人教版九年级数学期末复习专项训练
人教版九年级上册数学期末考试考前复习高频考点专题练习一遍过《一元二次方程》及答案
人教版九年级数学上册期末考试考前复习高频考点专题练习一遍过《一元二次方程》高频考点一:一元二次方程的定义1. 下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.42.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,23. 方程(4-a2)x2+(a+2)x+1=0,当a________时,它是一元二次方程,当a=________时,它是一元一次方程.4. 数学兴趣小组对关于x的方程(m+1)x m2+1+(m-2)x-1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并写出方程.(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.高频考点二:解一元二次方程1. 用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=192. 已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7 B.﹣1 C.7或﹣1 D.﹣5或33. 已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足x1-x2=3,则k的值是.4. 已知代数式7x(x+5)+10与代数式9x﹣9的值互为相反数,则x=.5. 现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.6. 解方程:(1)(2x﹣3)2=x2.(2)x2+4x﹣1=0.高频考点三:一元二次方程与参数问题1. 若关于x的方程mx2-2x+3=0有两个不相等的实数根,则m的取值范围是()A.m<-13B.m≤13,且m≠0 C.m<13,且m≠0D.m>132. 若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1C.k≤5,且k≠1D.k>53. 关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为.4. 如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是.5. 已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为.6. 已知关于x的一元二次方程x2+(2m-1)x+m2-3=0有实数根.(1)求实数m的取值范围;(2)当m取满足条件的最大整数时,求方程的解.高频考点四:一元二次方程的综合应用1.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对2. 某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315C.560(1﹣2x)2=315 D.560(1﹣x2)=3153. 如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=.4. 要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?5. 某小区在绿化工程中有一块长为18m、宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.6. 在△ABC中,∠B=90°,AB=6cm,BC=3cm,点P从A点开始沿着AB边向点B以1cm/s的速度移动,点Q从B 点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发:(1)经过多长时间,S△PQB=1S△ABC?2(2)经过多长时间,P,Q间的距离等于4√2cm?。
【期末专项复习】人教版数学九年级(上)第24章:圆 压轴题专项训练(附详细解答)
【期末专项复习】第24章:圆压轴题专项训练1.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.2.如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD 交AB的延长线于点P,弦CE交AB于点F,连接BE.(1)求证:PD是⊙O的切线;(2)若PC=PF,试证明CE平分∠ACB.3.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.4.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为证明你的猜想.5.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.6.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,∠D =2∠A.(1)求证:CD是⊙O的切线;(2)求证:DE=DC;(3)若OD=5,CD=3,求AC的长.7.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E 的坐标.8.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD.(2)求证:DE为⊙O的切线.(3)若∠C=60°,DE=,求⊙O半径的长.9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.10.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.13.已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.14.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.17.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证: DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.参考答案1.(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.2.证明:(1)连接OC,如图,∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PD是⊙O的切线;(2)∵OC⊥PC,∴∠PCB+∠BCO=90°,∵AB为直径,∴∠ACB=90°,即∠3+∠BCO,∴∠3=∠PCB,而∠1=∠3,∴∠1=∠PCB,∵PC=PF,∴∠PCF=∠PFC,而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,∴∠BCF=∠ACF,即CE平分∠ACB.3.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.4.解:BC与⊙O相切.理由如下:连接OD,如图,∵AD平分∠CAB,∴∠1=∠2,∵AD的中垂线交AB于O,∴OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故答案为相切.5.(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.6.(1)证明:连接OC,如图,∵OA=OC,∴∠ACO=∠A,∴∠COB=∠A+∠ACO=2∠A,又∵∠D=2∠A,∴∠D=∠COB.又∵OD⊥AB,∴∠COB+∠COD=90°.∴∠D+∠COD=90°.即∠DCO=90°,∴OC⊥DC,又点C在⊙O上,∴CD是⊙O的切线;(2)证明:∵∠DCO=90°,∴∠DCE+∠ACO=90°.又∵OD⊥AB,∴∠AEO+∠A=90°,又∵∠A=∠ACO,∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC;(3)解:∵∠DCO=90°,OD=5,DC=3,∴AB=2OC=8,又DE=DC=3,∴OE=OD﹣DE=2,∵∠A=∠A,∠AOE=∠ACB=90°,∴△AOE∽△ACB,∴=,即===,∴BC=AC,在△ABC中,∵AC2+BC2=AB2,∴AC2+AC2=82,∴AC=.7.解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB===,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).8.(1)证明:∵AB为直径,∴∠ADB=90°,∵BA=BC,∴AD=CD;(2)证明:连接OD,如图,∵AD=CD,AO=OB,∴OD为△BAC的中位线,∴OD∥BC,∴DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:在Rt△CDE中,∠C=60°,DE=,∴CE=DE=×2=2,∴CD=2CE=4,∵∠A=∠C=60°,AD=CD=4,在Rt△ADB中,AB=2AD=8,即⊙O半径的长为4.9.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.10.证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.11.解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.12.(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠ADB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.13.(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)解:∵AB为直径,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴=,即=,整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG===,∴∠EAG=30°,即∠EAF的度数为30°.14.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67。
人教版九年级数学期末考试综合复习测试题(含答案)
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
最新2022-2023学年人教版九年级上册数学期末复习试卷(含答案)
一、选择题(每小题4分,共40分)题1 2 3 4 5 6 7 8 9 10号答案1.方程x2-2x=0的根是( )A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=-22.下列图形中是中心对称图形的有( )个.A.1 B.2 C.3 D.43.抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1 C.直线x=-2 D.直线x=2 4.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为( )A.18°B.36°C.60°D.54°第4题图第6题图5.下列一元二次方程中有两个相等实数根的是( )A .2x 2-6x +1=0B .3x 2-x -5=0C .x 2+x =0D .x 2-4x +4=06.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ,点A 在边B ′C 上,则∠B ′的大小为( )A .42°B .48°C .52°D .58°7.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( )A .12B .23C .25D .358.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .πcmB .2πcmC .3πcmD .5πcm9.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A .23-23πB .43-23πC .23-43πD .23π第8题图第9题图第10题图10.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )A.①②B.②③C.②④D.①③④二、填空题(每小题4分,共32分)11.关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.12.若一个圆锥的底面圆半径为3 cm,其侧面展开图的圆心角为120°,则圆锥的母线长是______cm.13.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为________.14.如右图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为______.15.若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则1x1+1x2的值为________.16.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.17.已知当x 1=a ,x 2=b ,x 3=c 时,二次函数y =12x 2+mx 对应的函数值分别为y 1,y 2,y 3,若正整数a ,b ,c 恰好是一个三角形的三边长,且当a <b <c 时,都有y 1<y 2<y 3,则实数m 的取值范围是________.18.如右图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB于点P ,Q ,连接AC ,关于下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心,其中结论正确的是________(只需填写序号).三、解答题(共78分)19.(8分)用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0; (2)(y +2)2-(3y -1)2=0.20.(10分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.21.(8分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标;(2)求点Q在x轴上的概率.22.(8分)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k,使得x1·x2-x12-x22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.23.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数解析式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.24.(10分)如图,AB是⊙O的直径,ED︵=BD︵,连接ED,BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=22,求阴影部分的面积;(2)求证:DE=DM.25.(10分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.人教版九年级数学上册期末复习试卷1答案1.C 2.B 3.B 4.D 5.D 6.A 7.C 8.C 9.A10.C 11.1212.9 13.1414.54π15.-4 16.6 17.m>-52点拨:方法一:∵正整数a ,b ,c 恰好是一个三角形的三边长,且a <b <c ,∴a 最小是2,∵y 1<y 2<y 3,∴-m2×12<2.5,解得m >-2.5.方法二:当a <b <c 时,都有y 1<y 2<y 3,即⎩⎨⎧y 1<y 2,y 2<y 3.∴⎩⎪⎨⎪⎧12a 2+ma <12b 2+mb ,12b 2+mb <12c 2+mc , ∴⎩⎪⎨⎪⎧m >-12(a +b ),m >-12(b +c ).∵a ,b ,c 恰好是一个三角形的三边长,a <b <c ,∴a +b <b +c ,∴m >-12(a +b),∵a ,b ,c 为正整数,∴a ,b ,c 的最小值分别为2,3,4,∴m >-12(a +b)≥-12(2+3)=-52,∴m >-52,故答案为m >-52. 18.②③ 19.(1)x 1=-1+62,x 2=-1-62.(2)y 1=-14,y 2=32. 20.(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°,∵AB ⊥BC ,∴∠ABC =90°,∴∠DBE =∠CBE =30°,在△BDE 和△BCE 中,∵⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE.(2)四边形ABED 为菱形.理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC ,∴BA =BE ,AD =EC =ED ,又∵BE =CE ,∴BE =ED ,∴四边形ABED 为菱形. 21.(1)画树状图为:共有6种等可能的结果数,它们为(0,-2),(0,0),(0,1),(-2,-2),(-2,0),(-2,1).(2)点Q 在x 轴上的结果数为2,所以点Q 在x 轴上的概率为26=13. 22.(1)∵原方程有两个实数根,∴[-(2k +1)]2-4(k 2+2k)≥0,∴k ≤14,∴当k ≤14时,原方程有两个实数根.(2)不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立.理由如下:假设存在实数k ,使得x 1·x 2-x 12-x 22≥0成立.∵x 1,x 2是原方程的两根,∴x 1+x 2=2k +1,x 1·x 2=k 2+2k.由x 1·x 2-x 12-x 22≥0,得3x 1·x 2-(x 1+x 2)2≥0,∴3(k 2+2k)-(2k +1)2≥0,整理得-(k -1)2≥0,∴只有当k =1时,不等式才能成立.