高等数学曲面及其方程
高等数学课件D851曲面方程
曲面方程的优化方法
梯度下降法:通过迭代求解,找到最优解 牛顿法:利用二阶导数信息,加速求解过程 拟牛顿法:通过近似Hessian矩阵,提高求解效率 共轭梯度法:利用共轭梯度信息,提高求解精度
曲面方程的近似解法
泰勒级数法:将曲面方程展开为泰 勒级数,然后求解
蒙特卡洛法:使用随机采样的方法 求解曲面方程
a. 建立曲面方程的图形表示 b. 利用几何关系求解曲面方程 c. 验证求解结果
单击此处输入你的项正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
数值法求解曲面方程的案例
案例背景:求解一 个复杂的曲面方程
数值方法:采用有 限元法、边界元法 等数值方法
求解过程:建立数 学模型,进行数值 计算,得到解
数值法求解曲面方程
数值积分法:通过数值积分求 解曲面方程
差分法:通过差分求解曲面方 程
迭代法:通过迭代求解曲面方 程
牛顿法:通过牛顿法求解曲面 方程
几何建模中的应用
曲面方程在几何建模中的应用广泛,如曲面建模、曲面分析等 曲面方程可以帮助我们理解和分析曲面的性质,如曲率、方向等 曲面方程还可以帮助我们进行曲面的变形和优化,如曲面的平滑、扭曲等 曲面方程在几何建模中还可以用于曲面的渲染和可视化,如曲面的着色、光照等
曲面方程的分类
显式曲面方程:通过方 程显式表示曲面
极坐标曲面方程:通过 极坐标方程表示曲面
柱面方程:通过柱面方 程表示曲面
双曲曲面方程:通过双 曲曲面方程表示曲面
椭圆面方程:通过椭圆 面方程表示曲面
隐式曲面方程:通过方 程隐式表示曲面
参数曲面方程:通过参 数方程表示曲面
球面方程:通过球面方 程表示曲面
汇报人:
代数法求解曲面方程的案例
大一下高数下册知识点
高等数学下册知识点第八章 空间解析几何与向量代数(一) 向量线性运算定理1:设向量a ≠0,则向量b 平行于a 的充要条件是存在唯一的实数λ,使 b =λa1、 线性运算:加减法、数乘;2、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;3、 利用坐标做向量的运算:设),,(z y x a a a a =,),,(z y x b b b b =;则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;4、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 5) 投影:ϕcos Pr a a j u=,其中ϕ为向量a 与u的夹角;(二) 数量积,向量积1、 数量积:θcos b a b a=⋅12a a a =⋅2⇔⊥b a 0=⋅b a2、 向量积:b a c⨯=大小:θsin b a ,方向:c b a,,符合右手规则 10 =⨯a a 2b a //⇔0 =⨯b a运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面:yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==0),(z y x F 的柱面4、 二次曲面1) 椭圆锥面:22222z b y a x =+ 2) 椭球面:1222222=++cz b y a x旋转椭球面:1222222=++cz a y a x3) 单叶双曲面:1222222=-+c z b y a x4) 双叶双曲面:1222222=--czb y a x5) 椭圆抛物面:z by a x =+22226) 双曲抛物面马鞍面:z b y a x =-22227) 椭圆柱面:12222=+b ya x8) 双曲柱面:12222=-b y a x9) 抛物柱面:ay x =2 (四) 空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===bt z t a y t a x sin cos3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H (五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax截距式方程:1=++czb y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n =,4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、 对称式点向式方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=pt z z nty y mt x x 0004、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =,5、 直线与平面的夹角:直线与它在平面上的投影的夹角,第九章 多元函数微分法及其应用(一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集;2、 多元函数:1定义:设n 维空间内的点集D 是R 2的一个非空子集,称映射f :D →R 为定义在D 上的n 元函数;当n ≥2时,称为多元函数;记为U=fx 1,x 2,…,x n ,x 1,x 2,…,x n ∈D;3、 二次函数的几何意义:由点集D 所形成的一张曲面;如z=ax+by+c 的图形为一张平面,而z=x 2+y 2的图形是旋转抛物线;4、 极限:1定义:设二元函数fp=fx,y 的定义域D,p0x0,y0是D 的聚点D,如果存在函数A 对于任意给定的正数ε,总存在正数δ,使得当点px,y ∈D ∩∪p0,δ时,都有Ⅰfp-A Ⅰ=Ⅰfx,y-A Ⅰ﹤ε成立,那么就称常数A 为函数fx,y 当x,y →x 0,y 0时的极限,记作多元函数的连续性与不连续的定义5、 有界闭合区域上二元连续函数的性质:1在有界闭区域D 上的多元连续函数,必定在D 上有界,且能取得它的最大值和最小值;2在有界区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值; 6、 偏导数:设有二元函数z=fx,y,点x 0,y 0是其定义域D 内一点;把y 固定在y0而让x 在x0有增量△x,相应地函数z=fx,y 有增量称为对x/y 的偏增量如果△z 与△x/△y 之比当△x →0/△y →0时的极限存在,那么此极限值称为函数z=fx,y 在x0,y0处对x/y 的偏导数记作xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000 7、 混合偏导数定理:如果函数的两个二姐混合偏导数f xy x,y 和f yx x,y 在D内连续,那么在该区域内这两个二姐混合偏导数必相等;8、 方向导数: βαcos cos yfx f l f ∂∂+∂∂=∂∂其中βα,为l的方向角;9、 全微分:如果函数z=fx, y 在x, y 处的全增量△z=fx △x,y △y-fx,y 可以表示为△z=A △x+B △y+o ρ,其中A 、B 不依赖于△x, △y,仅与x,y 有关, 当Ρ→0,此时称函数z=fx, y 在点x,y 处可微分,A △x+ B △y 称为函数z=fx, y 在点x, y 处的全微分,记为 (二) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:微分法1) 定义: u x 2) 复合函数求导:链式法则 z若(,),(,),(,)zf