图像分割和特征提取技术研究
面向移动医疗的多模态医学图像分割与分析技术研究
面向移动医疗的多模态医学图像分割与分析技术研究在移动医疗领域,多模态医学图像的分割与分析技术起着至关重要的作用。
随着移动设备的普及和发展,医疗专业人士能够通过手机或平板电脑等移动设备进行医学图像的获取和处理,从而实现远程诊断和治疗。
因此,开发面向移动医疗的多模态医学图像分割与分析技术具有重要的研究意义。
一、多模态医学图像分割技术多模态医学图像分割是将医学图像中的不同组织、器官或病灶通过计算机算法划分成一系列互不重叠的区域的过程。
在移动医疗中,由于设备限制和算力限制,多模态医学图像的分割常常面临挑战。
因此,研究基于移动设备的高效、准确的多模态医学图像分割算法成为亟待解决的问题之一。
目前,常用的多模态医学图像分割技术包括基于阈值的方法、基于区域生长的方法以及基于深度学习的方法。
基于阈值的方法适用于简单的医学图像,但对于复杂的图像存在局限性。
基于区域生长的方法通过生长一系列具有相似像素特征的区域,但对于噪声或者图像边缘不清晰的情况下容易产生误差。
而基于深度学习的方法由于其在图像特征提取和分类方面的优势,成为当前研究的热点。
通过使用深度卷积神经网络(CNN)和递归神经网络(RNN)等深度学习模型,可以实现对医学图像的高效准确的分割。
二、多模态医学图像分析技术多模态医学图像分析技术是基于分割结果对医学图像进行进一步的特征提取和数据分析。
通过分析医学图像,可以获取疾病的临床特征、病灶区域的大小和位置以及与其他器官的关系等信息,为临床医生提供更准确的诊断和治疗方案。
在移动医疗环境下,由于设备和计算资源的限制,多模态医学图像的分析常常需要在移动设备上进行。
因此,开发高效的多模态医学图像分析算法是面向移动医疗的一个重要研究方向。
目前,常用的多模态医学图像分析技术包括特征提取、图像配准和模式识别等。
特征提取是从医学图像中获取有用信息的过程,可以使用传统的图像处理算法或者深度学习方法。
图像配准是将不同模态的医学图像进行对齐,使得它们在空间上保持一致。
医学图像分割的意义、概念、分类和研究现状
第1章绪论1.1 引言当今社会,是知识经济的社会,高新科技飞速发展。
入们在迅速发展新科技的同时,也越来越关注自身的生活环境与医疗条件。
健康,越来越成为每一个入倾心关注和孜孜追求的意境。
然焉,群学技术是一把双刃剑,它带给人们得到的同时也在破坏着我们赖以生存的环境,从而严重威害人类的健康。
堪愧的环境,沉重的压力以及激烈的竞争,都侵入们的健康走入低餐,从而健康成为全人类共同关注的目标。
因此医学的发展面临严重的挑战,作为医生诊断和治疗重要手段的医学影像学也得到了相应的发展。
现今,医学图像在医疗诊断中起着不可低估的重要作用。
计算机断层扫描、核磁共振(Magnetic Resonance,MR)、超声(Ultras叫nd)以及其它成像技术等,都是无侵害性的器宫体外成像的有力手段。
但是,医学图像还有一个显著的特点,由于受成像设备的影响、局部体效应(同一个体素中包含多种组织)、患者的体位运动和检查床的匀速直线运动,使得医学图像不可避免地盘现噪声和伪影,边缘模糊和信号强度不均匀现缓,例如信号强度在同一种组织中会出现大幅度的变化或在同一个物体中也不均匀。
此外,在图像形成和传输的过程中,图像的像质也会受到一定的影响,这些都给医生下达准确的诊断造成了一定的障碍。
为了提高医学图像的可读性,使得医生可以对人体的解割结构以及病变部位进行更有效的观察和诊断,提离诊断的准确率,医学图像处理从而成为了一门应用性很强的学科而且得到了长足的发展。
1.2 医学图像分割的意义、分类及其研究现状1.2.1 医学图像分割的意义医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。
如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。
医学图像处理中的分割技术研究与应用
医学图像处理中的分割技术研究与应用一、概述医学图像处理是医学影像学领域的重要组成部分,它的基本任务是对从医学影像中获取的图像信息进行分析、处理和识别。
其中医学图像分割技术是医学影像分析中的重要分支,它可以将医学图像中的不同结构或组织分离出来,并形成具有特定标记的区域,从而为医学诊断和治疗提供有力支持。
本文将围绕医学图像处理中的分割技术展开讨论,探讨其研究现状、技术原理、算法优劣以及在实际应用中的案例。
二、研究现状目前,医学图像分割技术主要用于医学影像诊断、手术规划、肿瘤治疗等领域。
其中,肿瘤分割是应用较为广泛的领域之一,通过对医学影像中的肿瘤组织进行划分,可以实现肿瘤的量化分析和精确定位,为医生的治疗方案提供依据。
近年来,随着深度学习技术的发展,深度卷积神经网络(CNN)等模型在医学图像分割中得到越来越广泛的应用。
以CNN为代表的深度学习模型可以通过学习医学图像中显著特征,提高图像分割的精确性和效率。
此外,基于超像素的分割算法、区域生长算法、阈值分割算法等传统的分割方法仍然是研究的热点和难点之一。
三、技术原理医学图像的分割是指将医学图像中不同区域或组织进行分离的过程。
其技术核心是对数据的自动或半自动化分割,基于图像强度、空间信息等特性进行分析,将图像划分为各个独立的、有意义的区域。
医学图像的分割技术核心包括以下方面:1.特征提取:医学影像中蕴含的结构、材质以及其它一些信息可以通过特征提取的方式转化为数值或向量形式,这些特征在分割过程中被用作数据的表征。
2.分割算法:分割算法可以根据特定的规则,将提取到的特征进行分类和分割,不同算法的优劣决定了分割的精确度和操作效率。
3.评价指标:用于评估分割结果的准确性,如划分出的区域是否正确、与实际结果之间的误差、操作所需时间和计算复杂度等。
四、常见算法1.基于阈值的分割算法:其原理是设定一个阈值,将图像中灰度值大于该阈值的像素视为目标像素,否则视为背景像素。
生物医学图像处理技术的研究与应用
生物医学图像处理技术的研究与应用近年来,生物医学图像处理技术在医学领域中的应用越来越广泛。
这些技术已经成为了完美的工具,为医生提供了一个更直观,更可靠,更有效的手段,以便于进行疾病的诊断和治疗。
生物医学图像处理技术与实际临床应用之间的交流和适应问题越来越受到人们的关注。
这篇文章主要介绍了生物医学图像处理技术的研究和应用,并探讨了这些技术的未来发展潜力。
