人教A版高中数学必修五正弦定理教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1正弦定理
(一)教学目标
通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 (二)教学重、难点
重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。 (三)学法:
引导学生首先从直角三角形中揭示边角关系:
sin sin sin a
b
c
A
B
C
=
=
,接着就一般斜三角形进行
探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。 (四)教学过程
[探索研究] (图1.1-1)
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,
有
sin a A c =,sin b B c =,又sin 1c
C c
==, 则sin sin sin a b c c A B C
=== 从而在直角三角形ABC 中,sin sin sin a b c
A B C
==
(图1.1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a
b
A
B
=
, C
同理可得sin sin c
b
C B =
, b a
从而
sin sin a
b
A
B
=
sin c
C
=
A c B
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A 作j AC ⊥, 由向量的加法可得 AB AC CB =+
则 ()j AB j AC CB ⋅=⋅+
∴j AB j AC j CB ⋅=⋅+⋅
()()00cos 900cos 90-=+-j AB A j CB C
∴sin sin =c A a C ,即
sin sin =a c A C
同理,过点C 作⊥j BC ,可得 sin sin =b c B C
从而
sin sin a
b
A
B
=
sin c
C
=
类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)
从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
sin sin a
b
A
B
=
sin c
C
=
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)
sin sin a
b
A
B
=
sin c
C
=
等价于
sin sin a
b
A
B
=
,
sin sin c
b
C
B
=
,
sin a
A
=
sin c
C
从而知正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边,如sin sin b A
a B
=
; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b
=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
[例题分析]
例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。 解:根据三角形内角和定理,
0180()=-+C A B
000180(32.081.8)=-+
066.2=; 根据正弦定理,
00
sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;
根据正弦定理,
00
sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A
评述:对于解三角形中的复杂运算可使用计算器。
例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:根据正弦定理,
sin 28sin40sin 0.8999.20
==≈b A B a
因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,
00000180()180(4064)76=-+≈-+=C A B ,
00
sin 20sin7630().sin sin40==≈a C c cm A
⑵ 当0116≈B 时,
00000180()180(40116)24=-+≈-+=C A B ,
00
sin 20sin2413().sin sin40==≈a C c cm A
评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。 [随堂练习]第5页练习第1(1)、2(1)题。
例3.已知∆ABC 中,∠A 060=,a =求
sin sin sin a b c
A B C
++++
分析:可通过设一参数k(k>0)使sin sin a b A B =sin c
k C
==,
证明出sin sin a b A B =sin c C ==
sin sin sin a b c
A B C
++++ 解:设sin sin a b A B =(>o)sin c
k k C
==
则有sin a k A =,sin b k B =,sin c k C =
从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C
A B C
++++=k
又sin a A =2k ==,所以sin sin sin a b c
A B C
++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c
k k A B C
++=>++
恒成立。
[补充练习]已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c
(答案:1:2:3)
[课堂小结](由学生归纳总结) (1)定理的表示形式:
sin sin a
b
A B =
sin c
C
=
=
()0sin sin sin a b c
k k A B C
++=>++;
或sin a k A =,sin b k B =,sin c k C =(0)k >
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角;