复数的几何意义及应用

合集下载

复数的概念及其几何意义

复数的概念及其几何意义

复数的概念及其定义复数是数学中一种特殊的数,它由实部和虚部组成。

一个复数可以用以下形式表示:z = a + bi其中,a是实部,b是虚部,而i是虚数单位,满足i^2 = -1。

在复平面上,我们可以将复数z = a + bi表示为一个有序对(a, b)。

其中实部a对应于 x 轴的坐标,虚部b对应于 y 轴的坐标。

这样,在复平面上,每个点都对应着唯一的一个复数。

复数的重要性和应用1. 扩展了实数域复数扩展了实数域,使得我们可以处理更多的问题。

例如,在求解方程时,有些方程在实数域中无解,但在复数域中却有解。

2. 描述振荡和周期性现象振荡和周期性现象在科学和工程领域中非常常见。

通过使用复数来描述这些现象,我们可以更方便地进行分析和计算。

3. 信号处理在信号处理领域中,复数广泛用于描述和分析信号。

例如,在频域中使用傅里叶变换将信号从时域转换为频域时,复数起到了重要的作用。

4. 电路分析在电路分析中,复数被用来描述电压和电流的相位关系。

通过使用复数,我们可以方便地进行交流电路的计算和分析。

5. 分形和动力系统复数在分形和动力系统研究中也扮演着重要角色。

通过使用复数,我们可以更好地理解这些系统的行为和性质。

复数的几何意义中的关键概念在复平面上,有几个重要的概念与复数的几何意义密切相关。

1. 模长(Magnitude)一个复数z = a + bi的模长表示为|z|,它等于实部a和虚部b的平方和的平方根。

模长表示了一个复数到原点的距离。

|z| = √(a^2 + b^2)2. 辐角(Argument)辐角是一个与复数相关的角度,在极坐标系中表示。

辐角通常用 Greek 字母θ表示。

对于一个非零复数z = a + bi,其辐角定义如下:θ = arctan(b/a)需要注意的是,在计算辐角时需要考虑a的正负和a=0的特殊情况。

3. 共轭复数(Conjugate)对于一个复数z = a + bi,其共轭复数定义为z* = a - bi。

复数几何意义的应用

复数几何意义的应用

复数几何意义的应用
复数在几何中有着广泛的应用,主要体现在以下几个方面:
1. 平面向量
在平面向量的表示中,我们通常使用一个带有方向的箭头来表示向量的大小和方向。

然而,我们也可以用复数来表示平面向量。

具体而言,我们可以将一个平面向量表示成一个复数,其中向量的模长为复数的模,向量的方向与复数的幅角相同。

2. 旋转与平移
在平面几何中,我们常常需要进行旋转和平移操作。

而复数可以很方便地描述这些操作。

具体而言,我们可以用一个复数表示平面上的一个点,然后再用另一个复数表示旋转或平移操作,将两个复数相乘,得到的结果就是旋转或平移后的新点的坐标。

3. 解析几何
解析几何是一种将几何问题转化为代数问题进行求解的方法。

而复数可以很方便地应用到解析几何中。

具体而言,我们可以将平面上的点用复数表示,然后用复数的运算,如加、减、乘、除等,来表示平面几何中的各种操作,如两点之间的距离、直线的方程等。

总之,复数在几何中的应用是非常广泛且有力的,掌握复数的几何意义和运用方法对于几何学习和实际应用都是非常重要的。

- 1 -。

高中数学复数平面的几何意义说明

高中数学复数平面的几何意义说明

高中数学复数平面的几何意义说明在高中数学中,复数平面是一个重要的概念,它不仅在代数中有着广泛的应用,还具有独特的几何意义。

本文将通过具体的题目和例子来说明复数平面的几何意义,并介绍一些解题技巧,以帮助高中学生更好地理解和应用这一概念。

一、复数平面的基本概念复数平面是由实数轴和虚数轴组成的平面。

其中,实数轴表示实部,虚数轴表示虚部。

复数可以表示为a+bi的形式,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。

在复数平面中,每个复数对应平面上的一个点,该点的横坐标为实部,纵坐标为虚部。

二、复数平面的几何意义1. 向量的表示:复数可以看作是平面上的一个向量,向量的起点位于原点,终点位于复数对应的点。

向量的模表示复数的模,即复数到原点的距离;向量的幅角表示复数的辐角,即与实轴的夹角。

2. 几何运算:在复数平面中,复数的加法和减法对应向量的平移,复数的乘法对应向量的伸缩和旋转。

例如,两个复数相加时,可以将它们对应的向量首尾相连,得到一个新的向量,该向量的起点为第一个复数对应的点,终点为第二个复数对应的点。

三、复数平面的应用举例1. 求复数的模和辐角:对于复数z=a+bi,可以通过勾股定理计算其模 |z| =√(a²+b²),通过反三角函数计算其辐角 arg(z) = arctan(b/a)。

