轴对称图形

合集下载

轴对称图形有哪些

轴对称图形有哪些

轴对称图形有哪些
轴对称图形有:正方形、长方形、等腰三角形、等边三角形、等腰梯形.
1、正方形:是特殊的平行四边形,两组对边分别平行且相等;四条边都相等;对角线互相垂直平分;具有不稳定性(易变形);
2、长方形:有一个角是直角的平行四边形叫做长方形;两条对角线相等;对边平行且相等;具有稳定性;
3、等腰三角形:有两条边相等的三角形叫做等腰三角形;顶角是直角;底边上的高等于腰上的高;等腰三角形的性质:两条边相等的三角形是等边三角形;等腰三角形的判定:在同一个三角形中,如果有两个角相等,那么这两个角所对的边也相等;
4、等边三角形:三条边都相等的三角形叫做等边三角形;
5、等腰梯形:有一个角是直角的梯形叫做等腰梯形;等腰梯形的判定:在同一个梯形中,如果有两个角相等,那么这两个角所对的边也相等;
6、菱形:具有一个角为直角的平行四边形叫做菱形;
7、圆:圆是一种特殊的平行四边形,它的定义域是所有的实数;
8、扇形:由圆心角的角度和弧度决定的图形叫做扇形;
9、圆锥:由圆锥面、底面圆和母线组成的几何体叫做圆锥;10、球:在地球表面,由坚硬的岩石组成的天然形体叫做球;11、椭圆:定义:过焦点的圆叫做椭圆;12、双曲线:定义:过焦点的双曲线;13、抛物线:定义:与x 轴有两个交点的曲线叫做抛物线;14、直线:无限长的,平行于x 轴y 轴的线段叫做。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C-轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。

第01讲 轴对称与轴对称图形(知识解读)

第01讲 轴对称与轴对称图形(知识解读)

