一元二次不等式(组)表示平面区域

合集下载

课程资料:二元一次不等式(组)表示的平面区域

课程资料:二元一次不等式(组)表示的平面区域
图)分别为65xx++32yy≥≥4300,, x,y∈N.
3.点 P(1,-1)在直线y=ax+b的上方,则a,b满足的 关系式:( B ) A. a+b>-1 B. a+b<-1 C. a+b>1 D. a-b<-1
7.确定m的范围,使点(1,2)和点(1,1)在y 3x m 0
的异侧.
5.若不等式组
y

a,
表示的平面区域是一个三角
0 ≤ x ≤ 2
形,则 a 的取值范围是( C )
A. a 5
B. a≥7
C. 5≤a 7
D. a 5 或 a≥7
[例4] 画出不等式(x+2y+1)(x-y+4)>0表示 的区域.
[解] 原不等式等价于
①xx-+y2+y+4>1>0.0, 或
• §3.3.1二元一次不等式(组) 表示的平面区域
那么:x – y < 6或x – y形?
问题2
一条直线
直线将平面分成两部分,这与 x y ()6
有什么关联呢?
y
x –y =6
左上方区
O

x
右下方 区域
二元一次不等式x-y<6表示直 线x- y=6左上方的平面区域
2.有粮食和石油两种货物,可用轮船和飞机两种 方式运输,每天每艘轮船和每架飞机的运输量 如下表:
货物 轮船运输量 飞机运输量
粮食/t 300
150
石油/t 250
100
现在要在一天之内运输2 000 t粮食和1 500 t石
油,试用代数和几何两种方法表示运输工具和
运输数量满足的关系.
解:设需要 x 艘轮船,y 架飞机,代数关系式和几何描述(如
(3)

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域   课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.

不等式(组)与平面区域的应用

不等式(组)与平面区域的应用

对未来研究的展望
随着数学和其他学科的发展,不等式(组)与平面区域的应用将会得到更深入的研究和 探讨。
未来研究可以进一步探索不等式(组)的优化问题,以及如何利用不等式(组)来解决更 复杂的问题。
此外,还可以研究不等式(组)在其他领域的应用,例如在生物学、环境科学等领域, 以更好地服务于实际问题。
THANKS
交通规划问题中的不等式与平面区域应用
总结词
交通规划问题中,不等式与平面区域的应用主要涉及 如何优化交通网络布局、提高运输效率、缓解交通拥 堵等问题。
详细描述
在城市交通规划中,规划师利用不等式模型来确定最佳 的道路网络布局和交通信号控制方案。通过优化交通流 量的分配,降低拥堵程度和提高运输效率。在物流运输 中,物流企业利用不等式模型来优化运输路线和车辆调 度计划。通过减少运输时间和成本,提高物流效率和客 户满意度。在公共交通系统中,公交公司利用不等式模 型来合理安排公交线路和班次。通过优化公共交通资源 配置,提高公共交通的覆盖范围和服务质量。
不等式(组)与平面 区域的应用
目录
• 引言 • 不等式与平面区域的基本概念 • 不等式(组)在平面区域中的应用 • 实际问题的应用案例 • 结论
01
引言
主题简介
主题概述
不等式(组)与平面区域的应用主要研究如何利用不等式(组)来 确定平面区域,以及这些区域在实际问题中的应用。
主题背景
不等式是数学中一个重要的概念,它可以用来描述各种实际 问题中的限制条件。平面区域则可以用来表示这些限制条件 下的可行解的集合。因此,研究不等式(组)与平面区域的应用 对于解决实际问题具有重要意义。
感谢观看
二次函数的图像
二次函数的图像是一个开 口的抛物线,其顶点为极 值点。

寻求二元一次不等式(组)所表示的平面区域的方法

寻求二元一次不等式(组)所表示的平面区域的方法

寻求二元一次不等式(组)所表示的平面区域的方法东北师范大学 熊明军 大连理工大学 曾玲莉简单线性规划问题是高考必考知识点,而其基础在于研究二元一次不等式(组)所对应的平面区域.下面介绍一些方法来快速准确地确定二元一次不等式(组)所表示的平面区域.方法一:直线定界,特殊点定域找出一个二元一次不等式(组)在平面直角坐标系内所表示的平面区域的基本方法是:①画直线②取特殊点③代值定域④求公共部分①画直线──作出各不等式对应方程表示的直线(原不等式带等号的作实线,否则作虚线);②取特殊点──平面直角坐标系内的直线要么过原点,要么不过原点;当直线过原点时我们选取特殊点或(坐标轴上的点),当直线不过原点时我们选取原点做特殊点;③代值定域──将选取的特殊点代入所给不等式:如果不等式成立,则不等式所表示的平面区域就是该特殊点所在的区域;如果不等式不成立,则不等式所表示的平面区域就是该特殊点所在区域的另一边.④求公共部分──不等式组所确定的平面区域,是各个二元一次不等式所表示平面区域的公共部分.例1 画出不等式组所表示的平面区域.解析:①画直线:不等式对应的直线方程是;不等式对应的直线方程是;在平面直角坐标系中作出直线与(如图).②取特殊点:直线过原点,可取特殊点;直线不过原点,可取特殊点.③将代入,即,不等式不成立,直线另一侧区域就是不等式所表示的平面区域;将代入,即,不等式成立,则原点所在区域就是不等式所表示的平面区域.(图一)④求公共部分:如图二所示公共部分就是不等式组所表示的平面区域.方法二:法向量判定法由平面解析几何知识知道直线(不同时为0)的一个法向量为.以坐标原点作为法向量的始点,可以利用向量内积证明如下结论:(1)不等式(),不等式表示的平面区域就是法向量指向的区域;(大于同向)(2)不等式(),不等式表示的平面区域就是法向量反向的区域;(小于反向)例2画出不等式组所表示的平面区域.解析:①不等式对应的直线方程是,法向量;不等式对应的直线方程是,法向量;在平面直角坐标系中作出直线与及其相应的法向量(如图).②由于不等式(),平面区域是法向量指向的区域(图一);不等式(),平面区域是法向量反向的区域(图二).③然后求的公共部分就是不等式组所表示的平面区域.方法三:未知数系数化正法直线(不同时为0)含有两个未知数,于是我们可以将未知数的系数分为两类:项系数与项系数来研究.(1)项系数化正法:顾名思义就是利用不等式性质,不等号两边同时(移项)将项系数化为正值,然后根据变形后关于的不等式中的不等号来确定区域位置(规定:轴正方向所指的区域为直线的上方;反之为下方)有结论:项系数正值化:上;下.例3画出不等式组所表示的平面区域.解析:①不等式对应的直线方程是;不等式对应的直线方程是;在平面直角坐标系中作出直线与(如图).②将不等式组中每个不等式项系数正值化,得或(移项).③关于的不等式()即(或者),直线上方的区域就是该不等式所表示的平面区域(图一);关于的不等式()即,直线下方的区域就是该不等式所表示的平面区域(图二).④然后求的公共部分就是不等式组所表示的平面区域.(2)项系数化正法:同(1)一样,不等号两边同时(或移项)将项系数化为正值,然后根据变形后关于的不等式中的不等号来确定区域位置(规定:轴正方向所指的区域为直线的右方;反之为左方)有结论:项系数正值化:右;左.可结合例3来对项系数化正法进行理解.上述方法中,方法一是寻找二元一次不等式所表示的平面区域的常规方法,思维回路较长,适合对理论的学习,但要快速准确地解决简单的线性规划问题就必须掌握方法二或方法三中之一.2011-05-04 人教网。

