长循环脂质体的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长循环脂质体的研究
《中国医药报》 2007-9-25 平安健康网
脂质体为一种新型药物载体,形状为球形,直径大小约为几十纳米到几十微米。脂质体在血液中的稳定性是发挥药物载体作用的关键。血液中有多种破坏因素:高密度脂蛋白(HDL)是破坏脂质体的主要成分,载脂蛋白A-1(apoA-1)易从HDL上脱落并与脂质体磷脂结合,且HDL和脂质体易发生apoA-1与磷脂的互换,脂质体膜形成孔洞;同时脂质体在血液中激活补体系统,最终形成攻膜复合体,脂质体膜出现亲水性通道,引起药物渗漏和水、电解质的大量进入,最终渗透裂解脂质体;血清白蛋白与脂质体磷脂结合形成复合物,降低其稳定性;血液中的磷脂酶可水解磷脂,该反应强弱由磷脂结构决定;脂质体进入循环系统后,未经修饰的脂质体大部分运转至肝脏和脾脏等单核吞噬细胞系统(MPS)丰富的部位,少量被肺、骨髓及肾摄取;肝细胞膜受体对直接暴露于表面的磷脂负电基进行识别,因而脂质体首先被肝枯否细胞吞噬。这些因素综合使传统脂质体的半衰期仅十几分钟。改变脂质体的组成、粒径、形态和表面电荷,将减少MPS的摄取。还可预先注射空白脂质体使MPS摄取呈饱和状态,然后再给予药物脂质体以增加非MPS摄取,延长药物的半衰期,但该法可能引起MPS的毒性反应。
长循环脂质体的研制给脂质体药物传输系统注入了新的活力和希望,但长循环脂质体最初的研究是从仿生学角度出发的。人们早就发现,体循环中的红细胞具有所有哺乳类动物细胞的共同特征,即具有含有数个唾液酸残基的糖蛋白和糖脂的多糖蛋白质复合物。红细胞膜磷脂分布不对称,其外层主要含有卵磷脂、鞘磷脂和胆固醇。因而进入20世纪80年代后,出现了一种新型脂质体———仿红细胞脂质体,延长了脂质体在血循环中的滞留半衰期。虽然仿红细胞脂质体具有较长的半衰期,但由于神经节苷脂价格昂贵,合成和提取都较困难,因此人们开始寻找其他途径来制备长循环脂质体。
早期曾有报道,将聚乙二醇(PEG)偶联到牛血清蛋白上,会延长该物质的血循环时间。据此,采用聚乙二醇单甲醚(PEG-MM)与磷脂酰乙醇胺(PE)结合成酯(PEG-PE),将其组装到脂质体膜上,可以延长脂质体的血循环时间。用PEG-MM和PE制备聚乙二醇-二硬脂酰基磷脂酰乙醇胺(PEG-DSPE)脂质
体,用125I标记,其中,鞘磷脂(SM):磷脂酰胆脂(PC):胆碱(Chol):PEG:DSPE 为1:1:1:1:0.2,给小鼠静注或腹腔注射后,肝脾中脂质体量分别低于15%和10%。而世界上第一个上市的抗癌药物脂质体———阿霉素脂质体产品得以发展的必要基础正是PEG化长循环脂质体的应用。在此技术中,脂质体的组成中含有PEG-DSPE,其作用是阻止血浆蛋白吸附即调理化于脂质体的表面,从而减少MPS的摄取,延长血循环时间,使得脂质体能够有效到达病变部位。Doxil 具有剂量非依赖动力学特性,药物包封于脂质体中,降低了心脏等敏感部位对于阿霉素的摄取,因而降低了阿霉素的心肌毒性。同时由于癌部位血管通透性增加,延长了血液循环时间的脂质体就可以有效地被输送到癌部位。
PEG分子量的大小对磷脂和脂质体的性质也有影响。北京大学药学院侯新朴等用分子量分别为2000和5000的PEG-MM与DPPE合成PEG200-PE和PEG500-PE,并进行纯化,然后制备大单层脂质体,进行体外稳定性和小鼠体内分布研究,并与未经修饰脂质体进行比较。结果发现,PEG-PE组装在脂膜上后,在体外实验中,使脂质体包载钙黄绿素渗漏减慢,稳定性提高,在血循环中的时间显著延长,屏蔽了网状内皮系统(RES)对脂质体的识别,提高了脂质体在非RES中的分布。而且,随PEG分子量从2000增加到5000,这种屏蔽效果显著增强。
由于PEG化脂质体具有很好的应用前景,因而近年来各国学者对其进行了广泛的研究。在短短几年内,已报道十余种PEG化脂质体衍生物。
PEG化脂质体延长血循环时间的机制目前还不完全清楚,初步认为以下两种因素:①立体位阻假说:PEG-PE是一线性聚合物,其在脂质体表面呈部分延展的构象。有人指出,PEG5000能产生约2纳米厚度的立体位阻层,也有人估计PEG1900能产生6纳米厚度的立体们阻层。这一立体位阻层犹如一把“刷子”,将靠近的大分子或脂蛋白复合物推离脂质体,从而减弱血中各种成分的作用,特别是血浆蛋白的调理作用以及随后的RES摄取作用,同时脂蛋白的交换、磷脂酶的水解等均受到有效抑制。②提高膜表面亲水性:PEG-PE有很长的极性基团,能提高脂质体表面的亲水性,从而提高了MPS对其吸收破坏作用的能垒,有效组织了脂质体表面与血白蛋白的调理作用,并降低了脂质体的MPS的亲和作用。一般认为,立体位阻和提高膜表面的亲水性两个因素同时存在,共同作用,使PEG化脂质体成为一种长效脂质体。
由于PEG层的存在,使得脂质体的体内外稳定性有了很大改变,归纳起来,其特点主要有:减弱脂质体长期贮存的聚集,增加再分散性;延长了在体循环中的时间,提高了半衰期,从而可使脂质体有充分时间能够被肿瘤组织和炎症部位所充分吸收;可减少被MPS摄取的速度和程度,并降低对这个主要宿主防御系统的不良反应;具有剂量非依赖性,即具有线性药动学特性;稳定性不与胆固醇相关(胆固醇能降低双分子膜的流动性,提高普通脂质体的稳定性,而PEG化脂质体的体内循环时间与胆固醇含量无关)。
除了上述的第一个上市的PEG化阿霉素脂质体外,众多学者还对化疗药物、抗生素、肽类等多种药物进行了长循环脂质体化的研究。脂质体长循环化赋予了脂质体与众不同的特性,使脂质体的研究和应用进入了一个全新的阶段。