2. 复数的乘法和除法:复数的乘法对应向量的伸缩和旋转,模相乘,辐角相加;复数的除法对应向量的缩放和旋转,模相除,辐角相减。

例如,计算复数z₁=a₁+b₁i和复数z₂=a₂+b₂i的乘积z = z₁z₂时,可以将z₁和z₂对应的向量进行伸缩和旋转,得到z对应的向量,再转化为复数形式。

3. 复数的共轭和倒数:复数的共轭对应向量关于实轴的对称,实部不变,虚部取相反数;复数的倒数对应向量关于单位圆的对称。

例如,对于复数z=a+bi,其共轭为z* = a-bi,倒数为1/z = (a-bi)/(a²+b²)。

复数的加减法几何意义2

复数的加减法几何意义2
则平行四边形OABC是矩形;若z2≠0, 则(z1/z2)2<0
C
z2 z2-z1
z1 A
z1+z2
B
4、 |z1|= |z2|,| z1+ z2|= | z1- z2| 则平行四边形OABC是正方形
三、复数乘法的几何意义:
两个复数Z1与Z2相乘时,可以先画出分别与之相对应的 向量OP1、OP2,然后把向量OP1按逆时针方向旋转一个角, 再把它的模变为原来的r2倍,所得的向量就表示积。
Z1
x
O
1、 两个复数的差z2-z1与连结两个向量终点并指向被减数的向量对应。 2、复平面上两点间的距离|Z1Z2|=|z2-z1|
1、2(|z1|2+|z2|2)=| z1+ z2|2+ | z1- z2|2
2、|z1|= |z2| 则平行四边形OABC是菱形
o 3、 | z1+ z2|= | z1- z2|
4、(1)若arg(-2-i)=α,arg(-3-i)=β,求α +β
(2)若z1=-2,z2=1+
√3 i,z3=1-i,求arg[(z1z2)/z3]
5、若|z1|=3,|z2|=5,|z1-z2|=7,求z1/z2
6.已知ABC的三个顶点A, B,C对应的复数分别为
z1,
z2 ,
z3 , 若
z2 z3
4
(C) 11
4
(D) 5
4
2、在复平面内,直角三角形ABC的直角顶点C对应的
复数为-2,30度的顶点A对应的复为 则点B所对应的复数为
5 3i
3.复平面内点A对应的复数为1,点B对应的复数 为3 i, 将向量AB绕A按顺时针方向旋转900并 将模扩大到原来的2倍得向量A C, 则点C对应 的复数为

复数的几何意义及应用

复数的几何意义及应用

复数的几何意义及应用
复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系这是因为对于任何一个复数z=a+bi(a、b∈R),由复数相等的定义可知,可以由一个有序实数对(a,b)惟一确定,如z=3+2i可以由有序实数对(3,2)确定,又如z=-2+i可以由有序实数对(-2,1)来确定;又因为有序实数对(a,b)与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A,横坐标为3,纵坐标为2,建立了一一对应的关系。

由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系。

点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴。

实轴上的点都表示实数。

对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0),它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数。

在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i,虚轴上的点(0,5)表示纯虚数5i。

非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i,z=-5-3i对应的点(-5,-3)在第三象限等等。

复数集C和复平面内所有的点所成的集合是一一对应关系,即:
复数复平面内的点。

这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法。

谈谈复数的几何意义及其应用方法

谈谈复数的几何意义及其应用方法

复数具有代数与几何的双重属性.复数的代数形式为:z=a+bi(a、b∈R),其几何意义是复平面内的点Z(a,b),即平面向量OZ.复数的几何意义反映了复数和向量之间的对应关系,体现了复数在复平面内的几何特征.科学、合理地应用复数的几何意义,能有效提升解题的效率.那么借助复数的几何意义,可以解决哪些问题呢?下面我们来探究一下.一、由点的坐标求复数任何一个复数z=a+bi(a、b∈R)可以由一个实数对(a,b)唯一确定,而实数对(a,b)与平面直角坐标系中的点一一对应,所以复数集与平面直角坐标系上的点集之间存在一一对应的关系.根据这种一一对应的关系,我们可以由点的坐标求复数,也可以根据复数确定复平面上的点的坐标.例1.在复平面内,已知复数2+i对应的点为A,B,C是复平面上的另两个点,若复数1+2i与向量BA对应,复数3-i与向量BC对应,求C点对应的复数.解:∵BA对应的复数为1+2i,BC对应的复数为3-i,∴ AC= BC- BA对应的复数为(3-i)-(1+2i)=2-3i,∵ OC= OA+ AC,∴C点对应的复数为(2+i)+(2-3i)=4-2i.复数z=a+b i¾®¾¾¾¾一一对应复平面内的点Z(a,b)¾®¾¾¾¾一一对应平面向量,根据复数的几何意义建立对应的关系:C的坐标即为OC的坐标,通过向量的加、减运算,即可求得C点的坐标,进而求得C点对应的复数.二、求复数的最值根据复数与复平面内的点之间的对应关系,以及复数的一些性质可以确定满足一定条件的复数在复平面内对应的图形(即轨迹),如|z+1|+|z-1|=4表示椭圆,|z-i|=4表示圆.在解答复数的最值问题时,可根据复数的几何意义,确定复平面内点集所形成的图形,建立关于动点的轨迹方程,结合图形寻找临界的情形,即可结合图形的性质、位置关系来求得最值.例2.已知复数|z|=2,求复数1+3i+z的模的最值.解:|z|=2表示在复平面上复数z对应的点Z到原点的距离是2,即圆心为原点,2为半径的圆,设ω=1+3i+z,则z=ω-(1+3i),可得||ω-(1+3i)=2,故复数ω在复平面内对应的点W在以(1,3)为圆心,以2为半径的圆上,如图所示.由图形可知,当点W落在点A处时,复数ω的模最大,即为AB=4;当点W落在点B处时,复数ω的模最小,其值为0,即复数1+3i+z的模的最大值为4,最小值为0.满足已知条件的复数是一个集合,这个集合中的每个元素所对应的点组成一个图形,这个图形就是复数z在复平面内表示的图形.利用复数的几何意义求复数的最值,一要将复数转化为点的集合,并求得点的轨迹方程;二要借助图形的特点、性质、位置关系来求最值.三、求参数的取值范围含参数的复数问题一般较为复杂,参数的变化决定了复数的取值.为了避免对参数的分类讨论,可利用复数的几何意义来建立参数满足的关系式,进而求得参数的取值范围.例3.已知在复平面内,复数z=(a2+a-2)+(a2-3a+2)i表示的点位于第二象限,试求实数a的取值范围.解:根据复数的几何意义知,复数z=(a2+a-2)+(a2-3a+2)i表示的点是P(a2+a-2,a2-3a+2).由点P位于第二象限,可得{a2+a-2<0,a2-3a+2>0,解得-2<a<1,所以实数a的取值范围为(-2,1).解答本题,需根据复平面内点的坐标与复数的实部、虚部之间的对应关系确定参数所满足的不等关系式.总之,利用复数的几何意义解题,关键是把复数或关于复数的表达式转化为点的轨迹、几何图形、向量,我们可以从中找到解题的思路,利用图形、解析几何、向量知识来解题.(作者单位:青海省海东市第一中学)谈谈复数的几何意义及其应用方法考点透视39。