第01讲轴对称与轴对称图形1.通过具体实例认识轴对称、轴对称图形、探索轴对称的基本性质.2.探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形关于给定对称轴对称图形.3.认识并欣赏自然界和现实生活中的轴对称图形.知识点轴对称图形⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线称为它的对称轴.注意:1.轴对称图形的对称轴是一条直线,2.轴对称图形是1个图形,3.有些对称图形的对称轴有无数条。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形两个图形的对称轴.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.【题型1轴对称的相关概念】【典例1】(2022秋•昆明期末)如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中与△ABC成轴对称的格点三角形可以画出()A.6个B.5个C.4个D.3个【变式1-1】(2022秋•东港区期末)如图所示,△ABC是在2×2的正方形网格中以格点为顶点的三角形,那么图中与△ABC成轴对称且也以格点为顶点的三角形共有()A.3个B.4个C.5个D.6个【变式1-2】(2022秋•大连期末)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,在格纸中能画出与△ABC成轴对称且也以格点为顶点的三角形(不包括△ABC本身),这样的三角形共有个【题型2轴对称图形的相关概念】【典例2】(2023春•渝北区校级期中)下列图形不是轴对称图形的是()A.B.C.D.【变式2-1】(2023春•青秀区校级期中)下列四个图形分别是四届国际数学家大会的会标,其中是轴对称图形的是()A.B.C.D.【变式2-2】(2023春•南宁期中)学习轴对称图形中后,小乐画出如图四个图形,其中只有1条对称轴的图形是()A.B.C.D.【题型3确定轴对称图形对称轴的条数】【典例3】(2023•城阳区一模)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【变式3-1】下列图形中对称轴只有两条的是()A.B.C.D.【变式3-2】(2022秋•宝山区期末)圆是轴对称图形,它的对称轴有条.【题型4轴对称再镜面对称中的应用】【典例4】(2022秋•乳山市期中)小明在平面镜里看到背后墙上电子钟显示的时间如图所示,此刻的实际时间应该是()A.21:05B.20:15C.20:12D.21:50【变式4-1】(2021秋•播州区期末)如图是一只停放在平静水面上的小船,则它在水中的倒影表示正确的是()A.B.C.D.【变式4-2】(2021秋•恩施市校级期末)一轿车的车牌在水中的倒影是,则该车的牌照号码为.【题型5轴对称的操作应用】【典例5】(2022秋•桓台县期中)在图①中描涂2个小方块,在图②中描涂3个小方块,在图③中描涂4个小方块,在图④中描涂5个小方块,分别使图中的阴影图案成为轴对称图形.【变式5-1】(2022秋•永嘉县校级月考)在图①补充2个小方块,在图②、③、④中分别补充3个小方块,分别使它们成为轴对称图形.【变式5-2】(2021秋•船营区校级期中)下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充.(1)使得图①成为轴对称图形;(2)使得图②成为有4条对称轴且阴影部分面积等于3的图形;(3)使得图③成为至少有2条对称轴且面积不超过6的图形.【题型6与轴承对称相关的探索图形规律问题】【典例6】(2020春•顺德区校级期末)如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2,在射线AD上取点F 连接BF,CF,如图3,依此规律,第6个图形中全等三角形的对数是()A.10B.15C.21D.28【变式6-1】(2021秋•沂源县期末)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠2【变式6-2】(2021秋•罗庄区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q,第2次碰到矩形的边时的点为M,….第9次碰到矩形的边时的点为图中的()A.点P B.点Q C.点M D.点N【题型7与轴对称相关的开放性问题】【典例7】(2022秋•东营区校级期末)如图,AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是三角形,△ABC的周长=cm.【变式7-1】(2022秋•开封期末)如图,∠1=∠2,∠3=25°,击打白球,反弹后将黑球撞入袋中,∠1=.【变式7-2】(2022秋•青云谱区校级期中)图中阴影部分是由4个完全相同的正方形拼接而成的,若要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形可添加的区域有个.【题型8轴对称的实际应用】【典例8】(2022秋•乐清市月考)为迎接即将到来的国庆节,市区广场上设置了一个呈轴对称图形的平面造型(如图所示),其正中间为一个半径为b的半圆,摆放花草,其余部分为展板区.已知a=0.5米.b=2米.则展板的面积为,摆放花草造价为450元/平方米,展板造价为80元/平方米,那么制作整个造型的造价是(π取3)元.【变式8-1】(2022秋•栖霞市期末)已知:如图,CDEF是一个长方形的台球面,有A、B两球分别位于图中所在位置,试问怎样撞击球A,才能使A先碰到台边FC反弹后再击中球B?在图中画出A球的运动线路.【变式8-2】如图,台球运动中母球P击中桌边的点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹经过点C(提示:∠PAD=∠BAE,∠ABE=∠CBF).(1)若∠P AD=32°,求∠PAB的度数;(2)已知∠BAE+∠ABE=90°,母球P经过的路线BC与PA一定平行吗?请说明理由.1.(2023•平顶山二模)从“同一个世界,同一个梦想”的2008年夏季奥运会,到“一起向未来”的2022年冬季奥运会,北京成为世界上首座“双奥之城”,下列四幅图是两届奥运会的参选徽标,其中文字上方的图案是轴对称图形的是()A.B.C.D.2.(2023•蚌山区模拟)有一些含有特殊数学规律的车牌号码,如:皖C80808、皖C22222、皖C12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给人以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照.如果让你负责制作只以8或9开头且有五个数字的“数字对称”牌照,那么最多可制作()A.200个B.400个C.1000个D.2000个3.(海淀区)如图,把△ABC纸片沿着DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)4.(2020•薛城区模拟)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.1.(2022秋•河西区期末)2022年卡塔尔世界杯开幕式上中国元素闪耀登场.下面四幅与世界杯相关的图标中,可以看作是轴对称图形的是()A.B.C.D.2.(2022秋•东宝区期末)在以下四个图形中,对称轴条数最多的一个图形是()A..B.C..D.3.(2022春•淮阳区期末)如图下面镜子里哪个是他的像?()A.A B.B C.C D.D 4.(2023•雄县模拟)通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点C.点C D.点D 5.(2023春•海淀区校级月考)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.5B.6C.7D.8 6.(2022秋•婺城区期末)如图为一张锐角三角形纸片ABC,小明想要通过折纸的方式折出如下线段:①BC边上的中线AD;②∠A的平分线AE;③BC 边上的高AF.根据所学知识与相关活动经验可知:上述三条线中,能够通过折纸折出的有()A.①②③B.①②C.①③D.②③7.(2020秋•十堰期末)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋8.(2020春•兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点B.B点C.C点D.D点9.(2022秋•汤阴县期中)小红站在平面镜前,通过镜子看到电子钟的示数如图所示,这时的时刻应是.10.如图,△ABC是轴对称图形,且直线AD是△ABC的对称轴,点E,F是线段AD上的任意两点,若△ABC的面积为18cm2,则图中阴影部分的面积是cm2.11.(秋•西城区校级期中)如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.答案与解析【题型1轴对称的相关概念】【典例1】(2022秋•昆明期末)如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中与△ABC成轴对称的格点三角形可以画出()A.6个B.5个C.4个D.3个【答案】A【解答】解:如图,最多能画出6个格点三角形与△ABC成轴对称.故选:A.【变式1-1】(2022秋•东港区期末)如图所示,△ABC是在2×2的正方形网格中以格点为顶点的三角形,那么图中与△ABC成轴对称且也以格点为顶点的三角形共有()A.3个B.4个C.5个D.6个【答案】C【解答】解:如图,与△ABC成轴对称且也以格点为顶点的三角形共有5个.故选C.【变式1-2】(2022秋•大连期末)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,在格纸中能画出与△ABC成轴对称且也以格点为顶点的三角形(不包括△ABC本身),这样的三角形共有个【答案】见试题解答内容【解答】解:如图所示,与△ABC成轴对称且也以格点为顶点的三角形有3个:故答案为:3.【题型2轴对称图形的相关概念】【典例2】(2023春•渝北区校级期中)下列图形不是轴对称图形的是()A.B.C.D.【答案】D【解答】解:D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A、B、C选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.【变式2-1】(2023春•青秀区校级期中)下列四个图形分别是四届国际数学家大)A.B.C.D.【答案】A【解答】解:B,C,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【变式2-2】(2023春•南宁期中)学习轴对称图形中后,小乐画出如图四个图形,其中只有1条对称轴的图形是()A.B.C.D.【答案】C【解答】解:A.该图形有无数条对称轴,故此选项不合题意;B.该图形有4条对称轴,故此选项不合题意;C.该图形有1条对称轴,故此选项符合题意;D.该图形有2条对称轴,故此选项不合题意.故选:C.【题型3确定轴对称图形对称轴的条数】【典例3】(2023•城阳区一模)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【答案】B【解答】解:A.该图形是轴对称图形,共有1条对称轴;B.该图形是轴对称图形,共有3条对称轴;C.该图形是轴对称图形,共有2条对称轴;D.该图形是轴对称图形,共有2条对称轴.故选:B.【变式3-1】下列图形中对称轴只有两条的是()A.B.C.D.【答案】C【解答】解:A、圆有无数条对称轴,故本选项不符合题意;B、等边三角形有3条对称轴,故本选项不符合题意;C、矩形有2条对称轴,故本选项符合题意;D、等腰梯形有1条对称轴,故本选项不符合题意;故选:C.【变式3-2】(2022秋•宝山区期末)圆是轴对称图形,它的对称轴有条.【答案】见试题解答内容【解答】解:圆是轴对称图形,它的对称轴有无数条.故答案为:无数.【题型4轴对称再镜面对称中的应用】【典例4】(2022秋•乳山市期中)小明在平面镜里看到背后墙上电子钟显示的时间如图所示,此刻的实际时间应该是()A.21:05B.20:15C.20:12D.21:50【答案】B【解答】解:根据镜面对称的性质,题中所显示的时刻与20:15成轴对称,所以此时实际时刻为20:15.故选:B.【变式4-1】(2021秋•播州区期末)如图是一只停放在平静水面上的小船,则它在水中的倒影表示正确的是()A.B.C.D.