一、生物医学图像处理技术的研究生物医学图像处理技术包括了如下几个方面:图像采集、图像重建、图像分割、特征提取与处理等。
1. 图像采集图像采集是生物医学图像处理技术的开端。
目前,常规的图像采集设备主要包括计算机断层扫描(CT)、磁共振成像(MRI)、超声成像(US)、放射性核素成像(SPECT)和正电子发射断层扫描(PET)。
这些设备可以采集人体的各种器官和组织的结构和功能信息,如CT可以采集人体骨骼、肌肉和内脏器官等组织结构信息,MRI可以采集人体脑部、脊髓和大血管等组织结构和功能信息。
2. 图像重建图像重建是将采集的生物医学图像数据转化为可视化图片的过程。
常见的图像重建算法包括透视投影算法、反投影算法、傅里叶变换算法、小波变换算法等。
图像重建技术不仅能使医生更加直观地分析生物医学图像,而且还能帮助医生更准确地判断病情和规划治疗方案。
3. 图像分割图像分割是指对采集的生物医学图像进行处理,把相同或者不同部位的像素区分开来的过程。
在生物医学图像处理技术中,准确的图像分割非常重要,可以为后续特征提取和诊断提供关键性的信息。
目前,常见的生物医学图像分割技术包括了基于阈值的分割、基于区域增长算法的分割、基于边缘检测的分割、基于形态学的分割等。
4. 特征提取与处理特征提取与处理是对生物医学图像分析的重要环节,主要是通过分析图像的特征信息,提取出生物医学图像的特有的特征,如纹理、形状和灰度特征,以便于更快、更准确地识别和分析生物医学图像。
在特征提取与处理的过程中,选取适当的特征参数和合适的处理方法不仅能大大提高生物医学图像的分析效率,而且还能得到更准确的诊断结论。
探究基于机器学习的图像分割算法
探究基于机器学习的图像分割算法随着科技的不断发展和进步,人工智能逐渐成为人们日常生活中不可或缺的一部分。
其中机器学习技术是人工智能领域中非常重要的一部分。
机器学习技术的应用非常广泛,其中之一就是图像分割。
本文将对基于机器学习的图像分割算法进行探究。
一、机器学习机器学习是一种通过大量数据、样本等对系统进行训练和优化的方法,使其能够自主学习、识别、感知和分析。
机器学习的基本原理是提取数据中的特征,建立数学模型,通过优化算法不断学习和训练模型,并根据模型进行分类、预测和决策。
二、图像分割图像分割是指将一幅图像分成若干个子区域,使得每个子区域内的像素具有相同的特征,而不同区域之间的像素则有不同的特征。
图像分割是图像处理中的重要任务,它可以用于目标检测、图像增强、医学图像分析等方面。
三、基于机器学习的图像分割算法基于机器学习的图像分割算法主要包括以下几种:1. 非监督学习算法非监督学习算法是指在没有先验知识的情况下对图像进行分割。
它采用聚类算法对原始图像的像素进行分类,并将相似的像素归为同一类别。
常见的非监督学习算法有k-means算法、谱聚类算法等。
2. 监督学习算法监督学习算法是指在有先验知识的情况下对图像进行分割,其中先验知识可以是人工标记的样本数据。
监督学习算法一般采用分类器对像素进行分类。
常见的监督学习算法有支持向量机(SVM)、神经网络等。
3. 深度学习算法深度学习算法是一种基于神经网络的机器学习算法。
它可以自动从数据中提取特征,并进行分类和回归等任务。
深度学习算法在图像分割领域中表现出色,常用的深度学习网络包括卷积神经网络(CNN)、循环神经网络(RNN)等。
四、基于机器学习的图像分割算法的应用基于机器学习的图像分割算法已经在许多领域中得到了广泛应用。
例如:1. 医学影像在医学领域中,图像分割可以用于肿瘤的检测和分析、CT/MRI图像的解剖结构分析等方面。
基于机器学习的图像分割算法可以减少医生的工作量,缩短病人等待时间,提高诊断的准确率。
图像分割与特征提取 ppt课件
ppt课件
5
7.1 图像分割的概念
2. 图像分割的依据和方法
◆图像分割的依据是各区域具有不同的特性,这些 特性可以是灰度、颜色、纹理等。而灰度图像分割的 依据是基于相邻像素灰度值的不连续性和相似性。也 即,子区域内部的像素一般具有灰度相似性,而在区 域之间的边界上一般具有灰度不连续性。
◆灰度图像分割是图像分割研究中最主要的内容,其 本质是按照图像中不同区域的特性,将图像划分成不 同的区域。
7.2.1 图像边缘
图像
剖面
一阶导数
二阶导数
上升阶跃边缘 (a)
下降阶跃边缘 (b)
脉冲状边缘 (c)
屋顶边缘 (d)
图7.1 图像边缘及其导数曲线规律示例
ppt课件
11
7.2 基于边缘检测的图像分割
7.2.1 图像边缘
综上所述,图像中的边缘可以通过对它们求导数 来确定,而导数可利用微分算子来计算。对于数字图 像来说,通常是利用差分来近似微分。
方向:
f (x, y) = arctan(Gx / Gy )
(7.5)
ppt课件
14
7.2.2 梯度边缘检测
(1) Roberts算子
是一个交叉算子,其在点(i,j)的梯度幅值表示为:
G(i, j) = f (i, j) f (i 1, j 1) f (i 1, j) f (i, j 1) (7.6)
ppt课件
2
7.1 图像分割的概念
◆目标或前景 ◆背景 ◆目标一般对应于图像中特定的、具有独特性质的 区域。
ppt课件
3
7.1 图像分割的概念
1. 图像分割
图像分割就是依据图像的灰度、颜色、纹理、边 缘等特征,把图像分成各自满足某种相似性准则或具 有某种同质特征的连通区域的集合的过程。
图像分割技术研究综述
图像分割技术研究综述随着科技的快速发展,图像分割技术作为计算机视觉领域的重要分支,已经在众多应用领域中发挥着越来越重要的作用。
本文将对图像分割技术的研究进行综述,包括其发展历程、应用领域、研究成果以及未来研究方向。
图像分割技术是指将图像按照像素或区域进行划分,从而提取出感兴趣的目标或背景的过程。
图像分割技术在信号处理、计算机视觉、机器学习等领域具有重要的应用价值。
例如,在智能交通中,图像分割技术可以用于车辆检测和跟踪;在医学图像分析中,图像分割技术可以用于病灶区域提取和诊断。
根据图像分割技术所采用的方法,可以将其大致分为以下几类:基于阈值的分割、基于区域的分割、基于边缘的分割、基于模型的分割以及基于深度学习的分割。
1、基于阈值的分割是一种简单而又常用的图像分割方法,其基本原理是通过设定一个阈值,将图像的像素值进行分类,从而将图像分割为不同的区域。
基于阈值的分割方法实现简单、运算效率高,但在处理复杂图像时,往往难以选择合适的阈值,导致分割效果不理想。