高二数学 二元一次不等式(组)与平面区域 知识讲解

高二数学 二元一次不等式(组)与平面区域 知识讲解

二元一次不等式(组)与平面区域【要点梳理】要点一:二元一次不等式(组)的定义1.二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式.2.二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(,)x y ,所有这样的有序实数对(,)x y 构成的集合称为二元一次不等式(组)的解集.要点诠释:注意不等式(组)未知数的最高次数. 要点二:二元一次不等式(组)表示平面区域二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,因此,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.二元一次不等式所表示的平面区域:在平面直角坐标系中,直线:0l Ax By C ++=将平面分成两部分,平面内的点分为三类: ①直线l 上的点(x ,y )的坐标满足:0=++C By Ax ;②直线l 一侧的平面区域内的点(x ,y )的坐标满足:0>++C By Ax ; ③直线l 另一侧的平面区域内的点(x ,y )的坐标满足:0Ax By C ++<.即二元一次不等式0Ax By C ++>或0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=的某一侧所有点组成的平面区域,直线0Ax By C ++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).要点三:二元一次不等式表示哪个平面区域的确定 二元一次不等式表示的平面区域由于对在直线0Ax By C ++=同一侧的所有点(,)x y ,把它的坐标(,)x y 代入Ax By C ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直线哪一侧的平面区域.(特殊地,当0C ≠时,常把原点作为此特殊点)以上判定方法简称为“直线定界、特殊点定域”法. 不等式组所表示的平面区域由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域.要点诠释: “直线定界,特殊点定域”二元一次不等式(组)表示平面区域的重要方法. 【典型例题】类型一:二元一次不等式表示的平面区域 例1. 画出不等式240x y +->表示的平面区域. 【解析】先画直线240x y +-=(画成虚线). 取原点(0,0)代入24x y +-得200440⨯+-=-<, ∴原点不在240x y +->表示的平面区域内, 不等式240x y +->表示的区域如图:【总结升华】1. 画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0≠C 时,常把原点作为此特殊点.2. 虚线表示区域不包括边界直线,实线表示区域包括边界直线 举一反三:【变式1】画出下列不等式所表示的平面区域 (1)4312x y +≤; (2)1≥x 【答案】(1)(2)【变式2】图中阴影(包括直线)表示的区域满足的不等式是()A.x-y-1≥0 B.x-y+1≥0 C.x-y-1≤0 D.x-y+1≤0【答案】直线对应的方程为x-y-1=0,对应的区域,在直线的下方,当x=0,y=0时,0-0-1<0,即原点在不等式x-y-1<0对应的区域内,则阴影(包括直线)表示的区域满足的不等式是x-y-1≥0,故选:A.【变式3】不等式3x+2y-6≤0表示的区域是()【答案】可判原点适合不等式3x+2y-6≤0,故不等式3x+2y-6≤0所表示的平面区域为直线3x+2y-6=0的左下方,故选D。

不等式表示的平面区域

不等式表示的平面区域

x
2 0
a2

y
2 0
b2
1 表示点在含原点的区域外;
M(x0,y0)
y
x
2 0
a2

y
2 0
b2
1
x
2 0
a2

y2 0b21 Nhomakorabeax
2 0
a2

y
2 0
b2
1
F1
O
F2
x
四、二次不等式表示的平面区域
2.双曲线上、含原点和不含原点的区域
设点 M(x0,y0),
标准方程:
y2 a2

x2 b2
或区域的位置关系.
(1)x-2y+9=0 (2) y2 4x
(3)
x2 5

y2 9
1
(4) x2

y2 9
1
(5) (x 2)2 (y 1)2 5
(6) x2 y2 2x 6y 1 0
( 7) -2x +y>2
【解析】M ( 2 , 6) ,N ( -3, 3) (5) (x 2)2 (y 1)2 5
专题:不等式表示的平面区域
一、一次不等式与平面区域
1、一元一次不等式与区间
一元一次不等式的解集一般形式为:
x>a;
P
a
x
x<a;
a
x
x≥a;
a
x
x≤a.
a
x
实数 a 将数轴分成两段,用来表示不等
式的解集.
一、一次不等式与平面区域
2、一元一次不等式组与区间
一元一次不等式的解集一般形式为:

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域
二元一次不等式(组)与平面 区域(1)
石泉中学 詹礼荣
2014高考导航
考纲展示
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域 表示二元一次不等式组.
教材回顾夯实双基
基础梳理
1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式 Ax+By+C>0 在平面直角 坐标系中表示直线 Ax+By+C=0 某一侧的所有的点组 不含 边界直线,不等式 Ax+By 成的平面区域(半平面)______ +C≥0 所表示的平面区域(半平面)含有边界直线. (2)对于直线 Ax+By+C=0 同一侧的所有的点(x,y), 使得 Ax+By+C 值的符号相同,也就是位于同一半平 面的点,其坐标适合 Ax+By+C>0;而位于另一半平 Ax+By+C<0 面的点,其坐标适合_________________. (3)可在直线 Ax+By+C=0 的某一侧任取一点, 一般取 符号 来判断 Ax 特殊点(x0,y0),从 Ax0+By0+C 的_______ +By+C>0(或 Ax+By+C<0)所表示的区域.
2.已知点(-3,-1)和 (4,- 6)在直线 3x-2y-a= 0 的两 侧,则 a 的取值范围是( ) A. (- 24,7) B.(-7,24) C. (-∞,- 7)∪(24,+∞ ) D. (-∞,- 24)∪ (7,+∞ )
解析:选 B.∵点(-3,- 1)和(4,-6)在直线 3x- 2y-a=0 的两侧,则(-9+2-a)(12+12- a)<0, 即(a+7)(a-24)<0. ∴-7<a<24.
课堂小结(学生总结)
作业
• 1.阅读课本必修5 96-100页内容 • 2.课时达标检测(A) 219页第8题 • 3.补充题:直线 2 x y 10 0

二元一次不等式(组)表示的平面区域

二元一次不等式(组)表示的平面区域

二元一次不等式(组)表示的平面区域(1)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则实数a 的取值范围是( D )A .⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1]C .⎣⎢⎡⎦⎥⎤1,43D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞解析:不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x ,2x +y =2,得A ⎝ ⎛⎭⎪⎫23,23,由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0). 若原不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a≥43.(2)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积被直线y=kx +43分为2∶1两部分,则k 的值是1或5.解析:不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 的三等分点时,直线y =kx +43能把平面区域分为2∶1两部分.因为A (1,1),B (0,4),所以AB 靠近A 的三等分点为⎝ ⎛⎭⎪⎫23,2,靠近B 的三等分点为⎝ ⎛⎭⎪⎫13,3,当y =kx +43过点⎝ ⎛⎭⎪⎫23,2时,k =1,当y =kx +43过点⎝ ⎛⎭⎪⎫13,3时,k =5.1.二元一次不等式(组)表示平面区域的判断方法直线定界,测试点定域. 2.求平面区域的面积(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(1)不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( B ) A .4 B .1 C .5D .无穷大解析:不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即所求,求出点A ,B ,C 的坐标分别为A (1,2),B (2,2),C (3,0),则△ABC 的面积为S=12×(2-1)×2=1.(2)若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( B )A .12 B .1 C .32D .2解析:在同一直角坐标系中作出函数y =2x 的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.。

一元二次不等式组与平面区域

一元二次不等式组与平面区域

平面区域的性质
连通性
平面区域是连通的,即任意两点都可 以用一条完全位于该区域内的路径连 接起来。
封闭性
凸性
如果平面区域内的任意两点所连的线 段都完全位于该区域内,则该区域是 凸的。凸区域具有良好的几何性质, 便于进行数学分析和计算。
如果平面区域是由一个或多个闭合曲 线围成,则该区域是封闭的。封闭区 域具有明确的边界和内部。
一元二次不等式组 与平面区域
contents
目录
• 引言 • 一元二次不等式组的解法 • 平面区域的表示方法 • 一元二次不等式组与平面区域的关系 • 一元二次不等式组与平面区域的应用 • 总结与展望
01
CATALOGUE
引言
目的和背景
研究目的
探讨一元二次不等式组与平面区域的关 系,以及如何利用不等式组表示平面区 域。
VS
研究背景
一元二次不等式组是数学中的重要概念, 与平面区域有着密切的联系。在实际问题 中,经常需要利用不等式组来表示某些平 面区域,例如经济学中的生产可能性边界 、物理学中的相图等。因此,研究一元二 次不等式组与平面区域的关系具有重要的 理论意义和应用价值。
一元二次不等式组的概念
一元二次不等式
只含有一个未知数,且未知数的最高次数为2的不等式。
解的判别与性质
判别式
一元二次方程的判别式为Δ=b²-4ac,根据判别式的值可以 判断方程的根的情况。
解的性质
当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有 两个相等的实根(即一个重根);当Δ<0时,方程无实根 。
不等式组的解集性质
不等式组的解集可能是空集、一个区间或多个区间的并集 ,具体取决于不等式组中各个不等式的解集及其之间的关 系。

