采区车场设计71886
采区车场设计精品文档
加宽值与曲率半径和轴距有关
Δ s:取值10~20mm
加宽方法:外轨不动,内轨向内移动。
SgV 2
要求:线路在进入曲线段以前,
R
进行外轨的抬高和轨距加宽。
超前距离X`计算
X`=(100~300) Δ h
= SgV 2 X104 / mm
R
任务二 平面线路联接
车辆进入曲线由于车辆内伸和外伸 , (巷道必须加宽)
标准道岔共有七个系列
600轨距:615、622、630、643 900轨距:915、930、938
任务一 轨道、道岔选择
1)单开道岔基本结构
1 — 尖轨; 2 — 辙叉; 3 — 转辙器; 4 — 曲轨; 5 — 护轮轨; 6 — 基本轨。
道岔特征:道岔是一个刚性整体装置
任务一 轨道、道岔选择
1 2
3 4
5
6
7
任务一 轨道、道岔选择
(二)采区车场线路设计步骤
(1)确定车场形式 (2)绘制车场平面布置草图 (3)进行线路连接点、线路参数设计计算 (4)计算线路平面布置总尺寸 (5)绘制线路布置图
任务一 轨道、道岔选择
(三)矿井轨道
1.轨道 在巷道底板铺设 道床(道砟)、 轨枕、钢轨和联 结件等组成。
任务一 轨道、道岔选择
新型道岔型号与参数值(MT/T2—95)
型号 ZDK615/2/4 ZDK930/4/15 ZDC622/3/9 ZDC930/4/20
α
ab
L
T L0
26°33′54″ 1678 1922 3600
14°02′10″ 3942 4858 8800
18°26′06″ 2200 2800 4964
3)轨道线路中心距: 双轨线路中心线间距S
采区下部车场设计
一、采区下部车场设计概述采区下部车场是一种特殊的车场,它是为满足采矿工作的需要而设计的。
它主要是为采矿设备提供运输和存储服务,并且要求车场空间尽可能大。
采区下部车场设计旨在满足采矿工作所需的车辆运输和存储服务,保证采矿设备的安全、可靠和有效的运输。
二、车场设计要点1、车场空间设计:采区下部车场的空间设计要求尽可能大,以满足采矿设备的运输需求。
车场的空间设计应考虑车辆运输的安全性和高效性,以及设备的配置和维护。
2、车辆设备:采区下部车场的车辆设备要求安全、可靠,并能够满足采矿工作的需要。
车辆设备应具备安全可靠的行驶和操作性能,能够满足采矿设备的运输需求。
3、车辆管理:采区下部车场的车辆管理要求安全、高效,并能够满足采矿工作的需要。
车辆管理应采用有效的管理措施,确保车辆安全行驶和操作,同时记录车辆的运行情况,并及时发现和处理车辆问题。
4、车辆安全:采区下部车场的车辆安全要求安全、可靠,并能够满足采矿工作的需要。
车辆安全应采取有效的安全措施,确保车辆安全行驶和操作,同时记录车辆的安全情况,并及时发现和处理车辆安全问题。
五、车场设计方案1、车场空间设计:采区下部车场的空间设计应考虑车辆运输的安全性和高效性,以及设备的配置和维护。
车场空间应有足够的宽度和长度,以便车辆运输,同时应考虑车辆的安全性和高效性,并配备足够的车位,以便采矿设备的存放和维护。
2、车辆设备:采区下部车场的车辆设备要求安全、可靠,并能够满足采矿工作的需要。
车辆设备应采用高性能的柴油机、液力变矩器等设备,以满足采矿工作的需要,同时应具备安全可靠的行驶和操作性能,以便满足采矿设备的运输需求。
3、车辆管理:采区下部车场的车辆管理要求安全、高效,并能够满足采矿工作的需要。
车辆管理应采用有效的管理措施,确保车辆安全行驶和操作,同时记录车辆的运行情况,并及时发现和处理车辆问题。
车辆管理应采用计算机管理系统,实现车辆的远程控制,并可以实时监控车辆的运行情况。
08 第八章 采区车场设计
本章重点
① ② ③ ④ ⑤
⑥
⑦
⑧
