数列综合应用
高三数学数列综合应用试题答案及解析
高三数学数列综合应用试题答案及解析1.已知数列{an }中,a1=2,an-an-1-2n=0(n≥2,n∈N*).(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;(2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.【答案】(1)a2=6,a3=12. an=n(n+1).(2)实数t的取值范围为(-∞,-2)∪(2,+∞)【解析】解:(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),∴a2=6,a3=12.当n≥3时,an -an-1=2n,a n-1-a n-2=2(n-1),又a3-a2=2×3,a2-a1=2×2,∴an -a1=2[n+(n-1)+…+3+2],∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).当n=1时,a1=2;当n=2时,a2=6,也满足上式,∴数列{an }的通项公式为an=n(n+1).(2)bn=++…+=++…+=-+-+…+-=-==.令f(x)=2x+(x≥1),则f′(x)=2-,当x≥1时,f′(x)>0恒成立,∴函数f(x)在[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(bn )max=.要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,则需t2-2mt+>(bn )max=,即t2-2mt>0对∀m∈[-1,1]恒成立,∴,解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).2.一函数y=f(x)的图象在给定的下列图象中,并且对任意an ∈(0,1),由关系式an+1=f(a n)得到的数列{an }满足an+1>a n(n∈N*),则该函数的图象是()【答案】A【解析】由an+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.3.设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( ) A.1B.2C.4D.5【答案】D【解析】,又根据,所以有,,,, .,所以可知:,,故选D.【考点】数列的周期性4.是点集A到点集B的一个映射,且对任意,有.现对点集A中的点,,均有,点为(0,2),则线段的长度 .【答案】【解析】∵,∴,,,,,,…,根据变化规律可知,∴,,∴.【考点】1.数列的性质;2.两点间距离公式.5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第项;(2)b2k-1=.(用k表示)【答案】(1)5030(2)【解析】由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….从而由上述规律可猜想:b2k =a5k= (k为正整数),b2k-1=a5k-1==,故b2012=b2×1006=a5×1006=a5030,即b2012是数列{an}中的第5030项.6.已知数列满足,则该数列的通项公式_________.【答案】【解析】∵,∴,∴,∴,,…,,∴,∴,∴.【考点】1.累加法求通项公式;2.裂项相消法求和.7.数列满足,则 .【答案】【解析】这类问题类似于的问题处理方法,在中用代换得(),两式相减得,,又,即,故.【考点】数列的通项公式.8.已知函数,记,若是递减数列,则实数的取值范围是______________.【答案】【解析】是递减数列,从开始是用式子计算,这时只要,即即可,关键是是通过二次式计算,根据二次函数的性质,应该有且,即且,解得,综上取值范围是.【考点】数列的单调性.9.已知数列{}的前n项和为,且,则使不等式成立的n的最大值为.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.【考点】1.等比数列的求和公式;2.数列的通项公式.10.甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.【答案】(1)18;(2);(3) .【解析】(1)利用n次操作后A和B的农药的和应与开始时农药的重量和相等建立等量关系,证明是一个常数;(2)借助第一问的结论和第n次后A中10千克的药水中农药的重量具有关系式,求解与的关系式;(3)根据第二问的递推关系,采用构造数列的思想进行求解.试题解析:(1)开始时,A中含有10=1.2千克的农药,B中含有10=0.6千克的农药,,A中含有千克的农药,B中含有千克的农药,它们的和应与开始时农药的重量和相等,从而(常数). 4分(2)第n次操作后,A中10千克的药水中农药的重量具有关系式:由(1)知,代入化简得① 8分(3)令,利用待定系数法可求出λ=—9,所以,可知数列是以为首项,为公比的等比数列.由①,,由等比数列的通项公式知:,所以. 12分【考点】1.数列的递推式;(2)数列的通项公式;(3)实际应用问题.11.等比数列的各项均为正数,且,则【答案】B【解析】等比数列中,所以【考点】等比数列性质及对数运算点评:等比数列中,若则,在对数运算中12.已知数列的首项为,对任意的,定义.(Ⅰ)若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.【答案】(1) ,,(2) 当为偶数时,;当为奇数时,【解析】(Ⅰ) 解:(i),,………………2分由得当时,=………4分而适合上式,所以.………………5分(ii)由(i)得:……………6分……………7分…………8分(Ⅱ)解:因为对任意的有,所以数列各项的值重复出现,周期为. …………9分又数列的前6项分别为,且这六个数的和为8. ……………10分设数列的前项和为,则,当时,,……………11分当时,,…………12分当时所以,当为偶数时,;当为奇数时,. ……………13分【考点】数列的通项公式,数列的求和点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。
《数列综合应用举例》教案
《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。
通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。
1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。
通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。
第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。
通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。
2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。
通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。
第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。
通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。
3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。
通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。
第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。
通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。
4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。
通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。
第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。
通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。
5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。
通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。
第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。
数列的综合应用
高三数学(人教版)
第六章 ·专题研究二
专 题 讲
nf(n+1) 1 (3)由题知,bn= f n =3n,
解
1 n(n+1) n(n+1)
1
11
专
则Tn=3×
2
=
6
,
∴பைடு நூலகம்n=
6(n-n+
). 1
题
111
1
1111 1
11
训 练
∴
T1+T2+
T3+…
+Tn
=
6(1-
2+2-
3+3
-
4+…
+n-n+
) 1
∴
1 a=2,f(x)=
(12)x.
高三数学(人教版)
第六章 ·专题研究二
专 题
又点(n-1,
an n2
)(n∈ N*)(在函数f(x)= ax的图象上,
讲 解
从
而ann2=21n-
1,即
an=
n2 2n-
1.
专 题
(n+ 1)2 n2 2n+ 1 (2)由 bn= 2n -2n= 2n 得,
训
练
111
1
Tn,试比较T1+T2+T3+…+Tn与 6的大小.
高三数学(人教版)
第六章 ·专题研究二
专 题
∴f(n+ 1)=
1 3
f(n)(n∈ N*),∴数列{f(n)}(n∈ N*)是以
讲
解
1
1
f(1)=3为首项,3为公比的等比数列,
专 题
∴f(n)=13×(13)n- 1,即f(n)=(13)n(n∈ N*).
=6(1- 1 ). n+ 1
∵
n∈
《数列综合应用举例》教案
《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
高中数学-数列综合应用
数列综合应用知识精要一、数列求和数列求和的常用方法1、公式法(1)直接利用等差数列、等比数列的前n 项公式求和;①等差数列的前n 项和公式:②等比数列的前n 项和公式:(2)一些常见的数列的前n 项和:○1(1)12342n n n ++++++=; ○22222(1)(21)1236n n n n ++++++=; ○32462(1)n n n ++++=+; ○4213521n n ++++-=; ○52233332(1)(1)123[]24n n n n n ++++++==。
2、倒序相加法如果一个数列{}n a ,首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的。
3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的;4、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n 项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。
5、分组求和法一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减;6、并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和。
形如(1)()n n a f n =-类型,可采用两项合并求解。
二、数列的综合应用1、解答数列应用题的步骤:(1)审题——仔细阅读材料,认真理解题意;(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么;(3)求解——求出该问题的数学解;(4)还原——将所求结果还原到实际问题中。
2、数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差;(2)等比数列:如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列模型,这个固定的数就是公比。
数列的综合应用
①
2Sn=2·24+3·25+4·26+…+n·2n+2+(n+1)·2n+3②
①-②得
-S =2·23+24+25+…+2n+2-(n+1)·2n+3
=16+ 24 (1 2n1) -(n+1)·2n+3 1 2
=16+2n+3-24-n·2n+3-2n+3=-n·2n+3.
∴Sn=n·2n+3.
7n 2 n3
n7n 2 nn 3
7n2 2n n2 3n
令: An 7n2 2n Bn n2 3n
则
an An An1 bn Bn Bn1
14n 5 2n 2
a8 107 b8 18
数列旳综合应用
要点梳理
1.解答数列应用题旳基本环节 (1)审题——仔细阅读材料,仔细了解题意. (2)建模——将已知条件翻译成数学(数列)语言, 将实际问题转化成数学问题,搞清该数列旳构造 和特征.