2022年山东省济宁市喻屯第二中学高二数学理下学期期末试题含解析

2022年山东省济宁市喻屯第二中学高二数学理下学期期末试题含解析

2022年山东省济宁市喻屯第二中学高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 命题“对任意的”的否定是()A.不存在 B.存在C.存在 D.对任意的参考答案:C2. 把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于()A.B.C.D.参考答案:A【考点】条件概率与独立事件.【专题】计算题.【分析】本题是一个条件概率,第一次出现正面的概率是,第一次出现正面且第二次也出现正面的概率是,代入条件概率的概率公式得到结果.【解答】解:由题意知本题是一个条件概率,第一次出现正面的概率是,第一次出现正面且第二次也出现正面的概率是,∴P(B|A)=故选A.【点评】本题考查条件概率,本题解题的关键是看出事件AB同时发生的概率,正确使用条件概率的公式.3. 已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为A. B.C. D.参考答案:A略4. 已知三边满足,且,则的值为()A.4 B. C.3 D.参考答案:A5. 点是曲线上任意一点,则点到直线的最小距离是()A.B. C. D.参考答案:B6. 已知椭圆的左右焦点分别为F1,F2,过右焦点F2作x轴的垂线,交椭圆于A,B两点.若等边的周长为,则椭圆的方程为()A. B. C. D.参考答案:A由题意可得等边的边长为,则,由椭圆的定义可得,即,由,即有,则,则椭圆的方程为,故选A.7. 用演绎法证明函数是增函数时的小前提是A.函数满足增函数的定义B.增函数的定义C.若,则D.若,则参考答案:A8. 已知f(x)是定义在区间(0,+∞)上的函数,其导函数为f'(x),且不等式xf'(x)<2f (x)恒成立,则()A.4f(1)<f(2)B.4f(1)>f(2)C.f(1)<4f(2)D.f(1)<2f'(2)参考答案:B【考点】函数的单调性与导数的关系.【分析】令g(x)=,(x>0),求出函数的导数,得到函数的单调性,求出g(1)>g (2),从而求出答案.【解答】解:令g(x)=,(x>0),则g′(x)=,∵不等式xf'(x)<2f(x)恒成立,∴xf'(x)﹣2f(x)<0,即g′(x)<0,g(x)在(0,+∞)递减,故g(1)>g(2),故4f(1)>f(2),故选:B.【点评】本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.9. 在下列区间中,函数的零点所在的区间为A. B. C. D.参考答案:C10. 若方程Ax+By+C=0表示与两条坐标轴都相交的直线,则().A.B.C.D.参考答案:B∵方程表示与两条坐标轴都相交的直线,∴直线的斜率存在且不等于,∴且.故选.二、填空题:本大题共7小题,每小题4分,共28分11. 已知xy>0,x≠y,则x4+6x2y2+y4与4xy(x2+y2)的大小关系是______________.参考答案:x4+6x2y2+y4>4xy(x2+y2)解析:x4+6x2y2+y4-4xy(x2+y2)=(x-y)4>012. 已知数列{a n}满足a n a n+1=(﹣1)n(n∈N*),a1=1,S n是数列{a n}的前n项和,则S2015= .参考答案:﹣1【考点】数列递推式.【分析】由数列{a n }满足,a 1=1,可得a 4k ﹣3=1,a 4k ﹣2=﹣1,a 4k ﹣1=﹣1,a 4k =1,k∈N *.即可得出. 【解答】解:∵数列{a n }满足,a 1=1,∴a 2=﹣1,a 3=﹣1,a 4=1,a 5=1…,∴a 4k ﹣3=1,a 4k ﹣2=﹣1,a 4k ﹣1=﹣1,a 4k =1,k∈N *.即数列各项的值呈周期性出现 ∴S 2015=503×(1﹣1﹣1+1)+(1﹣1﹣1)=﹣1. 故答案为:﹣1.13. 不等式组所表示的平面区域的面积为.参考答案:【考点】简单线性规划.【分析】利用二元一次不等式组的定义作出对应的图象,找出对应的平面区域,结合相应的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则由得,即A (0,),由得,即B (0,3),由得,即C (1,1),则三角形的面积S=|AB|?h=(3﹣)×1==,故答案为:【点评】本题主要考查一元二次不等式组表示平面区域,利用数形结合是解决本题的关键.14. 如图,一个底面半径为R 的圆柱形量杯中装有适量的水。

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)表示平面区域主备人:审核:使用人:班级:【课题】:二元一次不等式(组)表示平面区域【学习目标】1、了解二元一次不等式(组)的概念,理解其解集的几何意义;2、会画二元一次不等式(组)所表示的平面区域。

【学习重难点】会画二元一次不等式(组)所表示的平面区域。

【课前预习案】1、二元一次不等式表示平面区域:一般的,二元一次不等式Ax By C++>在平面直角坐标系中表示直线0Ax By C++=某一侧所有点组成的________________.我们把直线画成_________以表示区域不包括边界直线.当我们在坐标系中画出不等式0Ax By C++≥所表示的平面区域时,此区域应包括边界直线,则把边界直线画成___________.2、如何确定二元一次不等式0Ax By C++>(或<0)表示的平面区域?【预习检测】画出不等式组10230x yx y--<⎧⎨--≥⎩表示的平面区域.【课内探究案】一、二元一次不等式表示平面区域例1、画出下列不等式表示的平面区域(1)230x y-->;(2)3260x y+-≤【变式训练】画出二元一次不等式320ax y++≥表示的平面区域,已知点(-1,0)在区域边界上.二、二元一次不等式组表示平面区域例2、画出不等式组表示的平面区域(1)21010x yx y-+≥⎧⎨+-≥⎩(2)232021030x yyx-+>⎧⎪+≥⎨⎪-≤⎩【变式训练】已知直线ax=2与x-by+1=0的交点为(1,2),试分别画出2a x<与10x by-+≥所表示的平面区域.三、用二元一次不等式组表示实际问题例3.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需用的主要原料是磷酸盐4吨,硝酸盐18吨,生产1车皮乙种肥料需用的主要原料是磷酸盐1吨,硝酸盐15吨,现有库存磷酸盐10吨,硝酸盐66吨。