2、基于区域的分割方法是根据图像像素的灰度或颜色特征,将图像分割为不同的区域。
这类方法通常适用于均匀背景和简单目标的图像,但对于复杂背景和遮挡情况的处理效果较差。
3、基于边缘的分割方法是通过检测图像中的边缘信息,将不同区域之间的边界提取出来,从而实现图像分割。
这类方法对噪声和光照变化较为敏感,需要结合其他方法进行优化。
4、基于模型的分割方法通常是利用数学模型对图像进行拟合,从而将图像中的目标或背景分离出来。
常用的模型包括参数化模型和非参数化模型两类。
这类方法能够处理复杂的图像特征,但对模型的选择和参数调整要求较高。
5、基于深度学习的分割方法是通过训练深度神经网络,实现对图像的自动分割。
这类方法具有强大的特征学习和自适应能力,能够处理各种复杂的图像特征,但在计算复杂度和训练成本方面较高。
近年来,随着人工智能和机器学习技术的快速发展,基于深度学习的图像分割技术在学术研究和实际应用中取得了显著的成果。
图像分割技术研究--毕业论文
本科毕业论文图像分割技术研究Survey on the image segmentation学院名称:电气信息工程学院专业班级:电子信息工程0601班2010年 6 月图像分割技术研究摘要图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,也是图像处理、模式识别等多个领域中一个十分重要且又十分困难的问题。
在图像处理过程中,原有的图像分割方法都不可避免的会产生误差,这些误差会影响到图像处理和识别的效果。
遗传算法作为一种求解问题的高效并行的全局搜索方法,以其固有的鲁棒性、并行性和自适应性,使之非常适于大规模搜索空间的寻优,已广泛应用许多学科及工程领域。
在计算机视觉领域中的应用也正日益受到重视,为图像分割问题提供了新而有效的方法。
本文对遗传算法的基本概念和研究进展进行了综述;重点阐述了基于遗传算法的最大类间方差进行图像分割算法的原理、过程,并在MATLAB中进行了仿真实现。
实验结果表明基于遗传算法的最大类间方差方法的分割速度快,轮廓区域分割明显,分割质量高,达到了预期目的。
关键字:图像分割;遗传算法;阈值分割Survey on the image segmentationAbstract I mage segmentation is the first step of image processing and the basic of computer vision. It is an important part of the image, which is a very important and difficult problem in the field of image processing, pattern recognition.In image processing process, the original method of image segmentation can produce inevitable errors and these errors can affect the effect of image processing and identification .This paper discusses the current situation of the genetic algorithms used in the image segmentation and gives some kind of principles and the processes on genetic algorithm of image segmentationIn this paper.It also descripts the basic concepts and research on genetic algorithms .It emphasizes the algorithm based on genetic and ostu and realizes the simulation on Matlab. The experimental results show that this method works well in segmentation speed,the outline of the division and separate areas of high quality and achieve the desired effect.Genetic algorithm (GA) is a sort of efficient,paralled,full search method with its inherent virtues of robustness,parallel and self-adaptive characters. It is suitable for searching the optimization result in the large search space. Now it has been applied widely and perfectly in many study fields and engineering areas. In computer vision field GA is increasingly attached more importance. It provides the image segmentation a new and effective method.Key words image segmentation;genetic algorithm;image threshold segmentation目录第一章绪论 (1)1.1本课题研究的背景、目的与意义 (1)1.2本课题研究的现状与前景 (2)1.3本论文的主要工作及内容安排 (3)第二章图像分割基本理论 (4)2.1图像分割基本概念 (4)2.2图像分割的体系结构 (4)2.3图像分割方法分类 (5)2.3.1阈值分割方法 (5)2.3.2边缘检测方法 (8)2.3.3区域提取方法 (9)2.3.4结合特定理论工具的分割方法 (10)2.4图像分割的质量评价 (11)第三章遗传算法相关理论 (12)3.1遗传算法的应用研究概况 (12)3.2遗传算法的发展 (12)3.3遗传算法的基本概念 (13)3.4遗传算法基本流程 (14)3.5遗传算法的构成 (14)3.5.1编码 (14)3.5.2确定初始群体 (14)3.5.3适应度函数 (15)3.5.4遗传操作 (15)3.5.5控制参数 (17)3.6遗传算法的特点 (18)第四章 MATLAB相关知识 (20)4.1MATLAB简介 (20)4.2MATLAB的主要功能 (20)4.3MATLAB的技术特点 (21)4.4遗传算工法具箱(S HEFFIELD工具箱) (22)第五章基于遗传算法的最大类间方差图像分割算法 (24)5.1最大类间方差法简介 (24)5.2基于遗传算法的最大类间方差图像分割 (25)5.3流程图 (26)5.4实验结果 (27)第六章总结与展望 (29)6.1全文工作总结 (29)6.2展望 (29)致谢 (30)参考文献 (31)附录 (32)第一章绪论1.1本课题研究的背景、目的与意义数字图像处理技术是一个跨学科的领域。
图像特征提取技术综述
图像特征提取技术综述图像特征提取技术综述摘要:图像特征提取是计算机视觉领域中的一个重要研究方向。
它的目标是从图像中提取出具有代表性的信息,用于图像分类、目标识别、目标跟踪等应用。
本综述将对常用的图像特征提取技术进行概述,并分析其优劣和适用场景。
一、颜色特征提取技术颜色是图像的重要属性之一,具有信息丰富且易于理解的特点。
常用的颜色特征提取方法有:颜色直方图、颜色矩和颜色共生矩阵。
颜色直方图表示图像中各个颜色的分布情况,可以用来描述图像的整体颜色分布特征。
颜色矩是对颜色分布进行统计的特征,能够表征图像的颜色平均值、离散度等信息。
颜色共生矩阵则可以提取纹理信息,通过统计图像中相邻像素间的灰度值搭配出现频率来描述图像的纹理特征。
二、形状特征提取技术形状是物体的重要特征之一,对于图像分类和目标识别等任务有着重要的作用。
常用的形状特征提取方法有:边缘检测和轮廓提取、形状上下文和尺度不变特征变换(SIFT)。
边缘检测和轮廓提取是将图像中的边缘和轮廓提取出来,可以用来描述物体的形状特征。
形状上下文是描述物体形状的一种方法,它将物体的形状分解为多个小区域,通过计算各个区域之间的相对位置关系来表示形状。
SIFT是一种可旋转、尺度不变的局部特征描述子,通过检测图像中的局部极值点并计算其方向直方图来描述图像的形状特征。
三、纹理特征提取技术纹理是图像中一些重要的结构特征,对于图像分析和识别具有重要的作用。
常用的纹理特征提取方法有:灰度共生矩阵、Gabor滤波器和小波变换。
灰度共生矩阵是一种用来描述纹理特征的统计方法,通过计算图像中相邻像素间灰度搭配出现频率来描述纹理的复杂程度。
Gabor滤波器是一种基于小波变换的滤波器,通过对不同尺度和方向的Gabor滤波器的响应进行统计来描述纹理特征。
小波变换是将图像分解为不同尺度和方向的频域信息,通过计算不同尺度和方向下的能量和相位特征来描述纹理特征。
四、深度学习在图像特征提取中的应用深度学习是近年来兴起的一种机器学习方法,它通过构建多层神经网络来学习图像的特征表示。
基于深度学习的遥感图像分类与分割技术研究
基于深度学习的遥感图像分类与分割技术研究遥感图像分类与分割技术是遥感领域中重要的研究方向,广泛应用于地球资源调查、环境监测、军事侦察等领域。
近年来,随着深度学习技术的快速发展,基于深度学习的遥感图像分类与分割技术取得了显著的进展。
本文着重探讨了基于深度学习的遥感图像分类与分割技术的研究现状以及存在的问题,并提出了未来研究的发展方向。
首先,回顾了传统的遥感图像分类与分割方法。
传统的方法主要基于手工设计的特征提取和分类算法,如常用的支持向量机(SVM)和决策树等。
这些方法在一定程度上能够有效地处理简单的遥感图像分类任务,但对于复杂的图像场景和大规模数据集的处理能力有限。
接着,本文重点介绍了基于深度学习的遥感图像分类与分割技术。
深度学习技术通过学习数据中的高级特征,能够自动地进行特征提取和分类。
在遥感图像分类任务中,卷积神经网络(CNN)是最常用的深度学习模型之一。
CNN能够通过多层卷积和池化操作,提取图像中的空间信息和局部特征,从而实现遥感图像分类和分割。
此外,还有一些基于深度学习的优化算法,如深度卷积生成对抗网络(DCGAN)和注意力机制网络(AMN),在遥感图像分类和分割中也取得了较好的效果。
然而,基于深度学习的遥感图像分类与分割技术仍存在一些挑战和问题。
首先,深度学习模型需要大量的训练数据来提取有效的特征,但遥感图像数据的获取成本较高,很难获得足够的标注数据。
其次,遥感图像中存在多种类别的目标,目标类别之间存在较大的差异,如何处理类别不平衡问题是一个关键挑战。
此外,遥感图像中的大尺度、遮挡、光照变化和噪声等问题也给图像的分类和分割带来了困难。
针对上述问题,未来的研究可以从以下几个方向进行深入探索。
首先,应该利用深度学习模型的迁移学习和半监督学习技术,充分利用有限的标注数据来提高遥感图像分类和分割的性能。
其次,可以设计更加灵活和鲁棒的深度学习模型,以应对遥感图像中的各种变化和复杂场景。
此外,也可以结合其他的辅助信息,如地理信息系统(GIS)数据和气象数据等,来改善遥感图像的分类和分割效果。
遥感数字图像处理图像分割与线性地物信息提取实验报告
(2)线性地物信息提取效果较好,能够准确地提取出不同的线性地物信息,如 道路、河流等。
1.
实验总结与展望
通过本次实验,我们学习了利用 ENVI 软件进行 RS 图像分割和线性地物信息提
取的方法。我们发现,分割和信息提取的效果都受到算法和参数的选择影响。因
此,在实际应用中,需要根据不同的场景和需求选择合适的算法和参数,以达到
最佳的处理效果。同时,我们也需要注意图像预处理的重要性,它能够有效地提
高后续处理的准确性和可靠性。
未来,随着遥感技术的不断发展和应用场景的扩大,RS 图像分割和信息提取的 需求也将越来越大。因此,我们需要不断学习和掌握最新的算法和技术,以应对 不同场景和需求的处理要求,并且不断完善和优化处理流程,提高处理效率和精 度。
1.
实验背景与目的
遥感图像是一种重要的地学信息获取手段,可以获取大面积的地表信息。但是, 由于图像中存在着大量的地物信息,对于这些信息的快速、准确的提取是遥感研
究中的一个重要问题。本实验旨在利用 ENVI 软件对 RS 图像进行分割,并提取 其中的线性地物信息,为遥感图像处理提供实际的应用。
1.