2k 1
S奇 ak S偶 ak 1
aq1
0 1
或
0a1
q
0
1
an
递增数列;
0a1
q
0
或 1
aq1
0 1
an递减数列;
q 1 an常数列;
q 0 an摆动数列
S项2k1数 (为2n 奇1)a数k (ak为S中奇间项)k S奇 旳S偶 等 a差k 数 列,有: S偶 k 1
性质4:从原数列中取出偶数项构 性质4:从原数q列2中取出偶数
探究提升 对等差、等比数列旳综合问题旳分析,
数列的综合应用
数列的综合应用1、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅L (2)n ≥。
⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。
特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
(2)形如11n n n a a ka b --=+的递推数列都可以用倒数法求通项。
注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
2、数列求和的常用方法:(1)公式法:①等差数列求和公式; ②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.; ③常用公式:1123(1)2n n n ++++=+L222112(1)(21)6n n n n +++=++L ,33332n(n+1)1+2+3++n =[]2L .(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性 ,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ; ⑤2122(1)2(1)11n n n n n n n n n +-=<<=--+++-.(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。
数列的综合应用
数列的综合应用数列是数学中重要的概念之一,它在各个领域中都有着广泛的应用。
数列的综合是数列中各个数值的求和运算,可以帮助我们解决很多实际问题。
本文将探讨数列的综合应用,从数学角度分析其在现实生活中的具体应用。
一、数列的定义和性质在介绍数列的综合应用之前,我们首先需要了解数列的基本定义和性质。
数列是按照一定规律排列的一组数,其中每个数称为数列的项。
根据数列的性质,我们可以将数列分为等差数列和等比数列两种常见类型。
1. 等差数列:等差数列中的任意两个相邻项之差都相等,这个固定的差值称为公差。
等差数列的一般形式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
2. 等比数列:等比数列中的任意两个相邻项之比都相等,这个固定的比值称为公比。
等比数列的一般形式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
二、数列的综合应用数列的综合应用广泛存在于日常生活和各个学科领域中,下面将从几个具体问题场景中介绍数列的应用。
1. 汽车里程计算假设一辆汽车从起点出发,每小时行驶的里程数分别是12公里、15公里、18公里、21公里...... 如果想知道5个小时内总共行驶了多少公里,我们可以使用等差数列的综合公式来计算。
首先确定首项a1=12,公差d=3(每小时增加3公里),然后带入数列综合公式Sn =(n/2)[2a1+(n-1)d],代入n=5进行计算得出结果为75公里。
因此,这辆汽车在5个小时内共行驶了75公里。
2. 学生成绩评估假设某学生在数学考试中的成绩分别是80分、85分、90分、95分......,如果想知道前10次考试的总分,我们可以使用等差数列的综合公式进行计算。
首先确定首项a1=80,公差d=5(每次考试分数增加5分),然后带入数列综合公式Sn = (n/2)[2a1+(n-1)d],代入n=10进行计算得出结果为875分。
因此,这名学生前10次数学考试的总分为875分。
数列的综合应用总结
数列的综合应用总结数列作为数学中常见的一种数学对象,在各个领域中都有着广泛的应用。
本文将对数列的综合应用进行总结和分析,包括数列的定义、数列求和的方法以及数列在实际问题中的应用等方面。
一、数列的定义数列是由一系列按照一定规律排列的数所组成的有序集合。
一般用an表示数列中的第n个数,其中n为正整数,称为项号。
数列的通项公式表示了数列中任意一项与项号之间的关系。
二、数列求和的方法1.等差数列求和等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等差数列的前n项和Sn可以通过等差数列求和公式来计算,即Sn =(a1 + an) * n / 2。
2.等比数列求和等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比。
等比数列的前n项和Sn可以通过等比数列求和公式来计算,即Sn =(a1 * (1 - q^n)) / (1 - q),当|q| < 1时成立。
3.其他数列求和方法除了等差数列和等比数列,还存在一些特殊的数列,它们的求和方法也各不相同。
比如斐波那契数列、调和数列等,它们的求和方法需要根据具体的问题和数列的规律来确定。
三、数列在实际问题中的应用数列的应用广泛存在于实际问题的建模和解决过程中。
下面以几个具体的应用场景来说明数列在实际问题中的应用。
1.金融领域在金融领域中,利率、投资回报率等与时间相关的指标可以使用数列进行建模。
比如等额本息还款方式下,每期的还款金额就可以通过等差数列求和来计算。
2.物理学领域在物理学中,许多物理现象的变化过程可以用数列进行描述。
比如自由落体运动的位移、速度、加速度等物理量随时间的变化可以用等差数列或等比数列来表示和推导。
3.计算机科学领域在算法设计和数据处理中,数列也有着重要的应用。
比如在排序算法中,快速排序、归并排序等算法利用了数列的递推和分治思想来实现高效的排序。
四、总结数列作为一种常见的数学对象,具有广泛的应用价值。
数列综合应用放缩法
数列综合应用1————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:1数列{}n a 的通项公式;2设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB 2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.1 求证:2214n n n a a S ++<; 2<⋅⋅⋅< ②.放缩后成等比数列,再求和例3.1设a ,n ∈N ,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;2等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a ④.放缩后为裂项相消,再求和例5.在mm ≥2个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j 即前面某数大于后面某数, 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .1求a 4、a 5,并写出a n 的表达式;2令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.06浙江卷已知函数32()f x x x =+,数列{}n x n x >0的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过0,0和n x ,()n f x 两点的直线平行如图求证:当*n N ∈时,Ⅰ221132n n n n x x x x +++=+; Ⅱ21)21()21(--≤≤n n n x ;2.06福建卷已知数列{}n a 满足*111,21().n n a a a n N +==+∈I 求数列{}n a 的通项公式;II 证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.07浙江已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. I 求1a ,2a ,3a ,7a ;II 求数列{}n a 的前2n 项和2n S ;Ⅲ记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.07湖北已知m n ,为正整数,I 用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;II 对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; III 求出满足等式34(2)(3)n n n m n n ++++=+ 的所有正整数n .5. 08辽宁在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项 公式,并证明你的结论;⑵证明:1122111512n n a b a b a b +++<+++.数列综合应用1————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:1数列{}n a 的通项公式;2设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.1 求证:2214n n n a a S ++<;2<⋅⋅⋅<②.放缩后成等比数列,再求和例3.1设a ,n ∈N ,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;2等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a④.放缩后为裂项相消,再求和例5.在mm ≥2个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j 即前面某数大于后面某数, 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .1求a 4、a 5,并写出a n 的表达式;2令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.06浙江卷已知函数32()f x x x =+,数列{}n x n x >0的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过0,0和n x ,()n f x 两点的直线平行如图求证:当*n N ∈时,Ⅰ221132n n n n x x x x +++=+; Ⅱ21)21()21(--≤≤n n n x ;2.06福建卷已知数列{}n a 满足*111,21().n n a a a n N +==+∈I 求数列{}n a 的通项公式;II 证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.07浙江已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. I 求1a ,2a ,3a ,7a ;II 求数列{}n a 的前2n 项和2n S ; Ⅲ记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.07湖北已知m n ,为正整数,I 用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;II 对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; III 求出满足等式34(2)(3)n n n m n n ++++=+ 的所有正整数n .5. 08辽宁在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; ⑵证明:1122111512n n a b a b a b +++<+++.。