又∵由(1)知k ≤14,∴不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立. 23.(1)设围成的矩形一边长为x 米,则矩形的另一边长为(16-x)米.依题意得y =x(16-x)=-x 2+16x ,故y 关于x 的函数解析式是y =-x 2+16x.(2)由(1)知,y =-x 2+16x.当y =60时,-x 2+16x =60,解得x 1=6,x 2=10,即当x 是6或10时,围成的养鸡场面积为60平方米.(3)不能围成面积为70平方米的养鸡场.理由如下:由(1)知,y =-x 2+16x.当y =70时,-x 2+16x =70,即x 2-16x +70=0,因为Δ=(-16)2-4×1×70=-24<0,所以该方程无实数解.故不能围成面积为70平方米的养鸡场.24.(1)如图,连接OD ,∵CD 是⊙O 切线,∴OD ⊥CD ,∵OA =CD =22,OA =OD ,∴OD =CD =22,∴△OCD 为等腰直角三角形,∴∠DOC =∠C =45°,∴S 阴影=S △OCD -S 扇形OBD =12×22×22-45π×(22)2360=4-π.(2)证明:如图,连接AD ,∵AB 是⊙O 直径,∴∠ADB =∠ADM =90°,又∵ED ︵=BD ︵,∴ED =BD ,∠MAD =∠BAD ,在△AMD 和△ABD 中,⎩⎪⎨⎪⎧∠ADM =∠ADB ,AD =AD ,∠MAD =∠BAD ,∴△AMD ≌△ABD ,∴DM =BD ,∴DE =DM. 25.(1)设y 与x 的函数解析式为y =kx +b ,根据题意,得⎩⎨⎧20k +b =300,30k +b =280,解得⎩⎨⎧k =-2,b =340,∴y 与x 的函数解析式为y =-2x +340(20≤x ≤40).(2)由已知得W =(x -20)(-2x +340)=-2x 2+380x -6 800=-2(x -95)2+11 250,∵-2<0,∴当x ≤95时,W 随x 的增大而增大,∵20≤x ≤40,∴当x =40时,W 最大,最大值为-2(40-95)2+11 250=5 200(元). 26.(1)设抛物线解析式为y =a(x -2)2+9,∵抛物线与y 轴交于点A(0,5),∴4a +9=5,∴a =-1,y =-(x -2)2+9=-x 2+4x +5.(2)当y =0时,-x 2+4x +5=0,∴x 1=-1,x 2=5,∴E(-1,0),B(5,0),设直线AB 的解析式为y =mx +n ,∵A(0,5),B(5,0),∴m =-1,n =5,∴直线AB 的解析式为y =-x +5.设P(x ,-x 2+4x +5),∴D(x ,-x +5),∴PD =-x 2+4x +5+x -5=-x 2+5x ,∵AC =4,∴S四边形APCD =12×AC ×PD =2(-x 2+5x)=-2x 2+10x ,∴当x =-102×(-2)=52时,∴即点P(52,354)时,S 四边形APCD 最大=252.(3)如图,过点M 作MH 垂直于对称轴,垂足为点H ,∵四边形AENM 是平行四边形,∴MN ∥AE ,MN =AE ,∴△HMN ≌△AOE ,∴HM =OE =1.∴M 点的横坐标为x =3或x =1.当x =1时,M 点纵坐标为8,当x =3时,M 点纵坐标为8,∴M 点的坐标为M 1(1,8)或M 2(3,8),∵A(0,5),E(-1,0),∴直线AE 解析式为y =5x +5,∵MN ∥AE ,∴可设直线MN 的解析式为y =5x +b ,∵点N 在抛物线对称轴x =2上,∴N(2,10+b),∵AE 2=OA 2+OE 2=26,∵MN =AE ,∴MN 2=AE 2,∵M 点的坐标为M 1(1,8)或M 2(3,8),∴点M 1,M 2关于抛物线对称轴x =2对称,∵点N 在抛物线对称轴上,∴M 1N =M 2N ,∴MN 2=(1-2)2+[8-(10+b)]2=1+(b +2)2=26,∴b =3或b =-7,∴10+b =13或10+b =3.∴当M 点的坐标为(1,8)时,N 点坐标为(2,13),当M 点的坐标为(3,8)时,N 点坐标为(2,3).。
2024年人教版初三数学下册期末考试卷(附答案)
2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。
A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。
A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。
A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。
A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。
A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。
()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。
()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。
()4. 两个平行线上的任意一点,到这两条平行线的距离相等。
()5. 一个数的立方根和它的平方根是同一个数。
()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。
()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。
()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。
()4. 下列函数中,是一次函数的是y = 3x + 2。
()5. 一个数的立方根和它的平方根是同一个数。
()四、简答题(每题2分,共10分)1. 简述一次函数的定义。
2. 简述相似三角形的性质。
3. 简述等差数列的定义。
4. 简述平行线的性质。
5. 简述立方根和平方根的区别。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
人教版九年级数学上册期末考试考前复习高频考点专题练习一遍过《二次函数》及答案
人教版九年级数学上册期末考试考前复习高频考点专题练习一遍过《二次函数》一. 选择题.1. 下列函数不属于二次函数的是 ( ) A .y =(x -1)(x +2) B .y =21(x +1)2 C . y =1-3x 2D . y =2(x +3)2-2x 22. 下列二次函数的图象,不能通过函数y =3x 2的图象平移得到的是( ) A .y =3x 2+2B .y =3(x -1)2C .y =3(x -1)2+2D .y =2x 23. 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l4. 已知二次函数y =ax 2+bx +c 的图象如图所示,则 ( )A .b >0,c >0B .b >0,c <0C .b <0,c <0D .b <0,c >05. 将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线的表达式是 ( ) A .y =(x -4)2-6B .y =(x -1)2-3C .y =(x -2)2-2D .y =(x -4)2-26. 已知二次函数y =-(x -a )2-b 的图象如图所示,则反比例函数y =abx 与一次函数y =ax +b 的图象可能是 ( )7. 抛物线y =x 2+2x +m -1与x 轴有两个不同的交点,则m 的取值范围是 ( ) A .m <2B .m >2C .0<m ≤2D .m <-28. 某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=-x 2+10x ,y 2=2x ,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为 ( ) A .30万元B .40万元C .45万元D .46万元9.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天的销售量y (千克)与销售价x (元/千克)存在一次函数关系,如图所示.则最大利润是( )A .180元B .220元C .190元D .200元10. 已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是 ( )A .1B .2C .3D .4二.填空题.11. 若函数y =(m +2)22x -m+x +1是y 关于x 的二次函数,则m 的值为__________.12. 把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位, 得到抛物线的解析式是______________13. 已知抛物线 82++=kx x y 过点(2,-8),则=k .14. 如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.15. 如图,抛物线y =ax 2+c 与直线y =mx +n 交于A (﹣1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集是 .16. 已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则当2<y <5时,x 的取值范围是________值如下表:当n>0①bc>0;②当x>2时,y的值随x值的增大而增大;③n>4a;④当n=1时,关于x的一元二次方程ax2+(b+1)x+c=0的解是x1=-1,x2=3.其中一定正确的是___________(填序号即可)18. 如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.三.解答题.19. 如图,抛物线y=ax2-5ax+4a与x轴相交于点A,B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标.(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.20. 已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0.(2)若关于x的方程ax2+bx-8=0的一个根为4,求方程的另一个根.21. 如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.(1)飞行的水平距离是多少时,球最高?(2)球从飞出到落地的水平距离是多少?22. 在一个直角三角形的内部作一个矩形ABCD,其顶点A和点D分别在两直角边上,BC在斜边上.(1)设矩形的一边BC为x,那么AB边的长度如何表示?(2)设矩形的面积为y平方米,当x取何值时,y的最大值为多少?23. 某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)40 60 80日销售量y(件)80 60 40(1)求y与x的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润;(3)若物价部门规定该商品销售单价不能超过a元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y (件)与销售单价x (元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a 的值.24. 抛物线y =ax 2-ax +b 交x 轴于A ,B 两点(A 在B 的左边),交y 轴于C ,直线y =-x +4经过B ,C 两点. (1)求抛物线的解析式;(2)如图1,P 为直线BC 上方的抛物线上一点,PD ∥y 轴交BC 于D 点,过点D 作DE ⊥AC 于E 点.设m =PD +2110DE ,求m 的最大值及此时P 点坐标; (3)如图2,点N 在y 轴负半轴上,点A 绕点N 顺时针旋转,恰好落在第四象限的抛物线上点M 处,且∠ANM +∠ACM =180°,求N 两点坐标.。
2023年人教版九年级数学(下册)期末总复习及答案
2023年人教版九年级数学(下册)期末总复习及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .149.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =k x的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是( )A .﹣5B .﹣4C .﹣3D .﹣210.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.因式分解:39a a -=_______.3.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.4.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=__________厘米.5.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为BB',则图中阴影部分的面积为__________.6.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°(2)解分式方程:24 4x-+1=12x-2.已知关于x,y的方程组231034axx y⎧+=-⎪⎨+=⎪⎩与215x yx by-=⎧⎨+=⎩的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为6x的方程20++=的解.试判断该三角形的形状,并说明理由.x ax b3.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、D5、A6、A7、A8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、a(a+3)(a-3)3、-1或2或14、35、5342π- 6、8﹣2π三、解答题(本大题共6小题,共72分)1、(1)1;(2)分式方程的解为x=﹣1.2、(1)-12 (2)等腰直角三角形,理由见解析3、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1);(2)x ,抛物线解析式为x 2﹣3)点P 存在,坐标为(94). 5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
2023年人教版九年级数学(下册)期末复习题及答案
2023年人教版九年级数学(下册)期末复习题及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一5的绝对值是( )A .5B .15C .15-D .-5 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠36.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A.3cm B.6 cm C.2.5cm D.5 cm8.下列图形中,是中心对称图形的是()A.B.C.D.9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°10.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24二、填空题(本大题共6小题,每小题3分,共18分)123.2.分解因式:x2-9=______.3.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC ,则∠B ′CD=__________.5.如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A 在第一象限,反比例函数y =k x(x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是__________.6.如图,在平面直角坐标系中,抛物线()28203y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M .P 为抛物线的顶点.若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为__________.三、解答题(本大题共6小题,共72分)1.解方程:242111x x x ++=---2.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a ab -++的值.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、A5、B6、B7、D8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、(x +3)(x -3)3、24、30°5、836、2三、解答题(本大题共6小题,共72分)1、13x =2、(1)k>-1;(2)13、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)答案见解析;(2)13.6、(1) 2000元;(2) A 型车20辆,B 型车40辆.。
人教版九年级数学上册期末备考训练:二次函数压轴(含答案)