实验步骤
(1)数据准备:获取需要处理的遥感图像,并导入 ENVI 软件中。
(2)图像预处理:对导入的遥感图像进行预处理,包括辐射校正、大气校正、 几何校正等,以便于后续的处理。
(3)图像分割:利用 ENVI 软件提供的图像分割工具,对遥感图像进行分割。 其中,可以根据需要选择不同的分割算法和参数设置,以达到最佳的分割效果。
(4)线性地物信息提取:根据已分割好的图像,利用 ENVI 软件提供的特征提
取工具,提取其中的线性地物信息。其中,可以根据需要选择不同的特征提取算 法和参数设置,以达到最佳的信息提取效果。
生物医学图像的分割和分类研究
生物医学图像的分割和分类研究随着医学技术的不断发展,生物医学图像在临床中的应用越来越广泛。
如何从海量的生物医学图像中,准确定位和提取出感兴趣的组织结构或病变信息成为了图像处理领域的重要研究方向之一。
图像分割与分类技术则是实现该目标的关键。
1. 图像分割技术图像分割是指将一幅图像分割成若干个子区域的过程,使得每个子区域内的像素具有相似性质,而不同区域内的像素具有不同特征。
在医学图像处理中,图像分割的目的是将图像中的器官、病灶等组织结构分割出来,便于医生进行定位和诊断。
目前,常见的医学图像分割方法主要包括阈值分割、边缘分割、区域生长、水平线分割以及基于深度学习的方法等。
阈值分割是一种简单易行的方法,通过设定合适的阈值将图像分割成两部分,分割速度较快,适用于处理噪声较少的图像。
但是该方法对图像的复杂度和光照条件比较敏感,容易导致分割结果不理想。
边缘分割则是通过检测图像中目标物体和背景之间的边界,使得分割线尽可能接近边界。
但是边界检测往往比较困难,且容易受到噪声的影响。
区域生长方法则是根据实际应用需求和图像特性进行生长,将感兴趣的像素点通过一定规则进行生长,以获取一段连续的区域。
但是区域生长方法对种子点的优选和细节信息的处理比较敏感,容易丢失细节信息。
水平线分割方法则主要适用于满足特定条件的二维图像。
利用图像中的一些特殊直线进行分割,但是对于非标准图像或者三维图像来说,容易出现过拟合或欠拟合的情况。
基于深度学习的方法则是近年来医学图像分割领域的研究热点。
通常采用卷积神经网络等模型进行训练。
通过大量标注好的图像数据集进行网络训练,进而自动完成图像分割。
近年来,基于深度学习的医学图像分割方法得到了极大的发展,深度学习技术已经成为了医学图像分割的主流方法。
2. 图像分类技术在医疗应用中,常常需要将生物医学图像划分为不同的分类,以便医生进行深入的研究和诊断。
一般而言,医学图像分类研究需要结合人类经验和计算机技术,即使得计算机能够自动地将生物医学图像进行分类,并对不同类别所代表的不同生物特征进行分析。
医学图像分割技术的研究进展
医学图像分割技术的研究进展医学图像分割技术是医学影像诊断中一个非常重要的环节。
分割的主要目的是提取出有用的生物信息并将其应用于医学影像诊断。
如今,医学图像分割技术已经在影像分析的许多领域得到了广泛应用,例如肿瘤分析、器官分析、脑部分析等。
随着计算机视觉和人工智能技术的快速发展,医学图像分割技术也在不断革新。
一、传统医学图像分割技术传统的医学图像分割技术主要依靠图像处理和计算机视觉技术,包括阈值分割、边缘检测、区域生长和分水岭等方法。
然而,这些方法只能在特定情况下使用,且需要人工干预和依赖经验。
例如,阈值分割方法是根据像素值的灰度级别来将图像分成多个区域,其最大的优点是分割速度快。
但是,阈值的选取是个难题,需要根据经验选取,也容易因背景噪声等影响导致分割效果不佳。
分水岭分割法被广泛应用于医学图像分割中,它是通过将每个点标记为水域或山峰,其山峰与水域的分界线即为分割线。
该方法在复杂图像中分割效果好,但是容易出现过渡分割和区域重叠等情况。
二、深度学习在医学图像分割中的应用深度学习作为计算机视觉的核心技术之一,已经开始在医学图像分割领域得到了广泛的应用。
与传统方法相比,深度学习技术在像素级别可以快速准确地解决许多医学图像分割的难题。
卷积神经网络(CNN)是最流行的深度学习架构,它通过训练学习图像的特征来实现分割。
例如,UNet和SegNet架构采用了编码-解码架构,能够准确分割图像中的器官和肿瘤等。
此外,生成对抗网络(GAN)也被广泛应用于医学图像分割领域。
GAN通过生成对抗过程训练分割模型,以获取更好的分割结果。
这项技术可以帮助医生更快速、准确地定位病变区域,并通过医疗数据分析更好地预测未来的病情发展。
三、未来的发展方向未来的医学图像分割技术应该是能够较好地解决不同疾病的复杂分割问题,同时还可以与其他技术相结合,例如医疗大数据分析、人工智能助手等。
未来的医疗健康市场成长迅速,人们可以期待医学图像分割技术在未来的应用前景。
基于内容的图像特征提取算法的研究共3篇
基于内容的图像特征提取算法的研究共3篇基于内容的图像特征提取算法的研究1基于内容的图像特征提取算法的研究随着数字图像的广泛应用,对图像的特征提取越来越重要。
传统的特征提取方法主要是基于图像的灰度值、边缘、纹理等内容,这些特征往往难以表达图像的语义信息。
因此,基于内容的图像特征提取算法被广泛研究,其目的是提取出更具有意义的特征。
一般来说,基于内容的图像特征提取算法可以分为以下几类:1. 目标检测方法目标检测是基于内容的图像特征提取的一个重要方向。
该方法的目的在于从图像中提取出感兴趣的目标,例如人脸、汽车、动物等。
目标检测方法通常包括以下几个步骤:对图像进行预处理、提取目标的特征、使用分类器对目标进行识别。
常见的目标检测方法包括Haar-like特征、HOG特征、SIFT特征等。
这些方法均是以特征提取为核心的算法,它们能够从图片中提取出有用的、具有语义的信息,并将其转化为数字化的向量,以便于机器学习算法对其进行处理。
2. 图像分割方法图像分割是基于内容的图像特征提取的另一个方向。
它旨在将图像分成若干个子区域,以便于进一步分析和处理。
图像分割方法可以分为有监督和无监督两种。
有监督的图像分割方法通过使用已知的训练数据来寻找最优的分割方法,常见的有监督算法包括分水岭算法、K-means聚类算法等。
无监督的图像分割方法则是依靠一些计算机视觉技术来自动完成图像分割的任务,常用的无监督算法包括基于颜色、纹理等特征的方法。
3. 特征匹配方法特征匹配是基于内容的图像特征提取的又一个方向。
该方法通过比较两张图片的特征点来判断它们之间的相似度。
常见的特征匹配算法包括SIFT、SURF、ORB等。
这些算法在图像比对、物体识别、图像拼接等应用方面都有着广泛的应用。
总的来说,基于内容的图像特征提取算法是计算机视觉领域中的一项重要研究内容。
这些算法通过对图像内容分析、提取图像中的语义信息,从而能够在图像检测、分类、识别、分割等方面起到重要的作用基于内容的图像特征提取算法是计算机视觉研究领域中的重要研究内容,它能够从图片中提取出有用的、具有语义的信息,并将其转化为数字化的向量,便于机器学习算法对其进行处理。
计算机图像处理中的特征提取与图像分割算法
计算机图像处理中的特征提取与图像分割算法计算机图像处理是人工智能领域的一个重要分支,涉及到对图像进行分析、处理和理解的技术和方法。
在图像处理中,特征提取和图像分割算法是两个关键的步骤。
本文将介绍计算机图像处理中的特征提取和图像分割算法,并讨论它们的应用和局限性。
一、特征提取特征提取是指从原始图像中选择并提取出能够描述图像内容的关键信息。
计算机视觉领域中常用的特征包括边缘、角点、纹理、颜色等。
下面将介绍几种常见的特征提取算法。