复数模的几何意义的应用

复数模的几何意义的应用

复数模的几何意义的应用1.向量长度:复数的模可以表示平面上的向量的长度。

设复数 z = x + yi,其中x 和 y 分别表示向量在 x 轴和 y 轴上的分量,则向量的长度为,z,= √(x² + y²)。

这在几何中常用于求解线段的长度,以及判断两个向量的大小关系。

2.距离计算:复数模可以用于计算平面上两点之间的距离。

设复数z1和z2分别表示平面上两点的坐标,则两点之间的距离为,z1-z2、这在几何中常用于判断点与直线或点与平面的距离,以及解决一些距离相关的几何问题。

3.向量运算:复数模可以用于向量的加法和减法。

设复数z1和z2分别表示平面上两个向量,则它们的和为z1+z2,差为z1-z2、在几何中,可以使用复数模进行向量的加法减法,从而得到平移、旋转等运算结果。

4.复杂几何图形的表示:复数模可以用于表示复杂几何图形的顶点。

通过将复数看作是平面上的点,可以使用复数模来表示三角形、四边形等多边形的顶点。

将各个顶点的复数模排列起来,就可以得到一个复数向量。

5.区域的面积计算:复数的模可以用于计算平面上的区域的面积。

设复数z表示平面上的一个点,则以原点为起点,z为终点的向量可以表示一个三角形或多边形的区域,其面积可以通过复数z的模的一半来计算。

6.图形的旋转和缩放:复数模可以用于表示平面上的图形的旋转和缩放。

通过将复数模看作是向量的长度,可以将一个复数z*r看作是将向量z进行缩放的结果,其中r为缩放比例。

而将一个复数z*e^(iθ)看作是将向量z进行逆时针旋转θ弧度的结果。

总之,复数模的几何意义在解决几何问题中有着广泛的应用。

通过将复数看作是平面上的向量,并利用复数的模,可以解决向量长度、距离、向量运算、复杂几何图形表示、区域面积计算以及图形旋转和缩放等问题。

这些应用不仅在几何学中有着重要的地位,也在其他科学领域中得到了广泛的应用。

复数在中学数学解题中的应用举例

复数在中学数学解题中的应用举例

复数在中学数学解题中的应用举例
复数是数学中的一种重要概念,它不仅仅能够在高等数学中发挥重要作用,在中学数学中也有不少应用。

下面就举几个例子来说明。

1、求解方程
在中学数学中,我们经常会遇到形如$x^2+1=0$的方程,这种方程在实数范围内是无解的。

但如果我们引入虚数单位$i$,则可以得出解$x=pm i$。

这就是复数的一种应用,可以解决实数范围内无解的方程。

2、几何意义
在平面直角坐标系中,复数$a+bi$可以用向量$(a,b)$来表示。

这样,我们就可以把复数看作是一个有方向和长度的向量。

这种视角下,复数的加、减、乘、除等运算就相当于向量的平移、旋转、缩放等运算。

这种几何意义不仅可以帮助我们更好地理解复数,还可以应用于解决一些几何问题。

3、三角函数
三角函数在中学数学中也很重要,而复数可以帮助我们更好地理解三角函数。

例如,欧拉公式$e^{itheta}=costheta+isintheta$就是一个很好的例子。

这个公式把三角函数和复数联系了起来,使得我们可以用复数的方法来处理三角函数。

这种方法不仅简单,而且可以解决一些实际问题,比如电路中的交流电信号。

综上所述,复数在中学数学中有着广泛的应用,它不仅可以解决方程、有助于理解几何问题,还可以帮助我们更好地处理三角函数。

因此,在中学数学学习中,我们应该充分理解复数的概念和应用。

复数的几何意义与应用问题

复数的几何意义与应用问题

复数的几何意义与应用问题复数是由实部和虚部组成的数,它在几何上有着重要的意义和广泛的应用。

本文将从几何意义和应用问题两个方面进行论述,深入探讨复数在几何学中的作用和应用。

一、几何意义1. 复数表示坐标复数可以表示平面上的点,其中实部表示点在x轴上的坐标,虚部表示点在y轴上的坐标。

例如,复数z=a+bi可以表示平面上的一个点P(a, b),其中a和b分别为点P的横坐标和纵坐标。

2. 复数表示向量复数也可以表示平面上的向量,向量的起点位于原点(0, 0),终点位于对应的复数所表示的点。

向量的模长等于复数的模长,向量的方向等于复数的辐角。

通过复数运算,我们可以进行向量的加法、减法和乘法等操作。

3. 复数表示旋转复数的辐角表示向量相对x轴的旋转角度。

当复数z=a+bi,其中a 和b都不为零时,可以表示平面上的一个向量。

向量的辐角等于复数的辐角。

通过改变复数的辐角,可以实现向量的旋转。

二、应用问题1. 复数在电路中的应用复数在电路分析中有着重要的应用。

例如,对于交流电路中的电压和电流,可以使用复数来表示其幅度和相位差。

通过复数的运算,可以进行电路中电压、电流的计算和分析,并得到正确的结果。

2. 复数在信号处理中的应用信号处理中经常用到傅里叶变换,而傅里叶变换中的频谱分析是通过复数进行的。

通过对信号进行傅里叶变换,可以得到信号的频谱图,进而对信号进行滤波、压缩等处理。

3. 复数在力学中的应用在力学中,复数可以表示振动和波动等现象。

例如,简谐振动可以用复数表示,通过复数的运算可以计算振动的幅度、相位和周期等性质。

4. 复数在几何图形中的应用复数在几何图形的平移、旋转和缩放等操作中有广泛的应用。

通过复数的运算,可以方便地进行几何图形的变换和计算,实现图形的平移、旋转和缩放等操作。

结语复数在几何学中有着重要的几何意义和广泛的应用。

它可以表示坐标、向量和旋转等内容,并且在电路、信号处理、力学和几何图形等领域都有广泛的应用。

复数的几何意义与运算规则

复数的几何意义与运算规则

复数的几何意义与运算规则复数起源于解方程中无实数解的情况,它扩展了实数域,使得原本不可能的运算变得有解。

复数的几何意义和运算规则是理解和应用复数的基础。

本文将从几何角度解释复数,介绍复数的四则运算规则,并提供一些实例来进一步说明。

一、复数的几何意义复数可以表示为一个实数和一个虚数的和,其中实数部分代表复数在实轴上的位置,虚数部分代表复数在虚轴上的位置。

我们可以将复数表示为z=a+bi,其中a为实部,b为虚部。