【答案】A【解答】解:根据题意,它在水中的倒影表示正确的是A,故选:A.【变式4-2】(2021秋•恩施市校级期末)一轿车的车牌在水中的倒影是,则该车的牌照号码为.【答案】鄂Q•W6E01.【解答】解:如图所示:该车的牌照号码为鄂Q•W6E01..故答案为:鄂Q•W6E01.【题型5轴对称的操作应用】【典例5】(2022秋•桓台县期中)在图①中描涂2个小方块,在图②中描涂3个小方块,在图③中描涂4个小方块,在图④中描涂5个小方块,分别使图中的阴影图案成为轴对称图形.【答案】答案见解答.【解答】解:如图所示:.【变式5-1】(2022秋•永嘉县校级月考)在图①补充2个小方块,在图②、③、④中分别补充3个小方块,分别使它们成为轴对称图形.【答案】见试题解答内容.【解答】解:作轴对称图形如下(答案不唯一):【变式5-2】(2021秋•船营区校级期中)下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充.(1)使得图①成为轴对称图形;(2)使得图②成为有4条对称轴且阴影部分面积等于3的图形;(3)使得图③成为至少有2条对称轴且面积不超过6的图形.【答案】见解答.【解答】解:如图所示(答案不唯一):【题型6与轴承对称相关的探索图形规律问题】【典例6】(2020春•顺德区校级期末)如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2,在射线AD上取点F连接BF,CF,如图3,依此规律,第6个图形中全等三角形的对数是()A.10B.15C.21D.28【答案】C【解答】解:∵△ABD和△ACD关于直线AD对称,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE(SAS),∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有1+2=3对三角形全等;同理:图3中有1+2+3=6对三角形全等;由此发现:第n个图形中全等三角形的对数是.所以:第6个图形中全等三角形的对数是,故选:C.【变式6-1】(2021秋•沂源县期末)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠2【答案】A【解答】解:如图,由翻折的性质得,∠3=∠A′DE,∠AED=∠A′ED,∴∠3=(180°﹣∠1),在△ADE中,∠AED=180°﹣∠3﹣∠A,∠CED=∠3+∠A,∴∠A′ED=∠CED+∠2=∠3+∠A+∠2,∴180°﹣∠3﹣∠A=∠3+∠A+∠2,整理得,2∠3+2∠A+∠2=180°,∴2×(180°﹣∠1)+2∠A+∠2=180°,∴2∠A=∠1﹣∠2.故选:A.【变式6-2】(2021秋•罗庄区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q,第2次碰到矩形的边时的点为M,….第9次碰到矩形的边时的点为图中的()A.点P B.点Q C.点M D.点N【答案】D【解答】解:如图所示,小球反弹6次回到点P处,而9﹣6=3,∴第9次碰到矩形的边时的点为图中的点N.故选:D.【题型7与轴对称相关的开放性问题】【典例7】(2022AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是等边三角形,△ABC的周长=24cm.【答案】等边三角形,24.【解答】解:∵AD是△ABC的对称轴,∴BD=CD=4cm,AB=AC,∴BC=BD+CD=8cm,∵∠DAC=30°,∴∠C=60°,∴△ABC是等边三角形,∴△ABC的周长为=3BC=24cm.故答案为:等边三角形,24.【变式7-1】(2022秋•开封期末)如图,∠1=∠2,∠3=25°,击打白球,反弹后将黑球撞入袋中,∠1=65°.【答案】65°.【解答】解:∵∠2+∠3=90°,∠3=25°,∴∠2=65°.∵∠1=∠2,∴∠1=65°.故答案为:65°.【变式7-2】(2022秋•青云谱区校级期中)图中阴影部分是由4个完全相同的正方形拼接而成的,若要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形可添加的区域有2个.【答案】2.【解答】解:要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形应该添加在区域①⑤.故答案为:2.【题型8轴对称的实际应用】【典例8】(2022秋•乐清市月考)为迎接即将到来的国庆节,市区广场上设置了一个呈轴对称图形的平面造型(如图所示),其正中间为一个半径为b的半圆,摆放花草,其余部分为展板区.已知a=0.5米.b=2米.则展板的面积为12平方米,摆放花草造价为450元/平方米,展板造价为80元/平方米,那么制作整个造型的造价是(π取3)3660元.【答案】12平方米;3660.【解答】解:由题意:展板的面积=12a•b(平方米),当a=0.5米,b=2米时,展板的面积=12(平方米).制作整个造型的造价=12×80+π×4×450=3660(元).故答案是:12平方米;3660.【变式8-1】(2022秋•栖霞市期末)已知:如图,CDEF是一个长方形的台球面,有A、B两球分别位于图中所在位置,试问怎样撞击球A,才能使A先碰到台边FC反弹后再击中球B?在图中画出A球的运动线路.【答案】如图所示,运动路线:A→P→B.【解答】解:如图所示:运动路线:A→P→B.【变式8-2】如图,台球运动中母球P击中桌边的点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹经过点C(提示:∠PAD=∠BAE,∠ABE=∠CBF).(1)若∠PAD=32°,求∠PAB的度数;(2)已知∠BAE+∠ABE=90°,母球P经过的路线BC与PA一定平行吗?请说明理由.【答案】(1)116°.(2)BC∥PA.证明见解析部分.【解答】解:(1)∵∠PAD=32°,∠P AD=∠BAE,∠PAD+∠PAB+∠BAE=180°,∴∠PAB=180°﹣32°﹣32°=116°.(2)BC∥PA,理由如下:∵∠PAD=∠BAE,∠P AB=180°﹣∠PAD﹣∠BAE,∴∠PAB=180°﹣2∠BAE.同理:∠ABC=180°﹣2∠ABE.∵∠BAE+∠ABE=90°,∴∠PAB+∠ABC=360°﹣2(∠BAE+∠ABE)=180°.∴BC∥PA.1.(2023•平顶山二模)从“同一个世界,同一个梦想”的2008年夏季奥运会,到“一起向未来”的2022年冬季奥运会,北京成为世界上首座“双奥之城”,下列四幅图是两届奥运会的参选徽标,其中文字上方的图案是轴对称图形的是()A.B.C.D.【答案】C【解答】解:A,B,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C.2.(2023•蚌山区模拟)有一些含有特殊数学规律的车牌号码,如:皖C80808、皖C22222、皖C12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给人以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照.如果让你负责制作只以8或9开头且有五个数字的“数字对称”牌照,那么最多可制作()A.200个B.400个C.1000个D.2000个【答案】A【解答】解:根据题意,若以8开头,则第五个也是8,只需考虑中间3位,又因为第二位和第四位是相等的,只需考虑第二位和第三位,共有10×10=100种情况.同样地,以9开头只需考虑中间3位,又因为第二位和第四位是相等的,只需考虑第二位和第三位,共有10×10=100种情况,所以最多可制作200个.故选:A.3.(2003•海淀区)如图,把△ABC纸片沿着DE折叠,当点A落在四边形BCED 内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【答案】B【解答】解:∵把△ABC纸片沿着DE折叠,点A落在四边形BCED内部,∴∠1+∠2=180°﹣∠ADA′+180°﹣∠AEA′=180°﹣2∠ADE+180°﹣2∠AED=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣∠A)=2∠A.故选:B.4.(2020•薛城区模拟)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.【答案】674.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+2=674(次),故答案为:674.1.(2022秋•河西区期末)2022年卡塔尔世界杯开幕式上中国元素闪耀登场.下面四幅与世界杯相关的图标中,可以看作是轴对称图形的是()A.B.C.D.【答案】D【解答】解:选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:D.2.(2022秋•东宝区期末)在以下四个图形中,对称轴条数最多的一个图形是()A..B.C..D.【答案】B【解答】解:A有2条对称轴,B有4条,C有0条,D有1条.则对称轴条数最多的一个图形是B.故选:B.3.(2022春•淮阳区期末)如图下面镜子里哪个是他的像?()A.A B.B C.C D.D【答案】B【解答】解:由镜面对称的性质,连接对应点的线段与镜面垂直并且被镜面平分,即可得出只有B与原图形成镜面对称.故选:B.4.(2023•雄县模拟)通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点B C.点C D.点D【答案】B【解答】解:如图,过点P,点B的射线交于一点O,故选:B.5.(2023春•海淀区校级月考)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.5B.6C.7D.8【答案】A【解答】解:如图,连接OP1,PP1,OP2,PP2,P1P2,∵P1是P关于直线l的对称点,∴直线l是PP1的垂直平分线,∴OP1=OP=2.8,∵P2是P关于直线m的对称点,∴直线m是PP2的垂直平分线,∴OP2=OP=2.8,当P1,O,P2不在同一条直线上时,OP1﹣OP2<P1P2<OP1+OP2,即0<P1P2<5.6,当P1,O,P2在同一条直线上时,P1P2=OP1+OP2=5.6,∴P1,P2之间的距离可能是5,故选:A.6.(2022秋•婺城区期末)如图为一张锐角三角形纸片ABC,小明想要通过折纸的方式折出如下线段:①BC边上的中线AD;②∠A的平分线AE;③BC边上的高AF.根据所学知识与相关活动经验可知:上述三条线中,能够通过折纸折出的有()A.①②③B.①②C.①③D.②③【答案】A【解答】解:①BC边上的中线AD:如图1,使点B、C重合,中点为点D,连接AD,此时AD即为BC边上的中线;②∠A的平分线AE:如图2,沿直线AE折叠,使AB与AC重叠,此时AE即为BC边上的角平分线;③BC边上的高AF:如图3,沿直线AF折叠,使BF与CF重合,此时AF即为BC边上的高.综上所述,所有能够通过折纸折出的有①②③.故选:A.7.(2020秋•十堰期末)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.8.(2020春•兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点B.B点C.C点D.D点【答案】D【解答】解:如图所示,经过6次反弹后动点回到出发点P,∵2020÷6=336…4,∴当点P第2020次碰到长方形的边时为第337个循环组的第4次反弹,∴第2020次碰到长方形的边时的点为图中的点D,故选:D.9.(2022秋•汤阴县期中)小红站在平面镜前,通过镜子看到电子钟的示数如图所示,这时的时刻应是.【答案】12:08:51.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是12:08:51.故答案为:12:08:51.11.如图,△ABC是轴对称图形,且直线AD是△ABC的对称轴,点E,F是线段AD上的任意两点,若△ABC的面积为18cm2,则图中阴影部分的面积是cm2.【答案】9.【解答】解:∵△ABC是轴对称图形,且直线AD是对称轴,=S△ACD=,S△CEF=S△BEF,∴S△ABD∴阴影部分的面积等于△ABC面积的一半,=×18=9(cm2).∴S阴影故答案为:9.11.(秋•西城区校级期中)如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.【答案】见试题解答内容【解答】解:(1)如图,运动路径:P→M→Q,点M即为所求.(2)如图,运动路径:P→E→F→Q,点E,点F即为所求.。

