量,x 的取值范围A 叫做函数的□04定义域;与x 的值相对应的y 值叫做□05函数值,函数值的集合{f (x )|x ∈A }叫做函数的□06值域.显然,□07值域是集合B 的子集. 注意:(1)两个非空实数集间的对应能否构成函数,主要看是否满足三性:任意性、存在性、唯一性.这是因为函数概念中明确要求对于非空实数集A 中的任意一个(任意性)元素x ,在非空实数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足便不能构成函数.(2)集合A 是函数的定义域,因为给定A 中每一个x 值都有唯一的y 值与之对应;集合B 不一定是函数的值域,因为B 中的元素可以在A 中没有与之对应的x ,也就是说,B 中的某些元素可以不是函数值,即{f (x )|x ∈A }⊆B .(3)在函数定义中,我们用符号y =f (x )表示函数,其中f (x )表示“x 对应的函数值”,而不是“f 乘x ”.知识点二 函数的两要素从函数的定义可以看出,函数有三个要素:□01定义域、□02对应关系、□03值域,由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:□04定义域和对应关系.即要检验给定的两个变量(变量均为数值)之间是否具有函数关系,只要检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值是否都有唯一的函数值y 和它对应.知识点三 区间的概念(1)设a ,b 是两个实数,而且a <b .我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做□01闭区间,表示为□02[a ,b ]; ②满足不等式a <x <b 的实数x 的集合叫做□03开区间,表示为□04(a ,b ); ③满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做□05半开半闭区间,分别表示为□06[a ,b ),(a ,b ].这里的实数a 与b 都叫做相应区间的□07端点. 实数集R 可以用区间表示为□08(-∞,+∞),“∞”读作“□09无穷大”,“-∞”读作“□10负无穷大”,“+∞”读作“□11正无穷大”. 我们可以把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合,用区间分别表示为□12[a ,+∞),□13(a ,+∞),□14(-∞,b ],□15(-∞,b ). (2)区间的几何表示在用数轴表示区间时,用实心点表示□16包括在区间内的端点,用空心点表示□17不包括在区间内的端点.(3)含“∞”的区间的几何表示注意:(1)无穷大“∞”只是一个符号,而不是一个数,因而它不具备数的一些性质和运算法则.(2)以“-∞”或“+∞”为区间一端时,这一端必须用小括号. 知识点四 同一个函数如果两个函数的□01定义域相同,并且□02对应关系完全一致,即相同的□03自变量对应的□04函数值也相同,那么这两个函数是同一个函数.【新知拓展】(1)函数符号“y =f (x )”是数学中抽象符号之一,“y =f (x )”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,f (x )也不一定是解析式,还可以是图表或图象.(2)函数的概念中强调“三性”:任意性、存在性、唯一性,这是因为函数定义中明确要求是对于非空实数集A 中的任意一个(任意性)数x ,在非空实数集B 中都有(存在性)唯一确定(唯一性)的数y 和它对应,这“三性”只要有一个不满足,便不能构成函数.1.判一判(正确的打“√”,错误的打“×”)(1)函数值域中的每一个数都有定义域中的数与之对应.( ) (2)函数的定义域和值域一定是无限集合.( )(3)定义域和对应关系确定后,函数值域也就确定了.( )(4)若函数的定义域中只有一个元素,则值域中也只有一个元素.( )(5)对于定义在集合A 到集合B 上的函数y =f (x ),x 1,x 2∈A ,若x 1≠x 2,则f (x 1)≠f (x 2).( )答案 (1)√ (2)× (3)√ (4)√ (5)× 2.做一做(请把正确的答案写在横线上)(1)下列给出的对应关系f ,不能确定从集合A 到集合B 的函数关系的是________. ①A ={1,4},B ={-1,1,-2,2},对应关系:开平方; ②A ={0,1,2},B ={1,2},对应关系:③A =[0,2],B =[0,1],对应关系:(2)下列函数中,与函数y =x 是同一个函数的是________. ①y =x 2;②y =3x 3;③y =(x )2;④s =t . 答案 (1)①③ (2)②④题型一 求函数的定义域 例1 求下列函数的定义域: (1)y =2x +3;(2)f (x )=1x +1;(3)y =x -1+1-x ;(4)y =x +1x 2-1;(5)y =(1-2x )0. [解] (1)函数y =2x +3的定义域为{x |x ∈R }.