1. 边缘检测算法边缘是图像中灰度或颜色变化显著的区域,常用于图像分割和对象检测。
边缘检测算法可以通过检测图像中灰度或颜色的变化来提取出边缘信息。
常用的边缘检测算法包括Sobel算子、Canny算子等。
2. 角点检测算法角点是图像中具有显著角度变化的点,常用于图像匹配和物体追踪。
角点检测算法可以通过检测图像中灰度或颜色的变化来提取出角点信息。
常用的角点检测算法包括Harris角点检测算法、FAST角点检测算法等。
3. 纹理分析算法纹理是图像中的重要特征,用于描述图像中的细节信息。
纹理分析算法可以通过提取图像中的统计特征、频域特征或结构特征等来描述图像的纹理信息。
常用的纹理分析算法包括灰度共生矩阵、小波变换等。
4. 颜色特征提取算法颜色是图像中的一种重要视觉特征,可以用于图像分割、物体识别等任务。
颜色特征提取算法可以通过提取图像中的色彩分布、颜色矩等来描述图像的颜色信息。
常用的颜色特征提取算法包括颜色直方图、颜色矩等。
二、图像分割图像分割是指将图像划分为若干个具有独立语意的区域的过程。
图像分割在计算机视觉和图像处理领域有着广泛的应用,如目标检测、图像增强和医学图像分析等。
1. 基于阈值的分割算法基于阈值的分割算法是一种简单而有效的图像分割方法。
该方法根据像素值的灰度或颜色与设定的阈值进行比较,将图像分割为前景和背景两部分。
常用的基于阈值的分割算法包括全局阈值法、自适应阈值法等。
基于深度学习的图像特征自动提取方法研究
基于深度学习的图像特征自动提取方法研究一、深度学习在图像特征提取中的应用概述深度学习作为机器学习领域的一个重要分支,近年来在图像处理和计算机视觉领域取得了显著的进展。
图像特征自动提取作为深度学习应用的一个重要方向,其目的是从图像中自动学习到能够代表图像内容的关键信息。
深度学习模型,尤其是卷积神经网络(CNN),因其在图像识别和分类任务中的卓越性能,已成为图像特征提取的主流方法。
1.1 深度学习模型的核心特性深度学习模型的核心特性在于其能够自动学习图像的层次化特征表示。
从浅层到深层,模型能够逐步提取从边缘、纹理到更复杂语义信息的特征。
这种层次化的特征提取机制使得深度学习模型在图像识别和分类任务中表现出色。
1.2 图像特征提取的应用场景图像特征提取的应用场景非常广泛,包括但不限于以下几个方面:- 图像分类:将图像自动分类到预定义的类别中,如动物、植物、交通工具等。
- 目标检测:在图像中定位并识别出特定的目标,如人脸、车辆等。
- 图像分割:将图像分割成多个区域,每个区域包含具有相似属性的像素。
- 物体识别:识别图像中的物体并理解其三维结构和姿态。
二、基于深度学习的图像特征提取技术基于深度学习的图像特征提取技术主要依赖于卷积神经网络(CNN)架构。
CNN是一种前馈神经网络,其灵感来源于生物的视觉皮层机制,特别适合处理具有网格结构的数据,如图像。
2.1 卷积神经网络的基本结构卷积神经网络的基本结构包括卷积层、池化层、全连接层和分类层。
卷积层负责提取图像的局部特征,池化层用于降低特征的空间维度,全连接层将特征映射到最终的分类结果,分类层则负责输出最终的分类决策。
2.2 深度学习模型的关键技术深度学习模型的关键技术包括以下几个方面:- 激活函数:如ReLU、Sigmoid等,用于引入非线性,使得模型能够学习复杂的特征。
- 正则化技术:如Dropout、L2正则化等,用于防止模型过拟合,提高模型的泛化能力。
- 优化算法:如SGD、Adam等,用于优化模型的参数,提高模型的训练效率和性能。
基于多尺度分析的图像分割与特征提取技术研究
基于多尺度分析的图像分割与特征提取技术研究图像分割和特征提取是计算机视觉领域中的两项核心技术。
图像分割可以将一张图像分成多个部分,每个部分代表着图像的不同区域。
而特征提取则是从这些图像区域中提取出有意义的特征,并进行分析、分类和识别。
在计算机视觉领域中,图像分割和特征提取技术被广泛应用于医疗、工业、安全、自动驾驶等众多领域。
然而,由于图像中存在着不同比例的物体、不同程度的噪声、复杂的背景等因素,图像分割和特征提取的精度和鲁棒性、效率等方面都面临着一定的挑战。
针对这些挑战,近年来出现了一种新的技术——多尺度分析。
该技术可以将图像分割和特征提取过程中的尺度问题解决得更好,达到更准确和高效的结果。
首先,多尺度分析技术可以将图像分成不同的尺度,进行分层处理。
由于图像的特征在不同尺度下的表现不同,所以对不同尺度下的图像进行分析能够更好地识别和分割出不同的图像区域。
下面以图像分割为例:在传统的图像分割技术中,通常使用的是像素点,但是这会导致图像中较小的区域被忽视,造成分割不准确的情况。
因此,多尺度分析技术充分利用不同比例下的区域来进行分割。
在具体实现时,可以通过金字塔算法来逐步缩小图像的尺度,在每一层计算出图像的不同区域。
最后根据所有层的结果,得到整张图像的分割结果,从而实现更准确的图像分割效果。
其次,多尺度分析技术还可以应用于特征提取方面。
例如在物体检测中,多尺度特征可以更好地识别不同尺度的物体。
具体实现时,可以采用卷积神经网络 (CNN) 技术,构建多通道的卷积层和子采样层,从不同尺度的图像中提取出具有区分度的特征。
这样,在物体检测时,可以更准确地识别出不同尺度下的物体,并进行分类和识别。
最后,多尺度分析技术也可以用于分割和特征提取的集成。
其基本思想是将图像分成多个尺度,并对每个尺度进行分割和特征提取,然后将不同尺度下的结果进行集成,得到整张图像的分割和特征提取结果。
这种方法能够更好地解决图像中存在不同尺度和复杂背景问题,有利于提高图像分割和特征提取的准确性、鲁棒性和效率。
视频图像处理与特征提取算法研究
视频图像处理与特征提取算法研究随着科技的不断发展,视频图像处理领域的研究越来越受到人们的关注。
在众多视频图像处理技术中,特征提取算法是其中至关重要的一部分。
本文将探讨视频图像处理的相关技术以及特征提取算法的研究。
一、视频图像处理技术1. 图像去噪图像去噪是常见的视频图像处理技术之一。
通过消除图像中的噪声,可以提高图像的质量和清晰度。
常用的图像去噪方法包括中值滤波、小波变换等。
2. 边缘检测边缘检测是图像处理中的常用技术,它可以识别图像中的物体边界。
常用的边缘检测算法有Sobel、Canny等。
这些算法能够通过计算图像像素之间的梯度来寻找边缘。
3. 图像分割图像分割是将图像划分为若干个具有相似特征的区域的过程。
图像分割技术在很多应用中被广泛使用,如医学图像分析、目标识别等。
常见的图像分割算法有基于阈值、基于区域的方法。
4. 目标识别与跟踪目标识别和跟踪是视频图像处理的重要应用领域。
目标识别技术可以识别图像或视频中的目标物体,而目标跟踪技术能够追踪目标物体在视频序列中的运动轨迹。
常见的目标识别与跟踪算法有基于模板匹配、卡尔曼滤波等。
二、特征提取算法的研究1. 基本特征提取方法基本特征提取方法是最常见的特征提取算法之一。
它通过计算图像的局部特征,如颜色、纹理等来描述图像内容。
常用的基本特征提取算法有灰度共生矩阵、方向梯度直方图等。
2. 深度学习在特征提取中的应用近年来,深度学习技术在图像处理领域取得了巨大的突破。
深度学习算法可以通过构建深层神经网络来学习图像的抽象特征。
常见的深度学习模型有卷积神经网络、循环神经网络等。
3. 基于图像的特征提取基于图像的特征提取方法是一种通过分析图像形状、边缘等特征来描述图像内容的算法。
这种方法可以应用于图像检索、图像分类等领域。
常见的基于图像的特征提取算法有形态学、边缘检测等。