u v u u x y v v x y ===,则 v yz z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z vy u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 3) 隐函数求导:两边求偏导,然后解方程组 (三) 应用充分条件1、 极值1) 无条件极值:求函数),(y x f z =的极值解方程组 ⎪⎩⎪⎨⎧==00yx f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值; ② 若02<-B AC ,函数没有极值; ③ 若02=-B AC ,不定;2) 条件极值:求函数),(y x f z =在条件0),(=y x ϕ下的极值 令:),(),(),(y x y x f y x L λϕ+=——— Lagrange 函数解方程组 ⎪⎪⎩⎪⎪⎨⎧===0),(00y x L L y x ϕ2、 几何应用1) 曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M 对应参数为0t 处的 切线方程为:)()()(00000t z z z t y y y t x x x '-='-='- 法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x2) 曲面的切平面与法线曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第十章 重积分(一) 二重积分1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 性质:6条3、 几何意义:曲顶柱体的体积;4、 计算: 1) 直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,2) 极坐标 (二) 三重积分 1、 定义: ∑⎰⎰⎰=→Ω∆=nk k k k kv f v z y x f 1),,(limd ),,(ζηξλ2、 性质:3、 计算:1) 直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z z z y x f y x v z y x f ),(),(21d ),,(d d d ),,( -------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bay x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一” 2) 柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3) 球面坐标 (三) 应用 曲面D y x y x f zS ∈=),(,),(:的面积:第十二章 无穷级数(一) 常数项级数 1、 定义:1无穷级数:+++++=∑∞=n n nu u u u u3211部分和:n n k kn u u u u uS ++++==∑= 3211,正项级数:∑∞=1n n u ,0≥n u交错级数:∑∞=-1)1(n n n u ,0≥n u 2级数收敛:若S S n n =∞→lim 存在,则称级数∑∞=1n n u 收敛,否则称级数∑∞=1n n u 发散 3绝对收敛:∑∞=1n n u 收敛,则∑∞=1n n u 绝对收敛;条件收敛:∑∞=1n n u 收敛,而∑∞=1n n u 发散,则∑∞=1n n u 条件收敛;定理:若级数∑∞=1n n u 绝对收敛,则∑∞=1n n u 必定收敛;2、 性质:1) 级数的每一项同乘一个不为零的常数后,不影响级数的收敛性; 2) 级数∑∞=1n n a 与∑∞=1n n b 分别收敛于和s 与σ,,则∑∞=±1)(n n nb a收敛且,其和为s+σ3) 在级数中任意加上、去掉或改变有限项,级数仍然收敛;4) 级数收敛,任意对它的项加括号后所形成的级数仍收敛且其和不变;5) 必要条件:级数∑∞=1n n u 收敛即0lim =∞→n n u . 3、 审敛法正项级数:∑∞=1n n u ,0≥n u1) 定义:S S n n =∞→lim 存在; 2)∑∞=1n nu收敛⇔{}nS 有界;3) 比较审敛法:∑∞=1n n u ,∑∞=1n n v 为正项级数,且),3,2,1( =≤n v u n n若∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若∑∞=1n n u 发散,则∑∞=1n n v 发散.4) 比较法的推论:∑∞=1n n u ,∑∞=1n n v 为正项级数,若存在正整数m ,当mn>时,n n kv u ≤,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若存在正整数m,当mn >时,n n kv u ≥,而∑∞=1n n v 发散,则∑∞=1n n u 发散.做题步骤:①找比较级数等比数列,调和数列,p 级数1/n p ;②比较大小;③是否收敛;5) 比较法的极限形式:设∑∞=1n n u ,∑∞=1n n v 为正项级数,1若)0( lim +∞<≤=∞→l l v u n nn ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛; 2若0lim >∞→n n n v u 或+∞=∞→nnn v u lim ,而∑∞=1n n v 发散,则∑∞=1n n u 发散. 6) 比值法:∑∞=1n n u 为正项级数,设l u u nn n =+∞→1lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.7) 根值法:∑∞=1n n u 为正项级数,设l u n nn =∞→lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.8) 极限审敛法:∑∞=1n n u 为正项级数,若0lim >⋅∞→n n u n 或+∞=⋅∞→n n u n lim ,则级数∑∞=1n n u 发散;若存在1>p ,使得)0( lim +∞<≤=⋅∞→l l u n n pn ,则级数∑∞=1n n u 收敛.交错级数:莱布尼茨审敛法:交错级数:∑∞=-1)1(n n nu ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞→n n u ,则级数∑∞=-1)1(n n n u 收敛;任意项级数:∑∞=1n nu绝对收敛,则∑∞=1n nu收敛;常见典型级数:几何级数:⎪⎩⎪⎨⎧≥<∑∞=1 1 0q q aq n n发散,收敛, p -级数:⎪⎩⎪⎨⎧≤>∑∞=1p 1 11发散,收敛,p n n p(二) 函数项级数1、 定义:函数项级数∑∞=1)(n n x u ,收敛域,收敛半径,和函数;2、 幂级数:∑∞=0n nnx a收敛半径的求法:ρ=+∞→nn n a a 1lim ,则收敛半径 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=∞++∞=+∞<<=0 , ,00 ,1ρρρρR。
2021研究生考试-高等数学考点解读及习题特训
) U(Pc,,8) = {<x,y)IO < �(x-x0 问y-yo )2 <δ
(1)内点 (2)外点 (3)边界点 开集,闭集,连通集,区域,闭区域,有界集,无界集.