从几何意义上看,复数可以在平面上表示为一个有序数对(a, b),其中a为复数的实部,b为复数的虚部,平面上的每个点都表示一个复数。

实部和虚部决定了复数在平面上的位置。

二、复数的运算规则1. 加法复数的加法满足交换律和结合律。

当两个复数相加时,实部与实部相加,虚部与虚部相加,得到新的复数。

2. 减法复数的减法可以通过加法和乘法来计算。

减去一个复数相当于加上这个复数的相反数。

3. 乘法复数的乘法满足交换律和结合律。

两个复数相乘时,实部和虚部分别相乘后相加,得到新的复数。

4. 除法复数的除法可以通过乘法和共轭复数来计算。

除以一个复数相当于乘以这个复数的倒数。

三、实例说明例子1:假设有两个复数z1=2+3i和z2=1-2i,求它们的和、差、积和商。

解:两个复数的和:z1+z2=2+3i+1-2i=3+i两个复数的差:z1-z2=2+3i-(1-2i)=1+5i两个复数的积:z1*z2=(2+3i)*(1-2i)=8-1i两个复数的商:z1/z2=(2+3i)/(1-2i)=0.8+1.6i例子2:在复平面上,给定两个复数z1=2+3i和z2=4-2i,求它们的距离和中点。

解:两个复数的距离可以计算为:|z1-z2|=|2+3i-(4-2i)|=|-2+5i|=√((-2)^2+(5^2))=√29两个复数的中点可以计算为:(z1+z2)/2=((2+3i)+(4-2i))/2=(6+1i)/2=3+0.5i以上例子说明了复数的几何意义和运算规则在实际问题中的应用。

复数的基本运算及几何意义

复数的基本运算及几何意义

复数的基本运算及几何意义复数是由实部和虚部构成的数,可以用公式表示为 z = a + bi,其中a 是实部,b 是虚部,i 是虚数单位。

一、复数的四则运算1. 复数的加法:将实部和虚部分别相加即可。

例如:(2 + 3i) + (4 + 5i) = 6 + 8i2. 复数的减法:将实部和虚部分别相减即可。

例如:(2 + 3i) - (4 + 5i) = -2 - 2i3. 复数的乘法:根据分配律展开运算,注意 i 的平方为 -1。

例如:(2 + 3i) * (4 + 5i) = 8 + 22i - 15 = -7 + 22i4. 复数的除法:将分子乘以分母共轭复数,并进行合并化简。

例如:(2 + 3i) / (4 + 5i) = (2 + 3i) * (4 - 5i) / (4^2 + 5^2) = (8 + 7i) / 41二、复数在平面几何中的意义在平面直角坐标系中,复数可以看作是复平面上的点,实部对应横轴,虚部对应纵轴。

1. 复数的模:复数 z 的模表示为 |z|,是复平面上由原点到对应点的距离。

例如:z = 3 + 4i,则|z| = √(3^2 + 4^2) = 52. 复数的辐角:复数 z 的辐角表示为 arg(z),是复平面上由正实轴到对应位置向量的角度。

例如:z = 2 + 2i,则arg(z) = π/43. 欧拉公式:欧拉公式表示为e^(iθ) = cos(θ) + isin(θ),其中 e 是自然对数的底,i 是虚数单位,θ 是角度。

该公式将三角函数与指数函数联系了起来,是复数运算中的重要工具。

4. 复数的乘法及除法的几何意义:复数的乘法相当于平移、旋转和伸缩,在复平面上实现了几何变换。

复数的除法相当于平移、旋转和收缩,在复平面上实现了逆向几何变换。

综上所述,复数的基本运算包括加法、减法、乘法和除法,可以使用公式进行计算。

在平面几何中,复数可以表示为复平面上的点,模表示距离,辐角表示角度。

复数的几何意义及应用

复数的几何意义及应用

复数的几何意义问题1:复数z 的几何意义设复平面内点Z 表示复数z= a+bi (a ,b ∈R ),连结OZ ,则点Z ,OZ ,复数z= a+bi (a ,b ∈R )之间具有一一对应关系。

直角坐标系中的点Z(a,b)一一对应 一一对应 复数z=a+bi 问题2:∣z ∣的几何意义若复数z= a+bi (a ,b ∈R )对应的向量是OZ ,则向量是的模叫做复数z= a+bi (a ,b ∈R )的模,=| a+bi |=22b a +(a ,b ∈R )。

问题3:∣z 1-z 2∣的几何意义两个复数的差z z z =-21所对应的向量就是连结21Z Z 并且方向指向(被减数向量)的向量,22122121)()(y y x x z z d -+-==-=(二)探索研究根据复数的几何意义及向量表示,求复平面内下列曲线的方程:1.圆的定义:平面内到定点的距离等于定长的点的集合(轨迹)设),(y x Z 以),(000y x Z 为圆心, )0(>r r 为半径的圆上任意一点,则r ZZ =0 )0(>r(1)该圆向量形式的方程是什么 )0(>=r r(2)该圆复数形式的方程是什么 r z z =-0 )0(>r(3)该圆代数形式的方程是什么 )0()()(22020>=-+-r r y y x x2.椭圆的定义:平面内与两定点Z 1,Z 2的距离的和等于常数(大于21Z Z )的点的集合(轨迹)一一对应 向量 O Z设),(y x Z 是以),(211y x Z ),(222y x Z 为焦点,2a 为长轴长的椭圆的上任意一点, 则a ZZ ZZ 221=+ )2(21Z Z a >(1)该椭圆向量形式的方程是什么 a 2=+ )2(21Z Z a >(2)该椭圆复数形式的方程是什么 a z z z z 221=-+- )2(21Z Z a > 变式:以),(211y x Z ),(222y x Z 为端点的线段(1)向量形式的方程是什么 a 2= )2(21Z Z a =(2)复数形式的方程是什么 a z z z z 221=-+- )2(21Z Z a =(三)应用举例例1.复数 z 满足条件∣z+2∣-∣z-2∣=4,则复数z 所对应的点 Z 的轨迹是( )(A ) 双曲线 (B )双曲线的右支(C )线段 (D )射线答案:(D )一条射线例2.若复数z 满足条件1=z ,求i z 2-的最值。