期末备考训练:二次函数压轴1.如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.2.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.3.如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设D为抛物线的顶点,连接DA、DB,试判断△ABD的形状,并说明理由;(3)设P为对称轴上一动点,要使PC﹣PB的值最大,求出P点的坐标.4.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴正半轴交于点C,对称轴为直线x=1,且OB=OC,(1)求抛物线的表达式;(2)D是直线BC上方抛物线上一点,DE⊥BC于E,若CE=3DE,求点D的坐标;(3)将抛物线向左平移,使顶点P落在y轴上,直线l与抛物线相交于M、N两点(点M,N都不与点P重合),若以MN为直径的圆恰好经过O,P两点,求直线l的表达式.5.如图,抛物线y=﹣x2﹣x+c与x轴交于A,B两点,且点B的坐标为(3,0),与y 轴交于点C,连接AC,BC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点P作x轴的垂线,交AC于点Q.(1)求A,C两点的坐标.(2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.6.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)7.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c 经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.9.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣2,3),过点A作AB⊥y轴,垂足为B,连结OA,抛物线y=﹣x2﹣2x+c经过点A,与x轴正半轴交于点C.(1)求c的值;(2)将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围;(3)连结BC,设点E在x轴上,点F在抛物线上,如果B、C、E、F构成平行四边形,请求出点E的坐标.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN⊥x轴于点N,交抛物线于点M,当△BCM面积最大时,求△BPN的周长.(3)在(2)的条件下,当△BCM面积最大时,在抛物线的对称轴上是否存在点Q,使△CNQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.11.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2﹣9(其中a>0)上,AB∥x轴,点P是抛物线的顶点,tan∠PBA=2,∠BAC=45°(1)填空:抛物线的顶点P的坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为10,当2m﹣3≤x≤2m+5时,y的最小值为5,求m的值.12.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.13.如图,二次函数y=x2+bx﹣3的图象l交x轴于点A(﹣3,0)、B(1,0),交y轴于点C,将图象l沿坐标轴翻折得到新的图象,与图象l开口方向相同的新的图象l1交x轴于点A1(在x轴的正半轴上)(1)求出b的值,并写出点A1的坐标以及新的图象所对应的函数解析式;(2)若P为y轴上的一个动点,E为直线A1C上的一个动点,请找出点P,使得PB+PE 最小,并求出最小值;(3)在y轴的正半轴上有一点M,使得∠MA1O=k∠OCB,直线A1M交图象l1于点D (点D在第二象限).①若k=2,试求点D的坐标;②若k=3,请直接写出OM的长.14.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO =3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.15.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.点D是直线BC上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,连接BD、CD,设点D的横坐标为m,△BCD的面积为s.试求出s与m的函数关系式,并求出s的最大值;(3)如图2,设AB的中点为E,作DF⊥BC,垂足为F,连接CD、CE,是否存在点D,使得以C、D,F三点为顶点的三角形与△CEO相似?若存在,请直接写出点D的坐标;若不存在,请说明理由.16.已知,如图在平面直角坐标系中,直线y=﹣x与抛物线y=﹣x2﹣x交于点A,抛物线与x轴的一个交点为B,以A为圆心,AB的长为半径的圆与y轴的正半轴交于点C,过点B作BD⊥x轴交圆于点D,连接CD交直线y=﹣x于点E.(1)请直接写出点A、B、C、D的坐标;(2)在抛物线上是否存在一点P,使得△AEP的面积等于△ACE的面积;若存在求出点P坐标;(3)若点M是直线y=﹣x上一个动点,点N抛物线上一个动点,若以点B、C、M、N 为顶点的四边形是平行四边形,求此时抛物线上点N的坐标.参考答案1.解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6).2.解:(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3;(2)①过点C作x轴的平行线交抛物线于点C′(2,﹣3),连接AC′交DE于点N,则此时△CAN的周长最小,将点A、C′的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AC′的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G,设NG=n,则NE=3﹣n,∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE=,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n=时,ME=,则m的最小值为:﹣;如下图所示,当点N与点D处时,m取得最大值,同理可得:m=5;故:﹣≤m≤5.3.解:(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴D(2,﹣1),∴AD2+BD2=(2﹣1)2+(﹣1)2+(2﹣3)2+(﹣1)2=4,∵AB2=22=4,∴AD2+BD2=AB2,∴△ADB是直角三角形,由对称性有AD=BD,∴△ADB是等腰直角三角形;(3)连接CA,延长CA与直线x=2交于点P,连接BP,如图2,∵A、B两点关于直线x=2对称,∴PB=P A,∴PC﹣PB=PC﹣P A=AC其值最大(∵另取一点P′,有P′C﹣P′B=P′C﹣P′A<AC),A令x=0,得y=x2﹣4x+3=3,∴C(0,3),∵A(1,0),∴易求直线AC的解析式为:y=﹣3x+3,当x=2时,y=﹣3x+3=﹣3,∴P(2,﹣3).4.解:(1)x=﹣,则b=2,设点C(0,c),则点B(c,0),将点B的坐标代入二次函数表达式并解得:c=3,故函数的表达式为:y=﹣x2+2x+3,函数的顶点为(1,4);(2)过点D作y轴的平行线交直线BC与点H,过点C作x轴的平行线交DH于点R,将点C、B的坐标代入一次函数表达式得:直线BC的表达式为:y=﹣x+3,设点D(m,﹣m2+2m+3),则点H(m,3﹣m),∵OB=OB=3,∴∠OCB=∠OBC=45°,∴CR=CH=m,DH=﹣m2+2m+3﹣3+m=﹣m2+3m,3DE=3×DH,CE=CH﹣EH=m﹣DH,∵CE=3DE,即RH=2DH,则m=2(﹣m2+3m),解得:m=,则点D(,);(3)平移前函数的顶点为(1,4),则平移后函数的表达式为:y=﹣x2+4,如图所示,以MN为直径的圆恰好经过O,P两点,则∠MON=∠MPN=90°,在点O处,过点M、N分别作x轴的垂线交于点G、H,∵∠GOM+∠NOH=90°,∠NOH+∠ONH=90°,∴∠MOG=∠ONH=α,设点M、N的坐标分别为(m,4﹣m2)、(n,4﹣n2),(m<n,m<0),则tan∠MOG=tan∠ONH=α,即:…①,在点P处,同理可得:…②,联立①②并整理得:m2+n2=4,mn=﹣1,解得:m=±,n=,将点M、N的坐标代入一次函数表达式:y=kx+b并解得:k=,b=3,故直线l的表达式:y=x+3.5.解:(1)把点B的坐标(3,0)代入抛物线解析式得,,解得:c=4,令y=0,则,解得x1=3,x2=﹣4,∴A(﹣4,0),C(0,4);(2)∵A(﹣4,0),C(0,4),设直线AC的解析式为y=kx+b,∴,∴,∴直线AC的解析式y=x+4,点P的横坐标为a,P(a,),则点Q(a,a+4),∴PQ==,∵,∴a=﹣2时,PQ有最大值;(3)存在,理由:点A、B、C的坐标分别为(﹣4,0)、(3,0)、(0,4),则BC=5,AB=7,AC=4,∠OAC=∠OCA=45°,将点B、C的坐标代入一次函数表达式:y=mx+n并解得:,∴直线BC的解析式为y=﹣x+4,设BC的中点为H,由中点坐标公式可得H(),∴过BC的中点H且与直线BC垂直直线的表达式为:y=,①当BC=BQ时,如图1,∴BC=BQ=5,设:QM=AM=n,则BM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q1(﹣1,3);②当BC=CQ时,如图1,∴CQ=5,则AQ=AC﹣CQ=4,∴,∴,③当CQ=BQ时,联立直线AC解析式y=x+4和y=,解得x=﹣(不合题意,舍去),综合以上可得点Q的坐标为:Q(﹣1,3)或().6.解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.7.解:(1)将点B坐标代入y=x+c并解得:c=﹣3,故抛物线的表达式为:y=x2+bx﹣3,将点B坐标代入上式并解得:b=﹣,故抛物线的表达式为:y=x2﹣x﹣3;(2)过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3),S 四边形ACPB =S △AOC +S △PCB ,∵S △AOC 是常数,故四边形面积最大,只需要S △PCB 最大即可,S △PCB =×OB ×PH =×2(x ﹣3﹣x 2+x +3)=﹣x 2+3x ,∵﹣<0,∴S △PCB 有最大值,此时,点P (2,﹣);(3)过点B 作∠ABC 的角平分线交y 轴于点G ,设∠MBC =∠ABC =2α,过点B 分别在x 轴之上和BC 之下作角度数为α的两个角,分别交y 轴于点N 交抛物线于点M ′,交抛物线于点M ,过点G 作GK ⊥BC 交BC 于点K ,延长GK 交BM 于点H ,则GH =GN ,BC 是GH 的中垂线,OB =4,OC =3,则BC =5,设:OG =GK =m ,则CK =CB ﹣HB =5﹣4=1,由勾股定理得:(3﹣m )2=m 2+1,解得:m =,则OG =ON =,GH =GN =2OG =,点G (0,﹣),在Rt △GCK 中,GK =OG =,GC =OC ﹣OG =3﹣=,则cos ∠CGK ==,sin ∠CGK =,则点K(,﹣),点K是点GH的中点,则点H(,﹣),则直线BH的表达式为:y=x﹣…②,同理直线BN的表达式为:y=﹣x+…③联立①②并整理得:27x2﹣135x+100=0,解得:x=1或4(舍去4),则点M(1,﹣);联立①③并解得:x=﹣,故点M′(﹣,);故点M(1,﹣)或(﹣,).8.解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,△POD有最大值,当m=时,其最大值为;∵﹣1<0,故S△POD(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S=×AH×BC=AB×OC,解得:AH=2,△ABC则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=,故点Q1(,﹣2),Q2(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q3(,),Q4(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(,)或(﹣,2)或(,).9.解:(1)将点A的坐标代入抛物线表达式得:﹣4+4+c=3,解得:c=3;(2)则抛物线的表达式为:y=﹣x2﹣2x+3=﹣(x+1)2+4,抛物线的对称轴是:x=﹣1,点A(﹣2,3),则直线AO的函数表达式为:y=﹣x,当x=﹣1时,y=,∵平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),∴4﹣3<m<4﹣,即1<m<;(3)设点F(m,n),n=﹣m2﹣2m+3,点E(s,0),①当BC是平行四边形的一条边时,则点B向右平移一个单位、向下平移3个单位得到C,同样:点F(E)向右平移一个单位、向下平移3个单位得到E(F),故:m+1=s,n﹣3=0,或m﹣1=s,n﹣3=0;解得:m=0或﹣2(舍去0)或m=﹣1,故点E的坐标为(﹣1,0)或(﹣2+,0)或(﹣﹣2,0);②当BC是平行四边形的对角线时,则由中点的性质得:1=m+s,3=n,解得:m=0或﹣2(舍去0),故点E(3,0);综上,点E的坐标为:(﹣1,0)或(﹣2+,0)、(﹣﹣2,0)或(3,0).10.解:(1)由题意可得:,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为:y=kx+b,则有:,解得:,∴直线BC的解析式为:y=﹣x+3.设P(x,﹣x+3),则M(x,﹣x2+2x+3),∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.∴S△BCM =S△PMC+S△PMB=(x B﹣x C)=,∴S△BCM==,∴当x=时,△BCM的面积最大.此时P(),∴PN=ON=,∴BN=OB﹣ON=3﹣=,在Rt△BPN中,由勾股定理得:PB=,C△BCN=BN+PN+PB=3+,∴当△BCM的面积最大时,△BPN的周长为3+;(3)由(2)知P点坐标为(),∴,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为x=1,设Q(1,a),∵C(0,3),N(),∴CQ2=12+(3﹣a)2,,,若△CNQ为等腰三角形,可分三种情况:当CQ=QN时,1+,解得:a=,∴点Q的坐标为(1,),当CQ=CN时,1+,解得:a=3,∴点Q的坐标为(1,3﹣),(1,3+),当QN=CN时,,解得:a=,∴点Q的坐标为(1,),(1﹣),综合以上可得点Q的坐标为(1,)或(1,3﹣)或(1,3+)或(1,)或(1,﹣).11.解:(1)∵y=ax2﹣2amx+am2﹣9=a(x﹣m)2﹣9∴顶点P的坐标为(m,﹣9)故答案为:(m,﹣9).(2)过点P作PD⊥AB于点D,过点C作CE⊥AB于点E∵AB∥x轴,且点A、B在抛物线上∴P A=PB∴AD=BD∵tan∠PBA==2∴PD=2BD=AB设AD=BD=n(n>0),则PD=AB=2n∴A(m﹣n,﹣9+2n)把A的坐标代入抛物线解析式得:a(m﹣n﹣m)2﹣9=﹣9+2n整理得:n=∴AB=,A(m﹣,﹣9+)∵∠AE C=90°,∠BAC=45°∴AE=CE设AE=CE=t(t>0),则C(m﹣+t,﹣9++t)把C的坐标代入抛物线解析式得:a(m﹣+t﹣m)2﹣9=﹣9++t整理得:t=∴CE==AB•CE=∴S△ABC(3)∵S==10,a>0△ABC∴a=1∴抛物线解析式为:y=(x﹣m)2﹣9∴抛物线最小值y=﹣9<5∴当2m﹣3≤x≤2m+5时,不包含有对称轴x=m①若2m+5<m,即m<﹣5时,x=2m+5对应最小值y=5∴(2m+5﹣m)2﹣9=5解得:m1=﹣5+(舍去),m2=﹣5﹣②若2m﹣3>m,即m>3时,x=2m﹣3对应最小值y=5∴(2m﹣3﹣m)2﹣9=5解得:m1=3+,m2=3﹣(舍去)综上所述,m的值为﹣5﹣或3+.12.解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,∴,解得:,∴直线AB的解析式为y=x﹣3,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或().(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△P AB =S△PGA+S△PGB===﹣,∴当m=时,△P AB面积的最大值是,此时P点坐标为().13.解:(1)函数l的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),即﹣3a=﹣3,解得:a=1,故函数l的表达式为:y=x2+2x﹣3,b=2,点A、A1关于y轴对称,故点A1(3,0);(2)点B′是点B关于y轴的对称点,过点B′作B′E⊥A1C交于点E,B′E交y轴于点P,则此时,PB+PE最小,最小值为B′E,∵OA1=OC=3,故直线A1C的表达式为:y=x﹣3…①,B′E⊥A1C,则B′E的函数表达式为:y=﹣x+s,将点B′坐标代入上式并解得:直线B′E的表达式为:y=﹣x﹣1…②,联立①②并解得:x=1,故点E(1,﹣2),则PB+PE的最小值B′E=2;(3)将图象A、B、C区域放大为图2,连接OB′,则∠BCB′=2OCB=2α,在点B右侧作∠BCB″=α,交x轴于点B″,则∠B′CB″=3α,则tan∠OCB===tanα,B′C=BC=,设∠CB′B=β,则tanβ=3,则sinβ=当k=2时,即∠MA1O=2∠OCB=2α,故点B作BH⊥CB′,BH=B′B sinβ=2×=,tan∠HCB=tan2α==,当k=3时,同理tan∠MA1O=tan3α=;①当k=2时,tan∠MA1O=tan2α=,则直线A1M的表达式为:y=﹣x+b,将点A1(3,0)的坐标代入上式并解得:直线A1M的表达式为:y=﹣x+,将A1M表达式与l的表达式联立并解得:x=﹣(正值也舍去),故点D(﹣,),②k=3时,tan∠MA1O=tan3α=;则OM=OA1tan∠MA1O=×3=.14.解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).15.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0)∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)过点D作DM∥y轴,交BC于点M∵当x=0时,y=﹣x2+2x+3=3∴C(0,3)∴直线BC解析式为y=﹣x+3∵点D的横坐标为m(0<m<3)∴D(m,﹣m2+2m+3),M(m,﹣m+3)∴DM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴s=OB•DM=(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+∴s与m的函数关系式为s=﹣m2+m,s的最大值为.(3)存在点D,使得以C、D,F三点为顶点的三角形与△CEO相似如图2,连接BD∵点E为AB中点,A(﹣1,0),B(3,0),C(0,3)∴E(1,0),OE=1,OC=3,CD2=m2+(﹣m2+2m+3﹣3)2∴CE=∴sin∠OCE=,cos∠OCE=∵BC=,DF⊥BC∴s=BC•DF=﹣m2+m∴DF=∵以C、D,F三点为顶点的三角形与△CEO相似,∠CFD=∠COE=90°∴△CFD∽△COE或△CFD∽△EOC①若△CFD∽△COE,则∠FCD=∠OCE∴sin∠FCD=∴10DF2=CD2∴10()2=m2+(﹣m2+2m)2解得:m1=4(舍去),m2=∴﹣m2+2m+3=﹣+5+3=∴D(,)②若△CFD∽△EOC,则∠FDC=∠OCE∴cos∠FDC=∴10DF2=9CD2∴10()2=9[m2+(﹣m2+2m)2]解得:m1=0(舍去),m2=∴﹣m2+2m+3=﹣+3+3=∴D(,)∴点D的坐标为(,)或(,).16.解:(1)∵直线y=﹣x与抛物线y=﹣x2﹣x交于点A,∴﹣x=﹣x2﹣x,∴x1=0,x2=﹣1,∴点A(﹣1,1),令﹣x2﹣x=0,解得x1=﹣3,x2=0,∴B(﹣3,0),AB==,设点C的坐标为(0,c),∴AC==,解得c=3,∴C(0,3),设点D的坐标为(﹣3,n),∴AD==,解得n=2,∴D(﹣3,2).∴A(﹣1,1)、B(﹣3,0)、C(0,3)、D(﹣3,2).(2)过点C作OA的平行线,则解析式为y=﹣x+3,将y=﹣x+3向下平移6个单位后与抛物线的交点就是所求的点P,令﹣x﹣3=﹣x2﹣x,解得,,∴点P的坐标为(2,﹣5)或(﹣3,0).(3)①当BC为对角线时,点O即为点N,∴N1(0,0).②当BC为边时,过N作y轴的平行线交直线OA于点Q,∵OA⊥BC,BC∥MN,∴∠QMN=90°,又∵BC=OB=3,∴MN=3,∵∠MQN=45°,∴NQ=MN=6,设N(a,﹣a2﹣a),则点Q(a,﹣a),∴﹣a﹣(﹣a2﹣a)=6,解得a1=3,a2=﹣4,∴N2(3,﹣9),N3(﹣4,﹣2).综上所述,点N的坐标为(0,0)、(3,﹣9)、(﹣4,﹣2).。
