上海市2019届高考数学模拟试卷(试题整合)
2019年上海市高考数学真题试题含答案

2019年普通高等学校招生全国统一考试(上海卷)学一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7T2题每题5分)123456789(4 分)己知集合 A = {1, 2, 3, 4, 5), B = {3, 5, 6},则 A B =(4分)计算lim(4分)不等式|x + l|<5的解集为.(4分)函数f (x ) = x 2(x>0)的反函数为・(4分)设,为虚数单位,3z-i = 6 + 5i ,贝!J |z|的值为(4分)己知J2x + 2; = T,当方程有无穷多解时,。
的值为_.[4x + a y = a(5分)在3 + *)6的展开式中,常数项等于.(5 分)在 AABC 中,AC = 3, 3sinA = 2sin3,且 cosC = -,则 AB=4 ----(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有—种(结果用数值表示)_2_10.(5分)如图,已知正方形OABC ,其中OA = a (a>l ),函数j = 3x 2交BC 于点P,函数y = G交AB 于点!2,当\AQ\ + \CP\最小时,则。
的值为.11. (5分)在椭圆七+匕=1上任意一点F, Q 与P 关4 2于x 轴对称,若有F {P F 2P… 1,则gP 与乙。
的夹角范围为.12. (5 分)已知集合A = [t, z + 1] [r + 4, t + 9], 0",存在正数九,使得对任意aeA,都有-eA,贝!U 的值a是.二、 选择题(本大题共4题,每题5分,共20分)13. (5分)下列函数中,值域为[0, +8)的是( )2A. y = 2xB. y = x 2C. y = tan xD. y=cosx14. (5 分)己知 a 、beR,则" a 2>b 2 "是"\a\>\b\"的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15. (5分)已知平面a 、§、/两两垂直,直线a 、b 、c 满足:aga , b g 0 , cc.y ,则直线a 、b. c 不可能满足以下哪种关系( )A.两两垂直B.两两平行C.两两相交D.两两异面16. (5分)以(%, 0) , (a 2, 0)为圆心的两圆均过(1,0),与y 轴正半轴分别交于, 0) , (y 2,0),且满足lny }+lny 2=O,则点(―,—)的轨迹是()A.直线B.圆C.椭圆D.双曲线三、 解答题(本大题共5题,共14+14+14+16+18 = 76分)— 3n +1/ — 4〃+117. (14 分)如图,在正三棱锥P-AB C 中,PA = PB = PC = 2,AB = BC = AC = @(1) 若正3的中点为M, BC 的中点为N ,求AC 与A/N 的夹角;(2) 求P-AB C 的体积.18. (14分)已知数列{%}, %=3,前〃项和为S 广(1) 若{弓}为等差数列,且%=15,求& ;(2) 若{%}为等比数列,且limS… <12,求公比g 的取值范围.n —>oo19. (14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生 总费用包括个人现在支出、社会支出、政府支出,如表为2012年-2015年我国卫生货用中 个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.(数据来源于国家统计年鉴)(1) 指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化 趋势:(2) 设,=1表示1978年,第〃年卫生总费用与年份f 之间拟合函数的)=*2盟 研究 函数/■①的单调性,并预测我国卫生总费用首次超过12万亿的年份.年份卫生总费用(亿元)个人现金卫生支出社会卫生支出政府卫生支出绝对数(亿元)占卫生总费用比重(%)绝对数(亿元)占卫生 总 费用比重(%绝对数(亿元))占卫 生 总 费 用 比 重(%)201228119. 009656. 3234. 3410030.7035. 678431. 9829. 99201331668.9510729.3433.8811393.7935. 989545.8130. 14201435312. 4011295.4131.9913437. 7538. 0510579. 2329. 96201540974. 6411992.6529. 2716506. 7140. 2912475. 2830. 4520. (16分)已知抛物线方程尸=4了,F 为焦点,P 为抛物线准线上一点,。
2019-2020学年上海市宝山区第二次高考模拟高三数学模拟试卷(有答案)

宝山区第二学期期中高三年级数学学科教学质量监测试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 若集合{}0A x x =>,{}1B x x =<,则A B =I . 2. 已知复数z1z i ⋅=+(i 为虚数单位),则z = .3. 函数()sinx cosx f x cosxsinx=的最小正周期是 .4. 已知双曲线222181x y a -=(0a >)的一条渐近线方程为3y x =,则a = . 5. 若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为 .6. 已知x y ,满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是 .7. 直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线32x cos y sin θθ=⎧⎨=⎩(θ为参数)的交点个数是 .8. 已知函数()()220()01xx f x log x x ⎧≤⎪=⎨<≤⎪⎩ 的反函数是1()f x -,则11()2f -= .9. 设多项式231(1)(1)(1)nx x x x ++++++++L (*0x n N ≠∈,)的展开式中x 项的系数为n T ,则2nn T limn →∞= .10. 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是0.9603,则p = .11. 设向量m u r ()x y =,,n r ()x y =-,,P 为曲线1m n ⋅=u r r(0x >)上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为 .12. 设1210x x x L ,,,为1210L ,,,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为 .二、选择题(本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 设a b R ∈,,则“4a b +>”是“1a >且3b >”的………………………( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分又不必要条件14. 如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC ∆在该正方体各 个面上的射影可能是 …………………………………………………………………( )(A )①②③④ (B )①③ (C )①④ (D )②④15. 如图,在同一平面内,点P 位于两平行直线12l l ,同侧,且P 到12l l ,的距离分别为13,.点M N ,分别在12l l ,上,8PM PN +=u u u u r u u u r ,则PM PN ⋅u u u u r u u u r 的最大值为…………………( )(A )15 (B )12 (C )10 (D )916. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”.设2()x f x xλ+=(0x >),若对于任意26)t ∈,,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是…………………………………………………………………………………………( ) (A )(]02, (B )(]12, (C )[]12, (D )[]14,三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出 必要的步骤.17. (本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A B C D -中,E F 、分别是线段1BC CD 、的中点.(1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18. (本题满分14分,第1小题6分,第2小题8分)已知抛物线22y px =(0p >),其准线方程为10x +=,直线l 过点(0)T t ,(0t >)且与抛物线交于A B 、两点,O 为坐标原点.(1)求抛物线方程,并证明:⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式.19. (本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[]m n D ⊆,(m n <),同时满足: ①()f x 在[]m n ,内是单调函数;②当定义域是[]m n ,时,()f x 的值域也是[]m n ,.则称函数()f x 是区间[]m n ,上的“保值函数”.(1)求证:函数2()2g x x x =-不是定义域[01],上的“保值函数”; (2)已知211()2f x a a x=+-(0a R a ∈≠,)是区间[]m n ,上的“保值函数”,求a 的取值范围.20. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知12121()n n n a a a a k a a ++===+,,对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里a k ,均为实数) (1)若{}n a 是等差数列,求k 的值;(2)若112a k ==-,,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12m m m a a a ++,,按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T R ⊂≠,若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设12121x x A y y x R ⎧⎫-⎪⎪==∈⎨⎬+⎪⎪⎩⎭,、212A x sinx ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由;(2)已知2()f x x u =+,记11()()()(())n n f x f x f x f f x -==,(23n =L ,,).若m R ∈,1[)4u ∈+∞,,且{}()n B f m n N *=∈为有界集合,求u 的值及m 的取值范围;(3)设a b c 、、均为正数,将222()()()a b b c c a ---、、中的最小数记为d .是否存在正数(01)λ∈,,使得λ为有界集合222{|dC y y a b c ==++,a b c 、、均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.宝山区第二学期期中高三数学教学质量监测试参考答案及评分标准一、填空题(本大题共有12题,满分54分) 1、()0,1 2、1 3、π 4、3 5、16π6、37、28、1-9、12110、0.03 11、212、512 二、选择题(本大题共有4题,满分20分) 13、B 14、C 15、A 16、A三、解答题(本大题共有5题,满分76分)17. 解:(1)方法一:设正方体棱长为2,以D 为原点,直线DA ,DC ,1DD 为x ,y ,z轴,建立空间直角坐标系,则(000)D ,,,(220)B ,,,(020)C ,,,1(002)D ,,,故(120)E ,,,(011)F ,,,()111EF =--u u u r ,,,()1002AA =u u u r ,,, …………………4/设异面直线EF 与1AA 所成角的大小为α,向量EF u u u r与1AA u u u r 所成角为β,则11EF AA cos cos EF AA αβ⋅==⋅u u u r u u uru u u r u uu r …… 6/ ==7/注意到02πα⎛⎤∈ ⎥⎝⎦,,故α=,即异面直线EF 与1AA 所成角的大小为3arccos.…………………8/(2)由(1)可知,平面11AA B B 的一个法向量是(100)n =r,,,…………………10/ 设直线EF 与平面11AA B B 所成角的大小是θ,向量EF u u u r与n r 所成角为γ,则EF n sin cos EF nθγ⋅==⋅u u u r r u u u r r ………12/ =13/又02πθ⎡⎤∈⎢⎥⎣⎦,,3arcsin θ∴=,即直线EF 与平面11AA B B 所成角的大小为3arcsin.………………14/方法二:设正方体棱长为2.(1)在面11CC D D 内,作FHCD ⊥于H ,联结HE .因为正方体1111ABCD A B C D -,所以1AA ∥1DD ;在面11CC D D 内,有FH ∥1DD ,故异面直线EF 与1AA 所成的角就是EFH ∠(或其补角).………………………4/由已知及作图可知,H 为CD 的中点,于是,在Rt EFH ∆中,易得1FH=,HE =HE tan EFH FH∠=, ………………………………………… 6/== 7/又(0)2EFH π∠∈,,所以EFH∠=EF 与1AA 所成角的大小为8/(2)因为正方体1111ABCD A B C D -,所以平面11AA B B ∥平面11CC D D ,故直线EF 与平面11AA B B 所成角的大小就是直线EF 与平面11CC D D 所成角.注意到BC ⊥平面11CC D D ,即EC ⊥平面11CC D D ,所以直线EF 与平面11AA B B 所成角的大小即为EFC ∠. ………………………………10/在Rt EFC ∆中,易得1EC FC ==,EC tan EFC FC∠=……………………12/2==,………………13/又(0)2EFC π∠∈,,故2EFC arctan∠=,即直线EF 与平面11AA B B 所成角的大小为. ……14/18.解:(1)方法一:由题意,2=p ,所以抛物线的方程为x y 42=. ……………2/当直线l 的斜率不存在时,直线l 的方程为t x =,则(A t ,(B t -,,t t OB OA 42-=⋅.…………3/当直线l 的斜率k 存在时,则0≠k ,设l 的方程为)(t x k y -=,11()A x y ,,22()B x y ,,由24()y x y k x t ⎧=⎨=-⎩消去x ,得0442=--kt y ky ,故121244y y k y y t⎧+=⎪⎨⎪=-⎩,所以,t t y y y y y y x x OB OA 41622122212121-=+=+=⋅.…………………………………………5/综上,OB OA ⋅的值与直线l 倾斜角的大小无关. …………………………………………6/方法二:由题意,2=p ,所以抛物线的方程为x y 42=. ………………………………2/依题意,可设直线l 的方程为x my t =+(m R ∈),11()A x y ,,22()B x y ,,由24y xx my t⎧=⎨=+⎩得2440y my t --=, 故121244y y m y y t +=⎧⎨=-⎩,所以,12121212()()OA OB x x y y my t my t y y ⋅=+=+++u u u r u u u r221212(1)()m y y mt y y t =++++ …………………………5/22(1)(4)4m t mt m t =+-+⋅+ 24t t =-综上,⋅的值与直线l 倾斜角的大小无关. …………………………6/(2)设00()P x y ,,则0204x y =,||PT ==, ……………………………8/注意到00≥x ,所以,若20t -≥,即2t ≥,则当02x t =-时,||PT 取得最小值,即()2)d t t =≥;………10/若20t -<,即有02t <<,则当00x =时,||PT 取得最小值,即()(02)d t t t =<<;………12/综上所述,()()2()02t d t tt ⎧≥⎪=⎨<<⎪⎩…………………………………………………14/19.解:(1)函数2()2g x x x =-在[01]x ∈,时的值域为[10]-,,…………………………4/不满足“保值函数”的定义,因此函数2()2g x x x =-不是定义域[01],上的“保值函数”.………………………6/(2)因xa a x f 2112)(-+=在[]m n ,内是单调增函数,故()()f m m f n n ==,,……8/这说明m n ,是方程x xa a =-+2112的两个不相等的实根, ………………………………10/其等价于方程01)2(222=++-x a a x a有两个不相等的实根,……………………………11/由222(2)40a a a ∆=+->解得23-<a 或21>a . ………………………………………13/故a 的取值范围为3122⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U ,,. ………………………………………………14/20.解:(1)若{}n a 是等差数列,则对任意*n N ∈,有122n n n a a a ++=+,………………2/即121()2n n n a a a ++=+,………………………………………………………………………3/故12k =.………………………………………………………………………………………4/ (2)当12k =-时,121()2n n n a a a ++=-+,即122n n n a a a ++=--, 211()n n n n a a a a ++++=-+,故32211()n n n n n n a a a a a a ++++++=-+=+. …………………………………………5/所以,当n 是偶数时,1234112()(11)22n n n n n S a a a a a a a a n -=++++++=+=+=L ;……………………7/当n 是奇数时,2312()2a a a a +=-+=-,12341n n n S a a a a a a -=++++++L123451()()()n n a a a a a a a -=+++++++L11(2)22n n -=+⨯-=-. ……………9/综上,()()2212n nn k S nn k -=-⎧⎪=⎨=⎪⎩(*k N ∈). …………………………………………10/(3)若}{n a 是等比数列 ,则公比a a a q ==12,由题意1≠a ,故1-=m m a a ,m m a a =+1,12++=m m a a .