双因素方差分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X ij
i 1
i1 j 1
X. j T. j a X .1 X .2 ... X .b
X 1T ab
➢ 无交互作用的双因素试验的方差分析
基本假设(1)X ij 相互独立;
(2)Xij ~ N ij , 2 ,(方差齐性)。
线性统计模型 X ij i j ij
其中
1 ab
a i 1
SSE SST SSA SSB 32.83 dfE dfA dfb 6
MSA SSA dfA 38.223
R
X
2 ij
31678
i1 j1
DA
1 b
a
Ti.2
i 1
23495
DB
1 a
b
T.
2 j
j 1
42040.67
p T 2 31212 ab
SST R p 466
dfT n 1 11
SSA DA p 114.67
dfA a 1 3
SSB DB p 318.5
dfB b 1 2
X ij X i. X . j X
i1 j1
称为误差平方和,反映试验误差对试验指标的影响。
若假设 H01, H02成立,则: Xij ~ N , 2
可推得:
SST
2
~ 2 ab 1
SSA
2
~
百度文库
2 a 1
SSB
2
~
2 b 1
SSE
2
~
2 a 1b 1

SST
2
,
SS A
2
,
SSB
2
,
双因素方差分析方法
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。
例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。
统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。
2
SST
X ij X
i1 j 1
可分解为:SST SSA SSB SSE
a
2
SSA b X i. X
i 1
b
2
SSB a X . j X
j 1
称为因素A的离差平方和, 反映因素 A 对试验指标的影响。
称为因素B的离差平方和, 反映因素 B 对试验指标的影响。
a b
2
SSE
注意
df E
dfT
df A
fB,
SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方
和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SSA DA p, SSB DB p
SSE R DA DB p, SST R p
其中: DA
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
b
B2 ... Bb Ti. X ij X i. Ti. b j 1
A1
X11 X12 ... X1b
T1.
X 1.
...
... ... ... ... ...
...
Aa
X a1 X a2 ... X ab
Ta.
X a.
a
ab
T. j Xij T.1 T.2 ... T.b T
我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
➢无交互作用的双因素试验的方差分析
数学模型
假设某个试验中,有两个可控因素在变化,因素A 有a个水平,记作A1,A2,…,Aa;因素B有b个水平, 记作B1,B2,….Bb;则A与B的不同水平组合AiBj(i=1, 2,…,a;j=1,2,…,b)共有ab个,每个水平组合 称为一个处理,每个处理只作一次试验,得ab个观测 值Xij,得双因素无重复实验表

53 58 48
a
T. j Xij i 1
197 232 183
b
Ti. X ij j 1 165 143 145 159
T 612
X i. Ti. b
55.0 47.7 48.3 53.0
X. j T. j a 49.3 58.0 45.8
X 51
解 基本计算如原表
a b
b
ij
j 1
所有期望值的总平均
i
1 a
b
ij i
j 1
水平Ai对试验结果的效应
j
1 b
a i 1
ij
j
水平Bj对试验结果的效应
ij X ij ij
试验误差
i
1 a
b
ij i
j 1
水平Ai对试验结果的效应
j
1 b
a i 1
ij
j
水平Bj对试验结果的效应
ij X ij ij
SSE
2
的自由度分别记作
dfT , dfA, dfB , dfE ,则
FA
SS A SSE
df A df E
MSA MSE
~ F a 1, a 1b 1
FB
SSB SSE
df B df E
MSB MSE
~ F b 1, a 1b 1
FA
SS A SSE
df A df E
MSA MSE
~ F a 1, a 1b 1
FB
SSB SSE
df B df E
MSB MSE
~ F b 1, a 1b 1
对给定的检验水平 ,
当 FA F a 1, a 1b 1 时,
拒绝H01,即A 因素的影响有统计意义。
当 FB F b 1, a 1b 1 时,
拒绝H02,即B 因素的影响有统计意义。
F 右侧检验
双因素(无交互作用)试验的方差分析表
试验误差
a
b
特性: i 0; j 0; ij ~ N 0, 2
i 1
j 1
要分析因素A,B的差异对试验结果是否有显著
影响,即为检验如下假设是否成立:
H01 :1 2 3 0 H02 : 1 2 b 0
➢ 总离差平方和的分解定理
仿单因素方差分析的方法,考察总离差平方和
a b
方差来源 平方和 自由度 均方和
因素A 因素B 误差 总和
SS A SSB SSE SST
df A
MS A
SS A df A
df B
MSB
SSB df B
df E
MSE
SSE df E
dfT
F值
FA
MS A MSE
FB
MSB MSE
F 值临介值
F ( a 1 , a 1 b 1) F (b 1 , a 1 b 1)
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ


50 63 52

47 54 42

47 57 41
相关文档
最新文档