《数列综合应用举例》教案
《数列综合应用举例》教案一、教学目标1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学思维水平。
3. 通过对数列综合应用的学习,培养学生分析问题、解决问题的能力,提高学生的综合素质。
二、教学内容1. 等差数列的应用:等差数列的求和公式、等差数列的通项公式等。
2. 等比数列的应用:等比数列的求和公式、等比数列的通项公式等。
3. 数列的极限:数列极限的定义、数列极限的性质等。
4. 数列的收敛性:收敛数列的定义、收敛数列的性质等。
5. 数列的应用举例:如数列在实际问题中的应用,如人口增长、放射性衰变等。
三、教学方法1. 采用讲授法,讲解数列的基本概念、性质和应用。
2. 运用案例分析法,分析数列在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的团队协作能力。
4. 设置课后习题,巩固所学知识,提高学生的实际应用能力。
四、教学步骤1. 引入数列的基本概念,讲解等差数列和等比数列的定义和性质。
2. 引导学生运用数列知识解决实际问题,如人口增长、放射性衰变等。
3. 讲解数列的极限和收敛性,分析数列在实际中的应用。
4. 组织学生进行小组讨论,分享数列在实际问题中的应用案例。
5. 通过课后习题,检查学生对数列知识的掌握程度。
五、教学评价1. 课后习题的完成情况,检验学生对数列知识的掌握。
2. 课堂讨论的参与度,评估学生的团队协作能力和思维水平。
3. 学生对数列应用案例的分析,评估学生的实际应用能力。
4. 定期进行教学质量调查,了解学生的学习需求,调整教学方法。
六、教学资源1. 教学PPT:制作数列综合应用的教学PPT,包含数列的基本概念、性质、应用案例等内容。
2. 案例素材:收集数列在实际问题中的应用案例,如人口增长、放射性衰变等。
3. 课后习题:编写具有代表性的课后习题,检验学生对数列知识的掌握。
4. 教学视频:寻找相关的教学视频,如数列的极限、收敛性的讲解等,辅助学生理解难点内容。
高三数学数列综合应用试题答案及解析
高三数学数列综合应用试题答案及解析1.已知数列{an }的前n项和为Sn,f(x)=,an=log2,则S2 013=________.【答案】log2+1【解析】an =log2f(n+1)-log2f(n),∴S2 013=a1+a2+…+a2 013=[log2f(2)-log2f(1)]+[log2f(3)-log2f(2)]+…+[log2f(2 014)-log2f(2 013)]=log2f(2 014)-log2f(1)=log2-log2=log2+1.2.各项均为正数的数列,满足:,,,那么()A.B.C.D.【答案】C【解析】取,,则,依次得到数列的各项为1,2,5,11,27…,取,,则,依次得到数列的各项为1,2,4,8,16…,由上可知存在,使得,…则由,∴数列为递增数列,由,而,…,累加得:,,即.【考点】1.递推公式;2.数列的单调性.3.已知数列满足:当()时,,是数列的前项和,定义集合是的整数倍,,且,表示集合中元素的个数,则,.【答案】9, 1022【解析】由于()时,,可知数列满足:,其前n项和满足:当时,是奇数,则是的整数倍;所以当时,的奇数项共有9项,故9;所以当时,的奇数项共有1022项,故1022;【考点】1.集合的表示法;2.数列通项与前n项和的关系;3.数学归纳法.4.在数列中,,则 .【答案】-1【解析】由此可知,所以.【考点】递推数列5.设数列满足 ,且对任意,函数满足,若,则数列的前项和为( )A.B.C.D.【答案】C【解析】.因为,所以:,所以是一个等差数列. ,又,,所以 .【考点】1、等差数列等比数列的通项及前项和;2、导数.6.若数列的前项和,则数列的通项公式()A.B.C.D.【答案】D【解析】对任意,有,当时有,解得;当且时,由,可得,两式相减得,整理得,故数列是以为首项,以为公比的等比数列,,故选D.【考点】数列通项的求解7.已知数列的通项公式为,数列的前项和为,且满足.(1)求的通项公式;(2)在中是否存在使得是中的项,若存在,请写出满足题意的其中一项;若不存在,请说明理由.【答案】(1)数列的通项公式为;(2)存在,如,是的第5项.【解析】(1)首先令求出的值,当时,两式相减得:,即:,从而为首项和公比均为的等比数列,最后利用等比数列的通项公式可求得数列的通项公式;(2)先假设存在,即中第项满足题意,亦即,故,因此只要取,就能使得是数列中的第项.试题解析:(1)当时,.(2分)当时,两式相减得:,即:.(6分)故为首项和公比均为的等比数列,.(8分)(2)设中第项满足题意,即,即,所以,取,则(其它形如的数均可).(14分)【考点】1.数列通项公式的求法;2.数列探究型问题的解法.8.已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,.(1)分别求数列,的通项公式,;(2)设数列的前项和为,求的表达式,并求的最小值.【答案】(1),;(2),.【解析】(1)首先设出公差和公比,根据已知条件及等比数列和等差数列的性质,列方程组解方程组,求得公差和公比,写出各自的通项公式;(2)因为取偶数和奇数时,数列的项数会有变化,所以对分取偶数和奇数两种情况进行讨论,根据等差数列和等比数列的前项和公式,求出的表达式,根据前后两项的变化确定的单调性,求得每种情况下的最小值,比较一下,取两个最小值中的较小者.试题解析:(1)设数列的公差是,的公比为,由已知得,解得,所以; 2分又,解得或(舍去),所以; .4分(2)当为偶数时,,当为奇数时. .10分当为偶数时,,所以先减后增,当时,,所以;当时,,所以;所以当为偶数时,最小值是. 12分当为奇数时,,所以先减后增,当时,,所以,当时,,所以,所以当为奇数时,最小值是.比较一下这两种情况下的的最小值,可知的最小值是. .14分【考点】1、等差数列与等比数列的前项和公式;2、数列与函数单调性的综合应用;3、数列与求函数最值的综合运用;4、数列的函数特性.9.设数列{an }的前n项和为Sn,且,n=1,2,3(1)求a1,a2;(2)求Sn 与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;(3)求S1•S2•S3S2011•S2012的值.【答案】(1),;(2)Sn Sn﹣1﹣2S n+1=0;(3).【解析】(1)直接利用与的关系式求的值;(2)当时,把代入已知关系式可得与的关系式,再由此关系式,去凑出和,可得所求数列是等差数列,进而得通项的表达式,从而得的表达式;(3)由(2)中的表达式易求S1•S2•S3S2011•S2012的值.试题解析:(1)解:当n=1时,由已知得,解得,同理,可解得.(4分)(2)证明:由题设,当n≥2时,an =Sn﹣Sn﹣1,代入上式,得S n S n﹣1﹣2S n+1=0,∴,(7分)∴=﹣1+,∴{}是首项为=﹣2,公差为﹣1的等差数列,(10分)∴=﹣2+(n﹣1)•(﹣1)=﹣n﹣1,∴Sn=.(12分)(3)解:S1•S2•S3S2011•S2012=••••=.(14分)【考点】1、等差数列;2、数列的前n项和与通项的综合应用.10.设数列{an }是等差数列,数列{bn}的前n项和Sn满足且(Ⅰ)求数列{an }和{bn}的通项公式:(Ⅱ)设Tn 为数列{Sn}的前n项和,求Tn.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用求,再结合条件求;(Ⅱ)利用等比数列的求和公式求解.试题解析:(Ⅰ)由,,,即,又,故.,,公差,. (6分)(Ⅱ),所以数列其前项和,. (12分)【考点】等差数列、等比数列的性质,等比数列的求和公式.11.设等差数列的前项和,且,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【答案】(1).(2),.【解析】(1)确定等差数列的通项公式,往往利用已知条件,建立相关元素的方程组,如本题,设等差数列的公差为,结合已知,可建立的方程组,,解得得到.(2)首先应确定。
2025新高考数学:数列新定义与综合应用(学生版)
2025新高考数学:数列新定义与综合应用目录题型一斐波那契数列 1题型二差数列及阶差数列 3题型三平方数列与类平方数列 7题型四数列的单调性 8题型五数列的凹凸性 11题型六数列的周期性 18题型七数列的新概念 26题型八数列的新性质 35好题训练 40高考真题训练 69斐波那契数列1.(2024·黑龙江大庆·模拟预测)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,⋯,该数列的特点是:从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列a n称为“斐波那契数列”,则a21+a22+a23+⋯+a22024a2024是斐波那契数列中的第项.2.(2024·贵州遵义·模拟预测)(多选)数列F n:1,1,2,3,5,8,13,21,34,⋯称为斐波那契数列,又称黄金分割该数列,从第三项开始,各项等于其前相邻两项之和,即F n+2=F n+1+F n(n∈N*),则下列选项正确的是()A.F10=55B.F1+F3+F5+F7+⋅⋅⋅⋅⋅⋅+F23=F24C.F2+F4+F6+F8+⋅⋅⋅⋅⋅⋅+F2024=F2025D.F21+F22+F23+F24+⋅⋅⋅⋅⋅⋅+F2n=F n⋅F n+13.(23-24高三上·河北廊坊·期末)意大利数学家斐波那契以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,该数列从第三项起,每一项都等于前两项之和,即a n+2=a n+1+a n n∈N*,故此数列称为斐波那契数列,又称为“兔子数列”,其通项公式为a n=151+52n-1-52n,设n是不等式log2(1+5)n-(1-5)n>n+6的正整数解,则n的最小值为()A.6B.7C.8D.94.(2024·河南·模拟预测)我们把由0和1组成的数列称为0-1数列,0-1数列在计算机科学和信息技术领域有着广泛应用,把斐波那契数列F n(F1=F2=1,F n+2=F n+F n+1)中的奇数换成0,偶数换成1可得到0-1数列a n,若数列a n的前n项和为S n,且S k=100,则k的值可能是()A.100B.201C.302D.3995.