……11/① 若1m a +为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+ ⇔221a a =+,解得1=a (舍去);……12/② 若m a 为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+⇔22a a =+,因1≠a ,故解得,2a =-,11122215m m m m m m a a a k a a a a a +-++====-+++; ……………………………14/③ 若2m a +为等差中项,则212m m m a a a ++=+,即112221m m m aa a a a +-=+⇔=+, 因为1≠a ,解得212215a a k a =-==-+,. …………………………………………15/综上,存在实数k 满足题意,25k =-.…………………………………………………16/21.解:(1)对于1A ,由2121x x y -=+得1201x y y+=>-,解得11y -<<,………………2/ 1A ∴为有界集合; …………………………………………3/显然252266A x k x k k Z ππππ⎧⎫=+<<+∈⎨⎬⎭⎩,不是有界集合. ………………………4/(2)记()n n a f m =,则21n n a a u +=+.若14u =,则21()4f m m =+,22111()42n n n n n a a a a a +=+=-+≥,即1n n a a +≥,且 211111()()2422n n n n a a a a +-=-=-+,从而1111222n n n a a a +-=-⋅+.(ⅰ)当12m =时,1()2n n f m a ==,所以1{}2B =,从而B 为有界集合.…………5/(ⅱ)当12m <时,由2114n n a a +=+,2111()()4a f m f m m ===+,显然,此时0n a >,利用数学归纳法可得12n a <,故B 为有界集合.…………………………………………6/ (ⅲ)当12m >时,211111()()42n n a a a f m f m m m +≥≥≥===+≥>L ,2114n n n n a a a a +-=-+21()2n a =- 211()2a ≥-,即2111()2n n a a a +-≥-,由累加法得2111(1)()2n a a n a ≥+--→+∞,故B 不是有界集合.因此,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合; 若14u >,则211()()a f m f m m u u ===+≥,即114a u ≥>, 又2114n n a a u u +=+>>(n N *∈), 即14n a >(n N *∈). 于是,对任意n N *∈,均有221111()244n n n n n a a a a u a u u +-=-+=-+-≥-,即 114n n a a u +-≥-(n N *∈),再由累加法得11(1)()4n a a n u ≥+--→+∞,故B 不是有界集合.………8/ 综上,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合; 当14u >(m R ∈)时,B 不是有界集合. 故,满足题设的实数u 的值为14,且实数m 的取值范围是11[]22-,.………………10/ (3)存在.………………………………………………………………………11/不妨设a b c ≥≥.若2a cb +≤,则2a bc ≥-,且2()d b c =-. 故22222225()5()()d a b c b c a b c -++=--++22225()[(2)]b c b c b c ≤---++3(2)0c c b =-<, 即22222215()05d d a b c a b c -++<⇔<++;…………13/ 若2a c b +>,则2a a c b <+<,即220a b a b <⇔-<, 又2a cb bc a b +>⇔->-,故2()d a b =-,又 22222225()5()()d a b c a b a b c -++=--++22(2)(2)0a b a b c =---<,即 2225()0d a b c -++< 22215d a b c ⇔<++,因此,15是有界集合C 的一个上界.…………………………15/ 下证:上界15λ<不可能出现. 假设正数15λ<出现,取2a c b +=,1()05c a λ=->,则22a c d -⎛⎫= ⎪⎝⎭,此时, d 22222213()()()55a b c a b c ac λλ=+++-++-22221()()5a b c a ac λλ>+++--222()a b c λ=++(*)…17/由式(*)可得222222()d d a b c a b c λλ>++⇔>++,与λ是C 的一个上界矛盾!. 综上所述,满足题设的最小正数λ的值为15. …………………………………………18/。
上海市2024年数学(高考)部编版真题(押题卷)模拟试卷

上海市2024年数学(高考)部编版真题(押题卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知点是双曲线右支上一点,分别是的左、右焦点,若的角平分线与直线交于点,且,则的离心率为()A.2B.C.3D.第(2)题已知集合,,则()A.B.C.或D.或第(3)题已知三条直线,三个平面,下列四个命题中,正确的是A.B.C.D.第(4)题设P是的二面角内一点,垂足,则AB的长为A.B.C.D.第(5)题已知函数的定义域为集合M,函数的值域为N,则()A.B.C.D.第(6)题将甲、乙、丙、丁四人安排到篮球与演讲比赛现场进行服务工作,每个比赛现场需要两人,则甲、乙安排在一起的概率为()A.B.C.D.第(7)题双曲线A.B.C.D.第(8)题设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知是函数的零点,是函数的零点,且,则下列说法正确的是()(参考数据:)A.B.若.则C.存在实数a,使得成等比数列D.存在实数a,使得,且成等差数列第(2)题已知函数,对任意均有,且在上单调递减,则下列说法正确的有()A.函数是偶函数B.函数的最小正周期为C.函数在上的值域为D.若在上恒成立,则的最大值为第(3)题下列函数中,最小正周期为,且在上单调递增的是()A.B.C.D.三、填空(本题包含3个小题,每小题5分,共15分。
请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题设,若函数在上单调递增,则a的取值范围是______.第(2)题已知向量,,则向量在方向上的投影为______.第(3)题已知函数的图象在点处的切线方程是,则______.四、解答题(本题包含5小题,共77分。
2019年上海市青浦区高考数学一模试卷(含解析版)

2019年上海市青浦区高考数学一模试卷一、填空题(本大题满分54分)本题共有12题,1-6每题4分,7-12每题5分考生应在答题相应编号的空格内直接填写结果,每个空格填对得分,否则律得零分。
1.(4分)已知集合A={﹣1,0,1,2},B=(﹣∞,0),则A∩B=.2.(4分)写出命题“若am2<bm2,则a<b”的逆命题.3.(4分)不等式2<()3(x﹣1)的解集为.4.(4分)在平面直角坐标系xOy中,角θ以Ox为始边,终边与单位圆交于点(),则tan(π+θ)的值为.5.(4分)已知直角三角形ABC中,∠A=90°,AB=3,AC=4,则△ABC绕直线AC旋转一周所得几何体的体积为.6.(4分)如图所示,在复平面内,网格中的每个小正形的边长都为1,点A,B对应的复数分别是z1,z2,则||=.7.(5分)已知无穷等比数列{a n}的各项和为4,则首项a1的取值范围是.8.(5分)设函数f(x)=sinωx(0<ω<2),将f(x)图象向左平移单位后所得函数图象的对称轴与原函数图象的对称轴重合,则ω=.9.(5分)2018首届进博会在上海召开,现要从5男4女共9名志愿者中选派3名志愿者服务轨交2号线徐泾东站的一个出入口,其中至少要求一名为男性,则不同的选派方案共有种.10.(5分)设等差数列{a n}满足a1=1,a n>0,其前n顶和为S n,若数列{}也为等差数列,则=.11.(5分)已函数f(x)+2=,当x∈(0,1]时,f(x)=x2,若在区间(﹣1,1]内,g(x)=f(x)﹣t(x+1)有两个不同的零点,则实数t的取值范围是.12.(5分)已知平面向量、、满足||=1,||=||=2,且=0,则当0≤λ≤1时,|﹣λ﹣(1﹣λ)|的取值范围是.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则律得零分。
2019届全国新高考原创仿真试卷(三)数学试卷(文科)

2019届全国新高考原创仿真试卷(三)数学(文科)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,若是复数的共轭复数,则()A. B. C. D.【答案】A【解析】由题意结合复数的运算法则有:.本题选择A选项.2. 已知集合,则的真子集个数为()A. 1B. 3C. 5D. 7【答案】B【解析】联立解得,则有两个元素,真子集个数为故选3. 已知变量之间满足线性相关关系,且之间的相关数据如下表所示:则()A. 0.8B. 1.8C. 0.6D. 1.6【答案】B【解析】由题意,,代入线性回归方程为,可得故选4. 下列说法中,错误的是()A. 若平面平面,平面平面,平面平面,则B. 若平面平面,平面平面,则C. 若直线,平面平面,则D. 若直线平面,平面平面平面,则【答案】C【解析】选项C中,若直线,平面平面,则有可能直线在平面内,该说法存在问题,由面面平行的性质定理可得选项A正确;由面面垂直的性质定理可得选项B正确;由线面平行的性质定理可得选项D正确;本题选择C选项.5. 已知抛物线的焦点为,抛物线上一点满足,则抛物线的方程为()A. B. C. D.【答案】D【解析】设抛物线的准线为,作直线于点,交轴于由抛物线的定义可得:,结合可知:,即,据此可知抛物线的方程为:.本题选择D选项.点睛:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.6. 