采区车场的类型;采区中部车场甩车场的分类、线路布置 方式及斜面线路的联接计算;设置斜面曲线的目的; 单道起坡系统、双道起坡系统的线路联接参数计算; 平面线路高、低道设置; 甩车场竖曲线合理位置确定;平面存车线计算;采区下部 车场的基本形式及组成; 大巷、石门及绕道装车式车场线路布置特点和线路计算; 辅助提升车场线路布置形式及设计; 采区上部车场的基本形式及线路设计; 煤仓的基本形式、煤仓的容量、煤仓的结构及支护;绞车 房的布置形式、尺寸确定及断面尺寸和支护;变电所得位 置、形式及支护; 新型辅助运输方式的分类、车场特点;乘人车场的布置特 点;无极绳车场的形式。
O
P N
γ
Qθ F
提升牵引角
第二节 采区中部车场
4、线路联接参数计算
tg (costg )
1 '
tg
'
1
tg cos
(a)
o
(b)
(m) (b)
'' sin 1 (sin cos )
n R cos b sin R cos sin
第二节 采区中部车场
一、甩车场的分类
根据采区上(下)山和 斜井所担负任务 按照提升方式 按照甩车场所在位置 按甩车场的甩车方向 主提升甩车场 辅助提升甩车场 双钩提升甩车场 单钩提升甩车场
采区上部、中部、下部甩车场 单钩单侧甩车场
单钩双侧甩车场 分绕道式、石门式、平巷式
按甩入地点不同
第二节 采区中部车场
二、线路布置方式 1、斜面线路 第一道岔①分出一股线路,第二道岔②变为复线,到A—A 线达到规定的轨中心距,这些线路铺设在斜面上,叫做斜面 上的线路。 2、平面线路 ① C—C线以下到第三道岔③是 A 车场的线路,作为存车线 ② B C I A 3、竖曲线 A I I B A—A线到C—C线之间的线路。 B C 起坡点 C 起坡点:竖曲线的末端。 ③ I 甩车场线路系统包括:
第七章 采区车场设计(第3节)
1 (α1)
2 (α2)
二次 回转 方式
RP
(¦ ) Δ AD KD
AG KG
1
RP
1 (α1)
2 (α2) AG KG AD 2 P R KD R P1
斜面线路先变 平后转弯方式
很少采用
7
7.3.2.1 甩车场提升牵引长度角 甩车场的提升牵引角φ(矿车上提时,钩头车的运行方向 与提升钢丝绳的牵引方向间的夹角(如图7-4所示)不应 大于20°,以10~15°为宜。可采用下列方法减少场提 升牵引角: (1)采用小角度道岔(4号、5号)。 (2)单道变坡二次回转层面角δ或双道变坡二次回转层 面角(α1+α2)不大于30°。 (3)双道变坡方式的甩车道岔与分车道岔直接相连接。 (4)没置立滚。即在上山底板直埋一根钢管,管上套一 个长滚轮构成。
表7-8 甩车场空重车线坡度
矿车类型 1.0t、1.5t矿车 3.0t矿车
线路形式 直线 曲线 直线 曲线
空车线iG 7~12 11~18 6~9 10~15
重车线iG 5~10 9~15 5~7 8~12
11
7.3.2.5 甩车场的存车线 甩车场存车线有效长度可按表7-9选取。
单道 起坡
回转 方式
二次 回转方式
1 (α1) (R P ) (δ) A K (γ )
双 道 起 分车道岔向内分岔 坡 斜面线路一次回转方 道岔 式 | 道岔 系统
1 (α1)
2 (α2)
1-甩车道岔; 提升牵引角,交 2-分车道岔; 岔点巷道断面小, 围岩条件好, RP-斜面曲线半径; α1 - 斜 面 一 次 回 转 角 易于维护;空重倒 提 升 量 小 的 (甩车道岔角); 车时间长,推车劳 采区车场 α2 -斜面转角(分车道 动强度大;动量小 岔角); γ-斜面转角; 交岔点短,工程 K -起坡点(落平点); 量小,易于维护; A-竖曲线起点; 围岩条件差, 提升牵引角大,不 RP1-平曲线半径; 提升量小的 利于操车,调车时 RP2-平曲线半径; 采区车场 KG-高道起坡点(高道 间长,推车劳动量 落平点); 大 KD-低道起坡点(低道 落平点); AG-高道竖曲线起点; AD-低道竖曲线起点; δ-二次回转角;
采区车场设计
采区车场设计
四、 采区车场线路布矿置特山点:设计与优化