复数的几何意义及其应用

复数的几何意义及其应用

复数的几何意义及其应用
复数的几何意义是什么
1、复数z=a+bi 与复平面内的点(a,b)一一对应
2、复数z=a+bi 与向量OZ一一对应,其中Z点坐标为(a,b)
1、复数的运算:复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。

两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。

两个复数的和依然是复数。

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。

两个复数的积仍然是一个复数。

复数除法定义:满足的复数叫复数a+bi除以复数c+di的商。

运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。

2、我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。

当z的虚部等于零时,常称z 为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。

复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

复数的几何意义

复数的几何意义

复数的几何意义在数学中,我们经常会遇到复数的概念和使用。

虽然复数在代数学中有着重要的作用,但它们在几何学中也具有深远的意义。

本文将探讨复数在几何学中的意义,并展示它们在平面几何中的应用。

1. 复数的定义复数是由一个实数和一个虚数组成的数,通常表示为"a+bi"的形式,其中a是实部,bi是虚部,而i是虚数单位,满足i^2 = -1。

复数可以用平面上的点来表示,实部对应点的x坐标,虚部对应点的y坐标。

2. 复数的模和参数复数的模表示复数到原点的距离,可以使用勾股定理来计算,即模=√(a^2 + b^2)。

复数的参数表示复数与正实轴之间的夹角,可以使用反三角函数来计算,即参数=arctan(b/a)。

3. 复数的几何表示复数可以用向量来表示,向量的起点为原点,终点为该复数对应的点。

因此,复数的几何表示就是平面上的一个向量。

通过调整实部和虚部的数值,可以得到不同的向量。

4. 复数的加法和减法复数的加法可以看作是向量的相加,即将两个复数的向量相加,得到一个新的向量。

减法可以看作是向量的相减,即将两个复数的向量相减,得到一个新的向量。

这两个操作在平面几何中对应着向量的平移。

5. 复数的乘法和除法复数的乘法可以看作是向量的旋转和缩放,即将一个复数的向量旋转一定角度,并将向量的长度乘以一个因子,得到一个新的向量。

除法可以看作是向量的反向旋转和缩放,即将一个复数的向量旋转一定角度,并将向量的长度除以一个因子,得到一个新的向量。

6. 复数的共轭复数的共轭表示将复数的虚部取相反数,保持实部不变。

共轭的几何意义是将复数表示的向量关于实轴反射得到的新向量。

7. 复数在平面几何中的应用复数在平面几何中有广泛的应用。

例如,可以使用复数来表示平移、旋转和缩放等变换。

复数的乘法和除法可以用来进行向量的旋转和缩放操作。

此外,复数还可以表示平面上的点,通过复数的运算可以得到点之间的距离和夹角等信息。

总结:复数在几何学中有着重要的意义,可以用来表示平面上的向量和点。

复数的几何意义

复数的几何意义

复数的几何意义一、复数的几何意义1、复数的几何表示:bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的,即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。

2、复数的向量表示:直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。

复数z=a+bi ↔复平面内的点Z (a ,b )↔平面向量OZ 3、复数的模的几何意义复数z=a+bi 在复平面上对应的点Z(a,b)到原点的距离. 即 |Z |=|a+bi |=22b a +4、复数的加法与减法的几何意义加法的几何意义 减法的几何意义)ZZ 2Z1yz 1z 2≠0时, z 1+z 2对应的向量是以OZ 1、OZ 2、为邻边的平行四边形OZ 1ZZ 2的对角线OZ , z 2-z 1对应的向量是Z 1Z 2 5、 复数乘法与除法的几何意义z 1=r 1(cos θ1+i sin θ1) z 2=r 2(cos θ2+i sin θ2)①乘法:z=z 1· z 2=r 1·r 2 [cos(θ1+θ2)+i sin(θ1+θ2)]如图:其对应的向量分别为oz oz oz 12→→→显然积对应的辐角是θ1+θ2 < 1 > 若θ2 > 0 则由oz 1→逆时针旋转θ2角模变为oz 1→的r 2倍所得向量便是积z 1·z 2=z 的向量oz →。

< 2 >若θ2< 0 则由向量oz 1→顺时针旋转θ2角模变为r 1·r 2所得向量便是积z 1·z 2=z 的向量oz →。

为此,若已知复数z 1的辐角为α,z 2的辐角为β求α+β时便可求出z 1·z 2=z a z 对应的辐角就是α+β这样便可将求“角”的问题转化为求“复数的积”的运算。