(2)要使函数式有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(3)要使函数式有意义,则⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,即⎩⎪⎨⎪⎧x ≥1,x ≤1,所以x =1,从而函数的定义域为{x |x =1}.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以函数的定义域是{x |x ≠±1}. (5)∵1-2x ≠0,即x ≠12,∴函数的定义域为{|x x ≠12}.例2 已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. [解] 已知函数f (x )的定义域是[-1,4],即-1≤x ≤4. 故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32,∴函数f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-1,32. 例3 如图所示,用长为1 m 的铁丝做一个下部为矩形、上部为半圆形的框架(铁丝恰好用完),若半圆的半径为x (单位:m),求此框架围成的面积y (单位:m 2)与x 的函数关系式.[解] 由题意可得,AB =2x ,CD ︵的长为πx , 于是AD =1-2x -πx2,∴y =2x ·1-2x -πx 2+πx 22,即y =-π+42x 2+x .由⎩⎪⎨⎪⎧2x >0,1-2x -πx2>0,得0<x <1π+2,∴此函数的定义域为⎝ ⎛⎭⎪⎫0,1π+2. 故所求的函数关系式为y =-π+42x 2+x ⎝ ⎛⎭⎪⎫0<x <1π+2.金版点睛求函数定义域的基本要求(1)整式:若y =f (x )为整式,则函数的定义域是实数集R .(2)分式:若y =f (x )为分式,则函数的定义域为使分母不为0的实数集.(3)偶次根式:若y =f (x )为偶次根式,则函数的定义域为被开方数非负的实数集(特别注意0的0次幂没有意义).(4)几部分组成:若y =f (x )是由几部分数学式子的和、差、积、商组成的形式,定义域是使各部分都有意义的集合的交集.(5)对于抽象函数的定义域:①若f (x )的定义域为[a ,b ],则f [g (x )]中,g (x )∈[a ,b ],从中解得x 的解集即f [g (x )]的定义域.②若f [g (x )]的定义域为[m ,n ],则由x ∈[m ,n ]可确定g (x )的范围,设u =g (x ),则f [g (x )]=f (u ),又f (u )与f (x )是同一个函数,所以g (x )的范围即f (x )的定义域.③已知f [φ(x )]的定义域,求f [h (x )]的定义域,先由f [φ(x )]中x 的取值范围,求出φ(x )的取值范围,即f (x )中的x 的取值范围,即h (x )的取值范围,再根据h (x )的取值范围便可以求出f [h (x )]中x 的取值范围.(6)实际问题:若y =f (x )是由实际问题确定的,其定义域要受实际问题的约束.如:例3中,任何一条线段的长均大于零.[跟踪训练1] (1)若函数f (x +1)的定义域为⎣⎢⎡⎦⎥⎤-12,2,则函数f (x -1)的定义域为________;(2)求下列函数的定义域:①y =(x +1)2x +1-1-x ;②y =x +1|x |-x ;(3)①求函数y =5-x +x -1-1x 2-9的定义域; ②将长为a m 的铁丝折成矩形(铁丝恰好用完),求矩形的面积y (单位:m 2)关于一边长x (单位:m)的解析式,并写出此函数的定义域.答案 (1)⎣⎢⎡⎦⎥⎤32,4 (2)见解析 (3)见解析解析 (1)由题意知,-12≤x ≤2,则12≤x +1≤3,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,3,∴12≤x -1≤3,解得32≤x ≤4.∴f (x -1)的定义域为⎣⎢⎡⎦⎥⎤32,4.(2)①要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,即⎩⎪⎨⎪⎧x ≠-1,x ≤1,∴函数的定义域为{x |x ≤1,且x ≠-1}.②要使函数有意义,需满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}. (3)①解不等式组⎩⎪⎨⎪⎧5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎪⎨⎪⎧x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5,且x ≠3}.②因为矩形的一边长为x ,则另一边长为12(a -2x ),所以y =x ·12(a -2x )=-x 2+12ax ,定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <a 2. 