人教版九年级数学上册 期末复习(易错题精选、一元二次方程)二套含答案
人教版九年级数学上册期末复习01—易错题精选一、选择题(每小题3分,共24分)1.关于x 的方程22210m x x --+=()有实数解,那么m 的取值范围是( )A .2m ≠B .3m ≤C .3m ≥D .32m m ≤且≠2.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大3.如图①是33⨯正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A .4种B .5种C .6种D .7种4.如图,在正方体的表面展开图中,要将a -、b -、c -填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字和均为零的概率为( ) A .12 B .13C .14D .16 5.有两个一元二次方程:2:0M ax bx c ++=,2:0N cx bx a ++=,其中0a c +=,下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =6.如图,在ABC △中,AB AC =,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是( )A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点7.已知二次函数2y x bx c =++的图象过点1A m (,),3B m (,),若点12M y -(,),21N y -(,),38K y (,)也在二次函数2y x bx c =++的图象上,则下列结论正确的是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.已知抛物线20y ax bx c a =++(>)过20-(,),23(,)两点,那么抛物线的对称轴( ) A .只能是1x =- B .可能是y 轴 C .在y 轴右侧 D .在y 轴左侧二、填空题(每小题4分,共32分)1.请写出一个符合下列全部条件的函数解析式________;(1)图象不经过第三象限;(2)当1x -<时,y 随x 的增大而减小;(3)图象经过点11-(,). 2.若抛物线2y ax c =+与x 轴交于点0A m (,),0B n (,),与y 轴交于点0C c (,),则ABC △称为“抛物三角形”.特别地,当0mnc <时,称ABC △为“倒抛物三角形”,此时a ,c 应分别满足条件________.3.已知圆的两条平行弦分别长6dm 和8dm ,若这圆的半径是5dm ,则两条平行弦之间的距离为________.4.如图,AB 是O e 的弦,6AB =,点C 是O e 上的一个动点,且°45ACB ∠=.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是________.5.有四张正面分别标有数字3-,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为________.6.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转°60得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是________.7.如图,已知二次函数20y ax bx c a =++(≠)的图象经过点(1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中110x -<<,212x <<,下列结论:①0abc <;②2a b a -<<;③284b a ac +<;④10a -<<,其中正确结论的序号是________.8.如图,已知直线334y x =-+分别交x 轴、y 轴于点A ,B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是________.三、解答题(共64分)1.(6分)用四块如图①所示的瓷砖拼铺一个成正方形的地板,使拼铺的图案成轴对称图形或中心对称图形,请你在图②和③中各画出一种拼法.(要求两种拼法各不相同)2.(8分)张彬和王华两位同学为得到一张观看足球比赛的入场券,商量后计划通过转盘游戏来决定,并各自设计了一种方案:张彬:将一个可以自由转动并标有阴影区域面积的转盘(如图①),随意转动,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将分成4等分且分别标有数字1,2,3,4的转盘,随意转动两次,当指针所指两个数字之和为偶数,王华得到入场券;否则,张彬得到入场券.(1)使用张彬设计的方案,随机转动转盘一次,指针指向阴影区域的概率是多少?(2)请你运用所学的概率知识,帮助张彬和王华选出公平的游戏方案.3.(11分)如图①所示,AB 是O e 的直径,AC 是弦,直线EF 和O e 相切于点C ,AD EF ⊥,垂足为D .(1)求证:DAC BAC ∠=∠;(2)若把直线EF 向上平行移动,如图②所示,EF 交O e 于G ,C 两点,若题中的其他条件不变,试探究与DAC ∠相等的角是哪一个?说明理由.4.(12分)等腰ABC △的直角边10cm AB BC ==,点P ,Q 分别从A ,C 两点同时出发,均以1cm /秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t ,PCQ △的面积为S .(1)求出S 关于t 的函数关系式;(2)当点P 运动几秒时,PCQ ABC S S =△△?(3)作PE AC ⊥于点E ,当点P ,Q 运动时,线段DE 的长度是否改变?证明你的结论.5.(13分)已知Rt ABO △中,边1AB OB ==,°90ABO ∠=.【问题探究】(1)以AB 为边,在Rt ABO △的右边作正方形ABCD ,如图①,则点O 与点D 的距离为________.(2)以AB 为边,在Rt ABO △的右边作等边三角形ABC ,如图②,求点O 与点C 的距离.【问题解决】(3)若线段1DE =,线段DE 的两个端点D ,E 分别在射线OA ,OB 上滑动,以DE 为边向外作等边三角形DEF ,如图③,则点O 与点F 的距离有没有最大值?如果有,求出最大值;如果没有,说明理由.6.(14分)如图,抛物线2:L y x bx c =++经过A (0,3),B (1,0)4两点,点M 为顶点.(1)求b ,c 的值;(2)将OAB △绕点B 顺时针旋转:①当旋转°90时,点A 落在点C 的位置,将抛物线L 通过向上或向下平移后经过点C .求平移后所得抛物线1L 的表达式;②记OAB △绕点B 顺时针旋转过程中点A 的对应点为A ',点O 的对应点为O ',在抛物线1L 上是否存在A ',使得以点O ,A ,O ',A '为顶点的四边形是平行四边形?若存在,求出点A '的坐标;若不存在,请说明理由.期末复习—易错题精选参考答案一、1.【答案】B2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】D .二、1.【答案】211y x =--()(答案不唯一) 2.【答案】0a <,0c >3.【答案】1dm 7dm 或4.【答案】5.【答案】146.【答案】1.57.【答案】①②8.【答案】4144-+-或或三、1.【答案】答案不唯一.2.【答案】解:(1)根据转盘中阴影部分扇形的圆心角度数和°°°10070170+=则P (指针指向阴影区域)°°1701736036==.(2)由(1)得张彬设计的方案中,张彬得到入场券的概率为1736P =,王华得到入场券的概率为171913636P =-=,则张彬的方案不公平. 利用王华的方案画树状图如下:由树状图得,共有16种等可能的结果,两次数字之和为偶数的有8种,则王华得到入场券的概率为81162P ==,张彬得到入场券的概率为12P =,∴王华的设计方案公平. 3.【答案】(1)证明:如图①,连接OC .EF Q 与O e 相切于点C ,OC EF ∴⊥...AD EF AD OC OCA DAC ∴∴∠=∠Q ⊥,∥.OA OC OCA BAC DAC BAC =∴∠=∠∴∠=∠Q ,,(2)解:BAG ∠与DAC ∠相等.理由如下:如图②,连接BC ,则B AGD ∠=∠.AB Q 是直径,AD EF ⊥,°90BCA GDA ∴∠=∠=,°90B BAC ∴∠+∠=,°90AGD DAG ∠+∠=.BAC DAG ∴∠=∠,BAC CAG DAG CAG ∴∠-∠=∠-∠.即BAG DAC ∠=∠.4.【答案】解:(1)当10t <秒时,P 在线段AB 上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). 当10t >秒时,P 在线段AB 的延长线上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). (2)1502ABC S AB BC ==Q g △, 211010502PCQ t S t t ∴=-=△当<秒时,(). 整理,得2101000t t -+=,无解.当10t >秒时,2110502PCQ S t t =-=△().整理,得2101000t t --=,解得5t =±.∴当点P 运动5±(秒时,PCQ ABC S S =△△.(3)当点P ,Q 运动时,线段DE 的长度不会改变.证明:过Q 作QM AC ⊥,交直线AC 于点M .易证APE QCM △≌△,2AE PE CM QM ∴====. ∴四边形PEQM 是平行四边形,且DE 是对角线EM 的一半.又EM AC ==Q ,DE ∴=.∴当点P ,Q 运动时,线段DE 的长度不会改变.同理,当点P 在点B 右侧时,DE =综上所述,当点P ,Q 运动时,线段DE 的长度不会改变.5.【答案】(1(2)过点C 作CD OB ⊥,垂足为点D .连接OC ,则°30CBD ∠=.1AB BC ==Q ,∴在Rt CBD △中,12CD =,BD =,1OD ∴=+.∴在Rt CDO △中,OC ==.(3)点O 与点F 的距离有最大值. 作ODE △的外接圆M e ,连接MD ,ME ,MF ,MO ,OF ,则OF MO MF +≤. 设MF 与DE 交于点N .°°4590AOB DME ∠=∴∠=Q ,.1DE =Q ,∴可得M e 的半径为2MD ME MO ===. MD ME =Q ,DF EF =,MF ∴垂直平分DE .1122MN DE ∴==,22NF EF ==.12OF OM MF ∴+=+≤OF ∴最大值. 6.【答案】解:(1)已知抛物线L 经过点A (0,3),B (1,0),将其代入2y x bx c =++,得310c b c =⎧⎨++=⎩,,解得43.b c =-⎧⎨=⎩, 即b ,c 的值分别为4-和3.(2)①根据点A ,B 坐标,可知3OA =,1OB =,如图,将OAB △绕点B 顺时针旋转°90后,可得点C 坐标为(4,1).当4x =时,由243y x x =-+得3y =,可知抛物线L 经过点(4,3),∴将原抛物线沿y 轴向下平移2个单位后过点C .∴平移后的抛物线1L 的表达式为241y x x =-+.②存在.如图,OAB △绕点B 旋转过程中,当点A ',B ,A 三点在同一直线上时满足以点O ,A ,O ',A '为顶点的四边形是平行四边形.AB A B '=Q ,OB O B '=,∴四边形OAO A ''为平行四边形.根据图形的旋转性质,可知3O A OA ''==,1OB O B '==,且°90AOB A O B ''∠=∠=, ∴点A '的坐标为23-(,). 又Q 抛物线1L 的表达式为241y x x =-+,∴抛物线1L 的顶点坐标为23-(,). ∴点A '坐标与抛物线1L 的顶点坐标重合.∴抛物线1L 上存在一点23A '-(,),使得以点O ,A ,O ',A '为顶点的四边形是平行四边形.人教版九年级数学上册期末专项复习02—一元二次方程考点1 巧用一元二次方程的定义及相关概念求值题型1 利用一元二次方程的定义确定字母的取值1.已知231m x -=()是关于x 的一元二次方程,则m 的取值范围是( ) A .3m ≠B .3m ≥C .2m -≥D .23m m -≥且≠2.已知关于x 的方程211210m xm m x +++--=()().(1)m 取何值时,它是一元二次方程?并写出这个方程;(2)m 取何值时,它是一元一次方程?题型2 利用一元二次方程的项的概念求字母的取值1.若一元二次方程2243680a x a x a -+++-=()()没有常数项,则a 的值为________.2.已知关于x 的一元二次方程221510m x x m -++-=()的常数项为0,求m 的值.题型3 利用一元二次方程的根的概念求字母或代数式的值1.已知关于x 的方程20x bx a ++=的一个根是0a a -(≠),则a b -的值为() A .1- B .0 C .1 D .22.已知关于x 的一元二次方程2243160k x x k +++-=()的一个根为0,求k 的值.3.已知实数a 是一元二次方程2201610x x -+=的根,求代数式22120152016a a a +--的值.题型4 利用一元二次方程根的概念解决探究性问题1.已知m ,n 是方程2210x x --=的两个根,是否存在实数a 使22714367m m a n n -+--()()的值等于8?若存在,求出a 的值;若不存在,请说明理由.考点2 一元二次方程的解法归类类型1 限定方法解一元二次方程方法1 形如20x m n n +=()(≥)的一元二次方程用直接开平方法求解1.方程24250x -=的解为()A .25x = B .52x = C .52x =± D .25x =±2.用直接开平方法解下列一元二次方程,其中无解的方程为()A .255x -=B .230x -=C .240x +=D .210x +=()方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解1.用配方法解方程234x x +=,配方后的方程变为()A .227x -=()B .221x +=()C .221x -=()D .222x +=()2.解方程:2420x x +-=.3.已知221016890x x y y -+-+=,求x y的值.方法3 能化成形如0x a x b ++=()()的一元二次方程用因式分解法求解1.一元二次方程22x x x -=-()的根是()A .1-B .0C .1和2D .1-和22.解下列一元二次方程:(1)220x x -=;(2)21690x -=;(3)2441x x =-.方法4 如果一个一元二次方程易于化为它的一般式,则用公式法求解1.用公式法解一元二次方程2124x x =-,方程的解应是()A .x =B .xC .xD .x2.用公式法解下列方程.(1)23170x x +-=();(2)24352x x x --=-.类型2 选择合适的方法解一元二次方程1.方程24490x -=的解为() A .27x = B .72x =C .172x =,272x =-D .127x =,227x =- 2.一元二次方程293x x -=-的根是()A .3B .4-C .3和4-D .3和43.方程135x x +-=()()的解是()A .11x =,23x =-B .14x =,22x =-C .11x =-,23x =D .14x =-,22x = 4.解下列方程.(1)23360y y --=;(2)22310x x -+=.类型3 用特殊方法解一元二次方程方法1 构造法1.解方程:2619100x x ++=.2.若m ,n ,p 满足8m n -=,2160mn p ++=,求m n p ++的值.方法2 换元法a .整体换元1.若280a b a b +++-=()(),则a b +的值为()A .4-或2B .3或32- C .2-或4 D .3或2- 2.已知22260x xy y x y -++--=,则x y -的值是()A .2-或3B .2或3-C .1-或6D .1或6-3.