专题16 三角形中位线定理(解析版)
三角形中位线定理及推论
三角形中位线定理及推论一、中位线定理中位线是指连接三角形一个顶点与对边中点的线段。
三角形中位线定理是指在一个三角形中,三条中位线交于一点,且这个交点与三个顶点的距离相等。
我们先来证明中位线交于一点这一结论。
假设ABC为一个三角形,AD是BC中点连线,BE是AC中点连线,CF 是AB中点连线。
我们可以得到△ADC和△BCD是全等三角形。
根据全等三角形的性质,我们可以得到∠ADC=∠CBD,∠ACD=∠BCD,且AD=BD。
同理,我们可以得到△AEB和△CEB是全等三角形,∠AEB=∠CEB,∠ABE=∠CBE,且AE=BE。
因为∠ADC=∠CBD,∠ACD=∠BCD,所以∠ADC+∠ACD=∠CBD+∠BCD,即∠ADC+∠ACD=180°。
同理,∠AEB+∠ABE=180°。
我们可以得到∠ADC+∠ACD+∠AEB+∠ABE=∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE。
而∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE=360°。
所以∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE=360°。
而∠ADC+∠ACD+∠AEB+∠ABE=360°。
所以∠BCD+∠CBE=0°。
由于∠BCD+∠CBE=0°,所以∠BCD=0°,∠CBE=0°。
因此,BD和CE是平行线。
根据平行线的性质,我们可以得到三角形BDF和三角形CEG是全等三角形,∠BFD=∠CGE,∠BDF=∠CEG,且BD=CE。
所以,我们可以得到BF=CG。
因此,在三角形ABC中,三条中位线AD、BE、CF交于一点G,且这个交点与三个顶点的距离相等。
二、中位线推论1. 三角形中位线推论一:中位线长度在一个三角形中,连接一个顶点与对边中点的中位线的长度等于对边的一半。
假设ABC为一个三角形,AD是BC中点连线。
我们已经证明了AD和BC是平行线,且AD=BD。
三角形中位线定理 知识讲解
三角形中位线定理【学习目标】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、三角形的中位线1、(优质试题•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【答案与解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【总结升华】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.举一反三:【变式】如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为_____.【答案】5;解:∵四边形OABC是矩形,∴OA=BC,AB=OC;BA⊥OA,BC⊥OC.∵B点坐标为(3,2),∴OA=3,AB=2.∵D、E、F、G分别是线段OP、AP、BP、CP的中点,∴DE=GF=1.5; EF=DG=1.∴四边形DEFG的周长为(1.5+1)×2=5.2、如图,在△ABC中,已知点D、E、F分别是AB、BC、CA的中点,AH是高.(1)若BC=10,AH=8,则四边形ADEF的面积为.(2)求证:∠DHF=∠DEF.HF EDCBA【思路点拨】(1)由三角形面积公式可知:△BDE、△EFC的面积都等于△ABC面积的四分之一,进而可求出四边形ADEF的面积.(2)首先证明四边形ADEF是平行四边形,进而可得∠DEF=∠DAF,再利用直角三角形的中线性质得线段相等,从而得角等,最终可得到∠DAF=∠DEF,即可证出∠DHF=∠DEF.【答案解析】(1)解:∵BC=10,AH=8,∴S△ABC=×8×10=40,∵点D、E、F分别是AB、BC、CA的中点,∴△BDE、△EFC的面积都等于△ABC面积的,∴四边形ADEF的面积=40﹣20=20,故答案为:20;(2)证明:∵D、E、F分别是△ABC各边中点,∴DE∥AC,EF∥AB,∴四边形ADEF是平行四边形,∴∠DEF=∠DAF,∵AH是△ABC的高∴△ABH、△ACH是直角三角形,∵点D、点F是斜边AB、AC中点,∴DH=DA,HF=AF,∴∠DAH=∠DHA ,∠FAH=∠FHA ,∴∠DAH+∠FAH=∠FHA+∠DHA ,即∠DAF=∠DHF ,∴∠DEF=∠DHF .【总结升华】此题主要考查了平行四边形的性质与判定,三角形的中位线定理,直角三角形的性质,解决题目的关键是证明∠DHF=∠DAF 与∠DAF=∠DEF .3、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】本题中所求线段MD 与已知线段AB 、AC 之间没有什么联系,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度.【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN ,∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA)∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6,∵ D 、M 分别为BN 、BC 的中点,∴ DM =12CN =162⨯=3. 