运行如图所示的程序框图,输出的()A. 4B.C.D.【答案】C【解析】循环依次为 ;,结束循环,输出选C.7. 已知函数,若,且函数存在最小值,则实数的取值范围()A. B. C. D.【答案】A【解析】代入,,则直线单调递减,又函数存在最小值则且,解得故选8. 已知,则()A. 0B.C.D.【答案】C【解析】由题意可知:,则:,结合诱导公式有:,,据此可得:.本题选择C选项.9. 如图,网格纸上小正方形的边长为1,下图画出的是某几何体的三视图,则该几何体的体积为()A. 27B. 36C. 48D. 54【答案】D【解析】该几何体为一个边长为3的正方体与两个边长为3的一半正方体的组合体,体积为,选D.10. 现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了3场,各踢了4场,踢了2场,且队与队未踢过,队与队也未踢过,则在第一周的比赛中,队踢的比赛的场数是()A. 1B. 2C. 3D. 4【答案】D【解析】依据题意:踢了场,队与队未踢过,则C队参加的比赛为:;D踢了场,队与队也未踢过,则D队参加的比赛为:;以上八场比赛中,包含了队参加的两场比赛,分析至此,三队参加的比赛均已经确定,余下的比赛在中进行,已经得到的八场比赛中,A,B各包含一场,则在中进行的比赛中,,各踢了2场,即余下的比赛为:,综上可得,第一周的比赛共11场:,,则队踢的比赛的场数是.本题选择D选项.11. 已知双曲线的左、右顶点分别为,点为双曲线的左焦点,过点作垂直于轴的直线分别在第二、三象限交双曲线于两点,连接交轴于点,连接交于点,若是线段的中点,则双曲线的离心率为()A. 3B.C.D. 2【答案】A【解析】由题意得选A.12. 已知关于的不等式在上恒成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】因为和都是偶函数,问题可以转化为当时,恒成立,在同一坐标系中画出及的图像如图所示,易知,当时,,,又,在上,恒成立,故恒成立,故,故选C.点睛:解答本题的技巧在于借助于数形结合增强了解题的直观性,利用函数的奇偶性,将解不等式的问题转化为两函数图象在上的相对位置关系来处理,然后根据函数图象的交点情况,通过先猜后证的方式得到结果.二、填空题:本题共4小题,每小题5分,满分20分.13. 已知向量满足,若,则__________.【答案】-2或3【解析】由向量平行的充要条件可得:,即:,求解关于的方程可得:或.14. 已知实数满足,则的取值范围为__________.【答案】【解析】绘制不等式组表示的平面区域如图所示:目标函数表示点与可行域内的点连线的斜率,很明显,在坐标原点处,目标函数取得最小值:,联立方程:可得:在点处取得最大值:,综上可得:的取值范围为.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.15. 如图所示,长方形中,分别是的中点,图中5个圆分别为以及四边形的内切圆,若往长方形中投掷一点,则该点落在阴影区域内的概率为__________.【答案】【解析】概率为几何概型,分母为矩形面积8 .分子为4个小圆面积加一个大圆面积,所以落在阴影区域内的概率为点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.16. 已知函数的部分图象如图所示,______.【答案】2【解析】依题意,因为函数的图像关于原点对称对称,故,因为,所以,故,结合图像可知的周期为2,所以,所以,故. 故答案为:2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17. 在中,角所对的边分别是,且.(1)求的大小;(2)若,求的面积.【答案】(1) (2)【解析】试题分析:⑴利用正弦定理化简已知等式,再由余弦定理列出关系式,将得出的等式变形后代入求出的值,利用特殊角的三角函数值即可求出的大小;⑵由题意及余弦定理可得出,的值,然后由三角形面积公式即可求解;解析:(1)由,可得,∴,∴,又∵,∴;(2)若,则,由题意,,由余弦定理得,∴,∴,∴.18. 已知数列满足.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1) (2)【解析】试题分析:(Ⅰ)结合递推关系可得是以为首项,公比为的等比数列,据此可得通项公式为.(Ⅱ)结合(Ⅰ)的结论有,分钟求和可得.试题解析:(Ⅰ)因为,故,得;设,所以,,,又因为,所以数列是以为首项,公比为的等比数列,故,故.(Ⅱ)由(Ⅰ)可知,故.19. 已知多面体中,四边形为正方形,为的中点,.(1)求证:平面;(2)求六面体的体积.【答案】(1)见解析(2)【解析】试题分析:(1) 取中点,根据正方形性质得. 再根据勾股定理计算得;因为,所以根据线面垂直判定定理得结果(2)分割成,再根据锥体体积公式求体积即可..................试题解析:(Ⅰ)取中点,链接,.根据题意可知,四边形是边长为的正方形,所以.易求得,所以,于是;而,所以平面.又因为,所以平面.(Ⅱ)连接,则由(Ⅰ)可知平面,平面.所以,,所以.20. 随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取1000人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的性别以及意见进行了分类,得到的数据如下表所示:(1)根据表中的数据,能否在犯错误的概率不超过0.1%的前提下,认为共享产品的态度与性别有关系?(2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取6人,再从6人中随机抽取2人赠送超市购物券作为答谢,求恰有1人是女性的概率.参考公式:.临界值表:【答案】(1) 可以在犯错误的概率不超过0.1%的前提下,认为对共享产品的态度与性别有关系;(2)【解析】试题分析:(1)根据题中数据,利用参考公式计算的观测值,对应查表下结论即可;(2)从认为共享产品增多对生活无益的女性中抽取4人,记为,从认为共享产品增多对生活无益的男性中抽取2人,记为,写出所有的基本事件,即可得到恰有1人是女性的概率.试题解析:(1)依题意,在本次的实验中,的观测值,故可以在犯错误的概率不超过0.1%的前提下,认为对共享产品的态度与性别有关系;(2)依题意,应该从认为共享产品增多对生活无益的女性中抽取4人,记为,从认为共享产品增多对生活无益的男性中抽取2人,记为,从以上6人中随机抽取2人,所有的情况为:,共15种,其中满足条件的为共8种情况,故所求概率.21. 已知椭圆,过点,且离心率为.过点的直线与椭圆交于两点.(1)求椭圆的标准方程;(2)若点为椭圆的右顶点,探究:是否为定值,若是,求出该定值,若不是,请说明理由.(其中,分别是直线的斜率).【答案】(1) (2) 为定值1【解析】试题分析:(Ⅰ)由题意得到关于a,b,c的方程组,求解方程组有,,故椭圆的标准方程为.(Ⅱ)结合(Ⅰ)的结论可知.易知当直线的斜率不存在时,不合题意.当直线的斜率存在时,联立直线方程与椭圆方程可得,则综上所述,为定值.试题解析:(Ⅰ)依题意,解得,,故椭圆的标准方程为.(Ⅱ)依题意,.易知当直线的斜率不存在时,不合题意.当直线的斜率存在时,设直线的方程为,代入中,得,设,,由,得,,,故综上所述,为定值.点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知函数.(1)若,讨论函数的单调性;(2)若函数在上恒成立,求实数的取值范围.【答案】(1) ,则函数在上单调递增,在上单调递减;,则函数在上单调递减,在上单调递增;(2)【解析】试题分析:(1)先求导数,根据a的正负讨论确定导函数符号,进而确定对应单调性(2)分离变量转化为对应函数最值问题,再利用导数求对应函数最值即得实数的取值范围.试题解析:(Ⅰ)依题意,若,则函数在上单调递增,在上单调递减;若,则函数在上单调递减,在上单调递增.(Ⅱ)因为,故,①当时,显然①不成立;当时,①化为:;②当时,①化为:;③令,则,当时,时,,,故在是增函数,在是减函数,,因此②不成立,要③成立,只要,,所求的取值范围是.点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.。
2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
2019年上海市桃浦中学高考数学选择题专项训练(一模)

2019年上海市桃浦中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:云南省玉溪市2018届高三数学上学期第一次月考试题文(含解析)已知函数有两个极值点,且,若,函数,则()A. 仅有一个零点B. 恰有两个零点C. 恰有三个零点D. 至少两个零点【答案】A【解析】由有两个极值点,且,所以函数在递增,在上递减,在递增,大致图像如下图又因为,所以显然为与的中点,结合上面函数图像可知,函数与函数的交点只有一个,所以方程的根只有一个,即函数的零点只有一个,故选择A.方法点睛:根据三次函数,可以确定函数在定义域上先递增,再递减,再递增,于是为极大值点,为极小值点,再根据可知,为与的中点,于是结合函数图像,根据数形结合可知,函数仅有一个零点,考查转化能力的应用.第 2 题:来源:黑龙江省农垦北安管理局2018届高三数学9月月考试题曲线在点处的切线方程是( )A. B.C.D.【答案】B【解析】试题分析:因为,,所以,,即曲线在点处的切线的斜率为-ln2,即曲线在点处的切线方程是,选B。