如果在此基础上进行生产,设x,y分别是计划生产甲、乙两种混合肥料的车皮数,请列出满足生产条件的数学关系式,并画出相应的平面区域。

二元一次不等式(组)所表示的平面区域知识讲解

二元一次不等式(组)所表示的平面区域知识讲解

(2) 2 y 1 ≥ 0
x 3 ≤ 0
y
3
则它们的交集
2
就是已知不等式
1
组所表示的区域。
-1 O 1
2y+1=0 -1
-2
2x-3y+2=0
23 x-3=0
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨。如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域。
例1.画出下面二元一次不等式表示的平 面区域:
(1)2x-y-3>0; (2)3x+2y-6≤0.
解:(1)所求的平面区 域不包括直线,用虚线 画直线l:2x-y-3=0,
将原点坐标(0,0)代入 2x-y-3,得
y 2x-y-3=0 2
1
-1 O -1
x 12
-2
2×0-0-3=-3<0,
2x-y-3>0
二元一次不等式的一般形式为 Ax+By+C>0 或 Ax+By+C<0,
现在我们来探求二元一次不等式解集 的几何意义。
已知直线l:Ax+By+C=0,它把平面分 为两部分,每个部分叫做开半平面,开半 平面与l的并集叫做闭半平面。
根据直线方程的意义,凡在l上的点的 坐标都满足方程①,而不在直线l上的点 的坐标都不满足方程①。
-1 O -1 -2
x+y-1=0 x 12
这使我们猜想:l同侧的点的坐标是否 使式子x+y-1的值具有相同的符号?要么 都大于零,要么都小于零。

高一数学《二元一次不等式(组)与平面区域》教案

高一数学《二元一次不等式(组)与平面区域》教案

芯衣州星海市涌泉学校探究教学课例—二元一次不等式〔组〕与平面区域2、教学策略选择与设计讨论,从而加深对本节课教学内容的理解,使之形成理性认识.3、教学目的知识与技能:知道二元一次不等式〔组〕的几何意义——表示平面区域;会画二元一次不等式〔组〕表示的平面区域并能用平面区域表示二元一次不等式〔组〕.过程与方法:通过画二元一次不等式〔组〕表示的平面区域的过程体会不等式的几何意义;通过详细例子,引导学生会用)1,0(),0,1(),0,0(等特殊点检验不等式0(0)Ax By C ++><所表示的平面区域,由此归纳、猜想确定不等式所表示的平面区域在直线的哪一侧的一般方法,即“直线定界,特殊点定域〞的方法.情感、态度与价值观:通过画图的过程训练学生养成用直尺标准作图的良好习惯,认同事物是普遍联络的辩证唯物主义观点,体验一些事物在一定的条件下是可以互相转化的.4、教学内容简单的线性规划是应用数形结合思想解题的重要方法之一,应用线性规划解决“最优化〞问题是数学的一个重大应用.“二元一次不等式〔组〕所表示的平面区域〞是简单的线性规划的重要根底,因此本节课内容重点强调“平面区域〞与“不等式的〔组〕〞的对应关系.而建立这种对应关系的过程可以引导学生自主探究发现.本节课内容的难点在于寻求二元一次不等式〔组〕所表示的平面区域,打破难点的有效方法可以通过对详细例子探究、尝试获得结论,培养学生复杂问题简单化、普遍规律一般化的思维方式.同时探究不等式“定域〞方法时,可以鼓励学生发挥协作精神,采用探究的学习方法,充分调动学生的思维.5、教学重点和难点教学重点:二元一次不等式表示平面区域,体会数形结合思想;教学难点:把实际问题转化成线性规划问题,并给出解答。

解决难点的关键是根据实际问题中的条件,找出约束条件和目的函数,利用图解法求得最优解。

6、教学过程为了表达课改特色以及结合本节课内容的特点,将本节课设计为“思-疑-释-讲-练〞的教学形式,详细如下:①完成学案:明确课标对本节课的要求;设计预习导引问题;自主学习、解决部分问题;整理疑问、课上解决.②创设情境、导悟要点→生生互释、教师点拨→小组讨论、探究→魅力精讲、概括升华→理论、成就素能→课堂点评、目的反响.学案的精心设计,可以使学生把感悟时间是是置于课前,有利于培养学生的自学才能、质疑才能、探究才能,做到学生有准备的进入本节课的学习;教学过程中“导悟要点、生生互释、小组讨论、魅力精讲、理论〞的设计表达了“思-疑-释-讲-练〞的教学形式,唤起学生的主体意识,突出学生的主体地位,培养学生的自主学习、探究问题和勇于创新的才能.7、教学媒介本节课的教学内容设计目的在于通过二元一次不等式表示平面区域来让学生体会到数与形的结合,因此为了进步作图的快捷、图示的准确性和直观性,本节课将恰当使用多媒体进展教学辅助.同时多媒体的引入可直观演示本节课所设计问题及相关习题答案,大大节板书时间是是,进步课堂效率.二元一次不等式〔组〕所表示的平面区域〔导学案〕二、教学过程实录〔一〕创设情境、导悟要点【师生活动】一家银行的信贷部方案年初投入25000000元用于企业和个人贷款,希望这笔资金至少可带来30000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么,信贷部应该如何分配资金呢?这个问题中存在一些不等关系,我们应该用什么不等式模型来刻画它们呢?同学们陆陆续续列出不等式。

3.3.1二元一次不等式(组)与平面区域(2)