由甩车场线路、装车站和绕道线路、平车场线路所组成。 五 、设计步骤: (1)进行线路总布置,绘出轨道线路联接草图; (2)把它们解剖成一个个元件,计算各联接点的尺寸; (3)计算线路布置总尺寸; (4)作出线路布置平面图。 • 甩车场线路设计在采区中部车场中阐述; • 装车站和绕道线路设计在下部车场讲述;
采区上部平车场多用于采区上部是采空区或为松软的风化带,或在煤 层群联合布置时,回风石门较长,为便于与回风石门联系时亦可采用。若 轨道上山位于煤层时中,为减少岩石工程量,可采用甩车场,甩车场的线 路设计见7.3节采区中部车场设计采区。车场设计
4
1
3
5
K
2
图7-1(a) 顺向平车场
1.总回风巷 2.轨道上山 3.运输上山 4.绞车房 5.阻车器 6.回风巷 7.回风石门 8.转盘 K.变坡点
虑确定。
② 采区车场和硐室应根据围岩情况尽量布置在稳定岩层或煤层内。
③ 采区车场巷道断面形状应根据围岩情况确定,可为半圆拱形,跨度较大时视围
岩情况也可采用三心拱形。应优先选择锚喷支护,当锚喷支护有困难时,也可采用其
他支护方式。
④ 采区上、中、下部车场摘挂钩段人行道布置应符合下列规定:
• 单道布置时应设两侧人行道;
⑧ 井底车场布置图及卸载站调车方式。
采区车场设计
7.2 采区上部车场线路设计
7.2.1 采区上部车场概述
7.2.1.1 采区上部车场形式
根据按轨道上山与上部区段回风平巷(或回风石门)的连接方式不同, 采区上部车场基本形式:平车场、甩车场和转盘车场三类。
采区车场课程设计
采区车场课程设计一、教学目标本课程旨在让学生了解和掌握采区车场的基本概念、原理和操作方法。
知识目标要求学生能够理解采区车场的定义、功能和组成部分;掌握采区车场的运行原理和操作流程。
技能目标要求学生能够正确操作采区车场设备,进行正常的生产作业;能够对采区车场设备进行简单的维护和故障排除。
情感态度价值观目标要求学生树立安全第一的思想,注重生产安全;培养学生的团队合作意识和责任感。
二、教学内容教学内容主要包括采区车场的定义和功能、组成部分、运行原理、操作流程、设备维护和故障排除等。
具体安排如下:1.采区车场的定义和功能:介绍采区车场的概念、作用和重要性。
2.组成部分:讲解采区车场的各个组成部分及其功能。
3.运行原理:解析采区车场的运行机制和工作原理。
4.操作流程:详细讲解采区车场的操作步骤和方法。
5.设备维护和故障排除:教授学生如何对采区车场设备进行维护和故障排除。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。
1.讲授法:用于讲解采区车场的理论知识,使学生能够系统地掌握相关知识。
2.讨论法:学生针对实际问题进行讨论,培养学生的思考和解决问题的能力。
3.案例分析法:通过分析具体案例,使学生更好地理解和应用所学知识。
4.实验法:安排学生进行实际操作,提高学生的动手能力和实际操作技能。
四、教学资源本课程将采用以下教学资源:1.教材:为学生提供系统、全面的学习材料。
2.参考书:为学生提供更多的学习资料和拓展知识。
3.多媒体资料:通过图片、视频等形式,丰富学生的学习体验。
4.实验设备:为学生提供实际操作的机会,提高学生的动手能力。
以上是本课程的教学设计,希望能够帮助学生更好地学习和掌握采区车场的知识和技能。
五、教学评估本课程的评估方式包括平时表现、作业和考试等。
评估方式应客观、公正,能够全面反映学生的学习成果。
1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解能力。
《采区车场设计》课件
contents
目录
• 采区车场设计概述 • 采区车场设计基础 • 采区车场设计实践 • 采区车场设计优化 • 采区车场设计案例分析
01
采区车场设计概述
设计理念与原则
设计理念
安全、高效、环保、经济
安全