第 3 题:来源:山东省潍坊市临朐县2017届高三数学上学期阶段性质量检测(12月月考)试题理如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥C′﹣MENF的体积V=h(x)为常函数;以上命题中假命题的序号为A.①④B.② C.③ D.③④【答案】C第 4 题:来源:贵州省思南中学2018_2019学年2018_2019学年高一数学下学期期中试题已知△ABC中,sinA∶sinB∶sinC=k∶(k+1)∶2k,则k的取值范围是( )A.(2,+∞) B.(-∞,0) C. D.【答案】D【解析】由正弦定理,得a=mk,b=m(k+1),c=2mk(m>0),∵即∴k>.第 5 题:来源:甘肃省静宁县第一中学2018_2019学年高二数学下学期期末考试试题理下列函数中,既是奇函数又在内单调递增的函数是()A. B. C.D.【答案】D第 6 题:来源:内蒙古包头市第四中学2017_2018学年高二数学下学期期中试题理设为正整数,,经计算得观察上述结果,可推测出一般结论( )A. B. C. D.以上都不对【答案】C第 7 题:来源:山东省济南市2018届高三数学上学期12月考试试题理已知是定义在上的函数,是的导函数,且满足,,则的解集为()A. B. C. D.【答案】B第 8 题:来源:广东省惠州市惠城区2018届高三数学9月月考试题理试卷及答案设复数满足(为虚数单位),则复数在复平面内对应的点位于().A. 第一象限B. 第二象限 C.第三象限 D.第四象限【答案】A第 9 题:来源:山西省应县2017_2018学年高二数学上学期第四次月考试题理试卷及答案在下列命题中:①若向量共线,则所在的直线平行;②若向量所在的直线是异面直线,则一定不共面;③若三个向量两两共面,则三个向量一定也共面;④已知三个向量,则空间任意一个向量总可以唯一表示为.其中正确命题的个数为()A. 0B. 1C.2 D. 3【答案】A第 10 题:来源:云南省玉溪市2017_2018学年高一数学上学期期中试题试卷及答案要得到函数的图像,只需将函数的图像()A.先关于轴对称,再向右平移个单位B.先关于轴对称,再向左平移个单位C.先关于轴对称,再向右平移个单位D.先关于轴对称,再向左平移个单位【答案】C第 11 题:来源: 2017_2018学年高中数学第三章直线与方程3.3.3点到直线的距离3.3.4两条平行直线间的距离学业分层测评试卷及答案新人教A版必修直线l过点A(3,4)且与点B(-3,2)的距离最远,那么l的方程为( )A.3x-y-13=0 B.3x-y+13=0C.3x+y-13=0 D.3x+y+13=0【答案】 C第 12 题:来源:山东省泰安第四中学2018_2019学年高二数学下学期2月月考试题.已知曲线的一条切线的斜率为,则切点的横坐标为A. B. C.D.或【答案】C【解析】设切点坐标为(xO2yO),xo>O因为f′(x)= ,所以f′(xo)= 由题意得,即xo2-x0-6=0,解得x0=3(负值舍去),所以切点的横坐标为3,故选C.第 13 题:来源:湖南省株洲市2019届高三数学上学期教学质量统一检测试题(一)理(含解析).欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,表示的复数在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据欧拉公式计算,再根据复数几何意义确定象限.【详解】因为,所以对应点,在第二象限,选B. 【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.第 14 题:来源:江西省吉安市新干县2016_2017学年高二数学下学期第一次段考试题(3、4班)试卷及答案空间中四点可确定的平面有()A.1个B.3个 C.4个 D.1个或4个或无数个【答案】 D第 15 题:来源:天津市2018届高三数学上学期第一次月考试题理试卷及答案已知,那么是的【答案】B;第 16 题:来源:辽宁省沈阳市部分市级重点高中2016_2017学年高一数学下学期期中测试试题试卷及答案某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的关系如下:x -2 -1 0 1 2y 5 2 2 1通过上面的五组数据得到了x与y之间的线性回归方程:=-x+2.8;但现在丢失了一个数据,该数据应为( )A. 3B. 4C. 5D. 2【答案】B【解析】设该数据是a,=0,故=-x+2.8=2.8,∴(5+a+2+2+1)=2.8,解得:a=4,本题选择B选项.第 17 题:来源:内蒙古呼和浩特铁路局包头职工子弟第五中学2016-2017学年高二数学上学期期末考试试题试卷及答案理不等式-x2+3x-2≥0的解集是()A.{x|x>2或x<1} B.{x|x≥2或x≤1} C.{x|1≤x≤2} D.{x|1<x<2}【答案】C第 18 题:来源:河北省邢台市2017_2018学年高二数学下学期第三次月考试题理(含解析)的展开式的中间项为()A. B. C. D.【答案】D【解析】分析:原式张开一共有5项,故只需求出第三项即可.第 19 题:来源:辽宁省六校协作体2018_2019学年高二数学上学期期中试题理在各项均不为零的等差数列中,若(n≥2,n∈N * ),则的值为( ) A.2013 B.2014C.4026D.4028【答案】D第 20 题:来源:河南省鹤壁市2016_2017学年高二数学下学期第一次月考试题试卷及答案理若函数在其定义域内的一个子区间内不是单调函数,则实数k 的取值范围()A. B. C. D.【答案】B第 21 题:来源:湖北省部分重点中学2018届高三数学起点考试试题试卷及答案理抛物线的焦点为,过焦点倾斜角为的直线与抛物线相交于两点两点,若,则抛物线的方程为A.B.C. D.【答案】C第 22 题:来源:甘肃省嘉峪关市酒钢三中2016-2017学年高一数学上学期期末考试试题试卷及答案如图是一个水平放置的直观图,它是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积为()A. B.C.D.【答案】A第 23 题:来源:江苏省马坝高级中学2018_2019学年高一数学下学期期中试题在△ABC中,角A、B、C的对应边分别为a,b,c,若,则角B的值为 .A.B.C.或D.或【答案】A第 24 题:来源: 2017_2018学年高中数学第四章圆与方程4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学业分层测评试卷及答案已知两圆的圆心距是6,两圆的半径分别是方程x2-6x+8=0的两个根,则这两个圆的位置关系是( ) A.外离 B.外切C.相交 D.内切【答案】 B第 25 题:来源:甘肃省会宁县第一中学2018_2019学年高二数学上学期期中试题理已知集合,,则=()A.B.C.D.【答案】.B第 26 题:来源:高中数学第三章导数及其应用3.3导数的应用3.3.2利用导数研究函数的极值课后训练新人教B版选修1_120171101250在下面函数y=f(x)图象中既是函数的极大值点又是最大值点的是( )A.x1 B.x2 C.x3 D.x4【答案】C第 27 题:来源:北京市西城区2016_2017学年高一数学下学期期中试题试卷及答案对于任意实数a、b、c、d,下列结论:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<;正确的结论为()A. ①B. ②C. ③D. ④【答案】C第 28 题:来源:广东省第二师范学院番禺附属中学2018_2019学年高二数学下学期期中试题理过双曲线两焦点且与轴垂直的直线与双曲线的四个交点组成一个正方形,则该双曲线的离心率为A. B. C. D.2【答案】B第 29 题:来源:湖北省黄冈中学2016-2017学年高二数学上学期期末模拟测试试题试卷及答案(1)理设平面的一个法向量为,平面的一个法向量为,若,则A. B. C.D.【答案】D第 30 题:来源:海南省2016_2017学年高一数学下学期期中题文试卷及答案用简单随机抽样方法从有25名女生和35名男生的总体中,推选5名学生参加健美操活动,则某名女生被抽到的机率是()A. B. C. D.【答案】C【解析】某名女生被抽到的机率是第 31 题:来源:内蒙古包头市第一中学2016-2017学年高一数学上学期期中试题试卷及答案函数y=(在[0,1]上是减函数,则的取值范围()A. (1,2) B. (0,1) C.(0,2) D.【答案】 A第 32 题:来源:黑龙江省大庆市2017届高三第三次教学质量检测(三模)数学试题(理)含答案已知等比数列的公比,则的前项和()A.B. C.D.【答案】A第 33 题:来源:贵州省铜仁市第一中学2019届高三数学上学期第二次月考试题理(含解析)设、分别为圆和椭圆上的点,则两点间的最大距离是( )A. B. C. D.【答案】D【详解】设椭圆上点Q,则,因为圆的圆心为,半径为,所以椭圆上的点与圆心的距离为,所以P、Q两点间的最大距离是.第 34 题:来源: 2017年普通高等学校招生全国统一考试模拟数学(理)试题(八)含答案如图,在长方体中,分别是棱上的动点(点E 与不重合),且,过的动平面与棱相交,交点分别为,设,在长方体内随机选取一点,则该点取自几何体内的概率的最小值为,A. B. C. D.【答案】B第 35 题: 来源: 山东省新泰二中2018_2019学年高二数学上学期第三次阶段性测试试题 若,,且,则的值是( )A . 0B . 1C . -2D . 2 【答案】C第 36 题: 来源: 2017届北京市丰台区高三5月期末(二模)数学试题(理)含答案表示集合中所有元素的和,且,若能被3整除,则符合条件的非空集合的个数是 (A)10(B)11(C)12 (D )13【答案】B第 37 题: 来源: 黑龙江省伊春市2018届高三数学上学期第一次月考试题理试卷及答案 过点、,且圆心在上的圆的方程是( )A .B .C .D .【答案】C第 38 题: 来源: 湖北省武汉市2018届高三数学上学期期中试题理试卷及答案 下列函数为偶函数且在(0,+∞)上为增函数的是A .B .C.D.【答案】D第 39 题:来源:高中数学阶段通关训练(二)(含解析)新人教A版选修1_1已知F1,F2是椭圆+=1的两个焦点,P为椭圆上一点,则|PF1|·|PF2|有( )A.最大值16B.最小值16C.最大值4D.最小值4【答案】A.由椭圆的定义知a=4,|PF1|+|PF2|=2a=2×4=8.由基本不等式知|PF1|·|PF2|≤==16,当且仅当|PF1|=|PF2|=4时等号成立,所以|PF1|·|PF2|有最大值16.第 40 题:来源:浙江省温州市十校联合体高一(上)期末数学试卷(含答案解析)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD是()A.梯形 B.平行四边形 C.矩形 D.菱形【答案】A【解答】解:根据题意,向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则向量=++=﹣8﹣2,分析可得:=2,即直线AD与BC平行,而向量与不共线,即直线AB与CD不平行,故四边形ABCD是梯形;。