3.3.1二元一次不等式(组)与平面区域(2)
所以AD=3,AB=2,BC=5 故所求区域的面积为 1 S= 3 5 2 8 2
y
5
C x-y+5=0
D
2A -5
B
2
y=2
o
x
x=2
x-y+5≥0
变式1 若二元一次不等式组 y≥a
0≤x≤2
所表示的平面区域是一个三角形, 求a的取值范围
变式训练 x-y+5≥0
变式: 若二元一次不等式组 y≥a
解:设x , y分别为计划生产甲、乙两种混合肥料的车皮 数,于是满足以下条件
4x+y≤10
18x+15y ≤66 x≥0,X∈N y ≥0,y∈N
y
10
5
4x+y=10
0
1
2 3 4 18x+15y =66
x
x-y+5≥0
例4、 求二元一次不等式组 y≥2
0≤x≤2
所表示的平面区域的面积
解析: 如图,平面区域为直角梯形,易得 A(0,2),B(2,2),C(2,7),D(0,5)
3.3.1 二元一次不等式 (组)与平面区域(2)
y
o
x
复习
⑴ 二元一次不等式表示平面区域: 直线某一侧所有点组成的平面区域。画图时
应非常准确,否则将得不到正确结果。
⑵ 判定方法: 直线定界,特殊点定域。
------若不等式中不含有等号时,则边界应画成虚线,
⑶ 二元一次不等式组表示平面区域: 各个不等式所表示平面区域的公共部分。
例2、要将两种大小不同的钢板截成A.B.C三种规格,每张钢板 可同时截得三种规格的小钢板的块数如下表所示:
第一种钢板 第二种钢板

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域  课件
[提示] 一一对应.
4.二元一次不等式表示的平面区域及确定 (1)直线 l:ax+by+c=0 把直角坐标平面分成了三个部分: ①直线 l 上的点(x,y)的坐标满足 ax+by+c=0 . ②直线 l 一侧的平面区域内的点(x,y)的坐标满足 ax+by+c>0,另一侧 平面区域内的点(x,y)的坐标满足 ax+by+c<0 .
3.二元一次不等式(组)的解集概念 满足二元一次不等式(组)的 x 和 y 的取值构成一个有序数对(x,y),称为 二元一次不等式(组)的一个 解,所有这样的有序数对(x,y)构成的集合称为二 元一次不等式(组)的 解集 . 思考:把二元一次不等式的解看作有序数对,它与平面内的点之间有什 么关系?
同理得 B(-1,1),C(3,-1).
∴|AC|= 22+-42=2 5,
而点
B
到直线
2x+y-5=0
的距离为
d=|-2+51-5|=
6, 5
∴S△ABC=12|AC|·d=12×2 5× 65=6.
x>0 2.若将例题中的条件“y>0
4x+3y≤12
”变为“y|x≤|≤2y≤|x|+1 ”求所
标. (1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直 线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形. (2)整点是横纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠 近直线的点,以免出现错误.
x+y>2, 2.不等式组x-y>0, 表示的区域是什么图形,你能求出它的面积吗?
x<4
该图形若是不规则图形,如何求其面积?
提示:不等式组表示的平面区域如图阴影部分 △ABC,该三角形的面积为 S△ABC=12×6×3=9.若 该图形不是规则的图形.我们可以采取“割补”的 方法,将平面区域分为几个规则图形求解.

38一元二次不等式组与简单的线性规划问题

38一元二次不等式组与简单的线性规划问题

第38课时 一元二次不等式组与简单的线性规划问题编者:朱正琴 审核:刘智娟第一部分 预习案一、学习目标1.掌握确定平面区域的方法(线定界、点定域);2.理解目标函数的几何意义,掌握解决线性规划问题的方法(图解法),注意线性规划问题与其他知识的综合.二、知识回顾1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的 .我们把直线画成虚线以表示区域 边界直线.当我们在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时,此区域应 边界直线,则把边界直线画成 。

(2)由于对直线Ax +By +C =0同一侧的所有点(x ,y ),把它的坐标(x ,y )代入Ax +By +C 所得到实数的符号都 ,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),由Ax 0+By 0+C 的 即可判断Ax +By +C >0表示直线Ax +By +C =0哪一侧的平面区域. 2.3.应用利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值.三、基础训练1.若点(1,3)和(-4,-2)在直线2x +y +m =0的两侧,则m 的取值范围是__________.2.如图所示的平面区域(阴影部分)满足的不等式为__________________.班级_________ 学号_________ 姓名_________3.完成一项装修工程需要木工和瓦工共同完成.请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x 人,瓦工y 人,则请工人的约束条件是________________.4.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z =x -2y 的取值范围为________.5.已知α,β是方程x 2+ax +2b =0的两个根,且α∈[0,1],β∈[1,2],a ,b ∈R ,则b -3a -1的最大值为________.第二部分 探究案探究一 二元一次不等式(组)表示的平面区域问题1、若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.问题2、已知关于x ,y 的不等式组⎩⎪⎨⎪⎧0≤x ≤2,x +y -2≥0,kx -y +2≥0所表示的平面区域的面积为4,则k的值为________.问题3、在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是______________.探究二 求线性目标函数的最值问题4、变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤03x +5y -25≤0x ≥1,(1)设z =yx ,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.探究三线性规划的简单应用问题5、某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?问题6、某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积分别为____________.我的收获第三部分训练案见附页。

一元二次不等式与平面区域

一元二次不等式与平面区域

)3,5(A)1,1(B)522,1(Co xy一元二次不等式与简单线性规划问题知识点1.一元二次不等式含义例1. 已知点()3,1和点()4,6-在直线320x y m -+=的两侧,求m 的取值范围。