轴对称图形

轴对称图形





4、下列图形中,只有一条对称轴的是( C )
A
B
C
D
5、把一圆形纸片两次对折后,得
到右图,然后沿虚线剪开,得到
两部分,其中一部分展开后的平
面图形是( B )
A
B
C
D
三、画出下列图形的对称轴
9、 国旗是国家的一个象征,观察下面的国旗,哪些是 轴对称图形?试找出它们的对称轴。
加拿大
以色列
7、找规律填空:
8、观察下列各种图形,判断是不是轴对称图形?并找出 该轴对称图形的对称轴?
五、成轴对称练习题
1、下面给出的每幅图形中的两个图案是轴对称吗?如 果是,试着找出它们的对称轴,并找出一对对应点.
喜喜
图形 长方形 名称 有几 2条 条对 称轴
试一试
我们学过的图形中哪些是轴对称图形? 分别有几条对称轴?
图形 长方形 正方形 名称 4条 有几 2条 条对 称轴
试一试
我们学过的图形中哪些是轴对称图形? 分别有几条对称轴?
图形 长方形 正方形 等腰 三角形 名称 4条 1条 有几 2条 条对 称轴
试一试
2、生活中的例子
二、两个图形关于某直线对称
2、概念
m
把一个图形沿着某一条直线翻折过去,如果它能够 与另一个图形重合,那么就说这两个图形成轴对称 这条直线就是对称轴
两个图形中的对应点(即两个图形重合时互相重合 的点)叫做对称点
二、两个图形关于某直线对称
2、概念
m
把一个图形沿着某一条直线翻折过去,如果它能够 与另一个图形重合 D C
a
6、如图,将一块正方形纸片沿对角线折叠一次,在得到的三 角形的三个角上各挖去一个圆洞,最后将正方形纸片展开, 得到的图案是( ) C

轴对称图形

轴对称图形

轴对称图形轴对称图形,是指一个图形在某个轴线上的两侧是完全对称的。

换句话说,这个图形可以分成两部分,每一部分都是另一部分的镜像。

在数学上,轴对称图形是指通过某条线(称为轴)对称后可以恰好重合的图形。

轴对称图形具有奇偶性质,也就是说,只有在某些条件下,轴对称图形才具有轴对称性,否则就只是一般的图形。

轴对称图形广泛存在于我们生活中的各个领域。

例如,我们常见的人体、动物、建筑、地形、植物、工艺品等都可以看作是轴对称图形。

轴对称图形在美学上也具有重要意义,它常被用作设计艺术、建筑艺术、时装设计、家居设计、广告设计等领域,使图案更加美观、和谐、统一。

本文将从数学、物理、生物、美学、设计等多个方面探讨轴对称图形的相关知识和应用。

一、数学视角下的轴对称图形在数学上,轴对称图形是一种变换,是指将一个图形沿着轴线翻转一下,然后使得原来在轴线上的点在新的图形中仍然在轴线上并且位置不变。

轴对称图形的轴称为对称轴,对称轴过图形中心。

下面是若干轴对称的图形:如图所示,图形通过对称轴折叠或旋转180°后,可以重合。

轴对称图形有以下特点:1、轴对称图形与它的对称轴垂直(除非它是在一个垂直平面中)。

2、对称轴把图形分成两半,每一半是另一半的镜像。

3、对称轴上的点不改变位置。

常用的对称轴包括垂直对称轴、水平对称轴、倾斜对称轴等。

图形的对称中心是对称轴的中点。

一个图形可以有多个对称中心。

如果图形同时具有垂直对称轴和水平对称轴,则它是一个点对称图形,也称为中心对称图形。

例:正方形是一个点对称图形,因为它具有中心对称轴,即两条对角线的交点。

二、物理视角下的轴对称图形在物理学中,轴对称图形是指一个物体相对于某个轴旋转后,图形保持不变的情况。

轴对称图形在物理学领域中广泛存在,例如,地球、分子、螺旋状物等都是轴对称的。

地球的自转轴是一个非常明显的轴对称线,它的旋转使得地球的北极和南极交替出现。

在分子结构中,原子和分子的构成可以通过轴对称来描述。

轴对称课件(60张PPT)

轴对称课件(60张PPT)

轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。

2.1图形的轴对称 课件

2.1图形的轴对称 课件

成两个部分,那么Байду номын сангаас个部分就是关于这条
对称轴成轴对称
例2 如图2-8,直线l表示草原上的一条河流.一骑马少年从A地出发, 去河边让马饮水,然后返回位于B地的家中.他沿怎样的路线行走, 能使路程最短?作出这条最短路线.
A· B· l
解 如图,作点A关于直线l的对称点A',连结A'B,交直线l于点C, 连结AC.骑马少年沿折线A-C-B的路线行走时路程最短.
B· l
CP
将军饮马问题解题思路的归纳
1. 怎么对称,作谁的对称?
简单说所有题目需要作对称的点,都是题目的定点。或者说只有定点 才可以去作对称的。 那么作谁的对称点? 首先要明确关于对称的对象肯定是一条线,而不是一个点。那么是哪 一条线?一般而言都是动点所在直线。
将军饮马问题解题思路的归纳 2. 对称完以后和谁连接? 和另外一个顶点相连。绝对不能和一个动点相连。 明确一个概念:定点的对称点也是一个定点。
将军饮马问题解题思路的归纳 3. 所求点怎么确定? 所求点最后反应在图上一定是个交点。实际就是我们所画直线和已 知直线的交点。
1. 如图四个图形,其中是轴对称图形,且对称 轴的条数为2条的图形的个数是 ( A )
A.1
B.2
C.3
D.4
2.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的 点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( ) A.115° B.120° C.130° D.140°
m B
C
A
分析 如下图,根据“对称轴垂直平分连结两个对称点的线段”的性 质,直线m垂直平分线段AA',所以只要过点A作直线m的垂线段 AP,延长AP至A',使A'P=AP,则A'便是点A的对称点.类似地, 可以作出点B,C的对称点B',C'

轴对称知识点

轴对称知识点

轴对称知识点归纳一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

练习:1.下列四个图案中,轴对称图形的个数是( )2.下列命题中,不正确的是( )(A)关于直线对称的两个三角形一定全等.(B)两个圆形纸片随意平放在水平桌面上构成轴对称图形.(C)若两图形关于直线对称,则对称轴是对应点所连线段的垂直平分线. (D)等腰三角形一边上的高、中线及这边对角平分线重台. 3.下列四个图案中.具有一个共有性质则下面四个数字中,满足上述性质的一个是( )(A)6 (B)7 (C)8 (D)94.等腰三角形的一个内角是50。