复数的几何意义

复数的几何意义

3
4
(3)这个方程可以写成 |z-(-2)|-|z-2|=2,所以表示到 两个定点F1(-2,0),F2(2,0)距离 差2a等于2的点的轨迹,这个轨 迹是双曲线右半支.
x y 即双曲线: 1(x>0) 1 3
2
2
例4:△ABC的三个顶点对应的 复数分别是z1,z2,z3,若复数z满 足 |z-z1|=|z-z2|=|z-z3| , 则 z 对应的点为△ABC的( D ) A. 内心; B.垂心; C.重心; D.外心;
例1:设z∈C,满足下列条件的点Z的集 合是什么图形? (1)|z|=4;(2)2≤|z|≤4.
解:(1)|z|=4表示到原点距离为4的点.所 以z表示的点Z构成一个半径为4的圆. (2)表示一个圆环.由于|z|的几何意义是点 Z到原点的距离,所以2≤|z|≤4表示到原点距 离大于等于2,小于4的点所构成的图形.
解:(1)方程可以看成 |z-(1+i)|=|z-(-2-i)|, 表示的是到两个定点A(1,1)和 B(-2,-1)距离相等的动点轨迹.所 以是线段AB的的垂直平分线。 即:直线6x+4y+3=0。
(2)方程可以看成 |z-(-i)|+|z-i|=4,表示的是到两个 定点(0,-1)和(0,1)距离和等于4的动点 轨迹.因为点Z到两个定点的距离和 是常数4,并且大于两点(0,-1),(0,1) 间的距离2,所以满足方程的动点轨 迹是椭圆. 2 2 x y 即椭圆: 1
例 7 :在复平面上 A 、 B 两点对应的 复数分别是 1 和 i ,复数 z 在直线 AB 上运动,求复数 z2 对应的点的轨迹。
解:设z=a+bi,(a,b∈R) 由题意,直线 AB 的方程是: x+y=1 , ∵复数z在直线AB上运动,∴a+b=1, 再设z2对应的点为P(x,y) ∴z2=x+yi=(a+bi)2=(a2-b2)+2abi =(a-b)+2abi x a b 由复数相等的条件,得: y 2 ab 2 消去b,得y=(1-x ), 所以,复数z2对应的点的轨迹 是抛物线 y=(1-x2)。

复数的几何意义

复数的几何意义

复数的几何意义复数是由实数和虚数构成的数学概念,它在几何学中有着重要的意义。

本文将探讨复数的几何意义,以及它在几何图形、向量和共轭等方面的应用。

一、复数的定义及表示方式复数是由实部和虚部构成的,通常可以表示为z = a + bi,其中a为实部,bi为虚部且i为虚数单位。

实部和虚部分别在数轴的实轴和虚轴上表示。

二、复数的几何意义1. 复平面复数可以看作是在复平面上的点,这个平面由实轴和虚轴组成。

实部决定复数的横坐标,虚部决定复数的纵坐标。

2. 几何解释当复数z不是实数时,可以将其表示为z = a + bi的形式,其中a和b都是实数。

在复平面上,可以将其视为一个点,即复数z对应着复平面上的一个点P(a,b)。

3. 共轭复数对于复数z = a + bi,它的共轭复数为z* = a - bi。

在复平面上,过点P(a,b)作虚轴的垂线,与虚轴的交点为点P',那么P'对应的复数就是z*。

共轭复数的实部相同,虚部相反。

共轭复数在几何上可以表示为关于x轴对称的点。

4. 复数的模复数的模表示复数到原点的距离,可以用勾股定理求得。

对于复数z = a + bi,它的模记为|z|,可以表示为|z| = √(a^2 + b^2)。

在复平面上,模就是复数对应点到原点的距离。

5. 向量复数也可以看作是一个向量,在二维平面上表示了大小和方向。

向量的模表示了向量的长度,角度表示了向量与x轴之间的夹角。

三、复数的应用1. 几何图形复数在几何图形中有着广泛的应用。

通过复数运算可以进行平移、旋转和缩放等操作,方便地进行几何变换。

2. 向量复数可以表示向量,因此在物理学、工程学和计算机图形学等领域中广泛应用。

复数的加法和减法对应向量的平移,复数的乘法对应向量的缩放和旋转。

3. 共轭共轭复数在电路分析、信号处理等领域有着重要应用。

共轭复数可以用于表示交流电路中的功率、电流和电压关系,以及信号频谱中的共轭对称性等。

四、总结复数在几何学中有着重要的意义,可以表示复平面上的点,并且可以进行几何变换。

复数的几何意义

复数的几何意义

复数的几何意义引言复数是数学中一种常见的概念,用于描述带有虚部的数。

在复数的运算中,虚部通常用虚数单位i表示,其中i是一个满足i^2 = -1的数。

复数的几何意义是通过将复数表示为有序对的形式,将其在复平面上进行表示和解释。

本文将介绍复数的几何意义及其在实际应用中的作用。

复平面表示法复平面是由实数轴和虚数轴组成的平面。

实数轴水平表示实部,虚数轴垂直表示虚部。

复数可以通过将其表示为实部和虚部的有序对的形式来在复平面上进行表示。

例如,复数z = a + bi可以表示为 (a, b) 的点在复平面上的位置。

在复平面中,原点表示零,实数轴上的点表示实数,虚数轴上的点表示纯虚数,而其他点表示具有实部和虚部的复数。

复数的模复数的模表示复数到原点的距离,可以使用勾股定理计算。

复数z = a + bi的模可以表示为|z| = sqrt(a^2 + b^2)。

在复平面中,模可以视为复数对原点的径向距离。

由模的定义可知,复数的模为非负实数。

复数的辐角复数的辐角是复数到正实数轴的夹角,通常使用弧度制进行表示。

复数z = a +bi的辐角可以通过计算theta = arctan(b / a)获得。

在复平面中,辐角可以视为复数与正实数轴之间的倾斜角度。

需要注意的是,辐角只有在复数不等于零时才有意义。

复数的几何运算在复平面中,复数可以进行各种基本的几何运算,包括加法、减法、乘法和除法。

这些运算的结果可以用复数在复平面上的图形表示形式来解释。

复数的加法和减法复数的加法可以通过将两个复数对应的点在复平面上进行相加来实现。

例如,复数z1 = a1 + b1i和z2 = a2 + b2i的和为z = (a1 + a2) + (b1 + b2)i。

类似地,复数的减法也可以通过复数在复平面上的点相减来实现。

复数的乘法和除法复数的乘法可以通过将两个复数的模相乘、辐角相加来实现。

例如,复数z1 = |z1| (cos(theta1) + i * sin(theta1))* 和z2 = |z2| (cos(theta2) + i * sin(theta2))* 的乘积为z = |z1| |z2| * (cos(theta1 + theta2) + i * sin(theta1 + theta2))*。