知识点2.画平面区域1、画出不等式260x y +-<表示的平面区域.2、画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x yx 表示的平面区域3、画出下列不等式表示的平面区域(1)1+>x y ; (2).y x >; (3).y x >(4).3<+y x4、画出下列不等式表示的平面区域(1)(5)()0x y x y -++≥; (2).220x y -≥;知识点3.写出平面区域表示的不等式例1、画出下列区域表示的不等式组(1) (2)知识点4.求可行域的面积例1.不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为_______例2.由12+≤≤≤x y x y 及围成的几何图形的面积是多少?例3.已知R y x ∈,,则不等式组⎪⎩⎪⎨⎧≥+-≤-≥02|||1|x x y x y 表示的平面区域的面积是_______知识点5.简单线性规划问题例1.x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤+002y x y x 求y x z -=的最大值、最小值。

例2.设变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x ,求目标函数y x z +=2取值范围。

例3.若实数x ,y 满足1311x y x y ≤+≤⎧⎨-≤-≤⎩ ,求4x +2y 的取值范围.例4.已知x ,y 满足约束条件 50,0,3.x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则y x z -=4的最小值为______________.例5.在△ABC 中,三顶点坐标为A (2 ,4),B (-1,2),C (1 ,0 ), 点P (x ,y )在△ABC 内部及边界运动,则 z = x – y 的最大值和最小值分别是。

(文)大一轮复习课件 第六章 不等式、推理与证明 第三节 二元一次不等式(组)及简单的线性规划问题

(文)大一轮复习课件 第六章 不等式、推理与证明 第三节 二元一次不等式(组)及简单的线性规划问题

解析:设旅行社租用A型客车x辆,B型客车y 辆,租金为z,则线性约束条件为
x+y≤21, y-x≤7, 36x+60y≥900, x,y∈N.
目标函数为z=1 600x
+2 400y.画出可行域如图中阴影部分所示, 可知目标函数过点N(5,12)时,有最小值zmin=36 800(元).答案:C
[演练冲关]
x-y+2≥0, 1.(2017·海口调研)已知实数x,y满足x+y-4≥0,
4x-y-4≤0.
则z=
3x-y的取值范围为
()
A.0,152 C.2,152
B.[0,2] D.2,83
解析:画出题中的不等式组表示的平面区域 (阴影部分)及直线3x-y=0,平移该直线, 平移到经过该平面区域内的点A(1,3)(该点是 直线x-y+2=0与x+y-4=0的交点)时,相 应直线在x轴上的截距达到最小,此时z=3x-y取得最小值 3×1-3=0;平移到经过该平面区域内的点B85,152(该点是直 线4x-y-4=0与x+y-4=0的交点)时,相应直线在x轴上的 截距达到最大,此时z=3x-y取得最大值3× 85 - 152 = 152 ,因此 z的取值范围是0,152,选A.答案:A
2.(易错题)若满足条件 xx+-yy-≥20≤,0, y≥a
的整点(x,y)恰有9个,其
中整点是指横、纵坐标都是整数的点,则整数a的值为 ( )
A.-3
B.-2
C.-1
解析:不等式组所表示的平面区域如图中
D.0
阴影部分,当a=0时,只有4个整点
(1,1),(0,0),(1,0),(2,0);当a=-1时,
数多个,也可能没有.
3.在通过求直线的截距
z b
的最值间接求出z的最值时,要注
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业19 二元一次不等式(组)所表示的平面区域
时间:45分钟 满分:100分
课堂训练
1.下列各点中,与点(1,2)位于直线x +y -1=0同一侧的是( )
A .(0,0)
B .(-1,1)
C .(-1,3)
D .(2,-3)
【答案】 C
【解析】 首先把点(1,2)代入有x +y -1=1+2-1=2>0,然后把选项中的坐标逐个代入检验,只有C 项能使x +y -1>0.
2.不等式组⎩⎪⎨⎪

x ≥0x +3y ≥4
3x +y ≤4
所表示的平面区域的面积等于( )
【答案】 C
【解析】 如图阴影部分△ABC ,
由⎩
⎪⎨
⎪⎧
x +3y =43x +y =4,得点A 坐标为(1,1),
又B 、C 两点坐标分别为(0,4)、⎝
⎛⎭⎪⎫0,43,
∴S △ABC =12×⎝ ⎛⎭⎪⎫4-43×1=4
3
.
3.用三条直线x +2y =2,2x +y =2,x -y =3围成一个三角形,则三角形内部区域(不包括边界)可用不等式组表示为________.
【答案】
⎩⎪⎨⎪

x +2y <22x +y >2x -y <3
4.设x ,y 满足不等式组⎩⎪⎨⎪⎧
x -y ≥-1,
x +y ≤3,
x ≥0,
y ≥0,
试作出其表示的平
面区域.
【解析】 ∵x -y ≥-1,∴x -y +1≥0,表示的平面区域为直线x -y +1=0及其右下方.
∵x +y ≤3,∴x +y -3≤0,∴表示的平面区域为直线x +y -3=0及其左下方;x ≥0表示的平面区域为y 轴及其右侧;y ≥0表示的平面区域为x 轴及其上方.然后找出公共部分.依题意,画出不等式组表示的平面区域如图所示,为四边形ABOC .
课后作业
一、选择题(每小题5分,共40分)
1.下面给出的四个点中,位于⎩⎪⎨
⎪⎧
x +y -1<0,
x -y +1>0
表示的平面区域
内的是( )
A .(0,2)
B .(-2,0)
C .(0,-2)
D .(2,0)
【答案】 C
【解析】 将选项(0,2)代入x +y -1,得1>0,不等式不成立,∴(0,2)不在不等式组表示的平面区域内,同理可验证B ,D 也不符合题意.
2.满足不等式(x -y )(x +2y -2)>0的点(x ,y )所表示的区域为( )
【答案】 B
【解析】 原不等式等价为⎩
⎪⎨
⎪⎧
x -y >0,
x +2y -2>0或⎩
⎪⎨
⎪⎧
x -y <0,
x +2y -2<0.
3.如图所示,阴影部分可用二元一次不等式组表示为( )
【答案】 D
【解析】 2x -y +4≤0表示的区域在直线2x -y +4=0上及其
左上方,故A 、B 错,C 缺少y ≥0.
4.已知点M (x 0,y 0)与点A (1,2)在直线l :3x +2y -8=0的两侧,则( )
A .3x 0+2y 0>0
B .3x 0+2y 0<0
C .3x 0+2y 0>8
D .3x 0+2y 0<8
【答案】 C
【解析】 ∵点M (x 0,y 0),与点A (1,2)在直线l 的两侧,把点
A (1,2)代入3x +2y -8得3×1+2×2-8=-1<0,∴3x 0+2y 0-8>0,
即3x 0+2y 0>8.故选C.
5.若不等式组⎩⎪⎨⎪