二、多元函数的概念
二元函数:设D是 R2 的一个非空子集,称映射 f:D →R为定义在D上的二元函数,通
no
+ 飞.,, z
在 xOy 面上的投影方程.
y 求 {匕 的 交 线 C
案 UA抽
zx= . fl4111、
y 2 - 叮/缸
nu
-y叫/-
AU
在古I) 例4设一 个立体由上半球面 z= 乒三亨利恍而 z=
所围成,求它在 xOy
而上的投i;在.
答案
zx rlll〈lll
2 -
E
VJ
、,.
= AU
【旋转曲面方程求法】
IF(x,y)=O
( 1)坐标面上的曲线{ I z=v
绕x轴旋转的曲面方程为 F(x,土石可?°)=0;
绕y轴的旋转曲面方程为 F(±乒亏豆,y)=O.
I F(x,y,z) = 0,
Ix= /(z),
l lY (2)空间曲线{ G(x,y,z) = 0, 绕z轴旋转的曲面方程,先从方程组中解出{
xα 面上的投影.
习题10.求旋转抛物面 z=r+y(O 三z 三4)在三坐标面上的投影.
习题参考答案
习题1【答案】 x+y-3z-4=0. 习题2【答案】 9y-z-2=0. 习题3【答案】一x-一-20-=一y一-3 2一=一z-一1 4-.
习题4【答案】 Sx- 9y- 22z -59 = 0.
lf(x,y)-AI < e
高等数学(下)教案曲面及其方程
高等数学(下)教案曲面及其方程教学目标:1. 理解曲面的概念,掌握曲面的基本性质。
2. 学习曲面的方程表示方法,掌握常见曲面的方程。
3. 能够利用曲面方程进行曲面的绘制和分析。
教学内容:一、曲面的概念与基本性质1. 曲面的定义2. 曲面的基本性质2.1 曲面的导数2.2 曲面的切线和法线2.3 曲面的曲率2.4 曲面的切平面和法平面二、曲面的方程表示方法1. 参数方程表示法2.1 参数方程的定义2.2 参数方程的求导和积分2. 普通方程表示法2.1 普通方程的定义2.2 普通方程的求导和积分3. 柱面和二次曲面的方程3.1 柱面的方程3.2 二次曲面的方程三、常见曲面的方程1. 圆锥面的方程2. 椭圆面的方程3. 双曲面的方程4. 抛物面的方程5. 直纹面的方程四、曲面的绘制和分析1. 利用参数方程绘制曲面2. 利用普通方程绘制曲面3. 曲面的切线和法线分析4. 曲面的曲率分析5. 曲面的切平面和法平面分析教学方法:1. 采用多媒体教学,通过图形和动画展示曲面的形状和性质。
2. 通过例题讲解和练习,使学生掌握曲面方程的求解和分析方法。
3. 引导学生运用曲面方程解决实际问题,提高学生的应用能力。
教学评价:1. 课堂讲解和练习的参与度。
2. 学生对曲面方程的掌握程度。
3. 学生能够运用曲面方程进行曲面的绘制和分析。
教学资源:1. 教学PPT和动画演示。
2. 曲面方程的相关教材和参考书。
3. 计算机软件进行曲面的绘制和分析。
六、曲面的切平面和法线1. 切平面的定义与性质6.1 切平面的定义6.2 切平面的性质2. 法线的定义与性质6.3 法线的定义6.4 法线的性质3. 切平面和法线的求法6.5 切平面和法线的求法七、曲面的曲率1. 曲率的定义与性质7.1 曲率的定义7.2 曲率的性质2. 曲率的计算7.3 曲率的计算方法3. 曲面的弯曲程度分析7.4 曲面的弯曲程度分析八、曲面的绘制与分析实例1. 实例一:圆锥面的绘制与分析8.1 圆锥面的参数方程8.2 圆锥面的普通方程8.3 圆锥面的切平面和法线分析2. 实例二:椭圆面的绘制与分析8.4 椭圆面的参数方程8.5 椭圆面的普通方程8.6 椭圆面的切平面和法线分析3. 实例三:双曲面的绘制与分析8.7 双曲面的参数方程8.8 双曲面的普通方程8.9 双曲面的切平面和法线分析九、曲面在实际问题中的应用1. 曲面在工程中的应用9.1 曲面在机械设计中的应用9.2 曲面在建筑设计中的应用2. 曲面在自然科学中的应用9.3 曲面在光学中的应用9.4 曲面在声学中的应用十、复习与练习1. 复习本章内容10.1 复习曲面的概念与基本性质10.2 复习曲面的方程表示方法10.3 复习常见曲面的方程2. 课堂练习10.4 完成课堂练习题3. 课后作业10.5 布置课后作业教学方法:1. 采用案例教学法,通过具体实例讲解曲面的绘制与分析方法。
高等数学上册第七章第五节 曲面及其方程
0z 3
在
yOz面上的投影
z
3y2 ,
xOy面上的圆 x 2 y 2 R2
叫做它的准线,平行于 z 轴的直线 l 叫做它的母线。 其实在 yOz 面内的一条直线: y R, 绕z轴旋转而成的旋转
曲面就是该圆柱面,则圆柱面方程为: x 2 y 2 R. 即
x2 y2 R2.
