复数的几何意义PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表示复数的点所 转化 复数的实部与虚部所满
在象限的问题
足的不等式组的问题
(几何问题)
(代数问题)
一种重要的数学思想:数形结合思想
变式 1 :已知复数z=(m2+m-6)+(m2+m-2)i在 复平面内所对应的点为Z,若点Z的位置分别
m 满足下列要求,求实数 满足的条件
(1)不在实轴上; (2)在虚轴上; (3)在实轴下方;
1
.复平面yx轴轴------------虚实轴轴
于纯虚数的点都虚轴上;(对)
(2)在复平面内,虚轴上的点 所对应的 数都是纯虚数。(错)
2 .复数的几何意义
复数z=a+bi 一一对应 直角坐标系中的点Z(a,b)
一一对应 平面向量 O Z
3.复数的模及其几何意义 | z | = | O Z | a2 b2
在虚轴上”的(C)。
(A)必要不充分 (B)充分不必要条件
(C)充要条件
(D)不充分不必要条件
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所 对应的点位于第二象限,求实数m允许的取值范围。
解:由 m m22m m2600 得m32或 mm21
m ( 3 , 2 ) (1 ,2 )
b
0
.
练习:把下列运算的结果都化为 a+bi(a、bR)的形式.
2 -i =
;-2i =
;5=
;0=
;
3. a=0是z=a+bi(a、bR)为纯虚数的 必要但不充分 条件.
实数的几何意义
在几何上,我们用什 么来表示实数?
实数可以用数轴 上的点来表示。
一一对应
实数
数轴上的点
(数)
(形)
想一想
类比实数的表示,可以 用什么来表示复数?
课前复习
1. 对 虚数单位i 的规定
① i 2=-1;i4k1 i i4k2 1 i4k3 i i4k4 1
②可以与实数一起进行四则运算,并且加、乘运算律不变.
0i 0 0ii 0ii
2. 复数z=a+bi(其中a、bR)中a叫z 的实部 、 b叫z的 虚部 .
a 0
z为实数 b=0、z为纯虚数
F
O
E
X
D
B
H
练习
1.下列命题中的假命题是(D )
(A)在复平面内,对应于实数的点都在实轴上;
(B)在复平面内,对应于纯虚数的点都虚轴上; (C)在复平面内,实轴上的点所对应的复数都是 实数;
(D)在复平面内,虚轴上的点所对应的 数都是纯 虚数。
2.“a=0”是“复数a+bi (a , b∈R)所对应的点
∴(m2+m-6)-2(m2+m-2)+4=0, ∴m=1或m=-2。
复数的几何意义(二)
一一对应
复数z=a+bi
直角坐标系中的点Z(a,b)
一一对应
平面向量 O Z
一一对应
y
z=a+bi
Z(a,b)
b
a
ox
小结
三.复数的模
y
z=a+bi
Z (a,b)
x
O
注意:
| z | = |O Z | a2 b2
1. z 0
2.两个复数的模可以比较大小。
3. 复数的模 的几何意义:复数z的模即为z 对应平
面向量 O Z 的模 o z ,也就是复数 z=a+bi在复平
面上对应的点Z(a,b)到原点的距离。
2021
13
实数绝对值的几何意义: 复数的模 的几何意义:
实数a在数轴上所
复数 z=a+bi在复平
对应的点A到原点O的 面上对应的点Z(a,b)到
复数的 一般形
式?
Z=a+bi(a, b∈R)
实部!
虚部!
一个复数由什 么唯一确定?
一个复数由它的实 部和 虚部唯一确定
复数的几何意义(一)
有序实数对(a,b)
一一对应
复数z=a+bi
直角坐标系中的点Z(a,b)
(数)
(形)
z=a+bi Z(a,b)
a
y
建立了平面直角
坐标系来表示复数的 b 平面 ------复数平面
复平面上构成怎样的图形?
(3)满足3<|z|<5(z∈C)的复数z对应的点在 复平面上将构成怎样的图形?
小结
解(1)满足|z|=5(z∈R)的z值有几个?2个: 5
(2)满足|z|=5(z∈C)的复数z对应的点在 复平面上将构成怎样的图形? y
设z=x+yi(x,y∈R)
5
| z| x2y2 5 –5
距离. a OA
|a| = |OA|
原点的距离.
x
z=a+bi
y
Z(a,b)
a(a ≥ 0)
a(a
0)
Ox
|z|=|OZ| a2 b2
复数的模其实是实数绝对值概念的推广
例3 求下列复数的模: (1)z1=-5i (2)z2=-3+4i (3)z3=5-5i (4)z4=1+mi(m∈R) (5)z5=4a-3ai(a<0) 思考: (1)满足|z|=5(z∈R)的z值有几个? (2)满足|z|=5(z∈C)的这z些值复有几个数?对应的点在
(简称复平面)
ox
x轴------实轴
y轴------虚轴
例1.复数与点的对应(每个小正方格的边长为1)
(1) 2+5i ; (2) -3+2i; (3) 2-4i; (4)-3-5i; (5) 5;
(6) -3i;
Y
1
2 O
5
X
6
3
4
变式1:点与复数的对应(每个小正方格的边长为1) Y
G
A C
一一对应
几何意义:复 到原数点z=的a+距bi离在。复平面上对应的点Z(a,b)
(4)在直线 x3y0上;
解:(1)m2 m且 1
(2) m2 且 m3
(3)2m1
(4)m0或 m2
2021
10
变式2:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内 所对应的点在直线x-2y+4=0上,求实数m的值。
解:∵复数z=(m2+m-6)+(m2+m-2)i在复平面 内所对应的点是(m2+m-6,m2+m-2),
5
O
x
–5
图形: 以原点为圆心, 半径为5的圆
(3) 满足3<|z|<5(z∈C)的复数z对应的点在
复平面上将构成怎样的图形?
y 5
3
–5 –3 设z=x+yi(x,y∈R)
5
O
3 x2y2 5
9x2y2 25
–3
–5
35
xຫໍສະໝຸດ Baidu
图形: 以原点为圆心, 半径3至5的圆环内
小结
判断正误(1)在复平面内对应