解方程:223220x x ---+=()().4.解方程:123448x x x x ----=()()()().b .降次换元1.解方程:432635623560x x x x -+-+=.c .倒数换元1.解方程:2322x x x x --=-.方法3 特殊值法1.解方程:2013201420152016x x --=⨯()().考点3 根的判别式的四种常见应用题型1 利用根的判别式判断一元二次方程根的情况1.已知关于x 的方程2110kx k x +--=(),下列说法正确的是()A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解2.已知方程220x x m --=没有实数根,其中m 是实数,试判断方程2210x mx m m +++=()有无实数根.题型2 利用根的判别式求字母的值或取值范围1.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.2.已知关于x 的一元二次方程2220mx m x -++=(),(1)证明:不论m 为何值,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.题型3 利用根的判别式求代数式的值1.已知关于x 的方程22140x m x +-+=()有两个相等的实数根,求21212m m m--+()的值.2.已知关于x 的一元二次方程2200mx nx m +-=(≠)有两个相等的实数根,求222416mn m n ++-()的值.题型4 利用根的判别式确定三角形的形状1.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根,试判断此三角形的形状.2.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程204a c a c x bx -+++=()有两个相等的实数根,试判断此三角形的形状.考点4 一元二次方程与三角形的综合题型1 一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程27120x x -+=的解,则第三边的长为()A .3B .4C .3或4D .无法确定 2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3cm 和7cm ,第三边长为cm a ,且整数a 满足210210a a -+=,求三角形的周长.题型2 一元二次方程与直角三角形的结合1.已知一个直角三角形的两条直角边的长恰好是方程217600x x -+=的两个根,则这个直角三角形的斜边长为________.2.已知a ,b ,c 分别是ABC △的三边,当0m >时,关于x 的一元二次方程220c x m b x m ++--=()()有两个相等的实数根,试判断ABC △的形状,并说明理由.3.已知ABC △的三边a ,b ,c 中,1a b =-,1c b =+,又已知关于x 的方程2420120x x b -++=的根恰为b 的值,求ABC △的面积.题型3 一元二次方程与等腰三角形的综合1.等腰三角形一条边的长为3,另两条边的长是关于x 的一元二次方程2120x x k -+=的两个根,则k 的值是()A .27B .36C .27或36D .182.已知关于x 的一元二次方程220a c x bx a c +++-=()(),其中a ,b ,c 分别为ABC △的三边的长.(1)如果1x =-是方程的根,试判断ABC △的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC △的形状,并说明理由;(3)如果ABC △是等边三角形,试求这个一元二次方程的根.考点5 根与系数的关系的四种应用类型 题型1 利用根与系数的关系求代数式的值1.设方程24730x x --=的两根为1x ,2x ,不解方程求下列各式的值. (1)1233x x --()(); (2)211211x xx x +++; (3)12x x -.题型2 利用根与系数的关系构造一元二次方程1.构造一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.题型3 利用根与系数的关系求字母的值或取值范围1.已知关于x 的一元二次方程22210x mx m --+=的两根的平方和是294,求m 的值.2.已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)若该方程的一个根为1,求a 的值及该方程的另一根.题型4 巧用根与系数的关系确定字母系数的存在性4.已知1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根,是否存在实数k ,使12123222x x x x --=-()()成立?若存在,求出k 的值;若不存在,请说明理由.考点6:可化为一元二次方程的分式方程的应用 题型1 营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)题型2 行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?应用3 工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?考点7 几种常见的热门考点 题型1 一元二次方程的根1.若一元二次方程220150ax bx --=有一根为1x =-,则a b +=________.2.若关于x 的一元二次方程20ax bx c ++=有一根为1-,且2a =,求20162015a b c+()的值.题型2 一元二次方程的解法1.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()2.一元二次方程2230x x --=的解是() A .11x =-,23x =B .11x =,23x =-C .11x =-,23x =-D .11x =,23x =3.选择适当的方法解下列方程:(1)21210x x x -+-=()();(2)221327x x x -=+-()().题型3 一元二次方程根的判别式1.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是() A .1a <B .1a >C .1a ≤D .1a ≥2.已知关于x 的一元二次方程210x m +-=()有两个实数根,则m 的取值范围是()A .34m -≥ B .0m ≥ C .1m ≥ D .2m ≥3.在等腰三角形ABC 中,三边长分别为a ,b ,c .其中5a =,若关于x 的方程2260x b x b +++-=()() 有两个相等的实数根,求ABC △的周长.题型4 一元二次方程根与系数的关系1.已知α,β是关于x 的一元二次方程22230x m x m +++=()的两个不相等的实数根,且满足111αβ+=-,则m 的值是() A .3B .1C .3或1-D .3-或12.关于x 的方程231210ax a x a -+++=()()有两个不相等的实数根1x ,2x ,且有12121x x x x a +-=-,求a 的值.3.设1x ,2x 是关于x 的一元二次方程222420x ax a a +++-=的两个实数根,当a 为何值时,2212x x +有最小值?最小值是多少?题型5 一元二次方程的应用1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?2.某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个图形,如图所示,甲、乙两点分别从直径的两端点A ,B 出发,以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程1cm ()与时间t s ()满足关系:2131022t t t =+(≥),乙以4cm/s 的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?题型6 新定义问题1.若1x ,2x 是关于x 的方程20x bx c ++=的两个实数根,且122x x k +=(k 是整数),则称方程20x bx c ++=为“偶系二次方程”.如方程26270x x --=,2280x x --=,227304x x +-=,26270x x +-=,2440x x ++=都是“偶系二次方程”.判断方程2120x x +-=是否是“偶系二次方程”,并说明理由.期末专项复习—一元二次方程答案解析考点1 题型1 1.【答案】D【解析】由题意,得3020m m -⎧⎨+⎩≠,≥,解得2m -≥且3m ≠.2.【答案】解:(1)当21210m m ⎧+=⎨+⎩,≠时,它是一元二次方程,解得1m =.当1m =时,原方程可化为2210x x --=.(2)当22010m m ⎧-⎨+=⎩≠,或者当120m m ++-()≠且211m +=时,它是一无一次方程.解得1m =-或0m =.故当1m =-或0m =时,它是一元一次方程. 题型2 1.【答案】8【解析】由题意得80240.a a -=⎧⎨-⎩,≠解得8a =.2.【答案】由题意,得21010m m ⎧-=⎨-⎩,≠,解得1m =-.题型3 1.【答案】A【解析】∵关于x 的方程20x bx a ++=的一个根是0a a -(≠),20a ab a ∴-+=.10a a b ∴-+=().0a Q ≠,1.a b ∴-=-2.【答案】解:把0x =代入2243160k x x k +++-=(),得2160k -=,解得14k =,24k =-.40k +Q ≠,4k ∴-≠,4k ∴=.3.【答案】解:∵实数a 是一元二次方程2201610x x -+=的根,2201610a a ∴-+=.221201620161a a a a ∴+=-=-,.22222120162015201520152016120162016a aa a a a a a a a a +∴--=--=--=-=-题型41.【答案】解:由题意可知22210210m m n n --=--=,,22227143677232773747m m a n n m m a n n a a ⎡⎤⎡⎤∴-+--=-+--=+-=-+⎣⎦⎣⎦()()()()()()(),由 478a -+=()得9a =-,故存在满足要求的实数a ,且a 的值等于9-.考点2 类型1 方法1 1.【答案】C 2.【答案】C 方法2 1.【答案】C2.【答案】解:22242042262x x x x x x +-=+=+=+=,,(),1222x x =-=-3.【答案】解:2222221016890102516640580x x y y x x y y x y -+-+=-++-+=-+-=,()(),()(),558.8x x y y ∴==∴=,,方法3 1.【答案】D2.【答案】解:(1)21220200 2.x x x x x x -=-===,(),, (2)21233169043430.44x x x x x -=+-==-=,()(),, (3)2221214414410210.2x x x x x x x =--+=-===,,(),方法4 1.【答案】B2.【答案】解:(1)2231703730x x x x +-=-+=(),,224743313b ac ∴-=--⨯⨯=(),12x x x ∴=∴= (2)2243524430x x x x x --=---=,,224444364b ac x ∴-=--⨯⨯-=∴=()(),1231.22x x ∴==-,类型2 1.【答案】C 2.【答案】C 3.【答案】B4.【答案】解:(1)22221919133360200442422y y y y y y y y --=--=-+-=-=-=±,,,(),,122 1.y y ∴==-,(2)2223231043421122x x b ac x ±-+=-=--⨯⨯=∴=⨯,(),,即1211.2x x ∴==, 类型3 方法11.【答案】解:将原方程两边同乘6,得26196600x x +⨯+=()().解得615x =-或64x =-.1252.23x x ∴=-=-,2.【答案】解:因为8m n -=,所以8m n =+.将8m n =+代入2160mn p ++=中,得28160n n p +++=(),所以228160n n p +++=,即 2240n p ++=().又因为240n +()≥,20p ≥,所以400n p +=⎧⎨=⎩,,解得40.n p =-⎧⎨=⎩,所以84m n =+=,所以4400m n p ++=+-+=() 方法2 a1.【答案】A2.【答案】B3.【答案】223220.x x ---+=()()设2x y -=,原方程化为2320y y -+=, 解得121 2.y y ==,当1y =时,213x x -==,, 当2y =时,22 4.x x -==, 原方程的解为1234x x ==,.4.【答案】解:原方程即[][]142348x x x x ----=()()()(),即22545648x x x x -+-+=()().设255y x x =-+,则原方程变为1148y y -+=()(). 解得1277y y ==-,.当2557x x -+=时,解得12x x ==当2557x x -+=-时,254112230∆=--⨯⨯=-()<,方程无实数根.∴原方程的根为12x x = b1.【答案】解:经验证0x =不是方程的根,原方程两边同除以2x ,得22356635620x x x x -+-+=, 即2211635620x x x x +-++=()(). 设1y x x =+,则22212x y x+=-,原方程可变为26235620y y --+=(). 解得152y =,2103y =. 当152x x +=时,解得12x =,212x =;当1103x x +=时,解得33x =,413x =.经检验,均符合题意.∴原方程的解为12x =,212x =,33x =,413x =. c1.【答案】解:设2x y x-=,则原方程化为32y y -=,整理得2230y y --=,∴13y =,21y =-.当3y =时,23x x -=,∴1x =-. 当1y =-时,21x x-=-,∴1x =.经检验,1x =±都是原方程的根, ∴原方程的根为11x =,21x =-. 方法31.【答案】解:方程组2013201620142015x x -=⎧⎨-=⎩,的解一定是原方程的解,解得4029x =.方程组2013201520142016x x -=-⎧⎨-=-⎩,的解也一定是原方程的解,解得2x =-.∵原方程最多有两个实数解, ∴原方程的解为14029x =,22x =-.【解析】解本题也可采用换元法.设2014x t -=,则20131x t -=+,原方程可化为120152016t t +=⨯(),先求出t ,进而求出x . 考点3 题型1 1.【答案】C【解析】当0k =时,方程为一元一次方程,解为1x =;当0k ≠时,因为222141211k k k k k ∆=--⋅-=++=+()()()≥0,所以当1k =时,4∆=,方程有两个不相等的实数解;当1k =-时,0∆=,方程有两个相等的实数解; 当0k ≠时,0∆≥,方程总有两个实数解.故选C . 2.【答案】解:220x x m --=Q 没有实数根,2124440m m ∴∆=--⋅-=+()()<,即1m -<.对于方程2210x mx m m +++=(),2224144m m m m ∆=-⋅+=-()()>,∴方程2210x mx m m +++=()有两个不相等的实数根. 题型21.【答案】解:(1)根据题意得2444242080b ac k k -=--=-()>, 解得25k <.(2)由k 为正整数,可得1k =或2k =.利用求根公式可求出方程的根为1x =- ∵方程的根为整数,∴52k -为完全平方数, ∴k 的值为2.2.【答案】(1)证明:[]22228442m m m m m ∆=-+-=-+=-()(). ∵不论m 为何值,220m -()≥,即0△≥.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程2220mx m x -++=(),得222m m x m +±-=().∴12x m=,21x =. ∵方程的两个根都是正整数,∴2m 是正整数,∴1m =或2m =.又∵方程的两个根不相等,∴2m ≠,∴1m =. 题型31.【答案】解:∵关于x 的方程22140x m x +-+=()两个相等的实数根,∴2214140m ∆=--⨯⨯=(),即214m -=±.∴52m =或32m =-. 当52m =时,25111221216514m m m --==-++(); 当32m =-时,231152********m m m ---==--+-(). 2.【答案】解:由题意可知,22480b ac n m -=+=, ∴28m n =-,∴222222222222222416816168mn mn mn mn mn m n m m n m m n m n n m ====++-+++-++-+(). ∵0m ≠,2228mn n m m∴==-.题型41.【答案】解:∵一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根, ∴[]2240a b b c b a ---⋅-=()()(), ∴40a b a c --=()(), ∴a b =或a c =, ∴此三角形是等腰三角形.2.【答案】解:∵方程204a ca c x bx -+++=()有两个相等的实数根, ∴2222404a cb ac b a c -∆=-+⋅=--=()(), 即222b c a +=,∴此三角形是直角三角形. 考点4 题型1 1.【答案】C2.【答案】解:由已知可得410a <<,则a 可取5,6,7,8,9.(第一步) 当5a =时,代入2210215105210a a -+=-⨯+≠,故5a =不是方程的根. 同理可知6a =,8a =,9a =都不是方程的根,7a =是方程的根.(第二步) ∴ABC △的周长是37717cm ++=(). 题型2 1.【答案】132.【答案】解:ABC △是直角三角形.理由如下:原方程可化为20b c x cm bm +-+-=(), 2222444ma m c b c b m a b c ∆--++-=()()=(). ∵0m >,且原方程有两个相等的实数根,∴2220a b c +-=,即222a b c +=∴ABC △是直角三角形.3.