复数的几何意义及其应用案例

复数的几何意义及其应用案例

复数的几何意义及其应用案例复数是数学中一个重要的概念,它由实数和虚数构成,可以表示为a+bi的形式,其中a和b都是实数,i是虚数单位。

复数有着丰富的几何意义,它在几何学中有广泛的应用。

本文将探讨复数的几何意义以及一些应用案例。

一、复数的几何意义1. 复平面复数可以用平面上的点来表示。

将复数a+bi对应于平面上的点P(a, b),这个平面就是复平面。

复平面上的点P可以表示为向量OP,其中O是平面上的原点。

复数的实部a对应于点P在x轴上的投影,虚部b对应于点P在y轴上的投影。

这样,复数的加法、减法、乘法和除法运算都可以用向量运算来表示。

2. 模和幅角复数a+bi的模定义为它与原点的距离,即|a+bi|=√(a²+b²)。

模表示了复数的大小。

复数的幅角定义为它与x轴的夹角,可以用反三角函数来表示,即θ=arctan(b/a)。

幅角表示了复数的方向。

3. 共轭复数对于复数a+bi,它的共轭复数定义为a-bi,可以用符号∼表示。

共轭复数在复数的乘法和除法运算中有重要的应用。

二、复数的应用案例1. 电路分析复数在电路分析中有着广泛的应用。

例如,交流电路中的电压和电流可以用复数来表示。

通过对复数电压和电流进行运算,可以得到电路中的功率、阻抗、电感和电容等重要参数。

2. 信号处理在信号处理中,复数被用来表示信号的频谱。

通过对复数频谱进行运算,可以实现信号的滤波、调制、解调等操作。

复数的傅里叶变换在信号处理中起着重要的作用。

3. 几何变换复数可以表示平面上的几何图形。

通过对复数进行平移、旋转、缩放等几何变换,可以实现图形的变换和组合。

复数的乘法运算可以实现图形的旋转和缩放,复数的加法运算可以实现图形的平移。

4. 分形图形分形是一种特殊的几何图形,具有自相似性和无限细节等特点。

复数可以用来生成分形图形,例如著名的朱利亚集合和曼德博集合。

通过对复数进行迭代运算,可以生成具有丰富结构和美丽形态的分形图形。

复数几何意义及运算知识点讲解+例题讲解(含解析)

复数几何意义及运算知识点讲解+例题讲解(含解析)

复数几何意义及运算一、知识梳理1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈R).(2)复数z=a+b i(a,b∈R)平面向量OZ→.3.复数的运算设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(1)加法:z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+b i)·(c+d i)=(ac-bd)+(ad+bc)i;(4)除法:z1z2=a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)=ac +bd +(bc -ad )i c 2+d 2(c +d i ≠0).小结:1.i 的乘方具有周期性i n=⎩⎨⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系 z ·z -=|z |2=|z -|2. 3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小. 答案 (1)× (2)× (3)√ (4)√2.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1B.2C.1或2D.-1解析 依题意,有⎩⎨⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.答案 B3.复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i解析 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i. 答案 C4.(2017·全国Ⅱ卷)3+i 1+i =( )A.1+2iB.1-2iC.2+iD.2-i解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 答案 D5.(2018·北京卷)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.答案 D6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 解析 ∵z =-1+i ,则z 2=-2i ,∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 答案 -1考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( ) A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( ) A.2-i B.2+i C.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i为纯虚数,则实数a 的值为( ) A.1B.0C.-12D.-1解析 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i 1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 答案 (1)D (2)D (3)D【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i(2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1解析 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B. (2)∵1-i =2+a i1+i,∴2+a i =(1-i)(1+i)=2, 解得a =0.故选C. 答案 (1)B (2)C考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i对应的点关于实轴对称,则z =( ) A.1+i B.-1-i C.-1+iD.1-i解析 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D. 答案 (1)D (2)D【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ→对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i解析 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D.答案 (1)D (2)D考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D.2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2 =i 6+6+2i +3i -65=-1+i.答案 (1)D (2)C (3)C (4)-1+i【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i 5B.2+i 5C.1-2i 5D.1+2i 5(3)设z =1+i(i 是虚数单位),则z 2-2z =( ) A.1+3i B.1-3i C.-1+3iD.-1-3i解析 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z =2i -(1-i)=-1+3i.故选C.答案 (1)D (2)D (3)C三、课后练习1.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i(i 是虚数单位),则b =( )A.-2B.-1C.1D.2解析 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i13,a ∈R ,所以6+3b13=0⇒b =-2,故选A. 答案 A2.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析 由复数z =(x 2-4)+(x +2)i 为纯虚数, 得⎩⎨⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B. 答案 B3.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2解析 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i2=i ,1-i 1+i =-i ,∴⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.答案 B4.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85 C.|z |=3D.z 在复平面内对应的点在第一象限 解析 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5, ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D. 答案 D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的几何意义及应用
一、教学目标:
(一)知识与技能:
通过学习复平面上点的轨迹,进一步使学生掌握复数及减法的代数、几何、向量表示法及彼此之间的关系。

(二)过程与方法:1、通过问题导引,探究学习,提高学生数学探究能力;
2、提高数形结合能力;培养对应与运动变化的观点;
3、提高知识之间的理解与综合运用能力。

(三)情感、态度、价值观:通过复数、平面上点及位置向量三者之间联系及转化的教学,对学生进行事物间普遍联系及转化等辩证观点的教育。

二、教学重点:复平面内两点间距离公式的应用
三、教学难点:复平面内两点间距离公式的应用
四、教学工具:计算机、投影仪
五、教学方法:探究式教学法、问题解决教学法
六、教学过程:
(一)设置情境,问题引入
问题1:复数z 的几何意义?设复平面内点Z 表示复数z= a+bi (a ,b ∈R ),连结OZ ,则点Z ,OZ ,复数z= a+bi (a ,b ∈R )之间具有一一对应关系。

直角坐标系中的点Z(a,b)
一一对应 一一对应
复数z=a+bi 问题2:∣z ∣的几何意义?若复数z= a+bi (a ,b ∈R )对应的向量是OZ ,则向量是OZ 的模叫做复数z= a+bi (a ,b ∈R )的模,=| a+bi |=22b a +(a ,b ∈R )。