(24-25高二上·山东青岛·阶段练习)在数学上,斐波纳契数列a n 定义为:a 1=1,a 2=1,a n +2=a n +a n +1,斐波纳契数列有种看起来很神奇的巧合,如根据a n +2=a n +a n +1可得a n =a n +2-a n +1,所以a 1+a 2+⋯+a n =a 3-a 2 +a 4-a 3 +⋯+a n +2-a n +1 =a n +2-a 2=a n +2-1,类比这一方法,可得a 21+a 22+⋯a 210=()A.714 B.1870 C.4895 D.48966.(2024·山东·模拟预测)(多选)意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,13,21,⋯.该数列的特点如下:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列称为斐波那契数列,若用F n n ∈N * 表示斐波那契数列的第n 项,则数列F n 满足:F 1 =F 2 =1,F n +2 =F n +1 +F n .则下列说法正确的是()A.F 10 =34B.3F n =F n -2 +F n +2 n ≥3C.F 1 +F 2 +⋅⋅⋅+F 2023 =F 2025 -1D.F 1 2+F 2 2+⋅⋅⋅+F 2023 2=F 2023 ⋅F 2024差数列及阶差数列7.(23-24高二上·云南昆明·期末)数学家杨辉在其专著《详解九章算术法》和《算法通变本末》中,提出了一些新的高阶等差数列.其中二阶等差数列是一个常见的高阶等差数列,如数列2,4,7,11,16从第二项起,每一项与前一项的差组成的新数列2,3,4,5是等差数列,则称数列2,4,7,11,16为二阶等差数列.现有二阶等差数列a n ,其前六项分别为1,3,6,10,15,21,则a n +1n +1的最小值为.8.(23-24高三下·重庆·阶段练习)定义:满足a n +2a n +1:a n +1a n=q q 为常数,n ∈N *)的数列a n 称为二阶等比数列,q 为二阶公比.已知二阶等比数列∣a n 的二阶公比为2,a 1=1,a 2=2,则使得a n >2024成立的最小正整数n 为()A.7 B.8 C.9 D.109.(2024·全国·模拟预测)给定数列a n ,称{a n -a n -1}为a n 的差数列(或一阶差数列),称数列{a n -a n -1}的差数列为a n 的二阶差数列⋯⋯(1)求{2n }的二阶差数列;(2)用含m 的式子表示{2n }的m 阶差数列,并求其前n 项和.10.(2024·四川自贡·一模)南末数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,7,13,23,39,63,97,则该数列的第8项()A.131 B.139 C.141D.14311.(2024·四川南充·三模)对于数列a n ,规定Δa n 为数列a n 的一阶差分,其中Δa n =a n +1-a n n ∈N * ,规定Δk a n 为数列a n 的k 阶差分,其中Δk a n =Δk -1a n +1-Δk -1a n n ∈N * .若a n =n (n -1)(2n -1)6,则Δ2a 6=()A.7 B.9 C.11 D.1312.(2024·吉林长春·模拟预测)对于数列a n ,称Δa n 为数列a n 的一阶差分数列,其中Δa n =a n +1-a n n ∈N * .对正整数k k ≥2 ,称Δk a n 为数列a n 的k 阶差分数列,其中Δk a n =ΔΔk -1a n =Δk -1a n +1-Δk -1a n 已知数列a n 的首项a 1=1,且Δa n +1-a n -2n 为a n 的二阶差分数列.(1)求数列a n 的通项公式;(2)设b n =12n 2-n +2 ,x n 为数列b n 的一阶差分数列,对∀n ∈N *,是否都有n i =1x i C i n =a n 成立?并说明理由;(其中C i n 为组合数)(3)对于(2)中的数列x n ,令y n =t x n +t -x n 2,其中12<t <2.证明:ni =1y i <2n -2-n 2.平方数列与类平方数列13.(23-24高三上·四川绵阳·阶段练习)若数列c n 满足c n +1=c 2n 则称c n 为“平方递推数列”.已知数列a n 是“平方递推数列”,且a 1>0,a 1≠1,则()A.lg a n 是等差数列B.lg a n +1-lg a n 是等差数列C.a n a n +1 是“平方递推数列”D.a n +1+a n 是“平方递推数列”14.(2024·海南·模拟预测)(多选)已知数列a n 满足:①a i ∈Z ;②∀i ∈N ∗,i ≤n ,a i +i =k 2,k ∈N ∗,则称数列a n 为“类平方数列”,若数列b n 满足:①数列b n 不是“类平方数列”;②将数列b n 中的项调整一定的顺序后可使得新数列成为“类平方数列”,则称数列b n 为“变换类平方数列”,则()A.已知数列a n =n 1≤n ≤7,n ∈N ∗ ,则数列a n 为“类平方数列”B.已知数列a n 为:3,5,6,11,则数列a n 为“变换类平方数列”C.已知数列a n 的前n 顶和为43n 3+32n 2+16n ,则数列a n 为“类平方数列”D.已知a n =sin n π2,n =1,2,3,4.则数列a n 为“变换类平方数列”题型四数列的单调性15.(2024·江西新余·模拟预测)我们规定:若数列k n 为递增数列且k n n也为递增数列,则k n 为“X -数列”.(1)已知:a n =32 n,b n =log 32n ,c n =n 32,数列a n ,b n ,c n 中其中只有一个X -数列,它是:;请从另外两个数列中任选一个证明其不是X -数列.(2)已知数列a n 满足:n a n +1-a n =a n +a 1,a 1=1,S n 为a n 的前n 项和,试求a n 的通项并判断数列S n n是否为X -数列并证之.(3)已知数列a n 、b n 均为X -数列,且a 1>0,b 1>0,求证:数列c n =a n ⋅b n 也为X -数列.16.(24-25高三上·河南·开学考试)若数列a n 的相邻两项或几项之间的关系由函数f x 确定,则称f x 为a n 的递归函数.设a n 的递归函数为f x =-x 2+x .(1)若0<a 1<1,a n +1=f a n (n ∈N *),证明:a n 为递减数列;(2)若a n +1=f a n +5a n +a 2n ,且a 1=53,a n 的前n 项和记为S n .①求S n ;②我们称g x =x 为取整函数,亦称高斯函数,它表示不超过x 的最大整数,例如 1.2 =1,-1.3 =-2.若T n =∑n i =13a 1S i -a 1+1,求∑2024i =1g T i .17.(2024·广东深圳·模拟预测)已知a n 是各项均为正整数的无穷递增数列,对于k ∈N *,定义集合B k =i ∈N *∣a i <k ,设b k 为集合B k 中的元素个数,特别规定:若B k =∅时,b k =0.(1)若a n =2n ,写出b 1,b 2及b 10的值;(2)若数列b n 是等差数列,求数列a n 的通项公式;(3)设集合S =s s =n +a n ,n ∈N * ,T =t t =n +b n ,n ∈N * ,求证:S ∪T =N *且S ∩T =∅.数列的凹凸性18.(2024·安徽池州·模拟预测)定义:若对∀k∈N*,k≥2,a k-1+a k+1≤2a k恒成立,则称数列a n为“上凸数列”.(1)若a n=n2-1,判断a n是否为“上凸数列”,如果是,给出证明;如果不是,请说明理由.(2)若a n为“上凸数列”,则当m≥n+2m,n∈N*时,a m+a n≤a m-1+a n+1.(ⅰ)若数列S n为a n的前n项和,证明:S n≥n2a1+a n;(ⅱ)对于任意正整数序列x1,x2,x3,⋯,x i,⋯,x n(n为常数且n≥2,n∈N*),若ni=1x2i-1≥n i=1x i-λ2-1恒成立,求λ的最小值.19.(24-25高三上·安徽亳州·开学考试)已知数列a n,对于任意的n∈N*,都有a n+a n+2>2a n+1,则称数列a n为“凹数列”.(1)判断数列a n=2n是否为“凹数列”,请说明理由;(2)已知等差数列b n,首项为4,公差为d,且b nn为“凹数列”,求d的取值范围;(3)证明:数列c n为“凹数列”的充要条件是“对于任意的k,m,n∈N*,当k<m<n时,有c m-c km-k<c n-c mn-m”.20.(24-25高二上·上海·阶段练习)已知数列a n,对于任意的正整数n,都有a n+a n+2>2a n+1则称数列{a n}是严格凹数列.(1)若数列a n,b n的通项公式分别为a n=-n2,b n=3n,判断数列{a n},{b n}是否为严格凹数列,无需说明理由;(2)证明:“对于任意正整数的k,m,n,当k<m<n时,有c m-c km-k<c n-c mn-m”是“数列c n为严格凹数列”的充要条件;(3)函数y=f x 是定义在正实数集上的严格增函数,f1 =0且数列f(n)是严格凹数列,严格增数列x1,x2,⋯,x N(正整数N为常数且N≥2)各项均为互不相等的正整数,若Ni=1f x i<fNi=1x i-λ恒成立,求实数λ的取值范围.数列的周期性21.(2024·上海青浦·二模)若无穷数列{a n}满足:存在正整数T,使得a n+T=a n对一切正整数n成立,则称{a n}是周期为T的周期数列.(1)若a n=sinπnm +π3(其中正整数m为常数,n∈N,n≥1),判断数列{a n}是否为周期数列,并说明理由;(2)若a n+1=a n+sin a n(n∈N,n≥1),判断数列{a n}是否为周期数列,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sin a n(n∈N,n≥1).求证:“存在a1,使得{a n}是周期数列”的充要条件是“{b n}是周期数列”.22.(2024·广东珠海·一模)对于数列a n,若存在常数T,n0T,n0∈N*,使得对任意的正整数n≥n0,恒有a n+T=a n成立,则称数列a n是从第n0项起的周期为T的周期数列.当n0=1时,称数列a n为纯周期数列;当n0≥2时,称数列a n为混周期数列.记x 为不超过x的最大整数,设各项均为正整数的数列a n满足:a n+1=a n2,a n为偶数a n-12+2log2a n,a n为奇数 .(1)若对任意正整数n都有a n≠1,请写出三个满足条件的a1的值;(2)若数列a n是纯周期数列,请写出满足条件的a1的表达式,并说明理由;(3)证明:不论a1为何值,总存在m,n∈N*使得a n=2m-1.23.(2024·湖南长沙·一模)对于数列a n ,如果存在正整数T ,使得对任意n n ∈N * ,都有a n +T =a n ,那么数列a n 就叫做周期数列,T 叫做这个数列的周期.若周期数列b n ,c n 满足:存在正整数k ,对每一个i i ≤k ,i ∈N * ,都有b i =c i ,我们称数列b n 和c n 为“同根数列”.