【答案】解:将x b =代入原方程,整理得2419120b b -+=,解得14b =,234b =.当14b =时,3a =,5c =,∵222345+=,即222a b c +=,∴ABC △为直角三角形,且°90C ∠=.∴1134622ABC S ab ==⨯⨯=△; 当234b =时,3104a =-<,不合题意,舍去.因此,ABC △的面积为6. 题型3 1.【答案】B2.【答案】解:(1)ABC △是等腰三角形.理由如下:把1x =-入原方程,得20a c b a c +-+-=,所以a b =,故ABC △是等腰三角形.(2)ABC △是直角三角形.理由如下:方程有两个相等的实数根,则2240b a c a c ∆=-+-=()()(),所以2220b a c -+=,所以222a b c =+,故ABC △是直角三角形.(3)如果ABC △是等边三角形,则a b c ==,所以方程可化为2220ax ax +=,所以210ax x +=(),所以方程的解为10x =,21x =-. 考点5 题型11.【答案】解:根据一元二次方程根与系数的关系,有1274x x +=,1234x x =-. (1)12121237333939344x x x x x x --=-++=--⨯+=()()(). (2)2222122111212121212122112121212112====111111x x x x x x x x x x x x x x x x x x x x x x x x x x x x +++++++-+++++++++++++()()()()()()()27372101444=3732144-⨯-+-++()().(3)222121212127397=4=4=4416x x x x x x x x -+--⨯-∴-==Q()()()(),. 题型21.【答案】解:设方程25230x x +-=的两根为1x ,2x , 则1225x x +=-,1235x x =-. 设所求方程为20y py q ++=,其两根为1y ,2y , 令111y x =-,221y x =-.∴121212*********==3x x p y y x x x x x x +=-+=--=+()(),12121211153q y y x x x x ==--==-()(). ∴所求的方程为225+033y y -=,即23250y y +-=. 题型31.【答案】解:设方程两根为1x ,2x ,由已知得1212=221=.2m x x m x x ⎧+⎪⎪⎨-+⎪⎪⎩,∵222121212292=4x x x x x x +=+-(),即221292224m m -+-⨯=(), ∴28330m m +-=. 解得111m =-,23m =.当111m =-时,方程为2211230x x ++=,21142230∆=-⨯⨯<,方程无实数根,∴11m =-不合题意,舍去;当3m =时,方程为22235034250x x --=∆=--⨯⨯-,()()>,方程有两个不相等的实数根,符合题意. ∴m 的值为3.2.【答案】解:(1)∵224121240a a -⨯⨯-=-()>,解得3a <. ∴a 的取值范围是3a <.(2)设方程的另一根为1x ,由根与系数的关系得111212x x a +=-⎧⎨⋅=-⎩,,解得113.a x =-⎧⎨=-⎩,题型44.【答案】解:不存在.理由如下:∵一元二次方程24410kx kx k -++=有两个实数根,∴0k ≠,且24441160k k k k ∆=--⨯+=-()()≥,∴0k <.∵1x ,2x 是方程24410kx kx k -++=的两个实数根, ∴121x x +=,1214k x x k+=.∴212121212922294k x x x x x x x x k+--=+-=-()()(). 又∵12123222x x x x --=-()(), ∴939425k k k +-=-∴=,. 又∵0k <,∴不存在实数k ,使12123222x x x x --=-()()成立. 考点61.【答案】解:方法一:设第二次采购玩具x 件,则第一次采购玩具10x -()件,由题意得1001500.510x x+=-. 整理得211030000x x -+=, 解得150x =,260x =,经检验150x =,260x =都是原方程的解.当50x =时,第二次采购时每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去; 当60x =时,第二次采购时每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.方法二:设第一次采购玩具x 件,则第二次采购玩具10x +()件,由题意得1001500.510x x +=+, 整理得29020000x x -+=, 解得140x =,250x =,经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次采购401050+=(件),批发价为150503÷=(元),不合题意,舍去; 第一次采购50件时,第二次采购401060+=(件),批发价为15060 2.5÷=(元),符合题意.因此第二次采购玩具60件. 题型23.【答案】解:设慢车每小时行驶x 千米,则快车每小时行驶12x +()千米,依题意得150150251260x x -=+.解得172x =-(不合题意,舍去),260x =.所以1272x +=.∴快车每小时行驶72千米,慢车每小时行驶60千米. 应用34.【答案】解:(1)设乙工程队单独施工x 天完成此项工程,则甲工程队单独施工30x +()天完成此项工程,由题意得1120130x x +=+(),整理,得2106000x x --=, 解得130x =,220x =-.经检验130x =,220x =-都是分式方程的解,但220x =-不符合题意,应舍去,故30x =,3060x +=. 故甲、乙两工程队单独完成此项工程分别需要60天,30天. (2)203a -()(3)由题意得11 2.520643a a +++-()()≤,解得36a ≥.故甲工程队至少要单独施工36天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元. 考点7 题型11.【答案】2015【解析】把1x =-代入方程中得到20150a b +-=,即2015a b +=.2.【答案】解:∵2a =,∴40c -≥且40c -≥,即4c =,则2a =-.又∵1-是一元二次方程20ax bx c ++=的根,∴0a b c -+=,∴242b a c =+=-+=.∴原式201622020154-+==⨯().题型2 1.【答案】D 2.【答案】A3.【答案】解:(1)21210x x x -+-=()(),1120x x x --+=()(), 1310x x --=()(),12113x x ==,.(2)221327x x x -=+-()(),22441327x x x x -+=+-, 2680x x -+=,1224x x ==,.题型3 1.【答案】B 2.【答案】B3.【答案】解:∵关于x 的方程2260x b x b +++-=()()有两个相等的实数根,∴22460b b ∆=+--=()(),∴12b =,210b =-(舍去).当a 为腰时,ABC △周长为55212=++. 当b 为腰时,225+<,不能构成三角形. ∴ABC △的周长为12. 题型4 1.【答案】A2.【答案】解:由题意,得1231a x x a ++=,1221a x x a +=(),∴31211a a a a a++-=-(),∴210a -=,即1a =±.又∵方程有两个不相等的实数根,∴[]2314210a a a ∆=-+-⋅+()()>,即210a -()>,∴1a ≠,∴1a =-.3.【答案】解:∵方程有两个实数根,∴2224420a a a ∆=-+-()()≥,∴12a ≤.又∵122x x a +=-,21242x x a a =+-,∴22221212122224x x x x x x a +=+-=--()(). ∵12a ≤,且2220a -()≥,∴当12a =时,2212x x +的值最小. 此时222121122422x x +=--=(),即最小值为12.【解析】本题中考虑0△≥从而确定a 的取值范围这一过程易被忽略. 题型51.【答案】解:设每件商品降价x 元,则售价为每件60x -()元,每星期的销量为30020x +()件. 根据题意,得6040300206080x x --+=()(). 解得11x =,24x =.又要顾客得实惠,故取4x =,即销售单价为56元. 答:应将销售单价定为56元.2.【答案】解:(1)当4t =时,221313144142222t t =+=⨯+⨯=. 答:甲运动4s 后的路程是14cm . (2)设它们运动了s m ,根据题意, 得21342122m m m ++=.解得:13m =,214m =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s .(3)设它们运动了s n 后第二次相遇,根据题意,得213421322n n n ++=⨯(). 解得17n =,218n =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s . 题型61.【答案】解:不是.理由如下:解方程2120x x +-=,得14x =-,23x =.12432 3.5x x +=+=⨯.∵3.5不是整数,∴方程2120x x +-=不是“偶系二次方程”.。
人教版九年级 数学上册期末综合复习专题提优训练(三)
九年级(人教版)数学上册期末综合复习专题提优训练(三)一.选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件3.一元二次方程x2=3x的解为()A.x=0 B.x=3 C.x=0或x=3 D.x=0 且x=3 4.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x支球队,则可列方程为()A.x(x﹣1)=6 B.x(x+1)=6 C.D.5.如图,在平面直角坐标系中,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(2,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是()A.x<﹣1 B.x>2 C.﹣1<x<2 D.x<﹣1或x>2 6.如图,已知⊙O是正方形ABCD的外接圆,点E是弧AD上任意一点,则∠BEC的度数为()A.30°B.45°C.60°D.90°7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①3a+2b+c<0;②3a+c<b2﹣4ac;③方程2ax2+2bx+2c﹣5=0没有实数根;④m(am+b)+b<a(m≠﹣1).其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题9.将抛物线y=4x2向左平移3个单位,再向上平移2个单位,所得到图象的函数表达式是.10.要为一幅长29cm,宽22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,设相框边的宽度为x,则可列出关于x的一元二次方程.11.一个圆锥和一个圆柱的底面积相等,已知圆柱的体积是圆锥的9倍,圆锥的高是8.1cm,则这个圆柱的高是cm.12.如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.13.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.14.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为.15.已知边长为1的正方形ABCD的顶点A、B在一个半径为1的圆上,使AB边与弦MN重合,如图所示,将正方形在圆中逆时针滚动,在滚动过程中,点M、D之间距离的最小值是.三.解答题16.解下列方程.(1)x2+2x﹣35=0;(2)4x(2x﹣1)=1﹣2x.17.已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.18.如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.19.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200 300 400 1000 1600 2000 摸到白球的频数72 93 130 334 532 667 摸到白球的频率0.3600 0.3100 0.3250 0.3340 0.3325 0.3335 (1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是.(精确到0.01),由此估出红球有个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.20.在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴的正半轴交于点C.已知OB=OC,点B的坐标为(3,0),抛物线的顶点为M.(1)求该抛物线的表达式;(2)直接写出点A、M的坐标,并在下图中画出该抛物线的大致图象;A;M.(3)根据图象直接回答:不等式x2+bx+c>3的解集为.21.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图②所建立平面直角坐标系.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.22.如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=4,求图中阴影部分的面积.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y 与a的关系式.24.已知:直线与y轴交于A,与x轴交于D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE上一动点,当△PBC周长最小时,求点P坐标;(3)动点Q在x轴上移动,当△QAE是直角三角形时,求点Q的坐标;(4)在y轴上是否存在一点M,使得点M到C点的距离与到直线AD的距离恰好相等?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.3.解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.4.解:设该小组有x支球队,则共有x(x﹣1)场比赛,由题意得:x(x﹣1)=6,故选:C.5.解:观察函数图象可知:当x<﹣1或x>2时,直线y=mx+n在抛物线y=ax2+bx+c 的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>2.故选:D.6.解:连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=∠BOC=45°.故选:B.7.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.8.解:由图象可知,当x=1时,y<0,即a+b+c<0,∵对称轴x=﹣=﹣1,a<0,∴b=2a<0,∴a+2a+c<0,即3a+c<0,∴3a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴3a+c<0<b2﹣4ac,故②正确;∵2ax2+2bx+2c﹣5=0,∴ax2+bx+c=,结合图象可知,不能确定抛物线y=ax2+bx+c与直线y=的交点情况,故③不正确;∵当x=m(m≠﹣1)时,y=am2+bm+c,且当x=﹣1时,函数y取得最大值,∴a﹣b+c>am2+bm+c,∴m(am+b)+b<a,故④正确;综上,正确结论有①②④共3个,故选:B.二.填空题(共7小题)9.解:由“左加右减”的原则可知,将抛物线y=4x2向左平移3个单位所得直线的解析式为:y=4(x+3)2;由“上加下减”的原则可知,将抛物线y=4(x+3)2向上平移2个单位所得抛物线的解析式为:y=4(x+3)2+2.故平移后的抛物线的函数关系式是:y=4(x+3)2+2.故答案为y=4(x+3)2+2.10.解:设相框边的宽度为xcm,则可列方程为:(29+2x)(22+2x)=×29×22.故答案为:(29+2x)(22+2x)=×29×22.11.解:设这个圆柱的高是xcm,圆锥和圆柱的底面积都为S,根据题意得S•x=9××S×8.1,解得x=24.3(cm),即这个圆柱的高是24.3cm.故答案为24.3.12.解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.13.解:连结OC,过C点作CF⊥OA于F,∵半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=1cm,OC=2cm,∠AOC=45°,∴CF=,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×=π﹣(cm2)三角形ODE的面积=OD×OE=(cm2),∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(π﹣)﹣=π+﹣(cm2).故图中阴影部分的面积为(π+﹣)cm2.故答案为:(π+﹣).14.解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(﹣4,3).故答案为:(﹣4,3).15.解:如图,点D的运动轨迹是图中的红线.观察图象可知M、D之间的最小距离是线段AD′的长=AE﹣D′E=2﹣,故答案为2﹣.三.解答题(共9小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,∴x1=﹣7,x2=5.(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k+2)≥0,解得:k≤﹣1.