题型二 已知函数值求自变量的值例4 已知函数f (x )=2x 2-4,x ∈R ,若f (x 0)=2,求x 0的值. [解] 易知f (x 0)=2x 20-4, ∴2x 20-4=2,即x 20=3. 又∵x 0∈R ,∴x 0=± 3. 金版点睛就本例而言,已知函数值求自变量的值就是解方程,需要注意:所求的自变量的值必须在函数的定义域内.如果本例中加一个条件“x ∈[0,+∞)”,则x 0=3(-3不符合题意,舍去).[跟踪训练2] 已知函数f (x )=x 2-2x ,x ∈(-∞,0),若f (x 0)=3.求x 0的值. 解 由题意可得f (x 0)=x 20-2x 0. ∴x 20-2x 0=3,即x 20-2x 0-3=0. 解得x 0=3或x 0=-1.又∵x 0∈(-∞,0),∴x 0=-1. 题型三 已知自变量的值求函数值 例5 已知f (x )=x 2,x ∈R ,求: (1)f (0),f (1); (2)f (a ),f (a +1).[解] (1)f (0)=02=0,f (1)=12=1. (2)∵a ∈R ,a +1∈R , ∴f (a )=a 2,f (a +1)=(a +1)2. 金版点睛对于函数定义域内的每一个值,都可以求函数值(当然函数值唯一),本例可以直接应用公式:f (x )=x 2求解,实质上就是求代数式的值,例如f (1)就是当x =1时,代数式x 2的值,而f (a +1)就是当x =a +1时,代数式x 2的值.[跟踪训练3] 已知f (x )=x +1x +1,求: (1)f (2);(2)当a >0时,f (a +1)的值. 解 (1)f (2)=2+13.(2)易知f (x )的定义域A =[0,+∞), ∵a >0,∴a +1>1,则a +1∈A , ∴f (a +1)=a +1+1a +2. 题型四 求函数的值域 例6 求下列函数的值域: (1)y =x +1,x ∈{1,2,3,4,5}; (2)y =x 2-2x +3,x ∈[0,3); (3)y =2x +1x -3;(4)y =2x -x -1.[解] (1)(观察法)因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.(2)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(3)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2. 故函数的值域为(-∞,2)∪(2,+∞).(4)(换元法)设t =x -1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t=2⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如右图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞. 金版点睛求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算法则确定其值域. (2)常用方法①观察法:对于一些比较简单的函数,其值域可通过观察法得到. ②配方法:是求“二次函数”类值域的基本方法.③换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且ac ≠0)型的函数常用换元法.④分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.[跟踪训练4] 求下列函数的值域: (1)y =xx +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =x +x +1. 解 (1)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0,∴函数y =xx +1的值域为{y |y ≠1}.(2)配方,得y =(x -2)2+2. ∵x ∈[1,5),∴结合函数的图象可知,函数的值域为{y |2≤y <11}. (3)(换元法)设t =x +1,则x =t 2-1,且t ≥0,所以y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54,由t ≥0,再结合函数的图象可得函数的值域为[-1,+∞). 题型五 相同函数的判断例7 下列各组函数表示同一函数的是( ) A .f (x )=x ,g (x )=(x )2B .f (x )=x 2+1,g (t )=t 2+1 C .f (x )=1,g (x )=x xD .f (x )=x ,g (x )=|x |[解析] A 项中,由于f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{x |x ≥0},它们的定义域不相同,所以它们不是同一函数.B 项中,函数的定义域、值域和对应关系都相同,所以它们是同一函数.C 项中,由于f (x )=1的定义域为R ,g (x )=x x的定义域为{x |x ≠0},它们的定义域不相同,所以它们不是同一函数.D 项中,两个函数的定义域相同,但对应关系不同,所以它们不是同一函数. [答案] B 金版点睛判断两个函数为同一函数的条件(1)判断两个函数是相同函数的准则是两个函数的定义域和对应关系分别相同.