9
P11
定义: 平行于定直线并沿定曲线C平行移动的直线 l形成的轨迹
方程 Fx, y 0, 在空间 z
Fx, y 0,
直角坐标系中表示:
o 母线平行于 z 轴的柱面,
其准线是 xOy 面上的曲线
y
C : Fx, y 0.
x
C
方程 Gx,z 0, 在空间
直角坐标系中表示:
方程中缺哪个字母,母线 平行于相应的轴。
母线平行于 y轴的柱面, 其准线是 xOz 面上的曲线
1
在空间解析几何中关于曲面的研究,有下列两个基本问题: (1) 已知曲面点的几何轨迹,求曲面的方程; (2) 已知曲面的方程,求这方程所表示的曲面的形状。
1、球面方程
例1 建立球心在 M 0 x0 , y0 , z0 ,
半径为 R 的球面 S 的方程.
解:Mx, y, z S M0M R
M0 M x x0 2 y y0 2 z z0 2 ,
xz 0
o
x
y
12
小 结:
1.曲面的概念
2.球面方程 x x0 2 y y0 2 z z0 2 R2
3.平面方程 Ax By Cz D 0 作业:习题7-5
4.旋转曲面
作业纸P50
设 C : f y, z 0 yoz面
下次交P49-50
高等数学第七章:曲面及其方程
4/21
旋转过程中的特征:
如图 设 M (x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
将 z z1 6; 7 ;
(1)双曲线
x2 a2
z2 c2
1分别绕 x轴和z轴;
绕x 轴旋转
x2 a2
y2 c2
z2
1
旋 转
双
绕z 轴旋转
x2 a2
y2
z2 c2
1
曲 面
x
y z
y2
(2)椭圆
a
2
z2 c2
1绕 y 轴和z轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
0
2
叫圆锥面的
半顶角.试建立顶点在坐标原点,旋转轴为z 轴,
半顶角为 的圆锥面方程. z
解 yoz面上直线方程为 z y cot
圆锥面方程
z x2 y2 cot x
M1(0, y1, z1 )
o
y
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周, 求生成的旋转曲面的方程.
4/21
二、旋转曲面
定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
4/21
同济版高等数学第六版课件第八章第五节曲面及其方程
直纹曲面在建筑设计中的应用
总结词
设计曲面建筑外观
VS
详细描述
直纹曲面方程在建筑设计中用于描述复杂 的曲面结构。通过直纹曲面,建筑师可以 创造出独特且富有艺术感的建筑外观。直 纹曲面在建筑设计中的广泛应用,不仅提 高了建筑的审美价值,也为建筑师提供了 更多的创作空间。
方程
锥面的方程通常表示为 x^2 + y^2 = r^2(z),其中 (x, y) 是平面上的点,r 是锥顶到平面的距离,z 是锥面的参数。
性质
锥面是一个非对称的曲面,在锥顶处曲率为无穷大。
旋转曲面
定义
旋转曲面是由一条平面曲线绕 一条直线旋转一周所形成的曲
面。
方程
旋转曲面的方程通常表示为 x = x(t), y = y(t), z = z(t),其 中 t 是参数,x(t), y(t), z(t) 是
非标准曲面
定义
01
非标准曲面是指不符合常规形式的曲面,如参数曲面、隐式曲
面等。
性质
02
非标准曲面具有一些特殊的几何性质,如曲率、法向量等,这
些性质有助于理解曲面的几何结构。
应用
03
非标准曲面在计算机图形学、计算几何等领域有广泛的应用,
如动画设计、虚拟现实、游戏开发等。
曲面的微分性质
定义
曲面的微分性质是指曲面在局部的几何性质,如切线、法线、曲率 等。
给定的平面曲线。
性质
旋转曲面是一个具有旋转对称 性的曲面,其曲率随旋转角度
而变化。
直纹曲面
定义
直纹曲面是由一条直线按一定方式移动所形成的曲面 。
方程
直纹曲面的方程通常表示为 z = f(x, y),其中 f(x, y) 是给定的函数,(x, y) 是平面上的点。
高等数学6(6)曲面及其方程
p 0,q 0
21
特殊地 当p q时, 方程变为
x2 y2 z ( p 0)
旋转抛物面
2p 2p
x2 y2 z 2 p 2q
(由 xOz面上的抛物线 x2 2 pz 绕z轴旋转
而成的)
用平面 z z1 (z1 0)去截这曲面,截痕为圆.
x2
y2
2 pz1
z z1
当 z1变动时,这种圆 的中心都在 z 轴上.