(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵+=k﹣2,∴==k﹣2,∴k2﹣6=0,解得:k1=﹣,k2=.又∵k≤﹣1,∴k=﹣.∴存在这样的k值,使得等式+=k﹣2成立,k值为﹣.18.解:(1)如图所示:连接AC,BD,交于点O.连接EO并延长到点F,使OF=OE,连接DF,CF,(2)如图所示:过点O作OG⊥OE与EB的延长线交于点G,∵四边形ABCD为正方形∴OA=OB,∠AOB=∠EOG=90°∴∠AOE=∠BOG在四边形AEBO中∠AEB=∠AOB=90°∴∠EAO+∠EBO=180°=∠EBO+∠GBO∴∠GBO=∠EAO,∴在△EAO和△GBO中,∵∴△EAO≌△GBO(ASA),∴AE=BG,OE=OG.∴△GOE为等腰直角三角形,∴OE=EG=(EB+BG)=(EB+AE)∵AE=12,AB=13,∴BE=5,∴EB+AE=17,∴OE=∴EF=.19.解:(1)观察表格发现,随着摸球次数的增多,摸到白球的频率逐渐稳定在0.33附近,由此估出红球有2个.故答案为:0.33,2;(2)列表如下:白红红白﹣﹣﹣(红,白)(红,白)红(白,红)﹣﹣﹣(红,红)红(白,红)(红,红)﹣﹣﹣所有等可能的情况有6种,其中恰好摸到1个白球,1个红球的情况有4种,则P(1个白球,1个红球)==;所以从该袋中摸出2个球,恰好摸到1个白球、1个红球的结果的概率为.20.解:(1)∵OB=OC,点B的坐标为(3,0),点C在y轴的正半轴上∴点C的坐标为(0,3),∵抛物线y=x2+bx+c过B、C两点,∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)y=x2﹣4x+3,=(x﹣2)2﹣1,故顶点坐标为:M(2,﹣1),当y=0,则0=x2﹣4x+3,解得:x1=1,x2=3,故A(1,0);如图所示:故答案为:(1,0),(2,﹣1);(3)根据图象即可得出当x<0或x>4,y=x2﹣4x+3>3,即不等式x2+bx+c>3的解集为:x<0或x>4.故答案为:x<0或x>4.21.解:(1)如图②中,A(4,0),C(0,4),设抛物线解析式为y=ax2+k,由题意,得,解得:,∴抛物线表达式为.(2)2+=2.2,当x=2.2时,y=﹣×2.22+4=2.79,当y=2.79时,2.79﹣0.5=2.29 (m).答:该货车能够通行的最大高度为2.29 m.22.(1)证明:连接OD,∵∠BCA=90°,∠B=30°,∴∠OAD=∠BAC=60°,∵OD=OA,∴△OAD是等边三角形,∴AD=OA=AC,∠ODA=∠O=60°,∴∠ADC=∠ACD=∠OAD=30°,∴∠ODC=60°+30°=90°,即OD⊥DC,∵OD为半径,∴CD是⊙O的切线;(2)解:∵AB=4,∠ACB=90°,∠B=30°,∴OD=OA=AC=AB=2,由勾股定理得:CD===2,∴S阴影=S△ODC﹣S扇形AOD=×2×2﹣=2﹣π.23.解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.24.解:(1)∵直线与y轴交于A,∴A点的坐标为(0,2),∵B点坐标为(1,0).∴∴;(2)作出C关于直线AE的对称点F,由B和F确定出直线BF,与直线AE交于P点,设F(m,n),由题意D(﹣4,0),C(4,0),A(0,2),AF=AC=2,DF=DC=8,∴,解得或,∴F(,),∴直线BF的解析式为:y=﹣32x+32,,可得:P();(3)根据题意得:x+2=x2﹣x+2,解得:x=0或x=6,∴A(0,2),E(6,5),∴AE=3,设Q(x,0),①若Q为直角顶点,则AQ2+EQ2=AE2,即x2+4+(x﹣6)2+25=45,此时x无解;②若点A为直角顶点,则AQ2+AE2=EQ2,即x2+4+45=(x﹣6)2+25,解得:x=1,即Q(1,0);③若E为直角顶点,则AQ2=AE2+EQ2,即x2+4=45+(x﹣6)2+25,解得:x==,此时求得Q(,0);∴Q(1,0)或(,0)(4)假设存在,设M坐标为(0,m),则OM=|m|,∵OC=4,AO=2,OD=4,∴MC=MD,∴当MD⊥AD时,满足条件,∴在直角三角形AOD中,根据勾股定理得:AD=2,且AM=2﹣m,CM=,∵MD=MC,∴根据勾股定理得:=,即(2﹣m)2﹣(2)2=m2+16,解得m=﹣8,则M(0,﹣8).。
人教版九年级数学上册期末综合复习测试题(含答案)
人教版九年级数学上册期末综合复习测试题(含答案)时间:100分钟 总分:120分一、 选择题(每题3分,共24分)1.已知关于x 的方程()222310---=m m x x +是一元二次方程,则m 的值为( ) A .2m =B .4m =C .2m =±D .2m =-2.如图,将AOB ∆绕点O 按逆时针方向旋转40°后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是 ( )A .25°B .30°C .35°D .40°3.顶点(2,1),且开口方向、形状与函数22y x =的图像相同的抛物线是 ( ) A .221y x =+ B .22(2)1y x =-+ C .22(2)1y x =++D .22(2)1y x =+-4.把方程2630x x +-=化成2)x m n (的形式,则m n += ( ) A .15-B .9C .15D .65.如图,ABC ∆内接于O ,直径8cm AD =,=60B ∠︒,则AC 的长度为 ( )A .5cmB .42C .43D .6cm6.在一个不透明的口袋中有红色、黄色和绿色球共60个,它们除颜色外,其余完全相同.在不倒出球的情况下,要估计袋中各种颜色球的个数.同学们通过大量的摸球试验后,发现摸到红球、黄球和绿球的频率分别稳定在20%,40%和40%.由此,推测口袋中黄色球的个数有( ) A .15个B .20个C .21个D .24个7.在同一坐标系中,一次函数y ax k =+与二次函数2y kx a =+的图象可能是 ( )A .B .C .D .8.二次函数2y ax bx c =++的图像如图所示,对称轴是直线1x =.下列结论:①0abc >;②30a c +>;③a c b +<-;④520a b c -+<.其中结论正确的个数为 ( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)9.若n 是方程2210x x --=的一个根,则代数式232n n -+-的值是________. 10.如图,AB 是半圆的直径,C 、D 是半圆上的两点,且20BAC =︒∠,点D 是AC 的中点,则BAD ∠=______.11.点()()1122,,,A x y B x y 在二次函数232y x x =-++的图像上,若122x x <<-,则1y 与2y 的大小关系是1y _______________2y .(用“>”、“<”、“=”填空)12.已知关于x 的一元二次方程2()0(,,a x h k a h k -+=都是常数,且0)a ≠的解为1213x x =-=,,则方程2(1)0(,,a x h k a h k --+=都是常数,且0)a ≠的解为___________.13.如图,正方形ABCD 的边长为3,点E 为AB 的中点,以E 为圆心,3为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是______.14.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,则对角线AC 的长为_________.15.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n ++<的解集是__________.16.如图,以(0,3)G 为圆心,半径为6的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF AE ⊥于F ,点E 在G 的运动过程中,线段FG 的长度的最小值为______.三、解答题(每题8分,共72分) 17.解方程: (1)(2)(3)12x x --= (2)23410x x -+=18.已知关于x 的一元二次方程24250x x m --+=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个根都是符号相同的整数,直接写出它的根.19.已知二次函数图像与x 轴两个交点之间的距离是4个单位,且顶点M 为()14-,,求二次函数的解析式.20.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(-10)A ,,(4)B m ,两点,且抛物线经过点(50)C ,(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A .点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.当PE =2ED 时,求P 点坐标;(3)点P 是直线上方的抛物线上的一个动点,求ABP ∆的面积最大时的P 点坐标.21.一个不透明的口袋中有四个完全相同的小球.把它们分别标记为1,2,3,4.(1)随机摸取一个小球的标号是偶数,该事件的概率为______;(2)小雨和小佳玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜.小雨先从口袋中摸出一个小球,不放回,小佳再从口袋中摸出一个小球.用画树状图(或列表)的方法,分别求出小雨和小佳获胜的概率.22.如图,已知女排球场的长度OD 为20米,位于球场中线处的球网AB 的高度2.24米,一队员站在点O 处发球,排球从点O 的正上方2米的C 点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G ,以O 为原点建立如图所示的平面直角坐标系.(1)写出C 点坐标___________;B 点坐标___________.(2)若排球运行的最大高度为3米,求排球飞行的高度p (单位:米)与水平距离x (单位:米)之间的函数关系式(不要求写自变量x 的取值范围);(3)在(2)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.23.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线.(2)若9OC =,4AC =,8AE =,则BC =______,BE =______.24.如图,已知等边ABC ,直线AM BC ⊥,点M 为垂足,点D 是直线AM 上的一个动点,线段CD 绕点D 顺时针方向旋转60°得线段DE ,联结BE 、CE .(1)如图1,当点D 在线段AM 上时,说明BE AB ⊥的理由;(2)如图2,当点D 在线段MA 的延长线上时,设直线BE 与直线AM 交于点F ,求BFM ∠的度数;(3)定义:有一个内角是36︒的等腰三角形称作黄金三角形,联结DB ,当DBE 是黄金三角形吋,直接写出BEC ∠为______度.25.抛物线2y ax 2x c =++与x 轴交于(1,0)A -、B 两点.与y 轴交于点(0,3)C 、点(,3)D m 在抛物线上.(1)求抛物线的解析式.(2)如图1,连接BC 、BD ,点P 在对称轴左侧的抛物线上,若PBC DBC ∠=∠,求点P 的坐标.(3)如图2,过点A 的直线∥m BC ,点Q 是直线BC 上方抛物线上一动点,过点Q 作QE m ⊥,垂足为点E ,连接BE ,CE ,CQ ,QB .当四边形BECQ 的面积最大时,求点Q 的坐标及四边形BDCQ 面积的最大值。
人教版九年级上册数学 期末复习练习 选择题
人教版九年级上册数学期末复习选择题练习一.选择题1.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3) 2.把方程x2−4x+2=0转化成(x+m)2=n的形式,则m,n的值是()A.2,2B.2,−2C.−2,2D.−2,−23.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.下列方程中,关于x的一元二次方程是()A.1x2+1x=20B.3x2+x=20C.ax2+bx+c=0D.x2+2x=x2−1 5.若a,b是方程x2+2x−2023=0的两个实数根,则a2+3a+b的值是().A.2021B.2022C.2023D.20246.关于二次函数y=-(x-3)2+2的最值,下列说法正确的是()A.有最大值3B.有最小值3C.有最大值2D.有最小值27.中国男子篮球职业联赛(简称:,分常规赛和季后赛两个阶段进行,采用主客场赛制(也就是参赛的每两个队之间都进行两场比赛).2022−2023CBA常规赛共要赛240场,则参加比赛的队共有()A.80个B.120个C.15个D.16个8.如表是代数式ax2+bx的值的情况,根据表格中的数据,可知方程ax2+bx=6的根是()x……-3-2-101234……ax2+bx……1262002612……A.x1=−2,x2=3B.x1=2,x2=3C.x1=2,x2=3D.x1=−2,x2=−39.羽毛球比赛中某次羽毛球的运动路线可以看作是如图所示的抛物线y=−14x2+34x+1图象的一部分,其中出球点B离地面O点的距离是1米,则球落地点A到O点的距离是().A.1米B.3米C.4米D.2516米10.如图,△AOB绕点O逆时针旋转65°得到△COD,若∠A=100°,∠D=50°,则∠BOC的度数是()A.30°B.35°C.45°D.65°11.要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,据场地和时间等条件的限制,赛程计划安排7天,每天安排4场比赛,刚好完成所有比赛.设比赛组织者邀请x个队参赛,则根据题意所列方程正确的是()A.x(x+1)=28B.x(x−1)=28C.12x(x+1)=28D.12x(x−1)=2812.如表是二次函数y=ax2+bx+c的几组对应值:x 6.17 6.18 6.19 6.20y=ax2+bx+c-0.03-0.010.020.04根据表中数据判断,方程ax2+bx+c=0的一个解x的范围是()A.6.16<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.2013.如图所示,在长方形ABCD中,AC是对角线.将长方形ABCD绕点B顺时针旋转90°到长方形GBEF位置,H是EG的中点.若AB=6,BC=8,则线段CH的长为()A.25B.41C.210D.2114.如图,在平面直角坐标系中,菱形OABC的边长为26,点B在x轴的正半轴上,且∠AOC=60°,将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA'B'C'(点A'与点C重合),则点B'的坐标是()A.(36,32)B.(32,36)C.(32,62)D.(62,36)15.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A的度数为()A.30°B.33°C.45°D.60°16.如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC,则下列结论不正确的是()A.AB=2BC B.∠ACB=2∠CABC.∠ACB=∠BOC D.∠ABO+∠BOC=90°17.如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论中一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD18.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知OE=6,DO=10,则CD的长为()A.16B.12C.10D.819.甲、乙两人掷两个普通的立方体骰子,若掷出的点数之和为7,则甲赢;若掷出的点数之和为8,则乙赢.这个游戏规则().A.公平B.对甲有利C.对乙有利D.无法判断20.一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6个点)抛掷n次,若n次抛掷所出现的向上一面的点数之和大于54n2,则算过关;否则,不算过关.能过第二关的概率是().A.1318B.518C.14D.1921.如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA'E',连接DA'.若∠ADC=60°,∠ADA'=50°,则∠DA'E'的大小为()A.130°B.150°C.160°D.170°22.在一个不透明的袋子里装有红球.黄球共20个,这些球除颜色不同外其余都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是().A.5个B.10个C.12个D.15个23.如图,已知AB是⊙O的直径,点C是弧AB的中点,点D在AB的延长线上,连接CD交⊙O于点E,若AB=2DE,则∠D=()A.20°B.22.5°C.25°D.30°24.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出一个球,记下颜色后放回,搅匀,再摸出一个球,则两次摸到的球都是红球的概率是().A.116B.12C.38D.91625.如图,AB是⊙O的直径,△⊙O,OC⊥AD,延长AB,CD在⊙O外相交于点E,若∠ACD= 100°,则∠E的度数是()A.25°B.30°C.35°D.40°26.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:①abc<0;②4a+c>2b;③3b-2c>0;④若点A(-2,y1)、点B(-12,y2)、点C(72,y3)在该函数图象上,则y1<y3<y2;⑤4a+2b≥m(am+b)(m为常数).其中正确的结论有()A.5个B.4个C.3个D.2个27.某小组做“用频率估计概率”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是().A.抛一枚硬币,出现正面朝下B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球。
新人教版九年级数学(下册)期末总复习及答案