确保采区车场运行安全,预防事故发生
高效
优化车场布局,提高运输效率
设计理念与原则
采区车场经济效益优化
成本分析
对采区车场运输成本进 行详细分析,找出影响 经济效益的关键因素。
节能减排措施
采取节能减排措施,降 低采区车场运行过程中 的能耗和排放,提高经 济效益。
资源优化配置
合理配置采区车场内的 人、财、物等资源,实 现资源利用最大化,提 高经济效益。
05
采区车场设计案例分析
案例一:某矿井采区车场设计
案例三:现代化矿井采区车场设计
总结词
现代化技术与传统设计的结合
详细描述
该案例介绍了现代化矿井采区的车场设计, 将现代化技术与传统设计相结合,提高了车 场设计的效率、安全性和环保性能,同时也
注重了车场的美观性和人性化设计。
感谢您的观看
THANKS
采区车场设计的重要性
优化资源配置
合理规划车场布局,提高设备 利用率和运输效率
保障生产安全
通过科学的车场设计,降低安 全风险,保障人员和设备安全
提升经济效益
降低能耗和运营成本,提高采 区的整体经济效益
促进技术进步
推动采区车场设计技术的不断 创新和完善
02
采区车场设计基础
采区巷道布置
采区巷道布置的原则
方案实施与效果评估
实施提升方案后,对采区车场的运输能力进行再次评估,确保优化效 果。
第三章 采区车场设计(第二版)
第三章采区车场设计第一节窄轨线路一、轨道与轨型轨道运输是煤矿井下主要运输方式,矿井轨道由铺设在巷道底板上的道床、轨枕、钢轨和联接件等组成。
钢轨的型号简称轨型,以每m长度的质量(kg/m)表示。
窄轨线路的轨型有15、22、30、38和43kg/m等5种。
窄轨线路中心距有600mm、762mm和900mm 3种,使用时根据矿井生产能力大小和矿井运输方式选用。
大型矿井一般选用900mm轨距,使用3t、5t矿车;中、小型矿井多选用600mm轨距,使用1t、3t矿车。
新设计矿井轨型按表3—1选用。
除了上述规定外,《煤矿运输安全质量标准化评分表》中规定;运行7t及其以上机车、3t及以上矿车、采区运输重量超过15t(包括平板车重量)及以上设备时线路轨型不低于30kg/m,卡轨车、齿轨车和胶轮车运行线路轨型不低于22kg/m。
表3—1 新设计矿井轨型选用表二、道岔1.道岔类别道岔是使车辆由一条线路上转到另一条线路上的装置,它是由尖轨、辙叉、转辙器、道岔曲轨、护轮轨和基本轨所组成,道岔的结构如图3—1所示。
1—尖轨;2—辙叉;3—转辙器;4—道岔曲轨;5—护轮轨;6—道岔基本轨图3—1 道岔结构常用道岔有单开道岔、对称道岔、渡线道岔3种,单开道岔和渡线道岔又有左向和右向之分(在平面线路上沿顺时针方向分出时为右向,沿逆时针方向分出时为左向)。
井下常用道岔有3号、4号、5号。
每种型号的道岔又配备了4m、6m、9m、12m、15m、20m、25m、30m、40m、50m、70m等11种曲线半径;渡线道岔和对称道岔按不同轨距和道岔类型,配备有1300mm、1400mm、1500mm、1600mm、1700mm、1800mm、1900mm、2200mm和2500mm等9种线路间距。
道岔手册中所列型号均为右向道岔,如ZDK622—4—12末注明左右,均为右向道岔。
右向道岔的分岔线在行进方向(由a→b)的右侧。
左向道岔必须在尾数后注上(左)字,如:ZDK622—4—12(左),岔线在行进方向(由a→b)的左侧。
第三章采区车场设计
第三章采区车场设计1.引言采区车场的设计在矿山运营中起到至关重要的作用。
一个合理的车场设计能够提高车辆的进出效率,减少交通堵塞,提高矿山的生产效率。
本章将讨论采区车场设计的原则和考虑因素,并提供一个具体的设计方案。
2.设计原则2.1安全性车场设计必须考虑到安全因素。
这包括车辆的停放区域,车辆和行人之间的分隔区域,以及车辆的进出口等。
合理的安全设计能够降低交通事故的风险,保护工作人员的生命和财产安全。