定义域、对应关系两者中只要有一个不相同就不是相同函数,即使定义域与值域都相同,也不一定是相同函数.(2)函数是两个实数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.另外,在化简解析式时,必须是等价变形.[跟踪训练5] 下列函数中哪个与函数y =x 相同?(1)y =(x )2;(2)y =3x 3;(3)y =x 2;(4)y =x 2x.解 (1)y =(x )2=x (x ≥0),y ≥0,定义域不同且值域不同,所以不相同. (2)y =3x 3=x (x ∈R ),y ∈R ,对应关系相同,定义域和值域都相同,所以相同. (3)y =x2=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,y ≥0;值域不同,且当x <0时,它的对应关系与函数y=x 不相同,所以不相同.(4)y =x 2x的定义域为{x |x ≠0},与函数y =x 的定义域不相同,所以不相同.1.下列各图中,可能是函数y =f (x )的图象的是( )答案 D解析 A ,B 中的图象与y 轴有两个交点,即有两个y 值与x =0对应,所以A ,B 不可能是函数y =f (x )的图象;对于C 中图象,过x =1作与x 轴垂直的直线,与图象有两个交点,所以C 不可能是函数y =f (x )的图象.故选D.2.函数f (x )=x +2-x 的定义域是( )A .{x |x ≥2} B.{x |x >2}C .{x |x ≤2} D.{x |x <2}答案 C解析 要使函数式有意义,则2-x ≥0,即x ≤2.所以函数的定义域为{x |x ≤2}.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 ∵原函数的定义域为(-1,0),∴-1<2x +1<0,解得-1<x <-12. ∴函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. 4.已知函数f (x )=x 2-2ax +5的定义域和值域都是[1,a ],则a =________.答案 2解析 因为f (x )=(x -a )2+5-a 2,所以f (x )在[1,a ]上是减函数,又f (x )的定义域和值域均为[1,a ],所以⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧ 1-2a +5=a ,a 2-2a 2+5=1,解得a =2. 5.已知函数f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ,f (a +1); (2)若f (x )=5,求x . 解 (1)f (2)=22+2-1=5,f ⎝ ⎛⎭⎪⎫1x =1x 2+1x -1=1+x -x 2x 2, f (a +1)=(a +1)2+(a +1)-1=a 2+3a +1.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0,解得x =2或x =-3.。
高中数学第3章函数3.1函数的概念与性质3.1.1第2课时函数的表示方法bb高一第一册数学
![高中数学第3章函数3.1函数的概念与性质3.1.1第2课时函数的表示方法bb高一第一册数学](https://img.taocdn.com/s3/m/b975020bf61fb7360a4c65b5.png)
·
结
探
提
新
素
知
A.y=-14x2+1
B.y=14x2-1
养
合
作 探
C.y=4x2-16
D.y=-4x2+16
课 时
究
分
层
释 疑
B [把点(0,-1)代入四个选项可知,只有B正确.]
作 业
难
·
返
首
页
12/13/2021
第十五页,共六十五页。
情
4.(教材P93练习A第8题改编)下列给出的式子是分段函数的是 课
合 作
(3)分段函数由几个函数构成. ( )
探
究
x+1,x≤1,
释 疑
(4)函数f(x)=-x+3,x>1 是分段函数.
(
难
12/13/2021
第十三页,共六十五页。
课 堂 小 结
)提
素
)养
课 时 分 层
)作
业
返 首 页
·
·
情
课
景
2.已知函数f(x)由下表给出,则f(3)等于( )
堂
导
小
学
x
1≤x<2 2 2<x≤4
·
提
新
素
知
所以a2x+ab+b=4x+8,
养
·
·
合 作 探 究
释
即aa2b=+4b,=8,解得ab= =382,或ba==--82.,
课 时 分 层 作
疑
业
难
所以f(x)=2x+83或f(x)=-2x-8.