新人教版九年级数学(下册)期末总复习及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.若2x y +=-,则222x y xy ++的值为( )A .2-B .2C .4-D .47.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.1869.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.63米B.6米C.33米D.3米10.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(-2,3),AD=5,若反比例函数kyx(k>0,x>0)的图象经过点B,则k的值为()A.163B.8 C.10 D.323二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:2x2﹣8=_______.3.已知直角三角形的两边长分别为3、4.则第三边长为________.4.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=__________度.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF (1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、B6、D7、D8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、2(x+2)(x﹣2)3、54、805、1 36、12三、解答题(本大题共6小题,共72分)1、无解2、(1)k≤58;(2)k=﹣1.3、(1)略;(2)S平行四边形ABCD=244、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
人教版九年级数学上册期末基础复习测试题(含答案)
人教版九年级数学上册期末基础复习测试题(含答案)时间:100分钟 总分:120分一、选择题(每题3分,共24分)1.下列图形中,是轴对称图形而不是中心对称图形的有 ( )A .B .C .D .2.下列一元二次方程中,没有实数解的是 ( ) A .220x x -= B .()()130x x --= C .220x -=D .210x x ++=3.下列事件中,属于必然事件的是 ( ) A .明天下雨B .篮球队员在罚球线投篮一次,未投中C .掷一枚硬币,正面朝上D .任意画一个三角形,其内角和是180°4.若⊙A 半径为5,圆心A 的坐标是()12,,点P 的坐标是()52,,那么点P 与A 的位置关系为( ) A .点P 在⊙A 内B .点P 在⊙A 上C .点P 在⊙A 外D .无法确定5.如果抛物线2+=+y ax bx c 经过点()2,3--和()5,3-,那么抛物线的对称轴为 ( ) A .3x =B .3x =-C .32x =D .32x =-6.如图,C 、D 是O 上直径AB 两侧的点,若20ABC ∠=︒,则D ∠等于 ( )A .60︒B .65︒C .70︒D .75︒7.将两块斜边长度相等的等腰直角三角形板如图①摆放,如果把图①中的BCN△绕点C 逆时针旋转90︒得ACF △,连接MF ,如图②.下列结论错误的是 ( )A .ABC CED △≌△B .BCN ACF △≌△C .AMC BCN △≌△D .MFC MNC △≌△ 8.如图,在平面直角坐标系中,点A 在抛物线222y x x -=+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值 ( )A .0.5B .1C .1.5D .2二、填空题(每题3分,共24分)9.若关于x 的一元二次方程()2100mx nx m --=≠的一个解是1x =,则m n -的值是______.10.已知平面直角坐标系中,15A a B b (,)、(,)关于原点对称,则a b +=_____.11.如果二次函数()2224y a x x a =+++-的图像经过原点,那么=a ______.12.一个不透明的袋中装有若干个红球和10个白球, 摇匀后每次随机从袋中摸出一个球, 记下颜色后放回袋中, 通过大量重复摸球试验后发现,摸到白球的频率是0.4,则袋中红球约为_________个.13.如图,正方形ABCD 四个顶点都在⊙O 上,点P 是在弧BC 上的一点(P 点与C 点不重合),则CPD ∠的度数是_____.14.已知2222a b a b++-=,则22()(1)20+的值为___________.a b15.抛物线2=++上部分点的横坐标与纵坐标的对应值如表:y ax bx cx …4-2-0 2 4 …y …m n m 1 0 …由表可知,抛物线与x轴的一个交点的坐标是(4,0),则抛物线与x轴的另一个交点的坐标是_____.16.如图,在平面直角坐标系中,正方形ABCD的边BC与x轴重合,顶点A、D 在抛物线2=-+上.若抛物线的顶点到x轴的距离比BC长4,则c的值为4y x c_____.三、解答题(每题8分,共72分)17.解方程(1)()2(30-=+;3)x x x+(2)2250x x+-=.18.如图,网格中每个小正方形的边长都是单位1.(1)画出将ABC 绕点O 顺时针方向旋转90︒后得到的A B C '''; (2)请直接写出A ',B ',C '三点的坐标.19.已知抛物线2y x bx c =-+经过(1,0)A -、(3,0)B 两点. (1)求抛物线的解析式和顶点坐标; (2)点P 为抛物线上一点、若10PABS =,求出此时点P 的坐标.20.5张背面相同的卡片,正面分别写有不同1,2,3,4,7中的一个正整数.现将卡片背面朝上.(1)求从中任意抽出一张,正面的数是偶数的概率.(2)连续摸出4张卡片(不放回),已知前2张正面的数分别为1,7.求摸出的4张卡片的数的总和为奇数的概率(要求画树状图或列表).21.直播购物已经逐渐走进了人们的生活,某电商直播销售一款水杯,每个水杯的成本为30元,当每个水杯的售价为40元时,平均每月售出600个,通过市场调查发现,若售价每上涨1元,其月销售量就减少10个.为了尽快减少库存,当某月月销售利润恰好为10000元时,求每个水杯的售价.22.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,水流喷出的高度(m)y 与水平距离(m)x 之间的关系式是252(0)4y x x x =-++>.(1)喷头A 离地面O 的高度是多少? (2)水流喷出的最大高度是多少?(3)若不计其他因素,水池的半径OB 至少为多少,才能使喷出的水流不落在池外?23.如图,在Rt △ABC 中,∠C =90°,BC =8,AC =6,动点P 从点A 开始,沿边AC 向点C 以每秒1个单位长度的速度运动,动点D 从点A 开始,沿边AB 向点B 以每秒 53个单位长度的速度运动,且恰好能始终保持连接两动点的直线PD ⊥AC ,动点Q 从点C 开始,沿边CB 向点B 以每秒2个单位长度的速度运动,连接PQ .点P ,D ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t 秒(t ≥0).(1)当t =3时,求PD 的长?(2)当t 为何值时,四边形BQPD 的面积为△ABC 面积的一半?(3)是否存在t 的值,使四边形PDBQ 为平行四边形?若存在,求出t 的值;若不存在,说明理由.24.如图,ABC ∆中,AC BC =,D 为AB 上一点,⊙O 经过点A ,C ,D ,交BC 于点E ,过点D 作DF BC ∥,交O 于点F .求证: (1)AB ∥CF (2)AF EF =.25.如图1,直线22y x =-+交x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线212y x bx c =-++与x 轴的另一交点为B .(1)请直接写出该抛物线的函数解析式;(2)点D 是第二象限抛物线上一点,设D 点横坐标为m . ①如图2,连接BD ,CD ,BC ,求BDC 面积的最大值;②如图3,连接OD ,将线段OD 绕O 点顺时针旋转90︒,得到线段OE ,过点E 作EF x ∥轴交直线AC 于F .求线段EF 的最大值及此时点D 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习专项训练1、如图,火车匀速通过隧道(隧道长大于货车长)时,火车进入隧道的时间与火车在隧道内的长度之间的关系用图象描述大致是 ( )2、 抛物线3)1(2+-=x y 的对称轴是 ( ) (A) 直线x =1 (B) 直线x =3 (C) 直线x =-1 (D) 直线x =-33、已知二次函数)11(12≤≤-+-=x bx x y ,当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.关于抛物线的移动方向的描述中,正确的是( )A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动4、已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是( )34.34.4.4.≠≤≠<≤<k k D k k C k B k A 且且5、 若二次函数222-++=a bx x a y (a ,b 为常数)的图象如图,则a 的值为( )A. 1B.2 C. 2-D. -26、二次函数342++=x x y 的图像可以由二次函数x y 2=的图像平移而得到,下列平移正确的是 ( )A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位7、已知:a>0,b<0,c<0,则二次函数c b x a y ++=)(2的图像可能是( )A B C D8、已知a=-1,点(a -1,y1),(a ,y2),(a+5,y3)都在函数x y 2=的图象上,则 ( )A .y1<y2<y3B .y1<y3<y2C .y3<y2<y1D .y2<y1<y39、如图,一条抛物线与x 轴相交于A 、B 两点,其顶点P 在折线C -D -E 上移动,若点C 、D 、E 的坐标分别为(-1,4)、(3,4)、(3,1),点B 的横坐标的最小值为1, 则点A 的横坐标的最大值为( ) A 、1 B 、2 C 、3 D 、4第9题 第10题 10、如图6,抛物线3)2(21-+=x a y 与1)3(2122+-=x y 交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于点B 、C .则以下结论: ①无论取何值,y 2的值总是正数. ②.a=1③当x=0时,412=-y y .④.2AB=3AC其中正确结论是( ) A .①② B.②③ C.③④ D.①④11、将抛物线12+=x y 先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( )A .2)2(2++=x yB .2)2(2-+=x yC .2)2(2+-=x yD .2)2(2--=x y 二、解答题 12、直线643+-=x y 与坐标轴分别交于A 、B 两点,动点P 、Q 同时从点O 出发,同时到达点A ,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ ∆的面积为s ,求出s 与t 之间的函数关系式,并求出t 的取值范围;13、如图,抛物线b ax x y +--=22经过点A(1,0)和点P(3,4).(1)求此抛物线的解析式,写出抛物线与x 轴的交点坐标和顶点坐标.(2)若抛物线与轴的另一个交点为B,现将抛物线向射线AP 方向平移,使P 点落在M 点处,同时抛物线上的B 点落在点D (BD ∥PM )处.设抛物线平移前P 、B 之间的曲线部分与平移后M 、D 之间的曲线部分,与线段MP 、BD 所围成的面积为m, 线段 PM 的长度为n,求m 与n 的函数关系式.14、如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.(1)求S与x的函数关系式;(2)如果要围成面积为45 m2的花圃,AB的长是多少米?(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.15、如图,在平面直角坐标系中,直线y=-2x+42交x轴与点A,交直线y=x于点B,抛物线分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.(1)求点C、D的纵坐标.(2)求a、c的值.(3)若Q为线段OB上一点,且P、Q两点的纵坐标都为5,求线段PQ的长.(4)若Q为线段OB或线段AB上的一点,PQ⊥x轴,设P、Q两点之间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.16、如图,矩形ABCD 的两边长AB=18cm ,AD=4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.17、如图,在△AOB 中,,,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上。
(1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积; (2)若34tan =∠CDO ,求矩形CDEF 面积的最大值。
18、对于三个数a,b,c ,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:343321}3,2,1{=++-=-M ;1}3,2,1min{-=-;⎩⎨⎧->--≤=-)1(,1)1(,},2,1min{a a a a解决下列问题:(1)填空:}30tan ,45cos ,30min{sin o o o = ;如果2}24,22,2min{=-+x x ,则x 的取值范围为.(2)①如果}2,1,2min{}2,1,2{x x x x M +=+,求x 的值;②根据①,你发现了结论“如果},,min{},,{c b a c b a M =,那么 (填a,b,c 的大小关系)”.证明你发现的结论;③运用②的结论,填空:}2,2,22min{}2,2,22{y x y x y x y x y x y x M -+++=-+++,则x+y= .(3)在同一直角坐标系中作出函数y=x+1,)1(2-=x y ,y=2-x 的图象(不需列表描点).通过观察图象,填空:}2,)1(,1min{2x x x --+的最大值为 .19、如图,已知抛物线)0(2≠++=a c bx x a y 的对称轴为直线x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B. (1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴直线x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴直线x =1上的一动点,求使∠PCB =90°的点P 的坐标.20、改革开放以来,某镇通过多种途径发展地方经济,1995年该镇年国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平。
(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?(2)设以2001年为第一年,该镇第x 年的国民生产总值为y 亿元,y 与x 之间的关系是)0(532912≥++=x x x y 该镇那一年的国民生产总值可在1995年的基础上翻两番(即达到1995年的年国民生产总值的4倍)?21、两个完全相同的矩形ABCD 、AOEF 按如图所示的方式摆放,使点A 、D 均在y 轴的正半轴上,点B 在第一象限,点E 在x 轴的正半轴上,点F 在函数)0(>=x xk y 的图象上,AB=1,AD=4.(1)求k 的值.(2)将矩形ABCD 绕点B 顺时针旋转90o D C B A '''得到矩形D C B A ''',边D A ''交函数)0(>=x x k y 的图象于点M ,求D M '的长.22、在梯形ABCD 中,AB//CD ,点E 在线段DA 上,直线CE 与BA 的延长线交于点G ,(1)求证:△CDE ∽△GAE;(2) 当DE :EA=1:2时,过点E 作EF//CD 交BC 于点F 且 CD=4,EF=6, 求AB 的长23、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B.(1) 求证:△ADF ∽△DEC ;(2) 若AB =4,AD =33,AE =3,求ED ,AF 的长.24、如图,一艘军舰从点A 向位于正东方向的C 岛航行,在点A 处测得B 岛在其北偏东75O (即15OA =∠),航行75海里到达点D 处,测得B 岛在其北偏东15O,继续航行5海里到达C 岛,此时接到通知,要求这艘军舰在半小时内赶到正北方向的B 岛执行任务,则这艘军舰航行速度至少为多少时才能按时赶到B 岛?25、已知ABC ∆,延长BC 到D ,使CD=BC .取AB 的中点F ,连结FD 交AC 于点E . (1)求ACAE 的值;(2)若,求的长.26、有一河堤坝BCDF 为梯形,斜坡BC 坡度33=iBC,坝高为5 m ,坝顶CD= 6 m ,现有一工程车需从距B 点50 m 的A 处前方取土,然后经过B —C —D 放土,为了安全起见,工程车轮只能停在离A 、D 处1 m 的地方即M 、N 处工作,已知车轮半经为1 m ,求车轮从取土处到放土处圆心从M 到N 所经过的路径长。
(3215tan 0-=)27、如图,某种新型导弹从地面发射点L 处发射,在初始竖直加速飞行阶段,导弹上升的高度y (km )与飞行时间x (s )之间的关系式为xx y 611812+=(0≤x≤10).发射3s 后,导弹到达A 点,此时位于与L 同一水平面的R 处雷达站测得AR 的距离是2km ,再过3s 后,导弹到达B 点. (1)求发射点L 与雷达站R 之间的距离;(2)当导弹到达B 点时,求雷达站测得的仰角(即∠BRL )的正切值.28、如图,为测量江两岸码头B、D之间的距离,从山坡上高度为50米的A处测得码头B的俯角∠EAB为15°,码头D的俯角∠EAD为45°,点C在线段BD 的延长线上,AC⊥BC,垂足为C,求码头B、D的距离(结果保留整数).29、如图,A,B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB)。