(1)判断数列a n =sin n π、b n =1,n =13,n =2b n -1-b n -2,n ≥3是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;(2)若a n 和b n 是“同根数列”,且周期的最小值分别是m +2和m +4m ∈N * ,求k 的最大值.24.(24-25高三上·黑龙江牡丹江·阶段练习)对于数列{a n },若存在常数T ,n 0(T ,n 0∈N *),使得对任意的正整数n ≥n 0,恒有a n +T =a n 成立,则称数列{a n }是从第n 0项起的周期为T 的周期数列.当n 0=1时,称数列{a n }为纯周期数列;当n 0≥2时,称数列{a n }为混周期数列.记x 为不超过x 的最大整数,设各项均为正整数的数列{a n }满足:a n +1=a n 2,a n 为偶数a n -12+2log 2a n ,a n 为奇数.(1)若对任意正整数n 都有a n ≠1,请写出三个满足条件的a 1的值;(2)若数列{a n }是常数列,请写出满足条件的a 1的表达式,并说明理由;(3)证明:不论a 1为何值,总存在m ,n ∈N *使得a n =2m -1.25.(23-24高三上·北京丰台·期末)对于数列{a n},如果存在正整数T,使得对任意n(n∈N*),都有a n+T=a n,那么数列{a n}就叫做周期数列,T叫做这个数列的周期.若周期数列{b n},{c n}满足:存在正整数k,对每一个i(i≤k,i∈N*),都有b i=c i,我们称数列{b n}和{c n}为“同根数列”.(1)判断下列数列是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;①a n=sin nπ;②b n=1,n=1,3,n=2,b n-1-b n-2,n≥3.(2)若{a n}和{b n}是“同根数列”,且周期的最小值分别是3和5,求证:k≤6;(3)若{a n}和{b n}是“同根数列”,且周期的最小值分别是m+2和m+4(m∈N*),求k的最大值.数列的新概念26.(2024·江苏南通·模拟预测)定义:已知数列a nn∈N*的首项a1=1,前n项和为S n.设λ与k是常数,若对一切正整数n,均有S 1kn+1-S1k n=λa1k n+1成立,则称此数列为“λ&k”数列.若数列a nn∈N*是“33&2”数列,则数列{a n}的通项公式a n=()A.3×4n-2B.1(n=1)3×4n-2(n≥2)C.4×3n-2D.1(n=1)4×3n-2(n≥2)27.(23-24高三下·湖南长沙·阶段练习)对于无穷数列c n,若对任意m,n∈N*,且m≠n,存在k∈N*,使得c m+c n=c k成立,则称c n为“G数列”.(1)若数列b n的通项公式为b n=2n,试判断数列b n是否为“G数列”,并说明理由;(2)已知数列a n为等差数列,①若a n是“G数列”,a1=8,a2∈N*,且a2>a1,求a2所有可能的取值;②若对任意n∈N*,存在k∈N*,使得a k=S n成立,求证:数列a n为“G数列”.28.(2024·辽宁·三模)若实数列a n满足∀n∈N*,有a n+a n+2≥2a n+1,称数列a n为“T数列”.(1)判断a n=n2,b n=ln n是否为“T数列”,并说明理由;(2)若数列a n为“T数列”,证明:对于任意正整数k,m,n,且k<m<n,都有a n-a mn-m≥a m-a km-k(3)已知数列a n为“T数列”,且2024i=1a i=0.令M=max a1 ,a2024,其中max a,b表示a,b中的较大者.证明:∀k∈1,2,3,⋯,2024,都有-20252023M≤a k≤M.29.(2024·福建泉州·模拟预测)若无穷数列a n满足:对于∀n∈N*,a2n+1-a2n=p,其中p为常数,则称数列a n为P数列.(1)若一个公比为q的等比数列x n为“P数列”,求q的值;(2)若a1=1,p=2,y n是首项为1,公比为3的等比数列,在y k与y k+1之间依次插入数列a2n中的k项构成新数列c n:y1,a21,y2,a22,a23,y3,a24,a25,a26,y4,⋅⋅⋅⋅⋅⋅,求数列c n中前30项的和S30.(3)若一个“P数列"a n满足a1=2,a2=22,a n>0,设数列1a n的前n项和为Tn.是否存在正整数m,k,使不等式T n>mn+k-1对一切n∈N∗都成立?若存在,求出m,k的值;若不存在,说明理由.30.(2024·北京东城·二模)设无穷正数数列a n,如果对任意的正整数n,都存在唯一的正整数m,使得a m= a1+a2+a3+⋯+a n,那么称a n的伴随数列,则()为内和数列,并令b n=m,称b n为a nA.若a n为内和数列为等差数列,则a nB.若a n为内和数列为等比数列,则a nC.若内和数列a n为递增数列,则其伴随数列b n为递增数列D.若内和数列a n为递增数列为递增数列,则a n的伴随数列b n31.(2024·湖北荆州·三模)“H数列”定义:数列a n的前n项和为S n,如果对于任意的正整数n,总存在正整数m使S n=a m,则称数列a n是“H数列”.(1)若数列b n是“H数列”;的前n项和为T n=2n,求证:数列b n(2)已知数列c n的通项公是首项为1,公差小于0的等差数列,求数列c n是“H数列”,且数列c n式;(3)若数列d n的前n项和D n.满足:d n=b n c n,求数列d n32.(2024·黑龙江·二模)如果一个数列从第二项起,每一项与它前一项的比都大于3,则称这个数列为“G型数列”.(1)若数列a n满足2a n=S n+1,判断a n是否为“G型数列”,并说明理由;(2)已知正项数列a n为“G型数列”,a1=1,数列b n满足b n=a n+2,n∈N*,b n是等比数列,公比为正整数,且不是“G型数列”,求数列a n的通项公式.33.(2024·全国·模拟预测)定义:若对于任意的n∈N*,数列a n满足a n+1-a n>1,则称这个数列是“T数列”.(1)已知首项为1的等差数列a n是“T数列”,且a1+a2+⋅⋅⋅+a n<n2+n恒成立,求a2的取值范围.(2)已知各项均为正整数的等比数列a n是“T数列”,数列a n2不是“T数列”.记bn=a n+1n,若数列b n是“T数列”.①求数列b n的通项公式.②是否存在正整数r,s,t r<s<t,使1b r,1b s,1b t成等差数列?若存在,求出r,s,t的所有值;若不存在,请说明理由.数列的新性质34.(2024·山东青岛·三模)(多选)若有穷整数数列A n:a1,a2,⋯a n n≥3满足:a i+1-a i∈-1,2i=1,2,⋯,n-1,且a1=a n=0,则称A n具有性质T.则()A.存在具有性质T的A4B.存在具有性质T的A5C.若A10具有性质T,则a1,a2,⋯,a9中至少有两项相同D.存在正整数k,使得对任意具有性质T的A k,有a1,a2,⋯,a k-1中任意两项均不相同35.(2024·河南·三模)已知数列a n的前n项和为S n,若存在常数λ(λ>0),使得λa n≥S n+1对任意n∈N*都成立,则称数列a n具有性质P(λ).(1)若数列a n具有性质P(3);为等差数列,且S3=-9,S5=-25,求证:数列a n(2)设数列a n具有性质P(λ).的各项均为正数,且a n①若数列a n是公比为q的等比数列,且λ=4,求q的值;②求λ的最小值.36.(23-24高二下·安徽六安·期末)如果无穷数列a n 满足“对任意正整数i ,j i ≠j ,都存在正整数k ,使得a k =a i ⋅a j ”,则称数列a n 具有“性质P ”.(1)若等比数列a n 的前n 项和为S n ,且公比q >1,S 2=12,S 4=120,求证:数列a n 具有“性质P ”;(2)若等差数列b n 的首项b 1=1,公差d ∈Z ,求证:数列b n 具有“性质P ”,当且仅当d ∈N ;(3)如果各项均为正整数的无穷等比数列c n 具有“性质P ”,且213,512,415,1012四个数中恰有两个出现在数列c n 中,求c 1的所有可能取值之和.37.(2024·湖北·模拟预测)若项数为m m ≥3 的数列a n 满足两个性质:①a 1=1,a i ∈N *i =2,3,⋯,m ;②存在n ∈2,3,⋯,m -1 ,使得a k +1a k ∈1,2 ,1≤k ≤n -11,12 ,n ≤k ≤m -1,并记M =max i a i 是数列a k 的最大项,1≤k ≤n .则称数列a n 具有性质Ω.(1)若m =4,a 4=2,写出所有具有性质Ω的数列a n ;(2)数列a n 具有性质Ω,若m =2025,a 2025=16,求a n 的最大项的最大值;(3)数列a n 具有性质Ω,若a M =22025,a m =1,且a n 还满足以下两条性质:(ⅰ)对于满足1≤s <t ≤M 的项a s 和a t ,在a n 的余下的项中,总存在满足1≤p <q ≤M 的项a p 和a q ,使得a s ⋅a t =a p ⋅a q ;(ⅱ)对于满足M ≤s <t ≤m 的项a s 和a t ,在a n 的余下的项中,总存在满足M ≤p <q ≤m 的项a p 和a q ,使得a s ⋅a t =a p ⋅a q .求满足上述性质的m 的最小值.好题训练一、填空题1.(2023·陕西铜川·一模)定义“等和数列”:在一个数列中,如果每一项与它后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列a n 是等和数列,且a 1=-1,公和为1,那么这个数列的前2024项和S 2024=.2.(2024·北京通州·三模)若数列{b n }、{c n }均为严格增数列,且对任意正整数n ,都存在正整数m ,使得b m ∈[c n ,c n +1],则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n ,则下列结论中正确的是.①存在等差数列{a n },使得{a n }是{S n }的“M 数列”②存在等比数列{a n },使得{a n }是{S n }的“M 数列”③存在等差数列{a n },使得{S n }是{a n }的“M 数列”④存在等比数列{a n },使得{S n }是{a n }的“M 数列”3.(2024·全国·模拟预测)将正整数n 分解为两个正整数k 1,k 2的积,即n =k 1k 2,当k 1,k 2两数差的绝对值最小时,我们称其为最优分解.如12=1×12=2×6=3×4,其中3×4即为12的最优分解,当k 1,k 2是n 的最优分解时,定义f n =k 1-k 2 ,则数列f 2n 的前2024项的和为()A.21011-1 B.21011 C.21012-1 D.210124.(2024·江苏镇江·三模)若对项数为n 的数列a n 中的任意一项a i ,1a i也是该数列中的一项,则称这样的数列为“R (n )可倒数数列”.已知正项等比数列b n 是“R (5)可倒数数列”,其公比为q ,所有项和为314,写出一个符合题意的q 的值.5.(2024·江苏南通·模拟预测)定义首项为1且公比为正数的等比数列为“M ~数列”.已知数列b n (n ∈N *)的前n 项和为S n ,且满足b 1=1,1S n =2b n -2b n +1.设m 为正整数.若存在“M ~数列”c n (n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k +1成立,则m 的最大值为.