2019年上海市第五十二中学高考数学选择题专项训练(一模)

2019年上海市第五十二中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:高中数学第二章统计本章整合试卷及答案新人教A版必修3某高级中学有学生270人,其中一年级108人,二、三年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样【答案】D第 2 题:来源:黑龙江省双鸭山市第一中学2019届高三数学上学期第一次月考试题理(含解析)函数其中()的图象如图所示,为了得到的图象,则只需将的图象()A. 向右平移个长度单位B. 向右平移个长度单位C. 向左平移个长度单位D. 向左平衡个长度单位【答案】A【详解】由函数其中()的部分图象可得A=1,,求得ω=2.再根据五点法作图可得,.故把的图象向右平移个长度单位,可得的图象,第 3 题:来源:广西南宁市2016_2017学年高一数学下学期第一次月考试题试卷及答案在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成的角的正弦值为( )A. B. C.D.【答案】D 提示:在平面A1B1C1D1内过点C1作B1D1的垂线,垂足为E,连接BE.⇒C1E⊥平面BDD1B1,∴∠C1BE的正弦值就是所求角的正弦值.∵BC1=,C1E=,∴sin∠C1BE=.第 4 题:来源:山东省泰安市2019届高三数学一轮复习质量检测试卷理(含解析)若复数的实部与虚部互为相反数,则实数A. 3B.C.D.【答案】D【解析】【分析】利用复数乘法的运算法则化简复数,然后利用复数的实部与虚部的和为零,列方程求解即可.【详解】因为,且复数的实部与虚部互为相反数,所以,,解得,故选D.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查乘法/除法运算,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.第 5 题:来源:甘肃省兰州市2016_2017学年高一数学下学期期末考试试题试卷及答案若,则是第几象限角()A.一或二B.二或三C.三或四D.四或一第 6 题:来源:湖北省宜昌市2017_2018学年高一数学上学期期中试题试卷及答案已知集合,则= A.B. C. D.【答案】B第 7 题:来源:广东省天河区普通高中2017_2018学年高一数学10月月考试题试卷及答案08若奇函数在上为增函数,且有最小值0,则它在上A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值0【答案】D第 8 题:来源:湖南省怀化三中2018_2019学年高一数学上学期期中试题.函数在上是增函数,在上是减函数,则()A. B. C. D.的符号不确定【答案】B第 9 题:来源:重庆市万州三中2018_2019学年高二数学下学期期中试题理函数的图象如图所示,下列数值排序正确的是( )A. B.C. D.第 10 题:来源:四川省崇州市2016-2017学年高一数学下学期开学考试试题设,则的大小关系是()A. B.C. D.【答案】A第 11 题:来源:河北省衡水中学2018届高三数学上学期一轮复习周测试题理试卷及答案已知命题有解,命题,则下列选项中是假命题的为()A.B. C.D.【答案】B第 12 题:来源:广东省天河区普通高中2017_2018学年高二数学11月月考试题04 试卷及答案若,,则下列不等式成立的是A. B. C. D.【答案】.A第 13 题:来源: 2019高考数学一轮复习第2章函数的概念与基本初等函数第3讲函数的奇偶性与周期性分层演练文若函数f(x)=ln(ax+)是奇函数,则a的值为( )A.1 B.-1C.±1 D.0【答案】C.因为f(x)=ln(ax+)是奇函数,所以f(-x)+f(x)=0.即ln(-ax+)+ln(ax+)=0恒成立,所以ln[(1-a2)x2+1]=0,即(1-a2)x2=0恒成立,第 14 题:来源:福建省泉州市2017届高考数学模拟试卷(文科)含答案解析若,则=()A.i B.﹣i C.﹣1 D.1【答案】D【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解: ===i,则=1.故选:D.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.第 15 题:来源:山东省武城二中2017届高三数学下学期第一次月考试题试卷及答案理若直角坐标平面内两点P,Q满足条件①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组”).则下列函数中,恰有两个“伙伴点组”的函数是___(填空写所有正确选项的序号)①;②;③;④.【答案】②③第 16 题:来源: 2015-2016学年广东省东莞市高二数学下学期期末试卷a 理(含解析)用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根【答案】A【考点】反证法与放缩法.【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是:方程x2+ax+b=0没有实根.故选:A.第 17 题:来源:江西省上饶市玉山县第一中学2018_2019学年高二数学下学期期中试题理(10_19班)若函数的导函数的图像关于原点对称,则的解析式可能为()A.B.C.D.【答案】A第 18 题:来源:重庆市六校联考高一(上)期末数学试卷(含答案解析)若区间[x1,x2]的长度定义为|x2﹣x1|,函数f(x)=(m∈R,m≠0)的定义域和值域都是[a,b],则区间[a,b]的最大长度为()A. B. C. D.3【答案】A【解答】解:函数f(x)=(m∈R,m≠0)的定义域是{x|x≠0},则[m,n]是其定义域的子集,∴[m,n]⊆(﹣∞,0)或(0,+∞).f(x)==﹣在区间[a,b]上时增函数,则有:,故a,b是方程f(x)=﹣=x的同号相异的实数根,即a,b是方程(mx)2﹣(m2+m)x+1=0同号相异的实数根.那么ab=,a+b=,只需要△>0,即(m2+m)2﹣4m2>0,解得:m>1或m<﹣3.那么:n﹣m==,故b﹣a的最大值为,第 19 题:来源: 2017年湖北省宜昌市长阳县高一数学3月月考试题试卷及答案在△ABC中,,c=2,C=600,则A等于() A.1500 B.750 C.1050 D.750或1050【答案】 B第 20 题:来源:湖南省郴州市湘南中学2019届高三数学上学期期中试题理函数的零点所在的大致区间是()A.(0,1) B.(1,2) C.(2,e) D.(3,4)【答案】B第 21 题:来源:河北省石家庄市2017_2018学年高一数学上学期期中试题试卷及答案函数的零点所在区间为( )A. B. C. D.【答案】 C第 22 题:来源:河南省安阳市2017_2018学年高二数学上学期第二次月考试题试卷及答案已知等差数列中,,公差,则使前项和为取最小值的正整数的值是()A.4和 5 B.5和 6 C.6和7 D.7和8【答案】C第 23 题:来源: 2015-2016学年广东省东莞市高二数学下学期期末试卷a 理(含解析)对具有线性相关关系的两个变量y与x进行回归分析,得到一组样本数据(x1,y1),(x2,y2)…(xn,yn),则下列说法中不正确的是()A.若最小二乘法原理下得到的回归直线方程=0.52x+,则y与x具有正相关关系B.残差平方和越小的模型,拟合的效果越好C.在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适D.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好【答案】D【分析】可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好.【解答】解:若最小二乘法原理下得到的回归直线方程=0.52x+,b=0.52>0,则y与x具有正相关关系,正确;残差平方和越小的模型,拟合的效果越好,正确;可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.故正确;相关指数R2取值越大,说明残差平方和越小,模型的拟合效果越好,故不正确.故选:D.第 24 题:来源:新疆维吾尔自治区阿克苏市2017_2018学年高二数学上学期第二次月考试题试卷及答案理已知,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】若“”,则,即.所以,充分性成立;若“”,则,有或.必要性不成立.故“”是“”的充分不必要条件.故选A.第 25 题:来源:宁夏石嘴山市2018届高三数学上学期期中试题理用数学归纳法证明“”时,由的假设证明时,如果从等式左边证明右边,则必须证得右边为()A. B.C. D.【答案】D第 26 题:来源:河北省石家庄市2016_2017学年高一数学下学期学情反馈试题(一)理试卷及答案在中,角、、的对边分别为、、,则以下结论错误的为()A.若,则B.C.若,则;反之,若,则D.