返
首
页
12/13/2021
第二十九页,共六十五页。
函数模型及其应用讲义
![函数模型及其应用讲义](https://img.taocdn.com/s3/m/0e62500253d380eb6294dd88d0d233d4b14e3f49.png)
函数模型及其应用讲义一、知识梳理1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函数模型 f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)指数函数模型 f (x )=ba x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)2.三种函数模型的性质函数性质y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞)上的增减性单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n <a x注意:1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使0x a<0n x<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()(5)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.()题组二:教材改编2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件.4.]用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.题组三:易错自纠5.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为____________.6.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.三、典型例题题型一:用函数图象刻画变化过程1.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是()2.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油思维升华:判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.题型二:已知函数模型的实际问题典例(1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.(2)某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元思维升华:求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.跟踪训练 (1)拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. (2)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元.题型三:构建函数模型的实际问题 命题点1:构造一次函数、二次函数模型典例 (1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为________元. 命题点2:构造指数函数、对数函数模型典例 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?引申探究:本例的条件不变,试计算:今后最多还能砍伐多少年? 命题点3:构造y =x +ax(a >0)型函数典例 (1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.(2)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________.命题点4:构造分段函数模型典例某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分). (1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?思维升华:构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.跟踪训练 (1)某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是________.函数应用问题:典例 (12分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.四、反馈练习1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.992 3 4 5.15 6.126 y1.5174.041 87.51218.01A.y =2x -2 B .y =12(x 2-1)C .y =log 2xD .y =12log x2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A .560万元 B .420万元 C .350万元D .320万元4.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2017年 B .2018年 C .2019年D .2020年5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3D .26 m 36.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元D .43.025万元7.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.8.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-)82(xx (x >0).则当年广告费投入________万元时,该公司的年利润最大.9.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为____m.10.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于2)20(v km ,那么这批物资全部到达灾区的最少时间是________ h(车身长度不计).11.声强级Y (单位:分贝)由公式Y =10lg )10(12I给出,其中I 为声强(单位:W/m 2). (1)平常人交谈时的声强约为10-6 W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?12.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问: (1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?13.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小.14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.15.某地西红柿从2月1日开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t 60 100 180 种植成本Q11684116Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________;(2)最低种植成本是________(元/100 kg).16.某店销售进价为2元/件的产品A,该店产品A每日的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式y=10x-2+4(x-6)2,其中2<x<6.(1)若产品A销售价格为4元/件,求该店每日销售产品A所获得的利润;(2)试确定产品A的销售价格,使该店每日销售产品A所获得的利润最大.(保留1位小数)。
解析函数论
![解析函数论](https://img.taocdn.com/s3/m/ebf072ffc0c708a1284ac850ad02de80d4d806ef.png)
解析函数论
函数论是数学中的一个重要分支,主要研究函数及其性质。
1.函数的定义
函数是一种由若干个自变量与一个因变量之间的联系所
构成的一种数学模型。
常见的函数类型包括数学函数、物理函数、经济函数等。
2.函数的性质
函数有许多性质,其中常用的有单调性、连续性、可导性等。
单调性:如果一个函数的图像在坐标轴上是单调的,则称
这个函数具有单调性。
连续性:如果一个函数的图像在坐标轴上是连续的,则称
这个函数具有连续性。
可导性:如果一个函数具有可导性,则说明这个函数可以
求导。
3.函数的解析
函数解析是指通过函数的定义关系,求出函数的具体形式。
常见的函数解析方法包括极限法、积分法、泰勒公式、反函数等。
总的来说,函数论是一个涉及面广、内容丰富的学科,它在数学、物理、经济等领域都有着重要的应用。
高一数学幂函数及其性质-P
![高一数学幂函数及其性质-P](https://img.taocdn.com/s3/m/d535f6402cc58bd63186bde7.png)
1.3函数的可导性与解析性
![1.3函数的可导性与解析性](https://img.taocdn.com/s3/m/fa863a8c31b765ce04081488.png)
证明
f
'(z)
ux
iv x
1 i
uy
v
y
0
ux vx uy vy 0
u C1 v C2 f (z) C1 iC2 C(复 常 数 )
例4 如果f (z)=u(x, y)+i v(x, y)是一解析函数,
且f (z)≠0,那么曲线族u(x, y)=C1, v(x, y)=C2必互相正交,这里C1 、 C2常数.
则有
k1k2
ux uy
vx vy
1
即两族曲线正交。
ii) uy,vy中有一为零时,不妨设uy=0,则k1=∞, k2=0(由C.-R.方程)
即:两族曲线在交点处的切线一条是水平的,另 一条是铅直的, 它们仍互相正交。
练习: 若 f (z) x2 axy by2 i(cx2 dxy y2 ) 问常数a, b, c, d 取何值时, f (z)在复平面内处处解析?
u v v u x y x y
由此可以看出可导函数的实部与虚部有密切的 联系.当一个函数可导时,仅由其实部或虚部就可以 求出导数来.
利用该定理可以判断哪些函数是不可导(不解 析)的.