2.2效率性采区车场的设计应该追求高效率。
这包括最小化车辆的排队时间,优化路线规划,提高车辆进出效率等。
通过合理的布局和规划,可以最大限度地减少交通堵塞,提高矿山的生产效率。
2.3可持续性车场设计应该考虑到可持续性的因素。
这包括减少车辆的排放,节约能源,保护环境等。
通过优化设计,可以减少车辆的行驶距离,降低碳排放量,提高矿山的环境可持续性。
3.考虑因素3.1车辆类型和数量车辆类型和数量是车场设计的基本考虑因素。
不同类型和数量的车辆需要不同的停车位来满足其需求。
在设计时,需要根据实际情况来确定停车位的数量和类型。
3.2车辆进出口位置车辆进出口的位置对于车场的设计至关重要。
进出口位置应该考虑到车辆的行进方向,避免车辆相互阻塞,减少交通堵塞。
合理的进出口位置可以提高车辆的进出效率。
3.3车辆停放区域车辆停放区域的规划需要考虑到停车位的数量和布局。
停车位的数量应该根据实际需要来确定,以满足车辆的停放需求。
停车位的布局应该合理,充分利用空间,并保证车辆之间的安全距离。
3.4交通指示标志和标线交通指示标志和标线在车场设计中起到重要的作用。
通过设置合理的指示标志和标线,可以引导车辆有序进出,减少交通事故的发生。
4.设计方案基于上述原则和考虑因素,提出一个具体的采区车场设计方案。
该方案包括以下几个方面的设计:4.1停车位数量和布局根据实际车辆数量,确定停车位的数量和布局。
充分利用空间,合理排列停车位,保证停车位之间有足够的空间,避免车辆之间的碰撞。
采区车场设计(1-2)
第三节采区车场设计采区车场可分为上部车场、中部车场和下部车场。
在进行车场设计时应对采区巷道的布置方式、采区生产能力、运输方式及设备类型、地质构造和围岩性质等因素进行全面考虑,力求使采区车场布置紧凑合理、行车顺畅、工程量小和维护费用低,同时还应满足安全生产、通风、行人、排水和管线敷设等方面的要求。
采区车场设计中,当采用600mm轨距1t矿车时,其平曲线半径和竖曲线半径一般取9m、12m、15m;当采用900mm轨距3t矿车时,其平、竖曲线半径一般取12m、15m、20m。
提升牵引角通常在20°以内。
车场与上下山连接部位的道岔一般选用4号或5号标准道岔,车场分甩空、重车的道岔一般选用4号标准道岔。
上部和中部车场的空重车线长度通常不小于一次提升串车长度的2~3倍。
采区运输材料、设备或矸石的下部车场,其空重车线长度一般取0.5列车长左右。
空重车线的高低道最大高差一般不大于0.5m。
高低道的起坡点间距以lm左右为宜,一般不大于1.5~2.0m。
高低道线路中心距与人行道位置有关,600mm轨距时,设中间人行道一般取1.7~1.9m,不设中间人行道可取1.3~1.4m;900m轨距设中间人行道一般取2.1~2.2m,不设时取1.6~1.8m。
空重车线的坡度与矿车型式、铺轨质量、有无弯道及自动滑行要求等因素有关。
空重车线的坡度可按表3-2选取。
一、采区下部车场设计示例根据煤炭装车地点的不同,采区下部车场可分为大巷装车式、石门装车式和绕道装车式三种基本形式。
采区下部车场线路包括装车站线路,绕道线路和轨道上山下部平车场线路。
下部车场设计的基本步骤如下:(1)确定车场型式,绘出计算草图;(2)选定有关参数;(3)把车场线路分解成若干单元,计算各联结点尺寸;(4)计算线路总布置尺寸;(5)计算工程量及材料消耗量;(6)绘制施工图。
设计示例一:已知某采区生产能力20万t/a ,煤层倾角为(15、20)18°,轨道上山沿煤层布置,上山为单钩提升,每钩串车数为4辆,采用一吨标准矿车运输,运输大巷为双轨巷道,7t 架线式电机车,每列车数为30辆。
第七章 采区车场设计(第4节)
一般地,采用上式求出的装车站能力值应大于采区生产能力的1.3倍。
16