若,则【答案】D【解析】试题分析:∵,∴由正弦定理,,又∵,为的内角,∴,故,A正确;∵由正弦定理可得,∴,故B正确;在,设外接圆的半径为,若,则,由正弦定理可得,即;若,即有,即,即.则在中,,故C正确;∵,∴,∴或,∴或,∴三角形为直角三角形或等腰三角形,故D错误.故选:D.第 27 题:来源:湖南省长沙市雅礼中学2019届高三数学上学期月考试题二理现有四个函数:①,②,③,④的图像(部分)如下,但顺序打乱了,则按照从左到右将图象对应的序号排列正确的组是A.①③②④ B.②①③④ C.③①④② D.①④②③【答案】D第 28 题:来源: 2017届宁夏银川市高三第二次模拟考试理科数学试卷含答案已知是定义在R上的偶函数,且对恒成立,当时,,则A. B.C. D.【答案】B第 29 题:来源:贵州省思南中学2018_2019学年高二数学下学期期末考试试题理复数z满足,则复数的虚部是()A.1 B.-1 C. D.【答案】C第 30 题:来源:辽宁省沈阳市2018届高三数学11月阶段测试试题理试卷及答案下列判断错误的是()SX010202A.“”是“”的充分不必要条件B.命题“”的否定是“”C.若为真命题,则均为假命题D.命题“若,则”为真命题,则“若,则”也为真命题【答案】C第 31 题:来源:山西省芮城县2017_2018学年高二数学上学期第一次月考试题理试卷及答案已知三棱锥的所有顶点都在球的球面上,为球的直径,且,,为等边三角形,三棱锥的体积为,则球的半径为A. 3B.1C.2D.4【答案】C第 32 题:来源: 2016_2017学年福建省厦门市高二数学试卷及答案下学期期中试题理设a=,b=,,则a、b、c间的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b【答案】D第 33 题:来源:高中数学第三章导数及其应用3.1导数3.1.2瞬时速度与导数3.1.3导数的几何意义自我小测新人教B版选修1_120171101235曲线y=x3+2在点处切线的倾斜角为( )A.30° B.45° C.135° D.60°【答案】B第 34 题:来源:广东省深圳市耀华实验学校2018_2019学年高一数学下学期入学考试试题(国际1班)若函数是定义域为上的减函数,则函数的图像大致是 ( ).A. B.C . D.【答案】D第 35 题:来源:湖北省宜昌市2017_2018学年高二数学上学期期中试题理试卷及答案若圆的半径为1,圆心在第二象限,且与直线和轴都相切,则圆的标准方程是()A. B.C. D.【答案】B第 36 题:来源:黑龙江省哈尔滨市2016_2017学年高二数学6月月考试题试卷及答案理.离散型随机变量X的分布列为,则与依次为( )和和和和【答案】D第 37 题:来源: 2017届吉林省长春市朝阳区高三数学下学期第八次模拟考试试题试卷及答案理若,则=(A)(B)1 (C)5 (D)25【答案】B第 38 题:来源:广东省江门市第二中学2017_2018学年高二数学11月月考试题(含解析)数列前项的和为()A. B.C. D.【答案】B【解析】数列前项的和故选B.第 39 题:来源: 2017年河南省焦作市高考数学二模试卷(理科)含答案解析在区间上任选两个数x和y,则y<sinx的概率为()A. B. C. D.【答案】C【考点】几何概型.【分析】该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.【解答】解:在区间上任选两个数x和y,区域的面积为,满足y<sinx的区域的面积为=(﹣cosx)=1,∴所求概率为.故选C.第 40 题:来源:江西省南康中学2018_2019学年高二数学二下学期期中(第二次大考)试题理已知椭圆(a>b>0)的左、右焦点分别为为椭圆上一动点,面积的最大值为,则椭圆的离心率为()A. B.1 C. D.【答案】A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市2019学年度高考数学模拟试卷一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数)2(log 1)(2-=x x f 的定义域为2.复数z 满足iiz 1=i +1,则i z 31-+= 3.底面边长为2m ,高为1m 的正三棱锥的全面积为 m 24.某工厂生产10个产品,其中有2个次品,从中任取3个产品进行检测,则3个产品中至多有1个次品的概率为5.若非零向量,a b 满足32a b a b ==+,则,a b 夹角的余弦值为_______6.已知圆O :522=+y x ,直线l :)20(1sin cos πθθθ<<=+y x ,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =7.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为8.已知{}n a 为等比数列,其前n 项和为n S ,且2n n S a =+*()n ∈N ,则数列{}n a 的通项公式为9.设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a的取值范围为_____________10.已知F 是抛物线42y x =的焦点,B A ,是抛物线上两点,线段AB 的中点为)2,2(M ,则ABF ∆的面积为11.如图,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树 米时,看A 、B 的视角最大 12.将函数()2sin()3f x x πω=-(0ω>)的图象向左平移3πω个单位,得到函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,则ω的最大值为13.如图,矩形n n n n D C B A 的一边n n B A 在x 轴上,另外两个顶第11题图A nD nB nO xy C n点n n D C 在函数)0(1)(>+=x xx x f 的图象上.若点n B 的坐标),2)(0,(+∈≥N n n n ,记矩形n n n n D C B A 的周长为n a ,数列{}n a 的前m ()+∈N m 项和为m S ,则2limnmn a S +∞→=14.已知定义域为R 的偶函数)(x f ,对于任意R x ∈,满足)2()2(x f x f -=+。
且当20≤≤x 时x x f =)(。
令)()(1x g x g =,))(()(1x g g x g n n -=,其中*N n ∈,函数⎩⎨⎧≤<-≤≤=2124102)(x x x x x g 则方程2014))((xx f g n =的解的个数为 (结果用n 表示) 二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.15. 记max{a ,b }为a 和b 两数中的较大数.设函数()f x 和()g x 的定义域都是R ,则“()f x 和()g x 都是偶函数”是“函数{}()max ()()F x f x g x =,为偶函数”的 A.充分不必要条件 B.必要不充分条件. C.充要条件. D.既不充分也不必要条件. 16.将函数)32cos(π-=x y 的图象向左平移6π个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的一条对称轴是 A .3π=x B.6π=x C .x π= D. 2x π=17.如图,偶函数)(x f 的图象形如字母M ,奇函数)(x g 的图象形如字母N ,若方程:(())0,f f x =(())0,f g x =0))((,0))((==x f g x g g 的实数根的个数分别为a 、b 、c 、d ,则d c b a +++=A .27B .30C .33D .3618.已知[)x 表示大于x 的最小整数,例如[)[)34, 1.31=-=-.下列命题:①函数[)()f x x x =-的值域是(]0,1;②若{}n a 是等差数列,则[){}n a 也是等差数列;③若{}na 是等比数列,则[){}na 也是等比数列;12 -1 -2xyO1 -1()y f x =xyO1-1-22()y g =④若()1,2014x ∈,则方程[)12x x -=有2013个根. 其中正确的是A.②④B.③④C.①③D.①④三、解答题(本大题共有5题,满分74分)解答下列各题必须写出必要的步骤. 19. (本题满分12分,第1小题6分,第2小题6分) 如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=°,O 为BC 中点. (1)证明:SO ⊥平面ABC ; (2)求二面角A SC B --的余弦值.20.(本题满分14分,第1小题6已知A B 、分别在射线CM CN 、角A 、B 、C 所对的边分别是a 、b (1)若a 、b 、c (2)若c =ABC ∠=θ,试用21.(本题满分14分,第1小题7分,第2小题7分) 给定数列12n a a a ,,,.对1,2,,1i n =-,该数列前i 项的最大值记为i A ,后n i -项12i i n a a a ++,,,的最小值记为i B ,i i i d A B =-.(1)设12n a a a ,,,(4n ≥)是公比大于1的等比数列,且10a >.证明:1d ,2d ,...,1n d -是等比OSBACOxyABl数列(2)设1d ,2d ,...,1n d -是公差大于0的等差数列,且10d >,证明:1a ,2a ,...,1n a -是等差数列22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)在平面直角坐标系xOy 中,设椭圆C 的中心在原点,焦点在x 轴上,短半轴长为2,椭圆C 51. (1)求椭圆C 的方程(2)设直线l 与椭圆C 相交于A ,B 两点,且π2AOB ∠=.