使用时: i) 判别 u(x, y),v (x, y) 偏导数的连续性,
ii) 验证C.-R.条件.
iii) 求导数:
u e x sin y
u v
y v e x cos y y
x v
y u
x y
故 f (z) e x (cos y i sin y)在 全 平 面 可 导 , 解 析 。
f '(z) u i v e x cos y ie x sin y f (z) x x
解 (3) 设z=x+iy w=x2+y2 u= x2+y2 , v=0 则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∆f = ∆z
即
z + ∆z − z = ∆z
z + ∆z − z = ∆z
∆z = ∆z
∆x 2 + ∆y 2 = 1 ∆x 2 + ∆y 2
∆z → 0
∆f lim = ∆z
∆z = 1 ∆z
因此,函数 f ( z ) = z 在 z 平面上处处模解析。
350
蒋传华,梁小华
例 1.2:试证明函数 f ( z ) = x + y − ( y − x ) i 在 z 平面上不解析,但是在 z 平面上模解析。 证明:由 u ( x, y )= x + y , v ( x, y ) = − y ,得 u x = 1 , v x = 1 , u y = 1 , v y = −1 。又 u x ≠ v y ,即此函数 不适合 C.-R.方程,在 z 平面上不解析。但
2 x 2 x 2 y 2 y
的如上定义,并导出了模解析函数的必要条件: u + v = u + v 。我们称此为模柯西–黎曼方程(简称模 C.-R.方程)。进一步,我们给出了模解析的充分必要条件:(1) u ( x , y ) , v ( x , y ) 在区域 D 内满足模C.-R. 方程;(2) u ( x , y ) , v ( x , y ) 在区域 D 内满足 ux u y = − v x v y 。最后,我们讨论了模解析函数与已有的各 类复变函数,如解析函数,半解析函数,共轭解析函数之间的关系。
称函数 f ( z ) 于点 z0 模可导; 若
f = ( z ) u ( x , y ) + iv ( x , y ) 模解析
f ( z ) 在 z0 的某个邻域内的任一点模可导,则称 f ( z0 ) 在 z0 模解析。如果函数 f ( z ) 在区域 D 内任一点模
解析,则称 f ( z ) 为区域 D 内模解析函数。我们给出了一个复变函数 = w
∆f ∆z = = x + ∆x + y + ∆y − y + ∆y − ( x + ∆x ) i − x + y − ( y − x) i ∆x 2 + ∆y 2
( ∆x + ∆y ) − ( ∆y − ∆x ) i
= ∆x 2 + ∆y 2
2 ∆x 2 + ∆y 2 = ∆x 2 + ∆y 2
∆z → 0
lim
f ( z + ∆z ) − f ( z ) ∆z
(1)
存在,设 ∆z =∆x + i∆y , f ( z + ∆z ) − f ( z ) = ∆u + i∆v ,其中:
∆ = u u ( x + ∆x, y + ∆y ) − u ( x, y ) , v v ( x + ∆x, y + ∆y ) − v ( x, y ) , ∆ =
Module Analytic Functions and Its Properties
Chuanhua Jiang, Xiaohua Liang
Guangxi Normal University, Guilin Guangxi
th th th
Received: Jul. 6 , 2017; accepted: Jul. 20 , 2017; published: Jul. 25 , 2017
uy = 1 , 证明: 因为 u ( x, y )= x + y , 易知 u ( x, y ) 和 v ( x, y ) 都是可微函数。 易得 u x = 1 , vx = 0 , v ( x, y ) = 0 ,
2 2 2 v y = 0 。可知 u ( x, y ) 和 v ( x, y ) 的偏导数在区域 D 内存在,满足 u x + vx → 0
lim
∆u + i∆v i∆y
∆u ∆v ∆u 2 + ∆v 2 2 = = u2 + = y + vy , ∆y ∆y ∆y
2
2
(4)
成立。综合(3)和(4)得
2 2 ux + vx =
2 2 2 2 2 u2 y + v y 或者 u x + v x = u y + v y
f ( z + ∆z ) − f ( z ) = ∆z
x + ∆x + y + ∆y − ( x + y ) = ∆x 2 + ∆y 2
∆x + ∆y ∆x 2 + ∆y 2