4. 基于时空特征的提取对于视频图像来说,除了静态图像的特征外,还存在时空特征。
基于时空特征的提取算法可以捕捉图像序列中的动态变化信息。
基于半监督学习的图像分割技术研究
基于半监督学习的图像分割技术研究随着图像处理技术的提高,图像分割技术已经成为计算机图像处理领域中的重要研究课题之一。
而基于半监督学习的图像分割技术则是当前研究的关键点之一。
本文将对这一技术进行相关的介绍及研究。
一、图像分割技术概述图像分割是将图像区域按照某些特定的标准进行分类、标记或者分割的过程。
该过程尤其重要,在大量人类和计算机交互的图像处理应用中也被广泛使用,如图像检索、人脸识别、车辆检测、机器视觉等等。
传统图像分割方法主要采用无监督分割与监督分割两种方法进行,对图像的要求也非常高。
对于半监督学习来说,图像中未标记部分的像素应该被流畅地分割出来,对于整个图像的处理也起到至关重要的作用。
二、基于半监督学习的图像分割技术原理基于半监督学习的图像分割技术是在具有半监督环境下的图像分割技术,即在数据中含有未标记数据的情况下,结合标记与未标记部分的信息,使用机器学习的技术进行图像分割。
该技术所依赖的主要是基于半监督学习的平衡采样。
采用相应的数据预处理方式(如训练样本的数量调节、去噪等),合理评估像素级别的特征向量,它可以对数据样本进行改进,并尝试实现像素精准标记。
三、基于半监督学习的图像分割技术的实现步骤1. 数据预处理在大多数情况下,半监督学习的最初阶段是图像数据的预处理。
该应用程序主要用于移除图像中可能存在的噪音,丢掉不需要的像素点,保证数据的质量。
2. 特征提取半监督图像分割技术中特征的选择和提取对图像分割精度的影响也非常大。
对于图像中的每个像素,都可以提取的内容很多,这可能导致特征向量过长,不利于后续的计算工作。
因此,合理选择一组简明有力的特征是十分必要的。
3. 半监督学习模型半监督学习模型的参数是通过标记的样本和未标记的样本进行训练的,而未标记的样本是半监督学习中非常重要的一部分,一般都是使用经验得出的,并经过数据预处理后,结合特征提取的结果计算阈值,即可实现半监督学习模型的构建。
4. 图像分割图像分割过程是将像素分成若干类的过程。
基于图像处理的车辆特征提取与辨识技术研究
基于图像处理的车辆特征提取与辨识技术研究随着交通工具的普及和城市交通的日益拥堵,车辆管理和监控的需求越来越重要。
传统的车辆特征提取和辨识方法存在一些局限性,如准确性低、速度慢以及对环境和光照条件的敏感性。
为了解决这些问题,基于图像处理的车辆特征提取与辨识技术应运而生。
车辆特征提取是指识别和提取车辆图片中的各种特征指标,如车辆颜色、车型、车牌等,而车辆辨识则是根据提取到的特征指标,对不同的车辆进行辨认和分类的过程。
首先,在车辆特征提取方面,通过利用图像处理技术,可以根据车辆的外观特征提取出车辆的颜色、形状、纹理等特征。
其中,颜色特征是车辆辨识中最关键的特征之一。
通过在图像中提取颜色信息,可以区别不同车辆的颜色,辅助车辆的辨识和分类。
形状特征是指车辆在图像中的外形,包括车身的轮廓、长度、宽度等。
利用形状特征,可以对车辆进行形状识别和分类。
纹理特征包括车辆表面的纹理和图案。
通过提取车辆的纹理特征,可以进一步提高车辆的辨识精度。
除了车辆特征的提取,还需要对图像进行预处理,以降低光照变化、背景噪声和图像模糊等对车辆辨识的干扰。
通过滤波器和增强算法,可以减少图像中的噪声,并增强车辆特征的对比度和清晰度。
同时,对车辆图像进行分割和定位,可以将车辆从图像中提取出来,便于后续的特征分析和辨识。
在车辆辨识方面,利用图像处理技术可以对提取到的车辆特征进行分类和匹配。
常见的辨识方法包括模板匹配、特征匹配和机器学习等。
模板匹配是将提取到的车辆特征与预先构建好的特征模板进行比较,从而进行匹配和辨识。
特征匹配是通过计算特征之间的相似度,判断车辆特征是否匹配,并进行辨识和分类。
机器学习是通过将提取到的车辆特征输入到机器学习模型中进行训练和分类,从而实现车辆的辨识。
此外,为了提高车辆特征的准确性和鲁棒性,可以采用多种图像处理算法的组合。
例如,可以结合颜色、形状和纹理特征,利用多种分类算法进行车辆的辨识和分类。
同时,深度学习技术的应用也为车辆特征提取和辨识带来了新的突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计图像分割和特征提取技术研究摘要图像分割是图像分析的第一步,是图像理解的重要组成部分,在有关图像处理的几乎所有领域具有广泛的应用。
因此,图像分割一直受到高度重视,对其研究具有十分重要的意义。
长期以来,研究人员提出了许多实用的分割算法。
随着统计学理论,神经网络,小波理论等在图像分割中的应用日益广泛,遗传算法、尺度空间、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,许多国内外学者也针对一些具体应用提出了许多实用有效的方法。
本文介绍了数字图像处理技术中图像分割技术的基本理论和三种图像分割方法(1)基于阈值图像分割;(2)基于边缘检测及算子分割;(3)基于区域特性的图像分割。
对基于点的分割方法进行了较全面的叙述,主要研究了图像分割方法中的边缘检测法,区域提取法和阈值分割法。
通过大量的理论研习。
并编写了MATLAB软件程序,对各分割方法进行了仿真实验,得到分割图像。
最后对于仿真进行了数据处理分析,验证了Canny算子的整体效果最好, Prewitt算子分割细致。
但对于一幅图像仅仅只有只用一种方法达不到很好的效果,而根据待分割图象的不同特点,结合已知的先验知识,研究符合具体图象特性的分割模型,才是提高图象分割的重要手段。
关键词:图像分割;边缘法;区域法;阈值法;分水岭分割法Lmage Segmentation And Feature ExtractionTechnology ResearchAbstractImage segmentation is the first step in image analysis, image segmentation is an important component of image understanding, in almost all areas of the image processing has widely application. As a result, image segmentation has been attached great importance to, its research has the very vital significance. For a long time,researchers put forward many practical segmentation algorithm. With statistics theory, the neural network, wavelet theory has been used increasingly in image segmentation, such as genetic algorithm, scale space, and nonlinear diffusion equation with the recent emergence of new methods and new ideas are constantly being used to solve the segmentation