7.4.3.4 下部车场设计的一般规定及参数的确定 绕道,即采区下部车场的辅助提升部分,是采区掘进出煤、出矸及 运料的转运站,是采区下部车场的另一重要组成部分。如表7-14 所示,根据轨道上山起坡点至大巷距离不同,绕道形式可分为立式 、卧式和斜式三种。当起坡点与大巷距离远时采用立式,否则采用 斜式或卧式,不论采取哪种方式,均应尽量减少绕道工程量。 (1)绕道位置
2
1
β<12°
山提前下扎 Δβ 角,使坡坡角达 25° 左右
图注
1-运输大巷;2-绕道;β-煤层倾角;β0-轨道上山起坡角
18
7.4.3.4 下部车场设计的一般规定及参数的确定 (1)绕道位置 轨道上山在接近下部车场时可以变坡,使轨道上山坡坡角为25°( 为保证行车安全一般不超25°)。对于倾角小的煤层,轨道上山变 坡才能形成底板绕道;轨道上山变坡有利于减少工程量;对于倾角 较大的煤层,轨道上山变坡有利于行车安全。绕道线路与运输大巷 线路间的平面距离,可视围岩条件确定,但应大于10~20m,绕道 线路转角可取30~90°。 (2)绕道方向 根据绕道的出口方向与井底车场的位置相对关系,下部车场可分为 朝向井底车场背离井底场两种,如图7-12所示。根据运输、通风 及行人等工序的需要,以上两种方式均可选择,但朝向井底车场式 的工序要相对便捷、简单些,设计时应优先考虑。
19
7.4.3.4 下部车场设计的一般规定及参数的确定
(3)采区上山下部平车场设计 ①平车场线路的平、竖曲线半径可取9、12、15、20m。 ②平、竖曲线之间应插入矿车轴距1.5~3.0倍的直线段;当轨道上山作主提升时, 应插入一钩串车长度的直线段。 ③运输材料、设备及矸石的下部车场进、出车线长度取0.5列车长;轨道上山作混 合提升或主提升时,进、出车线长度不小于1.0列车长;采用人力推车时,进、出 车线长度取5~10辆矿车长。 (4)采区上山下部车场高、低道布置 ①高、低道两起坡点间的最大高差不宜大于0.8m。 ②竖曲线起点前后错距不大于2.0m。 ③当上山倾角较大,高、低道高差也较大时,甩车线可上提3°角;当上山倾角较 小,高、低道高差较小时,提车线可下扎3°角。上抬角和下扎角不应超过5°。 (5)采区上山下部车场线路坡度 ①高道存车线坡度取11‰。 ②低道存车线坡度取9‰。
采区下部车场设计
采区下部车场专项设计课程名称:煤矿开采学授课老师:高保彬班级:1005姓名:孙建锋学号:311001010518安全科学与工程学院采区下部车场专项设计一、专项设计目的:1.通过上机进行采区的下部车场的施工图设计,可以使学生更好的掌握采区设计,并增加计算机绘图能力,为课程设计、毕业设计打下良好基础。
2.加强计算机在煤矿的普及应用,从而提高利用计算机和系统的观点解决实际问题的综合能力。
二、专项设计原理:以采区设计中采区下部车场及硐室的设计原则、步骤和方法为基本原理。
三、专项设计仪器设备:计算机及CAD绘图软件。
四、专项设计要求:1.根据老师提供的设计已知条件进行采区下部车场线路设计计算,并利用计算机绘制出采区下部车场设计施工图。
2.弄清采区下部车场的作用、形式及施工图的绘制要求。
3. 本次可以不按照科技论文的格式进行撰写,但需要按照《工程设计》要求格式进行按照步骤撰写并绘制图纸。
六、专项设计题目:安全工程5班同学们的专题设计内容:某采区运输上山和轨道上山均开掘在煤层内,煤层倾角平均为20°。
运输上山中心线据轨道上山中心线间距为25m,轨道上山不做变坡设计。
运输大巷位于煤层底板岩石内,大巷中心线处轨面水平至煤层底板的距离为20m。
上山与大巷交角为90°,采区不在井田边界。
运输大巷中煤炭运输采用皮带运输机运输,大巷内设皮带运输机和轨道,900mm轨距,轨型30kg/m,大巷用6t架线式电机车牵引,一列车拉2t矿车10个,上山辅助运输由绞车完成。
要求:1、根据条件选择出采区下部车场的基本形式并绘制出示意图;2、确定轨道上山下部车场绕道布置形式并绘制示意图;3、确定平面绕道线路尺寸(计算并绘制相关图纸);4、斜面线路和竖曲线路尺寸计算(确定起坡角、起坡点位置、高、低道斜面线路和竖曲线线路尺寸计算)5、采区下部车场存车线高、低道标高闭合点位置及标高计算。