特点是: 平方项有一个取负号,另两个取正号.
z z
O
x
yx
O
y
炼油厂、炼焦厂的冷却塔就是单叶双曲面
的形状.
24
x2 a2
y2 b2
z2 c2
1
单叶双曲面
z
类似地, 方程
x 2 a2
y2 b2
z2 c2
1
O
ax22
y2 b2
z2 c2
1
x
y
亦表示 单叶双曲面.
想一想 以上两方程的图形是与此图形 一样吗?
f ( y, x2 z2 ) 0
4
例3 直线L绕另一条与L相交的直线旋转一周
所得旋转曲面称为圆锥面. 两直线的交点称为
圆锥面的顶点, 两直线的夹角 (0 )称为
2 圆锥面的半顶角. 试建立顶点在坐标原点O, 旋
转轴为z轴,半顶角为 的圆锥面的方程.
解 yOz面上直线方程为 z
z
z y cot
z z1
当z1 0时,截痕退缩为原点;当z1 0时, 截痕不存在. 原点叫做椭圆抛物面的顶点.
19
x2 y2 z 2 p 2q
(2) 用坐标面 xOz( y 0)去截这曲面, 截痕为抛物线.
高等数学-几种常见的二次曲面
母线 平行于 z 轴;
准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
方程 H (z, x) 0 表示柱面,
y x l1
x z l3
z l2 y
母线 平行于 y 轴;
x
准线 xoz 面上的曲线 l3.
y
9
注:柱面方程与坐标面上的曲线方程容易混淆,应该
例如 :
11
下面我们重点讨论母线在坐标面,旋转轴是坐标轴 的旋转曲面.
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
z
若点 M1(0, y1, z1) C, 则有 f ( y1, z1) 0
当绕 z 轴旋转时, 该点转到
求旋转曲面方程C时,平面
z oy
27
z
4. 椭圆锥面
z
x2 a2
y2 b2
z2
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt)2
1,
zt
①
xx
o yy
在平面 x=0 或 y=0 上的截痕为过原点的两直线 .
可以证明, 椭圆①上任一点与原点的连线均在曲面上. (椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换
绕 y 轴旋转时得旋转曲面方程:
o
f ( y, x2 z2 ) 0
y
例3. 旋转抛物面
x
特点:母线C为抛物线,旋转轴L为抛物线的对称轴。
例如:将yoz平面上的抛物线C: z2 2 py
绕 y 轴旋转一周所产生的抛物面为:
高等数学(下) 第5讲 理论-2课时
z
y o xz
交
2
线
o
y
为:
oy
3 x
x
z a2 x2 y2
例2
方程组
(
x
a )2 2
y2
a2 表示怎样的曲线? 4
解 z a2 x2 y2
表示上半球面,
(x
a )2
y2
a
2
表示圆柱面,
2
4
交线如图:
例3
曲线
一、空间曲线的一般方程
空间曲线C可看作空间两曲面的交线.
F ( x, y, z) 0 S1
G(x, y,z) 0 S2
空间曲线的一般方程 x
z
S1
S2
C
o
y
例1
方程组
x2
y2 1 表示怎样的曲线?
2x 3z 6
z
解 x2 y2 1 表示母线
平行于z轴的圆柱面:
o
y
x
3. 双曲柱面(一支)
y2 x2 1
z
b2 a2
b
o
y
x
六、空间区域简图
例1 由曲面 z 6 x2 y2 与 z x2 y2 围成一个 空间区域, 试作出它的简图.
例2 由曲面 x 0, y 0, z 0, x y 1, y2 z2 1 围 成一个空间区域(在第I卦限部分), 试作出它的简图.
定义3 平行于某定直线的直线L并沿定曲线 C 移动 所 形成的轨迹叫做柱面.
下面我们来分析一下方程
在空间表示怎样的曲面 .
高等数学第八章第三节曲面及其方程课件.ppt
3) y1 b时, 截痕为双曲线:
x2 a2
z2 c2
1
y12 b2
0
y y1
(实轴平行于z 轴;
虚轴平行于x 轴)
z
x
y
z
x
y
(2) 双叶双曲面
z
x2 a2
y2 b2
z2 c2
1
( a, b, c 为正数)
平面 y y1 上的截痕为曲线 x 平面 z z1 ( z1 c)上的截痕为 椭圆
故所求方程为
(x x0 )2 ( y y0 )2 (z z0 )2 R2
z 特别,当M0在原点时,球面方程为
x2 y2 z2 R2
表示上(下)球面 . o x
M0
M
y
例2. 研究方程 的曲面.
表示怎样
说明: 如下形式的三元二次方程 ( A≠ 0 )
都可通过配方研究它的图形. 其图形可能是 一个球面 , 或点 , 或虚轨迹.
二、旋转曲面
定义2. 一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转 轴.
例如 :
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
若点 M1(0, y1, z1) C, 则有
z
f ( y1, z1) 0
一、曲面方程的概念
引例: 求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的 轨迹方程.