problem, many scholars at home and abroad for some specific application put forward many practical and effective method.Digital image processing techniques were introduced in This paper introduces the digital image processing technology of image segmentation technology in basic theory and three methods of image segmentation. (1) based on threshold image segmentation. (2) segmentation based on edge detection and operator; (3) the image segmentation based on region feature. On the segmentation method based on the point of narrative, mainly studies the edge of image segmentation method, region extraction method and threshold segmentation method. Through a lot of theory study. And write the MATLAB software, the segmentation method, the simulation experiment for image segmentation. Finally analyzed the data processing for simulation.Verify the Canny operator of the overall effect is best. Prewitt operator segmentation and detailed. But for an image only only one way to reach a good effect, and according to the different characteristics of for image segmentation, combined with the known prior knowledge, research in accordance with the specific image segmentation model, is an important means to improve the image segmentation.KEYWORDS:Segmentation;edge method;the regional method;threshold;watershed segmentation毕业设计目录第1章绪论 (1)1.1 课题研究背景与意义 (1)1.2国内外发展现状 (1)1.3 课题设计内容 (2)第2章概述 (3)2.1图像和数字图像 (3)2.2 数字图像处理简介 (3)2.3 图像处理文件格式 (3)2.4图像分割理论概述 (5)2.4.1 图像分割的定义 (5)2.4.2图像分割的目的和意义 (6)2.5图像分割主要研究方法 (6)2.5.1边缘检测法 (7)2.5.2区域提取法 (7)2.5.3阈值分割法 (7)2.5.4结合特定理论工具的分割方法 (8)2.6数字图像分割质量评价体系 (8)第3章图像分割方法综述 (10)3.1基于阈值图像分割算法 (10)3.2 基于边缘检测分割算法 (12)3.3 基于区域特性的图像分割算法 (14)第4章基于Matlab的图像分割仿真结果与讨论 (16)4.1 图像阈值分割算法研究 (16)4.1.1 Otsu 阈值图像分割算法 (16)4.1.2 直方图阈值算法 (17)4.2 图像边缘分割算法的研究 (19)4. 2.1 Canny 边缘检测算法 (19)4. 2.2 Log 分割算发 (20)4.3 区域特性图像分割方算法的研究 (21)4.3.1 分水岭图像分割算法 (22)4.4 本章小结 (23)4.4.1主要工作总结 (23)4.4.2 结论 (24)第5章总结 (26)参考文献 (28)致谢 (27)毕业设计第1章绪论1.1 课题研究背景与意义图像分割是图像处理中的一项关键技术,也是一经典难题,发展至今仍没有找到一个通用的方法,也没有制定出判断分割算法好坏的标准,对近几年来出现的图像分割方法作了较为全面的综述,探讨了图像分割技术的发展方向,对从事图像处理研究的科研人员具有一定的启发作用。
图像分割是图像分析的第一步,图像分割接下来的任务,如特征提取、目标识别等的好坏,都取决于图像分割的质量如何。
由于该课题的难度和深度,进展比较缓慢。
图像分割技术自20世纪70年代起一直受到人们的高度重视,虽然研究人员针对各种问题提出了许多方法,但迄今为止仍然不存在一个普遍适用的理论和方法。
另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。
最近几年又出现了许多新思路、新方法或改进算法,对一些经典方法和新出现的方法作了概述,并将图像分割方法分为阈值分割方法、边缘检测方法、区域提取方法和结合特定理论工具的分割方法4类。
然而,对图像分割的效果好坏或正确与否,还没有一个统一的评价判断准则。
不同的分割方法对同一幅图像的分割效果是不同的,而且同一种分割方法对一幅图像在不同空间下的分割效果也是不同的。
21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。
首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。
其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。
以上说明本次的基于MATLAB图像分割算法研究对社会需求具有重要意义。
1.2国内外发展现状自20世纪70年代起图像分割一直受到人们的高度重视,至今已提出上千种分割算法,但因尚无通用的分割理论,现提出的分割算法大都是针对具体问题的,并没有一种适合所有图像的通用分割算法。
另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。
最近几年又出现了许多新思路、新方法或改进算法,对一些经典方法和新出现的方法作了概述。
并将图像分割方法分为阈值分割方法、边缘检测方法、区域提取方法和结合特定理论工具的分割方法。
早期的图像研究中,图像的分割方法主要可以分为两大类。
一类是边界方法,这种方法的假设是图像分割结果的某个子区域在原来的图像中一定会有边缘存在;一类是区域方法,这种方法的假设是图像分割结果的子区域一定会有相同的性质,而不同区域的像素没有共同的性质。
这两种方法都有缺点和优点,有的学者也试图把两者结合起来进行图像分割,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。
所使用的教学工具和实验手段也是不断的扩展,从时域信号到频域信号处理,近来小波变换也应图像分割和特征提取技术研究用在图像分割当中。