各班级同学需要参考资料:1教材 2《采矿设计手册》下册,采区车场部分3百度文库中相关内容4以下是一个设计的范例,同学们可以从中受到相关启发。
《采区车场设计概述》课件
该案例介绍了某矿井采区车场设计的背景、目的和意义,重点分析了采区车场 设计的方案、方法和实施过程,总结了设计成果和经验教训,为类似矿井采区 车场设计提供了有益的参考和借鉴。
案例二:某露天矿采区车场设计案例分析
总结词
露天矿采区车场设计的可持续性与安全性
详细描述
该案例针对某露天矿采区车场设计,重点探讨了可持续性和安全性两个方面。在可持续性方面,强调了资源利用 效率、环境保护和生态修复的重要性;在安全性方面,注重采区车场设计中的运输安全、人机工程和风险控制, 为露天矿采区车场设计的实践提供了有益的参考。
采区车场一般包括装载区、卸载区和调车区等区域,分别负责装载、卸载和车辆 编组等作业。
采区车场的重要性
采区车场是矿山生产的重要组成部分,其设计合理与否直接 影响到矿山的生产效率和经济效益。一个高效、安全的采区 车场可以显著提高矿山的生产能力,降低运输成本,减少安 全事故的发生。
采区车场的设计需要充分考虑矿山的实际情况,包括矿山的 生产能力、地形条件、运输方式等,以确保采区案例分析
总结词
金属矿采区车场设计的创新与实践
详细描述
该案例以某金属矿采区车场设计为研究对象,重点分析了采区车场设计的创新点和实践 经验。在创新方面,介绍了采区车场设计中的新技术、新工艺和新材料的运用;在实践 经验方面,总结了采区车场设计过程中的问题与解决方案,为金属矿采区车场设计的进
02
采区车场设计的主要内容
采区车场设计的主要内容
• 采区车场是矿井生产中的重要组成部分,承担着煤炭、材料、 设备和人员的运输任务。采区车场设计的主要目的是确保采区 内部运输的高效、安全和环保,为矿井生产提供有力保障。
03
采区车场设计的技术要求
《采区车场设计概述》课件
设计车场设施:根据车场线路设计车 场设施,如轨道、信号、照明等
设计车场规模:根据运输量和运输距 离设计车场规模
设计车场管理:根据车场线路设计车 场管理方案,如调度、维护、安全等
设计车场线路:根据车场位置和规模设 计车场线路
设计车场环境:根据车场线路设计车 场环境,如绿化、美化、环保等
采区车场设备配置
运营成本分析
设备成本:包括采区车场设备、维护和更新费用 运营成本:包括人工成本、能源消耗、材料消耗等 维修成本:包括设备维修、维护和更换费用 环保成本:包括环保设施建设和运行费用 安全成本:包括安全设施建设和运行费用 管理成本:包括管理人员工资、培训费用等
经济效益分析
投资成本:包括 设备、材料、人 工等成本
案例三:某金属矿采区车场设计
设计背景:某金属矿采区车场设 计
设计内容:包括车辆调度、道路 规划、设备配置等
添加标题
添加标题
添加标题
添加标题
设计目标:提高采区车场效率, 降低成本
设计效果:提高了采区车场的效 率,降低了成本,提高了经济效 益
运营成本:包括 能源、维护、管 理等成本
收益:包括产品 销售、服务收入 等
经济效益:通过 比较投资成本和 运营成本,分析 项目的经济效益
案例一:某矿井采区车场设计
矿井概况:某矿井位于中国某省, 是一座大型煤矿
采区车场设计:采用模块化设计, 便于运输和安装
设计特点:采用先进的自动化技 术,提高工作效率和安全性
实施效果:提高了采区车场的工 作效率,降低了事故率,得到了 矿井管理者和员工的一致好评
案例二:某露天矿采区车场设计
设计背景:某露天矿采区需要设计一个车场,以满足生产需求 设计目标:提高生产效率,降低成本,保证安全 设计内容:包括道路设计、车辆调度、设备配置等 设计效果:提高了生产效率,降低了成本,保证了安全,得到了客户的认可