在 ∆z → 0 时极限不存在。这只要让 ∆z =∆x + i∆y 沿射线 ∆y = k ∆x ( ∆x > 0 ) 随 ∆x → 0 而趋于零,即知 。所以函数 f ( z )= x + y 在 z 平面上不是模解析函数。下面我们 1+ k2 给出判定一个复变函数是否模解析的充要条件: 定理 2.2:(模解析的充要条件)设函数 = f ( z ) u ( x, y ) + iv ( x, y ) 在区域 D 内有定义,其在区域 D 内模 上述比值是一个与 k 有关的值,即 解析的充分必要条件是: (1) u ( x, y ) , v ( x, y ) 在区域 D 内满足模 C. − R. 方程; (2) 偏导数 u x , u y , v x , v y 在区域 D 内存在且 u x u y = −v x v y 。 证明:设函数 = f ( z ) u ( x, y ) + iv ( x, y ) ,由极坐标变换 x = r cosθ , y = r sin θ , z = reiθ ,于是对任意
内任一点模解析,则称 f ( z ) 为区域 D 内模解析函数。或称 f ( z ) 在区域 D 内模解析。 例 1.1:试证明函数 f ( z ) = z 在 z 平面上不解析,但是在 z 平面上模解析。 证明:由 u ( x, y ) = x , v ( x, y ) = − y ,得 u x = 1 , v x = 0 , u y = 0 , v y = −1 。又 u x ≠ v y ,即此函数 不满足 C.-R.方程,在 z 平面上不解析。但
(
)
2
即
∆z → 0
lim
∆f ∆z
= 2
因此,函数 f ( z ) = z 在 z 平面上处处模解析。
2. 主要定理及证明
如果函数= f ( z ) u ( x, y ) + iv ( x, y ) 是模可微的,它的实部 u ( x, y ) 与虚部 v ( x, y ) 应当不是互相独立的, 而必须适合一定的条件,类似于解析函数柯西–黎曼方程,我们也可以探讨这种条件。 若 = f ( z ) u ( x, y ) + iv ( x, y ) 在点 z= x + iy 模可微,即
, ( ∆z ≠ 0)
'
的极限都存在(有限),则称此极限为函数 f ( z ) 在点 z0 的模导数(记为 f
( z0 ) ),此时称函数 f ( z ) 于点
z0 模可导。若 f ( z ) 在 z0 的某个邻域内的任一点模可导,则称 f ( z ) 在 z0 模解析。如果函数 f ( z ) 在区域 D
代入,则(1)可以改写为
∆x → 0 ∆y → 0
lim
∆u + i ∆ v ∆x + i ∆ y
(2)
存在,因为当 ∆z =∆x + i∆y 无论按什么方式趋于零时,(2)总是成立的。不妨设 ∆y = 0 , ∆x → 0 ,即 变点 z + ∆z 沿平行于实轴的方向趋于点 z (见图 1),此时有
Pure Mathematics 理论数学, 2017, 7(4), 349-355 Published Online July 2017 in Hans. /journal/pm https:///10.12677/pm.2017.74044
Keywords
Analysis Function, Cauchy-Riemann Equation, Module Analytic Function, Module Cauchy-Riemann Equation
模解析函数及其性质
蒋传华,梁小华
广西师范大学,广西 桂林
收稿日期:2017年7月6日;录用日期:2017年7月20日;发布日期:2017年7月25日
Abstract
In this paper, the finite number lim
f ( z0 + ∆z ) − f ( z0 ) ∆z
z → z0
is called the module derivative of complex
function f ( z ) . And if f ( z ) exists module derivative at any point z0 of some field D , then
2 2 2 ux + vx = u2 y + v y which can be called module Cauchy-Riemann equation or shortly by M-C.R. equa-
tion. Furthermore, for module analytic function = f ( z ) u ( x , y ) + iv ( x , y ) of field D , we get the necessary and sufficient conditions: (1) u ( x , y ) , v ( x , y ) satisfies the M-C.R. equation within the field D . (2) u ( x , y ) , v ( x , y ) satisfies the equation ux u y = − v x v y within the field D . Finally, the correlations between module analytic function and several preexisting functions are discussed, including analysis function, semi-analytic function, and conjugate analytic function.