,则另外两个角的度数分别是( ) (A) 65°,65°. (B) 50°,80°. (C) 65°,65°或50°,80°. (D) 50°,50°.5.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是( ) (A) 9cm (B) 12cm (C) 1215cm cm 或 (D) 15cm .二、填空题(每小题5分,共20分)6.等腰三角形是 对称图形,它至少有 条对称轴. 7.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时 针与分针的位置如图所示,此时时间是 .8.已知△ABC 是轴对称图形.且三条高的交点恰好是C 点,则△ABC 的形状是 . 9.已知点A(一2,4),B(2,4),C(1.2),D(1-2),E(一3,1),F(3,1)是平面坐标系内的6个点,选择其中三个点连成一个三角形,剩下三个点连成另一个三角形,若这两个三角形关于y 轴对称,就称为一组对称三角形,那么,坐标系中可找出 组对称三角形. 10.如图,△ABC 中,AB=AC .∠A=36°,AB 的中垂线DE 交AC 于D ,交AB 于E.下述结论(1)BD 平分∠ABC ;(2)AD=BD=BC ;(3)△BDC 的周长等于AB+BC ;(4)D 是AC 中点,其中正确的命题序号是 .二、(重点)线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

《轴对称完整》课件

《轴对称完整》课件

对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称

轴对称图形

轴对称图形

轴对称图形轴对称图形是几何学中的一个重要概念,在许多领域中都有着广泛的应用。

轴对称图形是指可以通过某条虚拟线(称为轴)将图形分成两个对称的部分的图形。

接下来我们将深入探讨轴对称图形的性质、特点以及一些实际应用。

轴对称图形的性质轴对称图形具有以下几个显著的性质:1.对称轴:轴对称图形存在一个或多个对称轴,通过这些轴,可以将图形分成两个完全对称的部分。

对称轴可以是水平、垂直或斜线。

2.对应点:轴对称图形上的每个点都有一个对应的对称点,这个对称点关于对称轴相对位置相同,但是在轴对称图形中却是互为镜像的。

3.性质保持不变:轴对称变换不改变轴对称图形的性质,如面积、周长等,它只改变图形在空间中的位置和方向。

轴对称图形的分类根据轴对称的不同性质,轴对称图形可以分为以下几类:1.轴对称图形:最简单的轴对称图形是对称图形本身,例如正方形、正圆等。

2.轴对称字母:字母X在垂直中线上是轴对称。

3.轴对称数字:数字0、1、8在水平、垂直中线上是轴对称的。

4.轴对称图形的组合:多个轴对称图形可以组合在一起形成一个更大的轴对称图形。

轴对称图形的实际应用轴对称图形在日常生活中有着广泛的应用,下面列举几个实际应用:1.艺术创作:许多艺术作品中都运用了轴对称的原理,通过对称的布局或对称的图案来吸引观众的眼球。

2.建筑设计:建筑中的对称结构能够给人一种和谐、美感的感受。

许多古代建筑和现代建筑都运用了轴对称的设计。

3.产品设计:在产品设计中,轴对称设计能够提升产品的稳定性和美观性,例如汽车、手机等产品。

4.生物学:生物体中也存在轴对称结构,例如人体的左右对称、植物的对称花瓣等。

总结轴对称图形作为一种重要的几何概念,不仅在数学中有着丰富的性质和特点,而且在各个领域都有着重要的应用。

通过深入研究和理解轴对称图形,我们可以更好地利用这一概念在日常生活和工作中发挥作用,为人们创造更多美好的体验和设计。

希望本文对读者们有所启发,谢谢阅读!。

对称轴的概念是什么及常见轴对称图形

对称轴的概念是什么及常见轴对称图形

对称轴的概念是什么及常见轴对称图形对称轴的概念是什么及常见轴对称图形对称轴是使几何图形成轴对称或旋转对称的直线。

对称图形的一部分绕它旋转一定的角度后,就与另一部分重合。

许多图形都有对称轴。

下面是店铺给大家整理对称轴概念简介,希望能帮到大家!对称轴的概念先引入点关于直线对称的概念:如果点A、B在直线的两侧,且是线段AB的垂直平分线,则称点A、B关于直线互相对称,点A、B 互称为关于直线的对称点,直线叫做对称轴。

定义一在平面上,如果图形F的所有点关于平面上的直线成轴对称,直线叫做图形下的对称轴。

定义二在平面上,如果存在一条直线,图形F的所有点关于直线的对称点组成的图形。

仍是图形F自身,则称图形F为轴对称图形,直线己它的一条对称轴。

图1中的三个图形分别有两条、一条、四条对称轴。

常见轴对称图形几种常见的轴对称图形和中心对称图形:轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆、双曲线(有两条对称轴)、椭圆(有两条对称轴)、抛物线(有一条对称轴)等。

对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;中心对称图形:线段、平行四边形、菱形、矩形、正方形、圆等。

对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点;圆的对称中心是圆心。

说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。

坐标系中的轴对称变换与中心对称变换:点P(x,y)关于x轴对称的点P的坐标为(x,-y),关于y轴对称的点P的坐标为(-x,y)。

关于原点对称的点的坐标P3的坐标是(-x,-y)这个规律也可以记为:关于y轴(x轴)对称的'点的纵坐标(横坐标)相同,横坐标(纵坐标)互为相反数。

生活中常见的轴对称图形

生活中常见的轴对称图形

生活中常见的轴对称图形
《镜面对称》。

生活中常见的轴对称图形,如菱形、心形、蝴蝶形等,都展现了一种美妙的对
称美感。

轴对称图形是指图形中存在一条轴线,使得图形关于这条轴线对称,即图形的两侧完全对称。

这种对称美感在我们的生活中无处不在,不仅存在于自然界中的植物、动物,也存在于建筑物、艺术品、日常用品等各个方面。

在自然界中,我们常常能够看到许多轴对称图形。

比如,植物的叶子往往都是
轴对称的,两侧完全对称,给人一种和谐美感。

蝴蝶的翅膀也是轴对称的,左右对称的翅膀给人一种优美的视觉享受。

而在建筑物中,许多古代建筑都采用了轴对称的设计,如中国的古代宫殿、寺庙等,都展现了一种庄严美感。

在现代建筑中,许多摩天大楼、桥梁等也采用了轴对称的设计,使得建筑物更加稳固美观。

除了自然界和建筑物,轴对称图形也广泛存在于艺术品和日常用品中。

许多绘
画作品中都运用了轴对称的构图,使得画面更加和谐美观。

而在日常用品中,许多家具、餐具等也采用了轴对称的设计,使得这些物品更加美观实用。

轴对称图形所展现的对称美感,不仅仅是一种视觉享受,更是一种心灵的愉悦。

它让人感受到一种和谐、稳定、美丽的力量,使得我们的生活更加丰富多彩。

因此,让我们在日常生活中多留意这些轴对称图形,感受它们带给我们的美妙。

轴对称图形及性质

轴对称图形及性质

文昌院教育学科教师辅导讲义课 题轴对称图形及性质教学内容轴对称图形及性质(1.1,1.2)第一节一、1. 轴对称定义:把一个图形沿一条直线这段,如果它能够和另一个图形重合,那么这两个图形关于这条直线对称,也称这两个图形轴对称。

这条直线称为对称轴(对称轴是一条直线,不是射线或线段),两个图形的对应点(即沿对称轴对折后,能够重合的点)叫做对称点。

2. 轴对称图形定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形3. 轴对称与轴对称图形的区别:(1) 轴对称是两个图形的位置关系,轴对称图形是一个具有特殊形状的图形 (2) 轴对称涉及两个图形,轴对称是一个图形轴对称与轴对称图形的联系:(1) 定义中都有一条直线,沿这条直线折叠重合。