解:设轨迹上的动点为 M (x, y, z), 则 AM BM , 即
(x 1)2 ( y 2)2 (z 3)2 (x 2)2 ( y 1)2 (z 4)2
化简得 2x 6 y 2z 7 0
高等数学第七章:二次曲面
实际上,只要把方程以z轴为基准轴,绕z轴按逆时针
旋转 4 ,即做变换
x 2 ( X Y ), y 2 ( X Y ), z Z
2
2
原方程可化为 Z= 1(X2 -Y2) 2
可知,曲面是一个双曲抛物面。
坐标旋转公式
规定:坐标旋转是以坐标原点为中心进
行的。原右手系法则,规定将坐标系xoy
1. 椭球面
x2
y2
z2
1
( a, b, c均大于0).
a2 b2 c2
易知,|x|≤a, |y|≤b, |z|≤c. 为了了解曲面形状,先
以平行于 xy 面的平面z=z0(|z0|≤c)截曲面,得到 截线方程为
x2 a2
y2 b2
1
z02 c2
,
z z0.
因1 z02 0,
y y0.
5. 双叶双曲面
x2 y2 z2 1 a2 b2 c2
(a, b, c均大于0)
以平行于 xy 面的平面 z=z0 截曲面,所得截线方程为
z
x2 y 2 1 z02 ,
a2 b2
c2
z z0. 双曲线 Nhomakorabeay x0
以平行于xz面的平面 y=y0截曲面, 所得截线方程为
x2 z 2 1 y02 ,
a2 c2
b2
双曲线
y y0.
以平行于 yz 面的平面 x=x0 截曲面,所得截线 方程为:
y2 b2
z2 c2
x02 a2
1, 椭圆
y y0.
6、方程 7、方程 8、方程 9、方程
x 2 y 2 z 2 0 ——(椭圆)锥面 a2 b2 c2
高等数学7.4曲面及其方程
设柱面的准线方程:F(x, y) 0, z 0,母线 / / z轴,求柱面方程
z
解:柱面上M ( x, y, z),则准线上M(0 x0 , y0 , z0 ),
M
使得MM0 / / z轴 ,从而x x0 , y y0
由于F(x0 , y0 ) 0,从而F(x, y) 0
用坐标面和平行于坐标面的平面与曲面相截, 考察其交线(即截痕)的形状, 然后加以综合, 从而 了解曲面的全貌.
二次曲面
曲面方程
旋转曲面
柱面
二次曲面
(1) 椭球面
z
x2 a2
y2 b2
z2 c2
1
O y
1 用坐标面z = 0 , x = 0和 x y = 0去截割,分别得椭圆
x
2
a2
柱面
例3
以曲
线
x a
2 2
z2 c2
1
为母线,
y 0
绕 z 轴旋转而成的曲面方程为
x2 y2 a2
z2 c2
1,
即
x2 a2
y2 a2
z2 c2
1 ——
旋 转 单 叶双曲面
二次曲面
曲面方程
旋转曲面
柱面
例3
以曲线
x2 a2
z2 c2
1 为母线,
y 0
o
的点都在S上;
x
y
那末, 方程F (x, y, z) =0叫做曲面S的方程, 而曲面 S叫做方程F (x, y, z) =0的图形 .
曲面方程
旋转曲面
柱面
高等数学几种常见的曲面及其方程
一、二次曲面
1-1球面
(X-X0)2+(Y-Y0)2+(Z-Z0)2=R2
球心为M0(X0,Y0,Z0)
1-2椭圆锥面
1-3椭球面
其中,表示xOz平面上的椭圆绕z轴旋转而成的椭球面。
1-4单叶双曲面
其中,表示xOz平面上的双曲线绕z轴旋转而成的单叶双曲面。
1-5双叶双曲面
其中,表示xOz平面上的双曲线绕x轴旋转而成的双叶双曲面。
1-6椭圆抛物面
1-7双曲抛物面(马鞍面)
二、柱面
2-1圆柱面
X2+Y2=R2
2-2椭圆柱面
2-3双曲柱面
2-4抛物柱面
y2=2px
注:形如二、柱面只含x,y而缺少z的方程F(x,y)=0在空间直角坐标系中表示母线平行于z 轴的柱面,其准线为xOy平面上的曲线C:F(x,y)=0
特别地,
1.球x2+y2+z2=R2
2.圆柱面x2+y2=R2
3.旋转抛物面X2+Y2=z(以原点为顶点,上下两个开口分别向上向下的抛物线旋转而成的图形)
4.X2+Y2=z2(以原点为顶点,上下两个开口分别向上向下的圆锥,锥顶角为90。
)。
8.2空间解析几何与向量代数 曲面方程(4)
z
M 0
y
M'
x=x(t), y=y(t), z=z(t).
x
0
y
解: 设时间 t 为参数. 初始时刻 (t = 0),动
点在 A(a, 0, 0) 处,经 时刻 t , 动点运动到 M(x, y, z).
z M
0
x A
y = | OM' | sin t = a sin t.
y
x A
参数方程
的轨迹叫做柱面. C 叫做准线, l 叫做母线.
定义: 一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 轴. 例如 : 该定直线称为旋转
表示母线平行于 z 轴的椭圆柱面. 表示母线平行于 z 轴的平面. (且 z 轴在平面上)
准线 xoz 面上的曲线 l3.