二、多选题6.(2024·江苏南通·模拟预测)在数列a n 中,若对∀n ∈N *,都有a n +2-a n +1a n +1-a n=q (q 为常数),则称数列a n 为“等差比数列”,q 为公差比,设数列a n 的前n 项和是S n ,则下列说法一定正确的是()A.等差数列a n 是等差比数列B.若等比数列a n 是等差比数列,则该数列的公比与公差比相同C.若数列S n 是等差比数列,则数列a n +1 是等比数列D.若数列an 是等比数列,则数列S n 等差比数列7.(23-24高三上·上海普陀·期末)对于无穷数列{a n },给出如下三个性质:①a 1<0;②对于任意正整数n ,s ,都有a n +a s <a n +s ;③对于任意正整数n ,存在正整数t ,使得a n +t >a n 定义:同时满足性质①和②的数列为“s 数列”,同时满足性质①和③的数列为“t 数列”,则下列说法正确的是()A.若{a n }为“s 数列”,则{a n }为“t 数列”B.若a n =-12 n ,则{a n }为“t 数列”C.若a n =2n -3,则{a n }为“s 数列”D.若等比数列{a n }为“t 数列”则{a n }为“s 数列”8.(2024·河北承德·二模)对于给定的数列a n ,如果存在实数p ,q ,使得a n +1=pa n +q 对任意n ∈N *成立,我们称数列a n 是“线性数列”,则下列说法正确的是()A.等差数列是“线性数列”B.等比数列是“线性数列”C.若p ≠1且a 1=q ,则a n =q 1-p n -1 1-pD.若p ≠1且a 1=q ,则a n 是等比数列qp n -1 的前n 项和9.(2024·湖南衡阳·模拟预测)在股票市场中,股票的价格是有界的,投资者通常会通过价格的变化来确保自己的风险,这种变化的价格类似于我们数学中的数列,定义如果存在正数M ,使得对一切正整数n ,都有a n ≤M ,则称a n 为有界数列,数列收敛指数列有极限,我们把极限存在(不含无穷大)的数列称为收敛数列,如数列a n =1n ,显然对一切正整数n 都有a n ≤1,而1n的极限为0,即数列a n 既有界也收敛.如数列b n =(-1)n ,显然对一切正整数n 都有b n ≤1,但不存在极限,即数列b n 有界但不收敛.下列数列是有界数列但不收敛的数列有()A.a n =sin n π+π2B.a n =cos n π+π2C.a 1=2,a 2=3,a n =a n -1a n -2 D.a n =sin n π+π2 n10.(2024·河南·一模)对于数列a n (a n ∈N +),定义b k 为a 1,a 2,⋯,a k 中最大值(k =1,2,⋅⋅⋅,n )(n ∈N +),把数列b n 称为数列a n 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A.若数列a n 是递减数列,则b n 为常数列B.若数列a n 是递增数列,则有a n =b nC.满足b n 为2,3,3,5,5的所有数列a n 的个数为8D.若a n =-2 n -1(n ∈N +),记S n 为b n 的前n 项和,则S 100=23(2100-1)三、解答题11.(2024·内蒙古包头·二模)已知数列a n为有穷数列,且a n∈N*,若数列a n满足如下两个性质,则称数列a n为m的k增数列:①a1+a2+a3+⋯+a n=m;②对于1≤i<j≤n,使得a i<a j的正整数对i,j有k个.(1)写出所有4的1增数列;(2)当n=5时,若存在m的6增数列,求m的最小值.12.(23-24高二下·广东深圳·阶段练习)若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,2进行构造,第一次得到数列1,3,2;第二次得到数列1,4,3,5,2;依次构造,第n n∈N*次得到的数列的所有项之和记为a n.(1)设第n次构造后得的数列为1,x1,x2,⋯,xλ,2,则a n=3+x1+x2+⋯+x k,请用含x1,x2,⋯,x k的代数式表达出a n+1,并推导出a n+1与a n满足的关系式;(2)求数列a n的通项公式a n;(3)证明:1a1+1a2+1a3+⋯+1a n<1313.(2024·贵州贵阳·二模)给定数列a n,若满足a1=a(a>0且a≠1),对于任意的n,m∈N∗,都有a n+m=a n⋅a m,则称数列a n为“指数型数列".(1)已知数列a n满足a1=1,a n=2a n a n+1+3a n+1n∈N*,判断数列1a n+1是不是“指数型数列"?若是,请给出证明,若不是,请说明理由;(2)若数列a n是“指数型数列”,且a1=a+2a+3a∈N*,证明:数列a n中任意三项都不能构成等差数列.14.(2024·湖北·模拟预测)若正整数m,n只有1为公约数,则称m,n互质,欧拉函数是指,对于一个正整数n,小于或等于n的正整数中与n互质的正整数(包括1)的个数,记作φ(n),例如φ(4)=2,φ(5)=4.(1)求φ(6),φ3n,φ4n;(2)设a n=φ3nφ3n+1+2⋅φ3n+2,n∈N*,求数列a n的前n项和S n;(3)设b n=12φ4n-1,n∈N*,数列b n的前n项和为T n,证明:T n<49,15.(23-24高三下·云南昆明·阶段练习)a ,b 表示正整数a ,b 的最大公约数,若|x 1,x 2,⋯x k |⊆|1,2,⋯m |(k ,m ∈N *),且∀x ∈x 1,x 2⋯x k ,x ,m =1,则将k 的最大值记为φm ,例如:φ1 =1,φ5 =4.(1)求φ2 ,φ3 ,φ6 ;(2)设a n =φ2n .(i )求数列a n 的通项公式,(ii )设b n =n 2+2n -1 ⋅a n ,求数列b n 的前n 项和T n .16.(2024·全国·模拟预测)设满足以下两个条件的有穷数列a 1,a 2,⋅⋅⋅,a n 为n n =2,3,4,⋅⋅⋅ 阶“曼德拉数列”:①a 1+a 2+a 3+⋅⋅⋅+a n =0;②a 1 +a 2 +a 3 +⋅⋅⋅+a n =1.(1)若某2k k ∈N * 阶“曼德拉数列”是等比数列,求该数列的通项a n (1≤n ≤2k ,用k ,n 表示);(2)若某2k +1k ∈N * 阶“曼德拉数列”是等差数列,求该数列的通项a n (1≤n ≤2k +1,用k ,n 表示);(3)记n 阶“曼德拉数列”a n 的前k 项和为S k k =1,2,3,⋅⋅⋅,n ,若存在m ∈1,2,3,⋅⋅⋅,n ,使S m =12,试问:数列S i i =1,2,3,⋅⋅⋅,n 能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.17.(2024·广东梅州·二模)已知a n 是由正整数组成的无穷数列,该数列前n 项的最大值记为M n ,即M n =max a 1,a 2,⋅⋅⋅,a n ;前n 项的最小值记为m n ,即m n =min a 1,a 2,⋅⋅⋅,a n ,令p n =M n -m n (n =1,2,3,⋅⋅⋅),并将数列p n 称为a n 的“生成数列”.(1)若a n =3n ,求其生成数列p n 的前n 项和;(2)设数列p n 的“生成数列”为q n ,求证:p n =q n ;(3)若p n 是等差数列,证明:存在正整数n 0,当n ≥n 0时,a n ,a n +1,a n +2,⋅⋅⋅是等差数列.18.(2024·山东潍坊·二模)数列a n 中,从第二项起,每一项与其前一项的差组成的数列a n +1-a n 称为a n 的一阶差数列,记为a 1 n ,依此类推,a 1 n 的一阶差数列称为a n 的二阶差数列,记为a 2 n ,⋯.如果一个数列a n 的p 阶差数列a p n 是等比数列,则称数列a n 为p 阶等比数列p ∈N * .(1)已知数列a n 满足a 1=1,a n +1=2a n +1.(ⅰ)求a 1 1,a 1 2,a 1 3;(ⅱ)证明:a n 是一阶等比数列;(2)已知数列b n 为二阶等比数列,其前5项分别为1,209,379,789,2159,求b n 及满足b n 为整数的所有n 值.19.(2024·贵州·模拟预测)若给定一个数列a n ,其连续两项之差构成一个新数列:a 2-a 1,a 3-a 2,a 4-a 3,⋯,a n +1-a n ,⋯,这个数列称为原数列a n 的“一阶差数列”,记为b n ,其中b n =a n +1-a n .再由b n 的连续两项的差得到新数列b 2-b 1,b 3-b 2,b 4-b 3,⋯,b n +1-b n ,⋯,此数列称为原数列a n 的“二阶差数列”,记为c n ,其中c n =b n +1-b n .以此类推,可得到a n 的“p 阶差数列”.如果数列a n 的“p 阶差数列”是非零常数数列,则称a n 为“p 阶等差数列”.(1)证明由完全立方数13,23,33,⋯,n 3,⋯,n ∈N * 组成的数列a n 是“3阶等差数列”;(2)若a n =n k (k ≥3且k ∈Z ,n ∈N *),证明数列a n 是“k 阶等差数列”,并且若将a n 的“k 阶差数列”记作a k n ,则a k n =k !=1×2×3×⋯×k n ∈N * .20.(2024·河南郑州·模拟预测)设任意一个无穷数列a n 的前n 项之积为T n ,若∀n ∈N ∗,T n ∈a n ,则称a n 是T 数列.(1)若a n 是首项为-2,公差为1的等差数列,请判断a n 是否为T 数列?并说明理由;(2)证明:若a n 的通项公式为a n =n ⋅2n ,则a n 不是T 数列;(3)设a n 是无穷等比数列,其首项a 1=5,公比为q (q >0),若a n 是T 数列,求q 的值.21.(2024·广东佛山·模拟预测)定义:一个正整数n称为“漂亮数”,当且仅当存在一个正整数数列a1,a2,...,a k,满足①②:①a1<a2<...<a k-1<a k=n k≥2;②1a1+1a2+...+1a k=1.(1)写出最小的“漂亮数”;(2)若n是“漂亮数”,证明:n3是“漂亮数”;(3)在全体满足k=4的“漂亮数”中,任取一个“漂亮数”n,求n-1是质数的概率.22.(24-25高三上·河南焦作·开学考试)对于一个正项数列a n,若存在一正实数λ,使得∀n∈N*且n≥2,有a1+a2+⋯+a n-1≥λa n,我们就称a n是λ-有限数列.(1)若数列a n满足a1=1,a2=1,a n=a n-1+a n-2n≥3,证明:数列a n为1-有限数列;(2)若数列a n是λ-有限数列,∃M>0,使得∀n∈N*且n≥2,a n≤M,证明:ni=11 a2i≥1a21+λ2 M1a1-1a1+a2+⋯+a n .23.(2024·北京门头沟·一模)已知数列a n :a 1,a 2,⋯,a M ,数列b n :b 1,b 2,⋯,b M ,其中M >2,且a i ,b i ∈1,2,⋯,M ,i =1,2,⋯,M .记a n ,b n 的前n 项和分别为S n ,T n ,规定S 0=T 0=0.记S =S j -S i i =0,1,2,⋯,M ;j =1,2,⋯,M ,且i <j ,T =T j -T i i =0,1,2,⋯,M ;j =1,2,⋯,M ,且i <j .