求证:原点O 到直线AB 的距离为定值 (3)在(2)的条件下,求AB 的最小值23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)对于函数12(),(),()f x f x h x ,如果存在实数,a b 使得12()()()h x a f x b f x =⋅+⋅,那么称()h x 为12(),()f x f x 的生成函数.(1)下面给出两组函数,()h x 是否分别为12(),()f x f x 的生成函数?并说明理由; 第一组:12()lg,()lg10,()lg 10xf x f x x h x x ===; 第二组:1)(,1)(,)(22221+-=++=-=x x x h x x x f x x x f ;(2)设12212()log ,()log ,2,1f x x f x x a b ====,生成函数()h x .若不等式23()2()0h x h x t ++<在[2,4]x ∈上有解,求实数t 的取值范围;(3)设121()(0),()(0)f x x x f x x x=>=>,取0,0a b >>,生成函数()h x 图像的最低点坐标为(2,8). 若对于任意正实数21,x x 且121x x +=.试问是否存在最大的常数m ,使m x h x h ≥)()(21恒成立?如果存在,求出这个m 的值;如果不存在,请说明理由.一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.()),3(3,2+∞⋃ 2. 5 3. 33 4.1514 5.13-6. 47.()()+∞⋃-,50,58.12n n a -=*()n ∈N 9.[2,)+∞10. 2 11. 6 12. 2 13.81 14.n 22014⨯ 二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分. 15. A 16.C 17. B 18.D三、解答题(本大题共有5题,满分74分)解答下列各题必须写出必要的步骤. 19. (本题满分12分,第1小题6分,第2小题6分)(1)由题设AB AC SB SC====SA ,连结OA ,ABC △为等腰直角三角形,所以22OA OB OC SA ===,且AO BC ⊥,又SBC △为等腰三角形, SO BC ⊥,且22SO SA =,从而222OA SO SA +=. 所 以SOA △为直角三角形,SO AO ⊥.又AO BO O =.所以SO ⊥平面ABC .(2)取SC 中点M ,连结AM OM ,,由(1)知SO OC SA AC ==,,得OM SC AM SC ⊥⊥,.OMA ∠∴为二面角A SC B --的平面角. 由AO BC AO SO SO BC O ⊥⊥=,,得AO ⊥平面SBC .所以AO OM ⊥,又32AM SA =,故26sin 33AO AMO AM ∠===.所以二面角A SC B --的余弦值为3320.(本题满分14分,第1小题6分,第2小题8分) (1)a 、b 、c 成等差,且公差为2,∴4a c =-、2b c =-. 又23MCN ∠=π,1cos 2C =-,∴222122a b c ab +-=-, ∴()()()()2224212422c c c c c -+--=---, 恒等变形得 29140c c -+=,解得7c =或2c =.又4c >,∴7c =.(2)在ABC ∆中,sin sin sin AC BC ABABC BAC ACB==∠∠∠,∴322sin sin sin 33ACBC ===ππθ⎛⎫-θ ⎪⎝⎭,2sin AC =θ,2sin 3BC π⎛⎫=-θ ⎪⎝⎭.∴ABC ∆的周长()f θAC BC AB =++2sin 2sin 33π⎛⎫=θ+-θ+ ⎪⎝⎭132sin cos 322⎡⎤=θ+θ+⎢⎥⎣⎦2sin 33π⎛⎫=θ++ ⎪⎝⎭,又0,3π⎛⎫θ∈ ⎪⎝⎭,∴2333πππθ<+<, ∴当32ππθ+=即6πθ=时,()f θ取得最大值23+. 21.(本题满分14分,第1小题7分,第2小题7分)(1)因为10a >,公比1q >,所以12n a a a ,,,是递增数列. 因此,对1,2,,1i n =-,i i A a =,1i i B a +=.于是对1,2,,1i n =-,111(1)i i i i i i d A B a a a q q -+=-=-=-.因此0i d ≠且1i id q d +=(1,2,,2i n =-),即1d ,2d ,,1n d -是等比数列.(2)设d 为1d ,2d ,,1n d -的公差.对12i n ≤≤-,因为1i i B B +≤,0d >,所以111i i i A B d +++=+i i B d d ≥++i i B d >+=i A . 又因为{}11max ,i i i A A a ++=,所以11i i i i a A A a ++=>≥. 从而121n a a a -,,,是递增数列,因此i i A a =(1,2,,2i n =-). 又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<<.因此1n a B =. 所以121n n B B B a -====.所以i i a A ==i i n i B d a d +=+. 因此对1,2,,2i n =-都有11i i i i a a d d d ++-=-=,即1a ,2a ,...,1n a -是等差数列.22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)(1)由题意,可设椭圆C 的方程为22221(0)y x a b a b +=>>,2221221a c a b b c a b c ⎧⎧-==⎪⎪=⇒=⎨⎨⎪⎪==+⎩⎩,,,, 所以椭圆方程为22154x y +=(2)设原点O 到直线AB 的距离为h ,则由题设及面积公式知OA OB h AB⋅=.当直线OA 的斜率不存在或斜率为0时,2OA OB ⎧⎪⎨=⎪⎩或2OB OA ⎧=⎪⎨=⎪⎩.于是d ==. 当直线OA 的斜率k 存在且不为0时,则22222115454x y xk x y kx ⎧⎪+=⇒+=⎨⎪=⎩,, 解得222221154154A A x k k y k ⎧=⎪+⎪⎪⎨⎪=⎪+⎪⎩,. 同理222221115411154BB x k k y k ⎧=⎪+⎪⎪⎨⎪=⎪+⎪⎩,. 在Rt △OAB 中,22222222OA OB OA OB h AB OA OB⋅⋅==+, 则222222222222222111111115544545411111k k k OA OB k h OA OB OA OB k k k k+++++==+=+=+⋅++++ ()()221111454511945201k k +++==+=+,所以h . 综上,原点O 到直线AB另解:()()()()()()2222222222222222222111111111554411111111155441115544k kk k OA OB k k h OA OB k k k k k kkk ++⋅++++⋅===+++++++++++222212999920201020k k k k ++==++,所以h =. (3)因为h 为定值,于是求AB 的最小值即求OA OB ⋅的最小值.22OA OB ⋅()()()()2222222211121114111120400554204k k k k k k k k++++=⋅=++++, 令221t k k =+,则2t ≥, 于是22OA OB ⋅=()220401202011412041204120400t t t t t ++=⋅=-+++, 因为2t ≥,所以()22116002018181OA OB ⋅⋅-=≥,当且仅当2t =,即1k =±,OA OB ⋅取得最小值409,因而min 409AB == 所以AB. 23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)(1)①lglg10lg 10x a b x x +={1011,22a b a b a b +=-=∴== 所以()h x 是12(),()f x f x 的生成函数② 设222()(1)1a x x b x x x x ++++=-+,即22()()1a b x a b x b x x ++++=-+,则⎪⎩⎪⎨⎧=-=+=+111b b a b a ,该方程组无解.所以()h x 不是12(),()f x f x 的生成函数. (2)122122()2()()2log log log h x f x f x x x x =+=+=若不等式23()2()0h x h x t ++<在[2,4]x ∈上有解,23()2()0h x h x t ++<,即22223()2()3log 2log t h x h x x x <--=--设2log s x =,则[1,2]s ∈,22223log 2log 32y x x s s =--=--,max 5y =-,故,5t <-.(3)由题意,得()(0)b h x ax x x =+>,则()bh x ax x=+≥2828b a ⎧+=⎪⎨⎪=⎩,解得28a b =⎧⎨=⎩,所以8()2(0)h x x x x =+> 假设存在最大的常数m ,使m x h x h ≥)()(21恒成立.于是设)(16644)4)(4(4)()(12212121221121x xx x x x x x x x x x x h x h u +++=++== =2221212121212121212121212()2646480416416432x x x x x x x x x x x x x x x x x x x x x x ++-++⋅=++⋅=+-令12t x x =,则41)2(22121=+≤=x x x x t ,即]41,0(∈t 设80432u t t=+-在]41,0(∈t 上单调递减, 289)41(=≥u u ,故存在最大的常数289m =。