例 设 yz 平面有一已知曲线 C,它的方程为 f (y, z)=0. 将曲线绕 z 轴旋转一周,得一曲面. 求此旋转面的方程。 设旋转面上任一点 M(x, y, z).
x = acos t, y = asin t , z = vt.
在讲直线与平面之关系时,曾介绍过如何求空 间直线在某平面上的投影. 下面介绍一般的空间曲 线在坐标面上的投影. 设空间曲线 C: F1(x, y, z)=0, F2(x, y, z)=0,
z C
若点 M(x, y, z)满足(5.7), 则 (x, y) 满足(5.8). 故 C 上的点均在柱面(5.8)上. 即 C 是柱面 (5.8)上的 一条曲线. 故 C 在 xy 平 面的投影为 H (x , y ) = 0 z=0 (5.9) 投影方程
例5.4 若空间中点 M 在圆柱面 x2+y2=a2上以角速 度 绕 z 轴旋转,同时又以线速度 v 沿平行于 z 轴的正方向上升 (其中, v 都是常数). 则点 M 构成 的图形为螺旋线. 试建立其方程.
同济版高等数学第六版课件第八章第五节曲面及其方程
曲面的应用领域
物理学:研究曲面形状对 物理现象的影响
计算机图形学:用于创建 三维模型和动画
地质学:用于描述地球表 面的形态
生物学:用于研究生物体 的表面结构
工程学:用于设计各种曲 面形状的物体,如汽车车 身、飞机机翼等
数学:用于研究曲面的性 质和结构,以及解决相关 的数学问题
06
曲面方程的解题技 巧与注意事项
同济版高等数学第 六版课件第八章第 五节曲面及其方程
单击此处添加副标题
汇报人:PPT
目录
添加目录项标题 曲面方程的求解方法 曲面方程的拓展知识
曲面及其方程的基本概念
曲面方程的应用实例 曲面方程的解题技巧与注 意事项
01
添加章节标题
02
曲面及其方程的基 本概念
曲面的定义和分类
曲面的定义:曲面是连续但不光滑的二维图形,由一条或多条曲线组成
04
曲面方程的应用实 例
球面方程的应用
定义:球面方程是描述球面形状的数学方程 应用实例1:计算球面上的点到球心的距离 应用实例2:确定球面上点的坐标 应用实例3:绘制球面图形
柱面方程的应用
定义:柱面方程是 平面与空间直线或 平面相交形成的曲 面
应用实例1:在计 算机图形学中,柱 面方程可以用来描 述三维图形的旋转 和扭曲
总结:通过对解题思路的总结,可以更好地掌握曲面方程的解题技巧 和注意事项,提高解题效率。
感谢观看
汇报人:PPT
解题技巧
熟练掌握曲面方 程的基本形式和 性质
灵活运用代数运 算技巧,简化方 程
掌握常见的曲面 方程的解题方法
注意方程的适用 范围和限制条件
注意事项
理解曲面方程的 基本概念和性质
高等数学中的曲线与曲面的参数方程
高等数学作为数学的一门重要学科,涵盖了许多分支,其中包括曲线与曲面的研究。
在研究曲线与曲面时,我们经常使用参数方程来描述它们的性质和特点。
本文将介绍高等数学中曲线与曲面的参数方程的概念、特点和应用。
首先,我们来了解一下什么是参数方程。
在解析几何中,通常使用直角坐标系来描述点的位置。
一条曲线可以用其上任意一点的直角坐标表示,如y=f(x)。
而参数方程是一种描述曲线或曲面上的点的位置的方法,它使用参数变量来表示点的位置。
例如,对于一条曲线,我们可以使用参数t来表示曲线上的任意一点,这样我们就可以得到曲线的参数方程x=f(t),y=g(t)。
同样地,对于曲面,我们可以使用两个参数s和t来表示曲面上的任意一点,这样我们就可以得到曲面的参数方程x=f(s,t),y=g(s,t),z=h(s,t)。
其次,我们来看一下曲线与曲面的参数方程的特点。
首先,参数方程可以描述复杂的曲线和曲面。
由于参数方程使用参数变量来表示点的位置,可以通过改变参数的取值范围和步长,来描述曲线和曲面上的任意一点。
因此,参数方程可以用来描述具有复杂形状和特征的曲线和曲面,如椭圆、双曲线、螺旋线等。
其次,参数方程可以描述曲线和曲面上的运动和变化。
通过改变参数的取值范围和步长,我们可以观察到曲线和曲面上点的运动和变化过程,这对于研究物体的运动和变形具有重要意义。
最后,参数方程可以简化曲线和曲面的计算和求解问题。
由于参数方程使用参数变量来表示点的位置,我们可以通过代数方法对曲线和曲面进行计算和求解。
这对于解决许多数学问题和工程问题具有重要意义。
最后,我们来看一下曲线与曲面的参数方程的应用。
曲线与曲面的参数方程在许多数学领域和工程领域中都有广泛的应用。
例如,在微积分中,我们可以使用参数方程来描述曲线和曲面上的点的位置和变化,从而进行各种微积分运算,如求导、积分等。
在物理学中,参数方程可以描述物体的运动和变形,从而研究物体的运动轨迹和形状。
在工程领域中,参数方程可以用来描述复杂曲线和曲面的形状,如汽车造型设计、航空航天工程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半径随c 的增大而增大. 图形上不封顶,下封底.