(2) 轴对称图形一定成轴对称,成轴对称的不一定是轴对称图形。

注意:轴对称图形的对称轴有的只有一条,有的存在多条 例1. 下列图形中是轴对称图形的是( )轴对称与轴对称图形轴对称的性质轴对称图形线段角等腰三角形等腰梯形轴对称图①②③④A.①②B.③④C.②③D.①④例2、下列轴对称图形中,对称轴最多的是().A、等腰直角三角形B、有一角为60的等腰三角形C、正方形D、圆例3.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的轴对称图形是( )例4、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个例5.剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):下面四个图案中,不能用上述方法剪出的是( )二、轴对称的性质:(1.2)1. (1)线段垂直平分线:垂直并且平分一条线段的直线(线段垂直平分线是到线段两端距离相等的点的集合,即①经过线段的中点 ②垂直于线段,两者缺一不可。

)(2)作线段AB 的垂直平分线: ①分别以A 、B 为圆心,大于AB 21的长为半径画弧,两弧相交于点C 、D ②过C 、D 两点作直线③直线CD 就是线段AB 的垂直平分线 2.性质:①成中轴对称的两个图形全等;②如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

生活中轴对称图形

生活中轴对称图形
中心对称图形的定义
如果一个图形关于一个点对称,那么 这个图形被称为中心对称图形。
平面关于直线对称的性质
平面关于直线的对称平面
如果一个平面π与一条直线l相对称,那么平面π的对称平面满足其上的任意一点到直线l的距离相等,并且 这两平面的法线向量相同。
轴对称与中心对称的关系
轴对称图形一定是中心对称图形,但中心对称图形不一定是轴对称图形。
生活中轴对称图形
目录
• 轴对称图形的定义与特性 • 生活中的轴对称图形实例 • 轴对称图形的形成原理 • 轴对称图形的应用 • 轴对称图形的拓展学习
01
轴对称图形的定义与特 性
定义
轴对称图形
如果一个图形关于一条直线对称 ,那么这个图形被称为轴对称图 形。
轴对称
如果一个图形沿一条直线折叠后 ,直线两旁的部分能够完全重合 ,那么这个图形就具有轴对称性 。
现代艺术中的轴对称图形:如现 代建筑、平面设计、雕塑等。
谢谢观看
音乐
在音乐中,许多乐曲的结构和旋律都具有轴对称 性,如对位法、曲式结构等。
舞蹈
在舞蹈中,许多舞蹈动作和编排都具有轴对称性, 如芭蕾舞、现代舞等。
05
轴对称图形的拓展学习
探索更多的轴对称图形实例
自然界中的轴对称图 形:如蝴蝶、蜜蜂、 花朵等。
艺术作品中的轴对称 图形:如绘画、雕塑 等。
建筑中的轴对称图形: 如中国的故宫、法国 的凡尔赛宫等。
04
轴对称图形的应用
在几何学中的应用
几何定理
轴对称图形在几何学中常被用于 证明各种定理和性质,如角平分
线定理、勾股定理等。
图形变换
轴对称是图形变换的一种形式,通 过轴对称可以将图形进行平移、旋 转等操作,从而得到新的图形。

《轴对称图形》课件

《轴对称图形》课件
确定中心点:确定轴对称图形的中心点,以便于绘制对称图形 绘制对称图形:根据中心点,绘制对称图形的一半,然后使用对称工具将其复制 为另一半
调整细节:调整对称图形的细节,如颜色、大小、位置等,使其更加美观 保存和导出:将绘制好的轴对称图形保存为合适的格式,如PNG、JPG等,以便 于在PPT中使用
如何制作复杂的轴对称图形
分析当前轴对称图形的发展趋势和未来发展方向
轴对称图形在数学、物理、化学等领域的应用越来越广泛 轴对称图形在艺术、设计等领域的应用也越来越多 轴对称图形在计算机图形学、虚拟现实等领域的应用前景广阔 轴对称图形在教育、科普等领域的应用也越来越受到重视
对学习轴对称图形的建议和展望
建议:多观察生活中的轴对称图形,如建筑、自然景观等,提高对轴对称图形的感知和理解。
确定轴对称图形的中心点 绘制对称轴 绘制对称图形的一半
复制并翻转对称图形的另一半 调整对称图形的细节和形状 完成复杂的轴对称图形制作
如何解决制作轴对称图形时遇到的问题
掌握基本概念:理解轴对称图形的定义和性质 熟悉工具:熟练使用绘图软件中的工具和功能 练习操作:通过练习掌握制作轴对称图形的技巧 遇到问题:遇到难题时,查阅相关资料或请教他人 总结反思:总结制作过程中的经验和教训,不断提高制作水平
如何提高制作轴对称图形的效率
单击此处添加标题
利用工具:使用专业的图形设计软件,如Adobe Illustrator、 CorelDRAW等,可以快速制作出高质量的轴对称图形。
单击此处添加标题
掌握技巧:熟悉轴对称图形的制作技巧,如使用镜像、旋转等工具,可以 大大提高制作效率。
单击此处添加标题
简化设计:在设计轴对称图形时,尽量简化设计,避免过于复杂的图形, 可以提高制作效率。