(1)若a n :2,1,3,b n :1,3,3,写出S ,T ;(2)若S =2,3,5,6,8 ,写出所有满足条件的数列a n ,并说明理由;(3)若a i ≤a i +1,b i ≤b i +1i =1,2,⋯,M -1 ,a 2>b 2,且S =T .证明:∃i ∈2,⋯,M ,使得b i =a M -a 1.24.(2024·湖北荆州·三模)对于数列x n,如果存在一个正整数m,使得对任意n n∈N*,都有x n+m=x n成立,那么就把这样的一类数列x n称作周期为m的周期数列,m的最小值称作数列x n的最小正周期,简称周期.(1)判断数列x n=sin nπ和y n=2,n=13,n=2y n-1-y n-2+1,n≥3是否为周期数列,如果是,写出该数列的周期,如果不是,说明理由.(2)设(1)中数列y n前n项和为S n,试问是否存在p,q,使对任意n∈N*,都有p≤(-1)n⋅S nn≤q成立,若存在,求出p,q的取值范围,若不存在,说明理由.(3)若数列a n和b n满足b n=a n+1-a n,且b1=1,b2=ab n+2=b n+1b nn≥1,n∈N,是否存在非零常数a,使得a n是周期数列?若存在,请求出所有满足条件的常数a;若不存在,请说明理由.25.(2024·安徽芜湖·三模)若数列a n的各项均为正数,且对任意的相邻三项a t-1,a t,a t+1,都满足a t-1a t+1≤a2t,则称该数列为“对数性凸数列”,若对任意的相邻三项a t-1,a t,a t+1,都满足a t-1+a t+1≤2a t则称该数列为“凸数列”.(1)已知正项数列c n是一个“凸数列”,且a n=e c n,(其中e为自然常数,n∈N*),证明:数列a n是一个“对数性凸数列”,且有a1a10≤a5a6;(2)若关于x的函数f x =b1+b2x+b3x2+b4x3有三个零点,其中b i>0i=1,2,3,4.证明:数列b1,b2, b3,b4是一个“对数性凸数列”:(3)设正项数列a0,a1,⋯,a n是一个“对数性凸数列”,求证:1n+1ni=0a i1n-1n-1j=1a j≥1 n n-1i=0a i1n nj=1a j26.(2024·新疆·二模)我们把满足下列条件的数列a n称为m-L数列:①数列a n的每一项都是正偶数;②存在正奇数m,使得数列a n的每一项除以m所得的商都不是正偶数.(1)若a,b,c是公差为2的等差数列,求证:a,b,c不是3-L数列;(2)若数列b n满足对任意正整数p,q,恒有b p+q=1p+1qb p b q,且b1=8,判断数列b n n 是否是7-L数列,并证明你的结论;(3)已知各项均为正数的数列c n共有100项,且对任意1≤n≤100,恒有c1+c2+⋯+c n=c31+c32+⋯+c3nk4+kc31+kc32+⋯+kc3n+k2k∈N*,若数列c n为111-L数列,求满足条件的所有两位数k值的和.27.(2024·浙江·模拟预测)已知正整数m,设a1,a2,⋯,a2m,b1,b2,⋯,b2m是4m个非负实数,S=∑2ma i=i=1∑2mb i>0.若对于任意i=1,2,⋅⋅⋅,2m,取a2m+1=a1,a2m+2=a2,b2m+1=b1,都有a i a i+2≥b i+b i+1,则称这i=14m个数构成S,m-孪生数组.(1)写出8个不全相等的数,使得这8个数构成8,2-孪生数组;(2)求最小的S,使得a1,a2,⋯,a6,b1,b2,⋯,b6构成S,3-孪生数组;(3)若m≥4,且a1,a2,⋯,a2m,b1,b2,⋯,b2m构成16,m的最大值.-孪生数组,求a i i=1,2,⋅⋅⋅,2m 参考公式:(i)x1+x2+x3,当且仅当x1=x2=x3时取等;(ii)当正偶数n≥4时, 2≥3x1x2+x2x3+x3x1设n=2k k∈N*;当正奇数n>4时,设x2+x4+⋅⋅⋅+x2k,有x1x2+x2x3+⋅⋅⋅+x n x1≤x1+x3+⋅⋅⋅+x2k-1n=2k+1k∈N*.,有x1x2+x2x3+⋅⋅⋅+x n x1≤x1+x3+⋅⋅⋅+x2k+1x2+x4+⋅⋅⋅+x2k28.(2024·吉林·模拟预测)对于数列x n,若∃M>0,对任意的n∈N*,有x n ≤M,则称数列x n是有界的.当正整数n无限大时,若x n无限接近于常数a,则称常数a是数列x n的极限,或称数列x n收敛于a,记为limn→+∞x n=a.单调收敛原理:“单调有界数列一定收敛”可以帮助我们解决数列的收敛性问题.(1)证明:对任意的x≥-1,n∈N*,1+xn≥1+nx恒成立;(2)已知数列a n,b n的通项公式为:a n=1+1 nn,b n=1+1nn+1,n∈N*.(i)判断数列a n,b n的单调性与有界性,并证明;(ii)事实上,常数e=limn→+∞a n=limn→+∞b n,以e为底的对数称为自然对数,记为ln x.证明:对任意的n∈N*,n k=11 k+1<ln n+1<nk=11k恒成立.29.(2024·广东江苏·高考真题)设m为正整数,数列a1,a2,...,a4m+2是公差不为0的等差数列,若从中删去两项a i和a j i<j后剩余的4m项可被平均分为m组,且每组的4个数都能构成等差数列,则称数列a1,a2,...,a4m+2是i,j-可分数列.(1)写出所有的i,j,1≤i<j≤6,使数列a1,a2,...,a6是i,j-可分数列;(2)当m≥3时,证明:数列a1,a2,...,a4m+2是2,13-可分数列;(3)从1,2,...,4m+2中任取两个数i和j i<j,记数列a1,a2,...,a4m+2是i,j-可分数列的概率为P m,证明:P m>1 8.。
35数列的综合应用
第35课时 数列综合应用编者:束必祥 审核: 朱正琴 第一部分 预习案 一、知识回顾:1.数列的综合应用数列的综合应用一是指综合运用数列的各种知识和方法求解问题,二是数列与其他数学内容相联系的综合问题.解决此类问题应注意数学思想及方法的运用与体会.(1)数列是一种特殊的函数,解数列题要注意运用方程与函数的思想与方法.(2)转化与化归思想是解数列有关问题的基本思想方法,复杂的数列问题经常转化为等差、等比数列或常见的特殊数列问题.(3)由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想.已知数列的前若干项求通项,由有限的特殊事例推测出一般性的结论,都是利用此法实现的.(4)分类讨论思想在数列问题中常会遇到,如等比数列中,经常要对公比进行讨论;由S n 求a n 时,要对__________进行分类讨论.2.数列的实际应用数列的应用问题是中学数学教学与研究的一个重要内容,解答应用问题的核心是建立数学模型.(1)建立数学模型时,应明确是等差数列模型、等比数列模型,还是递推数列模型,是求a n 还是求S n .(2)分期付款中的有关规定①在分期付款中,每月的利息均按复利计算;②在分期付款中规定每期所付款额相同;③在分期付款时,商品售价和每期所付款额在贷款全部付清前会随时间的推移而不断增值;④各期付款连同在最后一次付款时所生的利息之和,等于商品售价及从购买时到最后一次付款的利息之和.二、基础训练1.在等比数列{a n }中,a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5的值为________.2.已知等差数列的公差d <0,前n 项和记为S n ,满足S 20>0,S 21<0,则当n =________时,S n 达到最大值.3.设等差数列{a n }的各项均为整数,其公差d ≠0,a 5=6,若a 3,a 5,a m (m >5)是公比为q (q >0)的等比数列,则m 的值为________.4.已知数列{a n }的通项为a n =n n 2+58,则数列{a n }的最大项为第________项.5.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=________. 三、我的疑惑班级________学号_________姓名_________第二部分探究案探究一等差数列与等比数列的综合应用问题1在等差数列{a n}中,a10=30,a20=50.2 n a,证明:数列{b n}为等比数列.(1)求数列{a n}的通项a n;(2)令b n=10问题2 数列{a n}的前n项和记为S n,a1=1,a n+1=2S n+1 (n≥1).(1)求{a n}的通项公式;(2)等差数列{b n}的各项为正,其前n项和为T n,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求T n.探究二数列与方程、函数、不等式的综合问题问题3 已知函数f(x)=log2x-log x2(0<x<1),数列{a n}满足f(n a2)=2n (n∈N*).(1)求数列{a n}的通项公式;(2)判断数列{a n}的单调性.问题4已知函数f (x )=2x +33x,数列{a n }满足a 1=1,a n +1=f ⎝⎛⎭⎫1a n ,n ∈N *, (1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n ; (3)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0012对一切n ∈N *成立,求最小正整数m .问题5 已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n 12log a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.探究三数列的实际应用问题6某市2012年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2012年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)我的收获第三部分训练案见附页。
数列综合应用1
例1.(1)已知数列{a n }满足 : a1 1, 2a n * a n+1 (n N ), 求an . 2+a n
(2)已知数列a n 满足:a1 =9,3a n+1 an 4, 求该数列的通项公式a n .
例2.(1)设数列{a n }、 {b n }都是等差数列, 且a1 5, b1 15, a100 +b100 100, 则数列{a n b n }的前100项的和是6000 (2)在等差数列{a n }中, 若Sn an 2 (a 25)n a 1,
n 2 n 1 1 1 (1)在等比数列{a n }中,a1 1,q , 则 3 (4 1) ; 2 i 1 a i a i 1
例3
1 1 (2)求和 1 2 2 3
1 ; n (n-1)
n 1 n
(3)数列3, 33, 333, 3333, 的前n项和为
(1)设b n a n+1 2a n,求证{b n }为等比数列;
an (2)设c n n ,求证{c n }为等差数列; 2 (3)求数列{a n }的通项公式a n 和前n项和Sn .
作业:
课课练第12课时
2 1 2
b n 1.
2
例6.由数列{a n }构造一个新数列: a1,a 2 -a1,a 3 -a 2, ,a n -a n-1, 此数列是首项
1 为1,公比为 等比数列. 3 ( 1)求数列{a n }的通项公式a n;
(2)求数列{a n }的前n项和Sn .