问题3:∣z 1-z 2∣的几何意义?两个复数的差z z z =-21所对应的向量就是连结21Z Z 并且方向指向(被减数向量)的向量,
2
2122121)()(y y x x z z d -+-==-=一一对应 向量 O Z
(二)探索研究
根据复数的几何意义及向量表示,求复平面内下列曲线的方程:
1.圆的定义:平面内到定点的距离等于定长的点的集合(轨迹)
设),(y x Z 以),(000y x Z 为圆心, )0(>r r 为半径的圆上任意一点, 则r ZZ =0 )0(>r
(1)该圆向量形式的方程是什么)0(>=r r
(2)该圆复数形式的方程是什么? r z z =-0 )0(>r
(3)该圆代数形式的方程是什么? )0()()(22020>=-+-r r y y x x
2.椭圆的定义:平面内与两定点Z 1,Z 2的距离的和等于常数(大于21Z Z )的点的集合(轨迹)
设),(y x Z 是以),(211y x Z ),(222y x Z 为焦点,2a 为长轴长的椭圆的上任意一点, 则a ZZ ZZ 221=+ )2(21Z Z a >
(1)该椭圆向量形式的方程是什么a 2=+ )2(21Z Z a >
(2)该椭圆复数形式的方程是什么? a z z z z 221=-+- )2(21Z Z a > 变式:以),(211y x Z ),(222y x Z 为端点的线段
(1)向量形式的方程是什么a 2=+ )2(21Z Z a =
(2)复数形式的方程是什么? a z z z z 221=-+- )2(21Z Z a =
3.双曲线的定义:平面内与两定点Z 1,Z 2的距离的差的绝对值等于
常数(小于21Z Z ) 的点的集合(轨迹)
设),(y x Z 是以),(211y x Z ),(222y x Z 为焦点,2a 为实轴长的双曲线的上 任意一点,
则a ZZ ZZ 221=- )2(21Z Z a <
(1)该双曲线向量形式的方程是什么a 2= )2(21Z Z a <
(2)该椭圆复数形式的方程是什么? a z z z z 221=--- )2(21Z Z a < 变式:射线
(1)向量形式的方程是什么a 2= )2(21Z Z a =
(2)复数形式的方程是什么? a z z z z 221=--- )2(21Z Z a = 变式:以),(211y x Z ),(222y x Z 为端点的线段的垂直平分线
(1)该线段向量形式的方程是什么a 2=)02(=a =
(2)该线段复数形式的方程是什么? a z z z z 221=---)02(=a 即
21z z z z -=-
(三)应用举例
例1.复数 z 满足条件∣z+2∣-∣z-2∣=4,
则复数z 所对应的点 Z 的轨迹是( )
(A ) 双曲线 (B )双曲线的右支
(C )线段 (D )射线
答案:(D )一条射线
变式探究:
(1)若复数z 所对应的点 Z 的轨迹是两条射线,复数 z 应满足什么条件?
(2)若复数z 所对应的点 Z 的轨迹是线段,复数 z 应满足什么条件?
(3)若复数z 所对应的点 Z 的轨迹是双曲线的右支,复数 z 应满足什么条件?
(4)若复数z 所对应的点 Z 的轨迹是双曲线,复数 z 应满足什么条件?
(5)若复数z 所对应的点 Z 的轨迹是椭圆,复数 z 应满足什么条件?
(6)若复数z 所对应的点 Z 的轨迹是线段的垂直平分线,复数 z 应满足什么条件? 例2.若复数z 满足条件1=z ,
求i z 2-的最值。

解法1:(数形结合法)由1=z 可知,z 对应于单位圆上的点Z ; i z 2-表示单位圆上的点Z 到点P (0,2)的距离。

由图可知,当点Z 运动到A (0,1)点时,12min =-i z ,此时z=i ;
当点Z 运动到B (0,-1)点时,32max =-i z , 此时z=-i 。

解法2:(不等式法) 212121z z z z z z +≤±≤-
∴i z i z i z 222+≤-≤-
,1=z 22=i ,∴321≤-≤i z
解法3:(代数法)设),(R y x yi x z ∈+=,则122=+y x
∴y y x i yi x i z 45)2(2222-=-+=-+=- 1≤y ,即11≤≤-y
∴当1=y ,即i z =时,12min =-i z ;
当1-=y ,即i z -=时,32max =-i z =3,
解法4:(性质法) )2)(2()2)(2()2()2(22i z i z i z i z i z i z i z +-=--=--=- yi i z z z z 454)(2+=+-+⋅= 1≤y ,即11≤≤-y
∴当1=y ,即i z =时,12min =-i z ;
当1-=y ,即i z -=时,32max =-i z ,
变式探究:
(1)=-min i z ,=-max i z ;0;2
(2)=-m in 21i z ,=-max 21i z ;2
3,21 (3)=--min 22i z ,=--max 22i z ;122;122+-
(4)=--m in 121i
z ,=--max
121i z ;212;212+- 例3.已知z 1、z 2∈C ,且11=z ,
若i z z 221=+,则21z z -的最大值是( )
(A )6 (B )5 (C )4 (D )3
解法1:i z z i z z z -=--=-111212)2( 2max 1=-i z ∴21z z -的最大值是4
解法2: i z z 221=+, ∴212z i z -=
11=z ∴122=-z i ,即122=-i z
11=z 表示以原点为圆心,以1为半径的圆; 122=-i z 表示以(0,2)为圆心,以1为半径的圆。

∴21z z -的最大值为两圆上距离最大的两点间的距离为4。

(四)反馈演练:
1. 复数z 满足条件∣z+i ∣+∣z-i ∣=2,
则∣z+i-1∣的最大值是________ 5
最小值是__________. 1
2. 复数z 满足条件∣z-2∣+∣z+i ∣=5,
则∣z ∣的取值范围是( B ) (A)⎥⎦⎤⎢⎣⎡5,552 (B) ⎥⎦⎤⎢⎣⎡2,552 (C)[]
5,1 (D) []2,1 3. 已知实数x,y 满足条件⎪⎩
⎪⎨⎧≤≥+≥+-3005x y x y x ,i yi x z (+=为虚数单位),
则|21|i z +- 的最大值和最小值分别是 .2
2,
262 (五)总结:
1.今天我们探索研究了什么?
2.你有什么收获?
(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档