轴对称与轴对称图形概念

轴对称与轴对称图形概念

轴对称与轴对称图形概念1轴对称:如果把一个图形沿着一条直线对折后,与另一个图形重合,那么这两个图形成轴对称,两个图形中相互重合的点叫做对称点,这条直线叫做对称轴;2轴对称图形:如果把一个图形沿某条直线对折,对折后图形的一部分与另一部分完全重合,我们把具有这样性质的图形叫做轴对称图形,这条直线叫做对称轴;轴对称的性质①轴对称的两个图形是全等图形;轴对称图形的两个部分也是全等图形;②轴对称轴对称图形对应线段相等,对应角相等;③如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线;④轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;⑤两个图形关于某条直线对称,那么如果它们的对应线段或延长线相交,那么交点一定在在对称轴上;图形的平移定义1平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点;2平移的性质:①对应点的连线平行或共线且相等②对应线段平行或共线且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形四个端点共线除外③对应角相等,对应角两边分别平行,且方向一致;3用坐标表示平移:如果把一个图形各个点的横坐标都加上或减去一个正数a,纵坐标不变,相应的新图形就是把原图形向右或向左平移a个单位长;如果把一个图形各个点的纵坐标都加上或减去一个正数a,横坐标不变,相应的新图形就是把原图形向上或向下平移a个单位长;4平移的条件:图形的原来位置、方向、距离5平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法;特殊的轴对称图形I线段的垂直平分线①定义:垂直并且平分已知线段的直线叫做线段的垂直平分线或中垂线②性质:a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;b、到线段两端点距离相等的点在线段的垂直平分线上;c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线;II角平分线的性质①角平分线上的点到已知角两边的距离相等②到已知角两边距离相等的点在已知角的角平分线上③角是轴对称图形,角平分线所在的直线是该角的对称轴;用坐标表示轴对称坐标轴对称点Px,y关于x轴对称的点的坐标是x,-y点Px,y关于y轴对称的点的坐标是-x,y原点对称点Px,y关于原点对称的点的坐标是-x,-y坐标轴夹角平分线对称点Px,y关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是y,x 点Px,y关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是-y,-x 平行于坐标轴的直线对称点Px,y关于直线x=m对称的点的坐标是2m-x,y;点Px,y关于直线y=n对称的点的坐标是x,2n-y;常见图形的对称轴与画法常见图形的对称轴①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线;②角有一条对称轴,是角平分线所在的直线;③等腰三角形有一条对称轴,是顶角平分线所在的直线;④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线;⑤矩形有两条对称轴,是相邻两边的垂直平分线;⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线;⑦菱形有两条对称轴,是对角线所在的直线;⑧等腰梯形有一条对称轴,是两底垂直平分线;⑨正多边形有与边数相同条的对称轴;⑩圆有无数条对称轴,是任何一条直径所在的直线;对称轴的画法①找出一对对称点②连对称点线段③做出对称点所连线段的垂直平分线;用坐标表示轴对称坐标轴对称点Px,y关于x轴对称的点的坐标是x,-y点Px,y关于y轴对称的点的坐标是-x,y原点对称点Px,y关于原点对称的点的坐标是-x,-y坐标轴夹角平分线对称点Px,y关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是y,x点Px,y关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是-y,-x平行于坐标轴的直线对称点Px,y关于直线x=m对称的点的坐标是2m-x,y;点Px,y关于直线y=n对称的点的坐标是x,2n-y;轴对称与轴对称图形所具有的性质①任何一对对应点所边线段被对称轴垂直平分②两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上③对应线段相等,对应线段所在的直线如果相交,交点在对称轴上④对应角相等中心对称与中心对称图形两者区别1中心对称:把一个图形绕着一点旋转180°后,如果与另一个图形重合,则这两个图形关于该点成中心对称,这个点叫做其对称中心,旋转前后重合的点叫对称点;2中心对称图形:把一个图形绕着某点旋转180°后,能与其自身重合,这个图形叫做中心对称图形,这个点叫做对称中心;3两者的区别与联系①中心对称是指两个特定图形之间的位置关系,中心对称图形是描述一个图形的形状性质;②将成中心对称的两个图形看作一个整体时,这个整体图形就是中心对称图形;4中心对称图形的性质:①对称点的连线经过对称中心且被对称中心平分②对应线段相等,平行或共线③对应角相等;线段的垂直平分线定义1经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线或线段的中垂线.2线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合轴对称与轴对称图形的区别与联系:①轴对称图形是对一个图形而言,是一个具有特殊形状的图形;轴对称是对二个图形而言,是两个图形的位置关系;;②都具有折叠后互相重合;③如果把轴对称的两个图形看成一个图形,那么它就是一个轴对称图形;如果把轴对称图形的两部分看成两个图形,那么它就是一个轴对称;。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结一、轴对称1.轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.判断一个图形是不是轴对称图形,可利用轴对称图形的定义,将图形对折,看是否能够完全重合,若能够完全重合,则这个图形是轴对称图形,否则这个图形不是轴对称图形.注意:(1)对称轴是一条直线,而不是射线或线段.(2)一个轴对称图形的对称轴可以有1条,也可以有多条,还可以有无数条.(3)轴对称图形是对于一个图形而言的,它表示具有一定特性(轴对称性)的某一类图形.3.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.4.轴对称和轴对称图形的区别与联系5.轴对称的性质:(1)两个图形成轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(2)轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.(4)成轴对称的两个图形全等;轴对称图形被对称轴分成的两部分也全等,但全等的两个图形不一定是轴对称图形.二、线段垂直平分线的性质和判定1.线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.如下图所示,点P在线段AB 的垂直平分线上,则P A=PB.3.线段垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.如上图所示,若P A=PB,则点P在线段AB的垂直平分线上三、尺规作图(线段的垂直平分线)1.作图步骤:(1)以A为圆心,以大于线段AB一半的长度画弧(2)再以B为圆心,以相同长度为半径画弧,交前弧于C、D两点(3)连接CD,直线CD即为线段AB的垂直平分线四、尺规作图(轴对称)1.轴对称图形或成轴对称的两个图形的对称轴的画法,步骤如下:(1)找出轴对称图形或成轴对称的两个图形的任意一对对应点;(2)连接这对对应点;(3)画出对应点所连线段的垂直平分线.这条垂直平分线就是该轴对称图形或成轴对称的两个图形的对称轴.注意:对于轴对称图形或两个图形成轴对称,它们的对应点有一个共同的特征——对应点所连的线段被对称轴垂直平分,这是我们画图形的对称轴的依据.2.在坐标系中画轴对称图形的方法:(1)计算——计算对称点的坐标;(2)描点——根据对称点的坐标描点;(3)连接——依次连接所描各点得到成轴对称的图形五、关于坐标轴对称的点的坐标1.关于坐标轴对称的点的坐标特点:(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).2.已知两个点的坐标分别为P1(x1,y1),P2(x2,y2),若x1=x2,y1+y2=0,则点P1,P2关于x轴对称;若x1+x2=0,y1=y2,则点P1,P2关于y轴对称.反之也成立。

轴对称图形ppt课件

轴对称图形ppt课件

05

教学方法:讲解、示范、实践
讲解
通过语言描述,向学生解释轴对称图形的定义、性质和特点,使学 生对轴对称图形有基本的认识。
示范
通过展示轴对称图形的制作过程或解题步骤,让学生直观地了解轴 对称图形的应用和操作方法。
实践
组织学生进行实践活动,如制作轴对称图形、解决与轴对称图形相关 的问题等,以提高学生的实际操作能力和问题解决能力。
几何学基础
轴对称图形是几何学中的基础概 念,对于理解几何学的基本原理
和性质至关重要。
对称性研究
在数学中,轴对称图形是研究对 称性的一个重要方面,对于理解 更复杂的对称概念有重要意义。
应用领域
轴对称图形在物理学、工程学、 计算机图形学等领域都有广泛的 应用,是解决实际问题的重要工
具。
04
轴对称图形的制作和创造
轴对称图形ppt课件
目录
• 轴对称图形的基本概念 • 轴对称图形的识别 • 轴对称图形的性质和特点 • 轴对称图形的制作和创造 • 轴对称图形的教学方法和技巧
01
轴对称图形的基本概念
轴对称图形的定义
01 轴对称图形
如果一个平面图形在某一条直线的两侧部分可以 完全重合,那么这个图形就被称为轴对称图形。
03 美学价值
轴对称图形在美学上具有很高的价值,被广泛应 用于建筑设计、图案设计等领域。
轴对称图形的分类
01
02
03
中心对称图形
如果一个图形关于某一点 旋转180度后与自身重合 ,则称为中心对称图形。
镜面对称图形
如果一个图形关于某一条 直线对称,则称为镜面对 称图形。
旋转对称图形
如果一个图形关于某一条 直线旋转一定角度后与自 身重合,则称为旋转对称 图形。

轴对称

轴对称

一、知识整理1.轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线叫做对称抽。

2.成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.两个图形关于一条直线对称,也叫成轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3. 对称轴和对称点:轴对称图形对折重合后的折痕所在的直线是对称轴,能够互相重合的点叫做对称点.4.轴对称和轴对称图形的性质轴对称的性质:①由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形全等(即形状、大小完全相同)②新图形上的每一点,都是原图形上的某一点关于直线l的对称点③连接任意一对对应点的线段被对称轴垂直平分轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.5.线段的垂直平分线的定义、性质、尺规作法定义:经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.6、画出已知图形关于某条直线对称的图形①对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。