例7.已知数列{a n }的前n项和Sn 4n 则 |a i | 2 i 1 n 24n 144
《数列综合应用举例》教案
《数列综合应用举例》教案第一章:数列的概念与性质1.1 数列的定义引导学生理解数列的概念,理解数列是一种特殊的函数。
通过实例让学生了解数列的基本形式,如等差数列、等比数列等。
1.2 数列的性质引导学生学习数列的基本性质,如数列的项数、首项、末项、公差、公比等。
通过实例让学生掌握数列的性质,并能够运用性质解决实际问题。
第二章:数列的求和2.1 等差数列的求和引导学生学习等差数列的求和公式,理解公差、首项、末项与求和的关系。
通过实例让学生掌握等差数列的求和方法,并能够运用求和公式解决实际问题。
2.2 等比数列的求和引导学生学习等比数列的求和公式,理解公比、首项、末项与求和的关系。
通过实例让学生掌握等比数列的求和方法,并能够运用求和公式解决实际问题。
第三章:数列的极限3.1 数列极限的概念引导学生理解数列极限的概念,理解数列极限与数列收敛的关系。
通过实例让学生了解数列极限的性质,如保号性、单调性等。
3.2 数列极限的计算引导学生学习数列极限的计算方法,如夹逼定理、单调有界定理等。
通过实例让学生掌握数列极限的计算方法,并能够运用极限的概念解决实际问题。
第四章:数列的应用4.1 数列在数学分析中的应用引导学生学习数列在数学分析中的应用,如级数、积分等。
通过实例让学生了解数列在数学分析中的重要性,并能够运用数列解决实际问题。
4.2 数列在其他学科中的应用引导学生学习数列在其他学科中的应用,如物理学、经济学等。
通过实例让学生了解数列在不同学科中的作用,并能够运用数列解决实际问题。
第五章:数列的综合应用5.1 数列在经济管理中的应用引导学生学习数列在经济管理中的应用,如库存管理、成本分析等。
通过实例让学生了解数列在经济管理中的重要性,并能够运用数列解决实际问题。
5.2 数列在工程科技中的应用引导学生学习数列在工程科技中的应用,如信号处理、结构分析等。
通过实例让学生了解数列在工程科技中的作用,并能够运用数列解决实际问题。
高一数学数列综合应用试题答案及解析
高一数学数列综合应用试题答案及解析1.若数列满足为常数,则称数列为“调和数列”,若正项数列为“调和数列”,且,则的最大值是()A.10B.100C.200D.400【答案】B【解析】由于正项数列为“调和数列”,,为等差数列,,.的最大值为100.【考点】等差数列的性质和基本不等式的应用.2.数列满足,则 .【答案】.【解析】当时,,;当时,由于,,两式相减得,不满足.【考点】由得.3.已知数列中,,则数列通项公式=______________.【答案】【解析】由,得,得所以得.【考点】等比数列.4.已知数列的各项均为正整数,对于,有,若存在,当且为奇数时,恒为常数,则的值为 .【答案】1或5【解析】设当且为奇数,由题意有,即,又数列的各项均为正整数,因此的值为1或5.【考点】递推数列的性质5.已知数列满足,,则的值为_______.【答案】-3【解析】由递推式观察可知,式子并不好转化为新的数列形式.故可尝试计算几项并寻找规律.,故此数列为以4为周期的周期数列.,则【考点】计算数列值.6.设数列的前n项和,则的值为( ).A.15B.16C.49D.64【答案】A.【解析】因为,所以选A.【考点】数列中与的关系:.7.若数列中,则其前项和取最大值时,__________.【答案】或【解析】令,则,又∵,∴当时,,,当时,,∴当取最大值时,或.【考点】数列的性质.8.已知数列满足,,则()A.2B.C.D.【答案】B.【解析】∵,,∴,,,,而,∴.【考点】数列的通项公式.9.在数列中,若,,则.【答案】.【解析】由变形为,即有,令,则有,说明与互为倒数关系,而由有,则,同理……,因此有,所以,故.【考点】运用数列特殊递推关系解决问题,本题要注意构造新数列进行归纳寻求相应规律,从而解决问题.10.给定函数的图像如下列图中,经过原点和(1,1),且对任意,由关系式得到数列{},满足,则该函数的图像为()【答案】A【解析】由题意,知:,即在图中应该是满足的所有点,只有A选项正确.【考点】数列的基本概念.11.已知数列前项和,(1)求其通项;(2)若它的第项满足,求的值。
数列的综合应用课件
工具
第五章
数列
栏目导引
(2)到第 12 个月的本利和为
1 100×12+2×12×12+1×5.1%=1 597.8 元.
(3)设每月初应存入 x 元,则有
1 x12+2×12×12+1×5.1%=2 000,x≈125.2.
-
解析: 依题意 1+21+22+„+2n 1≥100, 1-2n ∴ ≥100,∴2n≥101,∴n≥7, 1-2 则所求为 7 秒钟.
答案: B
工具
第五章
数列
栏目导引
4 . 若 A 、 B 、 C 成 等 差 数 列 , 则 直 线 Ax + By + C = 0 必 过 点 ________. 解析: ∵2B=A+C,∴A-2B+C=0, ∴直线Ax+By+C必过点(1,-2).
an 1 1 解析: (1)∵an+1= 且 a1=1,∴ =1+a , an+1 an+1 n
1 1 ∴ - =1,∴a 是以 1 为首项,1 为公差的等差数列, n an+1 an
1
1 1 ∴ =1+(n-1)×1=n,∴an= . an n
工具
第五章
数列
栏目导引
1 1 1 (2)证明:∵an=n,an+1= ,a = , n+1 n+2 n+2 1 1 - an+2-an+1 n+2 n+1 n ∴弦 AnAn+1 的斜率 kn= = 1 = , 1 an+1-an n+2 - n+1 n n+1 n+1n+2-nn+3 n ∴kn+1-kn= - = n+3 n+2 n+3n+2 = 2 >0. n+2n+3
工具
第五章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵ ???4a???2+???1a6???2=4 17 (a>0), ∴a=1,∴f(x)=(x-1)2. (2)f(an)=(an-1)2,g(an)=4(an-1), ∵(an+1-an)·4(an-1)+(an-1)2=0,
变式训练
已知函数f(x)=
2x +3 3x
,数列{an}满足a1=1,an+1=f
an
)
=2n (n∈N*).
(1)求数列 {an}的通项公式;
(2)判断数列 {an}的单调性.
解 ∴a
n
(1)由已知得 log2 2an ? -a1n=2n,即 a2n-2na
1 log2 2an , n-1=0.
∴an=n± n2+1.
2 ∵0<x<1,∴0< an <1,∴an<0.
∴an=n- n2+1.
【解】 (1)因为{an}是一个等差数列, 所以a3+a4+a5=3a4=84,a4=28. 设数列 {an}的公差为 d,则5d=a9-a4=73-28=45, 故d=9.由a4=a1+3d得28=a1+3×9,即a1=1. 所 以 an = a1 + (n - 1)d = 1 + 9(n - 1) = 9n - 8(n∈N*). (2)对m∈N*,若9m<an<92m, 则9Байду номын сангаас+8<9n<92m+8.因此9m-1+1≤n≤92m-1. 故得 bm =92m -1-9m -1.
a>1时,由二次函数的性质知不可能成立; a<1时,对称轴 x=-32·aa--21=-32????1-a-1 1????<0.
f(x)在[1,+∞)上为单调递减函数. f (1)=(a-1)+(3a-6)-8=4a-15<0. ∴a<145,∴a<1时,4aSn<bn恒成立.
综上知,a≤1时,4aSn<bn恒成立.
4为首项,-
1为公差的等差数列.
∴bn-1 1=-4-(n-1)=-n-3,
∴bn=1-n
+1 3=nn
+2 +3.
(3)an=1-bn=n+1 3,
∴S n=a1a2+a2a3+…+anan+1
=4×1 5+5×1 6+…+?n+3?1?n+4?
=???14-15???+???15-16???+…+????n
∴(an-1)(4an+1-3an-1)=0.
∵a1=2,∴an≠1,∴4an+1-3an-1=0, ∴an+1-1=34(an-1),且a1-1=1, ∴数列{an-1}是首项为1,公比为34的等比数列, ∴an-1=???34???n-1,即an=???34???n-1+1.
(3)bn=3(an-1)2-4(an+1-1),令bn=y,u=???34???n-1, 则y=3???????u-12???2-14????=3???u-12???2-34. ∵n∈N*,∴u的值分别为1,34,196,2674,…,经比较196距12 最近, ∴当n=3时,bn有最小值是-128596,
(2)∵aan+n 1=?n+1n?--
?n+1?2+1 n2+1
=n+1n++
n2+1 ?n+1?2+1<1,
又∵an<0,∴an+1>an, ∴{an}是递增数列.
变式训练
已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1 -x),直线g(x)=4(x-1)的图象被f(x)的图象截得的弦长为 4 17,数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0 (n∈N*). (1)求函数f(x)的解析式; (2)求数列{an}的通项公式; (3)设bn=3f(an)-g(an+1),求数列{bn}的最值及相应的n.
解 (1)bn+1=?1-anb?n?1+an?=bn?2b-n bn?=2-1bn. ∵a1=14,∴b1=34,∴b2=45,b3=56,b4=67.
(2)∵bn
+
1-1=
1 2-
bn
-1,∴bn
1 +1-
1=2b-n -b1n =-
1+bn-1 1.
∴数列???
?
bn
1 ?? -1??
是以-
+1 3-n
1 ?? +4??
=14-n+1 4=4?nn+4?.
∴4aS
n
-bn=na+n 4-nn
+2 +3
=?a-1??nn+2+3??3?na+-46??n
-8 .
由条件可知 (a-1)n2+(3a-6)n-8<0恒成立即可满足条件. 设 f (x )=(a-1)x 2+3(a-2)x - 8, 则a=1时, f (x )=- 3x -8<0 ,恒成立;
当n=1时,bn有最大值是0.
探究三:数列与不等式的综合问题
例 3 已知数列{an},{bn}满足 a1=14,an+bn=1,bn+1=1-bna2n. (1)求 b1,b2,b3,b4; (2)求数列{bn}的通项公式; (3)设 Sn=a1a2+a2a3+…+anan+1,求实数 a 为何值时,4aSn<bn.
探究提高
由an+bn=1得到an的表达式,然后利用裂项相消法求得 Sn, 将4aSn<bn转化为 (a-1)n2+(3a-6)n-8<0对任意n∈N*恒 成立,设 f(x)=(a-1)x2+3(a-2)x-8,对x2的系数分 a=1, a>1及a<1三种情况进行分类讨论,从而求得使不等式成立 的a的取值范围.
第5讲 数列的综合应用
探究一:等差、等比数列的综合问题
例 1(2012·山东卷 )在等差数列 {an}中, a3+ a4+ a5 = 84 , a9= 73. (1) 求数列 {an}的通项公式; (2) 对任意 m ∈ N*,将数列 {an }中落入区间 (9 m, 92m ) 内的项的个数记为 bm ,求数列 {bm }的前 m 项和 Sm.
于是 Sm=b1+b2+b3+…+bm =(9+93+…+92m-1)-(1+9+…+9m-1) =9×1?1--8811m?-?11--99m?=92m+1-1800×9m+1.
探究二:数列与函数的综合问题
f 2 例 2
已知函数 f(x)=log2x-logx2(0< x<1),数列{an}满足 (