以上几例表明研究空间曲面有两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程.
(讨论旋转曲面)
(2)已知坐标间的关系式,研究曲面形状. (讨论柱面、二次曲面)
二、旋转曲面
定义 以一条平面
曲线绕其平面上的
一条直线旋转一周
所成的曲面称为旋
转曲面.
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面.
这条定曲线 C 叫柱面的准线 ,动直线 L 叫
柱面的母线.
观察柱面的形
成过程:
播放
柱面举例
z
z
y2 2x
o
y
o
x
x
抛物柱面
平面
y
y x
从柱面方程看柱面的特征:
只含 x, y 而缺z 的方程F ( x, y) 0 ,在
y2 z2 c2
1
旋 转
双
绕z 轴旋转
x2 a2
y2
z2 c2
1
曲 面
y2 z2 (2)椭圆 a 2 c2 1绕y 轴和z 轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
旋 转
椭
绕z 轴旋转
x2 a2
y2
z2 c2
1
球 面
(3)抛物线 y2 2 pz 绕z 轴; x 0
x2 y2 2 pz 旋转抛物面
角为 的圆锥面方程.
z
解 yoz面上直线方程为 z y cot
圆锥面方程
M1(0, y1, z1 )
o
y
z x2 y2 cot x
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程.
(1)双曲线
x2 a2
z c
2 2
1分别绕x
轴和z 轴;
绕x 轴旋转
x2 a2
思考题
指出下列方程在平面解析几何中和空 间解析几何中分别表示什么图形?
(1) x 2;
(2) x2 y2 4;
(3) y x 1.
思考题解答
方程
平面解析几何中 空间解析几何中
x2
平行于y 轴的直线 平行于 yoz 面的平面
圆心在(0,0) ,
x2 y2 4
半径为2 的圆
以z 轴为中心轴的圆柱面
以下给出几例常见的曲面.
例 1 建立球心在点M0 ( x0 , y0 , z0 )、半径为R
的球面方程.
解 设M( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
y x 1 斜率为1的直线 平行于z 轴的平面
特殊地:球心在原点时方程为 x2 y2 z2 R2
例 2 求与原点O 及M0 (2,3,4)的距离之比为1 : 2 的
点的全体所组成的曲面方程.
解 设M( x, y, z)是曲面上任一点,
根据题意有 | MO | 1 , | MM0 | 2
x2 y2 z2
1,
x 22 y 32 z 42 2
化简得所求方程 2x 6 y 2z 7 0.
例4 方程 z ( x 1)2 ( y 2)2 1的图形是怎样的?
解 根据题意有 z 1
z
用平面z c 去截图形得圆:
( x 1)2 ( y 2)2 1 c (c 1)
当平面z c 上下移动时,
c
得到一系列圆
o
y
圆心在(1,2,c),半径为 1 c x
f y, x2 z2 0.
平面曲线绕某轴旋转,轴坐标变量不变, 而将曲线方程中的另一变量改写成该变量与 第三个变量的平方和的正负平方根。
例 5 直线L绕另一条与L 相交的直线旋转一周,
所得旋转曲面叫圆锥面.两直线的交点叫圆锥面的
顶点,两直线的夹角
0
2
叫圆锥面的半顶
角.试建立顶点在坐标原点,旋转轴为z 轴,半顶
空间直角坐标系中表示母线平行于z 轴的柱
面,其准线为 xoy面上曲线C . (其他类推)
实 例
y2 b2
z2 c2
1
椭圆柱面 // x轴
x2 a2
y2 b2
1
双曲柱面 // z轴
x2 2 pz 抛物柱面 // y 轴
四、小结
曲面方程的概念 F ( x, y, z) 0. 旋转曲面的概念及求法. 柱面的概念(母线、准线).
将 z z1, y1 x2 y2 代入 f ( y1, z1 ) 0
得方程 f x2 y2 , z 0,
yoz 坐标面上的已知曲线 f ( y, z) 0绕z 轴旋
转一周的旋转曲面方程.
同理: yoz 坐标面上的已知曲线 f ( y, z) 0 绕 y 轴旋转一周的旋转曲面方程为所求方程为源自x22 y
12
z
42
116 .
3
3 9
例 3 已知A(1,2,3),B(2,1,4),求线段AB 的
垂直平分面的方程. 解 设M( x, y, z)是所求平面上任一点,
根据题意有 | MA || MB |,
x 12 y 22 z 32
x 22 y 12 z 42 ,
这条定直线叫旋转
曲面的轴.
播放
旋转过程中的特征:
如图 设 M ( x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
将 z z1 , y1 x2 y2 代入
f ( y1, z1 ) 0
曲面及其方程
一、曲面方程的概念
曲面的实例: 水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义:
如果曲面S 与三元方程F ( x, y, z) 0有下述关系: (1)曲面S 上任一点的坐标都满足方程; (2)不在曲面S 上的点的坐标都不满足方程; 那么,方程F ( x, y, z) 0 就叫做曲面S 的方程, 而曲面S 就叫做方程的图形.