这种方法我们可以称之为“以点带面”法。

②在直角坐标系中,关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变。

二、典例讲解例1::下列图形中不是轴对称图形的是()A B C D答案:C例2:在下列说法中,正确的是( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形C .等腰三角形是关于底边中线成轴对称的图形D .一条线段是关于经过该线段中点的直线成轴对称的图形答案:B (点拨:全等的三角形不一定是成轴对称,而成轴对称的两个三角形一定是全等的.)例3:如图所示,∠ABC 内有一点P ,在BA 、BC 边上各取一点P 1、P 2,使△PP 1P 2的周长最小..如图12-17,以BC 为对称轴作P 的对称点M ,以BA 为对称轴作出P 的对称点N ,连MN 交BA 、BC 于点P 1、P 2.∴ △PP 1P 2为所求作三角形.例4:如图,已知△ABC 是等腰直角三角形,∠BAC=90°,BE 是∠ABC 的平分线,DE ⊥BC ,垂足为D.(1)请你写出图中所有的等腰三角形; (2)请你判断AD 与BE 垂直吗?并说明理由. (3)如果BC=10,求AB+AE 的长.:(A )(B )(C ) (D )解:(1)△ABC ,△ABD ,△ADE ,△EDC. (2)AD 与BE 垂直.证明: 由BE 为∠ABC 的平分线,知∠ABE=∠DBE ,∠BAE=∠BDE=90°,BE=BE , ∴ △ABE 沿BE 折叠,一定与△DBE 重合. ∴ A 、D 是对称点, ∴ AD ⊥BE. (3)10.例5:如图所示,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF=BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 的数量关系,并说明理由.解:如图所示,延长BE 到G ,使EG=BC ,连FG . ∵AF=BE ,△ABC 为等边三角形,∴BF =BG ,∠ABC =60°,∴△GBF 也是等边三角形.在△BCF 和△GEF 中, ∵BC=EG ,∠B=∠G=60°,BF=FG , ∴△BCF ≌△GEF , ∴CE=DE ,又∵FD ⊥CE ,∴∠FCE=∠FEC (等腰三角形的“三线合一”).三、1.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是_______.(A)(B)(C)(D)2.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.3.如图是我国几家银行的标志,在这几个图案中是轴对称图形的有( ) A .1个 B .2个 C .3个 D .4个4.轴对称是指 个图形的位置关系;轴对称图形是指 个具有特殊形状的图形.5.设A 、B 两点关于直线MN 对称,则______垂直平分________.6.等腰三角形是_______对称图形,它至少有________条对称轴.7.点(1,3)P -关于x 轴的对称点的坐标为 .8.已知点P 在线段AB 的垂直平分线上,PA=6,则PB= .9.点M )3,5(-关于x 轴的对称点的坐标是( )A . )3,5(--B .)3,5(-C .)3,5(D .)3,5(-10.已知:如图,ABC △的顶点坐标分别为(43)A --,,(03)B -,,(21)C -,,如将B 点向右平移2个单位后再向上平移4个单位到达1B 点,若设ABC △的面积为1S ,1AB C △的面积为2S ,则12S S ,的大小关系为( ) A .12S S > B .12S S =C .12S S <D .不能确定11.已知M (a,3)和N (4,b )关于y 轴对称,则2008)(b a +的值为( ) A.1 B 、-1 C.20077 D.20077-四、课后作业1.下列说法中,不正确的是( ) A .等边三角形是轴对称图形,它的三条高是它的对称轴;B .等腰三角形是轴对称;C .关于某一条直线对称的两个三角形一定全等;D .若△ABC 与△A 1B 1C 1关于直线L 对称,那么它们对应边的高、中线、对应角的平分线分别关于L 对称2.如图所示,Rt △ABC 中,∠C=90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E . 当∠B=30°时,图中一定相等的线段有( ) A .AC=AE=BE B .AD=BD C .CD=DE D .AC=BD3.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB •的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是 20cm ,则线段MN 的长是___________.4.如图是未完成的上海大众汽车汽车标志图案,该图案是以直线l为对称轴的轴对称图形,现已完成对称轴的左边的部分,请你补全标志图案,画出对称轴右边的部分.5.已知A (2m +n,2)、B (1,n -m ),当m ,n 分别为何值时 (1)A 、B 关于x 轴对称; (2)A 、B 关于y 轴对称;6.平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4),B (2,4),C (3,-1). (1)试在平面直角坐标系中,标出A 、B 、C 三点; (2)求△ABC 的面积.(3)若111C B A 与△ABC 关于x 轴对称,写出1A 、1B 、1C 的坐标.答案: 练习:1.A (点拨:把球衣上253的号码沿水平方向翻折180°,得到的图案即是他背对镜子时的像.)2.D (点拨:图案D 有两条对称轴,其余三个图案都只有一条对称轴.)3.C (点拨;只有中国建设银行的标志不是轴对称图形.) 4.2;1 5.MN ;AB 6. 轴;1 7. (-1,-3) 8. 6 9. C 10.B11.A课后作业:1. A2.B3.20cm4.略5.解:(1)由题意得,⎩⎨⎧=-+=+0212m n n m ,解得⎩⎨⎧-==11n m ,所以当m=1,n=-1时,点A 、B 关于x 轴对称. (2)由题意得,⎩⎨⎧=--=+212m n n m ,解得⎩⎨⎧=-=11n m ,所以当m=-1,n=1时,点A 、B 关于y 轴对称.6.解:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称图形
一、教材分析
1、教材的地位及作用
对称是数学中一个非常重要的概念,教科书分为轴对称和中心对称两部分讲述。

“轴对称和轴对称图形”这一节是在学生学过等腰三角形的性质,以及线段垂直平分线的性质定理,及逆定理的基础上安排的一节内容。

它是前面所学知识在生活中的应用,也是后面学习中心对称的重要的基础知识。

本节课是在学习了“轴对称定义及性质”的基础上进行的。

通过本节课的教学,主要是训练学生初步的审美能力和初步的图案设计操作技能,拓展学生的空间想象能力。

因此,这一节课无论在知识上,还是对学生观察能力的培养上,都起着十分重要的作用。

2、教学目标
根据学生已有的认知基础及本课教材的地位、作用依据教学大纲确定本课的教学目标为:
(1)经历对现实生活中的有关图形的观察和联想,学生进一步丰富自己的生活经验,更深层次的理解轴对称图形的概念,学会画轴对称图形的对称轴,并能用适当的图形和语言表达自己的思考结果。

(2)在观察、比较、实践操作等活动中,正确区分轴对称
和轴对称图形,掌握利用所学知识画轴对称图形。

(3)学生养成主动动手、动脑的良好习惯,培养自己的探究问题、发现问题、解决问题的能力。

(4)在学习的过程中体验良好的情感、态度等价值观,并积极主动参与、与同伴合作交流,提高自己的审美情趣、发展和创新意识。

3、教学重点与难点
本节课的教学重点是学生识别轴对称图形与画轴对称图形的对称轴,这是因为:
(1)《九年义务教育初中学数学教学大纲》中明确要求学生理解轴对称、轴对称图形的概念,了解轴对称的性质,会画已知图形关于某直线的轴对称图形。

(2)学习知识的目的在于应用,轴对称图形在现实生活中应用非常广泛。

如建筑设计的轴对称,服装设计中的轴对称,民间美术中处处体现着对称的美学原则。

本节课的教学难点是正确区分轴对称与轴对称图形的两个不同概念,原因有两点:
(1)学生对轴对称图形比较熟悉,但往往不能够完全掌握它的定义;
(2)轴对称与轴对称图形的联系,体现了中学数学中的整体思想,需要学生有较强的思维能力,这对于初二学生来说有。

相关文档
最新文档