x -y +5≥0,y ≥a ,
0≤x ≤2
表示的平面区域是一个三角
形,则a 的取值范围是( )
A .a <5
B .a ≥7
C .5≤a <7
D .a ≥7或a <5
【答案】 C
【解析】 先画出x -y +5≥0和0≤x ≤2表示的区域,再确定
y ≥a 表示的区域.
由图知:5≤a <7.故选C.
6.二元一次不等式组⎩⎪⎨⎪

x -y +1≥0x +y -4≤0
x ≥0,y ≥0
表示的平面区域为A ,二
元一次不等式组⎩⎪⎨⎪

0≤x ≤40≤y ≤5
2表示的平面区域为B ,则A 与B 的关系
是( )
A .A ⊆
B B .B ⊆A
C .B
A D .A
B
【答案】 C
【解析】 画出平面区域A 、B 如图,可见A B .
7.若函数y =2x 图象上存在点(x ,y )满足约束条件
⎩⎪⎨⎪

x +y -3≤0,x -2y -3≤0,x ≥m ,
则实数m 的最大值为( )
B .1
D .2
【答案】 B
【解析】 由题知满足约束条件的可行域如下图中阴影部分.y =2x 与x +y -3=0相交于A (1,2),∴
m ≤1,
∴m 的最大值为1,∴选B.
8.不等式组⎩⎪⎨⎪

y -2x ≤0,x +2y +3>0,
5x +3y -5<0
表示的平面区域中共有( )
个整点.
A .2
B .3
C .4
D .5
【答案】 C
【解析】不等式组
⎩⎪

⎪⎧y-2x≤0,
x+2y+3>0,
5x+3y-5<0
表示的平面区域如图中阴影部分,显然,满足条件的平面区域中的整点为(1,-1)、(2,-2)、(0,0)、(0,-1),共有4个整点.
二、填空题(每小题10分,共20分)
9.在平面直角坐标系中,不等式组
⎩⎪

⎪⎧x+y-2≥0,
x-y+2≥0,
x≤2
表示的平面区域的面积是________.
【答案】4
【解析】
首先画出满足线性约束条件的可行域,如图中阴影部分.由题意知,△ABC 为等腰直角三角形,且AB =AC =22,所以S △ABC =1
2×(22)2
=4.
10.在平面直角坐标系中,不等式组⎩⎪⎨⎪

x +y -2≤0,x -y +2≥0,
y ≥0
表示的
平面区域内整点的个数为________个.
【答案】 9
【解析】 首先画出满足线性约束条件的可行域,如图阴影部分.对于直线l 2:当x =-2时,y =0,当x =-1时,y =1,当x =0时,y =2,左半区域内有整点(-2,0),(-1,0),(-1,1)3个,又
l 1与l 2关于y 轴对称,y 轴上整点(0,0),(0,1),(0,2)3个,故阴影
区域共有整点3+3+3=9个.
三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)
11.在平面直角坐标系中,若不等式组⎩⎪⎨⎪

x +y -1≥0,x -1≤0,
ax -y +1≥0
(a 为
常数)所表示的平面区域的面积等于2,求a 的值.
【分析】 先找出此平面区域对应图形的边角关系,然后得到关于a 的等式求解.
【解析】 如图所示,可得阴影区域为不等式组⎩
⎪⎨
⎪⎧
x +y -1≥0,
x
-1≤0表示的平面区域.
直线ax -y +1=0恒过定点A (0,1),斜率为a .
因为不等式组
⎩⎪⎨⎪⎧ x +y -1≥0,x -1≤0,
ax -y +1≥0所表示的平面区域的面积等于2,所以此平
面区域为“封闭”图形.
所以可判断直线ax -y +1=0与直线x -1=0的交点C 在点B (1,0)的上方,
所以不等式组⎩⎪⎨⎪⎧ x +y -1≥0,x -1≤0,
ax -y +1≥0
所表示的平面区域为△ABC . 由⎩⎪⎨⎪⎧ ax -y +1=0,x -1=0,得C (1,a +1).
因为点C 在点B 的上方,
所以|BC |=a +1-0=a +1,
所以S =12×BC ×1=a +12
=2,所以a =3. 12.若不等式组⎩⎪⎨⎪⎧ 2x -y +2≥0,x ≤0,
0≤y ≤k
表示的平面区域是一个梯形,试求k 的取值范围.
【分析】 首先作出不等式组所表示的平面区域,然后根据平面区域的形状确定k 的取值.
【解析】 如图,首先作出不等式组⎩⎪⎨⎪⎧ 2x -y +2≥0,x ≤0,
y ≥0所表示
的可行域——△OAB ,其中B (0,2),然后作出直线y =k ,则不等式组⎩⎪⎨⎪⎧ 2x -y +2≥0,x ≤0,
0≤y ≤k 表示的平面区域就是直线y =k 下方的平面区域
与△OAB 的交集,由已知,该平面区域是一个梯形,所以直线y =k 在点B 和x 轴之间,故0<k <2.。

相关文档
最新文档