【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形. 举一反三:【变式】如图所示,四边形ABCD 中,Q 是CD 上的一定点,P 是BC 上的一动点,E 、F 分别是PA 、PQ 两边的中点;当点P 在BC 边上移动的过程中,线段EF 的长度将( ).A.先变大,后变小 B.保持不变 C.先变小,后变大 D.无法确定【答案】B;解:连接AQ.∵ E、F分别是PA、PQ两边的中点,∴ EF是△PAQ的中位线,即AQ=2EF.∵ Q是CD上的一定点,则AQ的长度保持不变,∴线段EF的长度将保持不变.4、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;(2)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.【思路点拨】(1)运用中位线的性质,找出对应相等的角;(2)根据题意易知满足条件的四边形即为第一题的四边形.【答案与解析】解:(1)取AC的中点H,连接HE、HF∵点E为BC中点∴EH为△ABC的中位线∴EH∥AB,且EH=12AB同理FH∥DC,且FH=12DC∵AB=AC,DC=AC∴AB=DC,EH=FH∴∠1=∠2∵EH∥AB,FH∥DC∴∠2=∠4,∠1=∠3∴∠4=∠3∵∠AGE+∠4=180°,∠GEC+∠3=180°∴∠AGE=∠GEC∴四边形AGEC是邻角四边形(2)存在等邻角四边形,为四边形AGHC.【总结升华】本题考查了三角形的中位线以及等腰三角形的性质的综合运用.本题较灵活,要求学生能够把题中的条件转化成角,从而找出相等的角来解题.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.类型二、中点四边形5、如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是正方形;(2)若AD=2,BC=4,求四边形EFGH的面积.【思路点拨】 (1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD 入手,进行正方形的判断.(2)连接EG ,利用梯形的中位线定理求出EG 的长,然后结合(1)的结论求出2EH =92,也即得出了正方形EHGF 的面积.【答案与解析】证明:(1)在△ABC 中,E 、F 分别是AB 、BC 的中点,故可得:EF =12AC ,同理FG =12BD ,GH =12AC ,HE =12BD , 在梯形ABCD 中,AB =DC ,故AC =BD ,∴EF=FG =GH =HE ,∴四边形EFGH 是菱形.设AC 与EH 交于点M ,在△ABD 中,E 、H 分别是AB 、AD 的中点,则EH∥BD,同理GH∥AC,又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH 是正方形.(2)连接EG .在梯形ABCD 中,∵E、G 分别是AB 、DC 的中点,∴EG=12(AD +BC )=3. 在Rt△EHG 中, ∵222EH GH EG +=,EH =GH ,∴2EH =92,即四边形EFGH 的面积为92. 【总结升华】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH =HG =GF =FE ,这是本题的突破口. 举一反三:【变式】如图,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.(1)判断四边形EFGH 的形状,并说明你的理由;(2)连接BD 和AC ,当BD 、AC 满足何条件时,四边形EFGH 是正方形.【答案】解:(1)四边形EFGH是平行四边形.理由:连接AC,∵E、F分别是AB、BC的中点,∴EF∥AC,且EF=12 AC,同理,HG∥AC,且HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH是平行四边形;(2)当BD=AC,且BD⊥AC时,EFGH是正方形.理由:连接AC,BD,∵E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=GH=12AC,EH=FG=12BD,EH∥BD,GH∥AC,∵BD=AC,BD⊥AC,∴EH=EF=FG=GH,EH⊥GH,∴四边形ABCD是菱形,∠EHG=90°,∴四边形EFGH是正方形.。
《三角形的中位线》 知识清单
《三角形的中位线》知识清单一、三角形中位线的定义连接三角形两边中点的线段叫做三角形的中位线。
需要注意的是,一个三角形共有三条中位线。
二、三角形中位线定理三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
这个定理是解决与三角形中位线相关问题的重要依据。
为了更好地理解这个定理,我们可以通过以下方式来证明:如图,在△ABC 中,D、E 分别是 AB、AC 的中点,连接 DE。
延长 DE 到点 F,使得 EF = DE,连接 CF。
因为 AE = EC,∠AED =∠CEF,DE = EF,所以△ADE ≌△CFE(SAS)所以 AD = CF,∠ADE =∠F所以 AB // CF又因为 AD = BD所以 BD = CF所以四边形 BCFD 是平行四边形(一组对边平行且相等的四边形是平行四边形)所以 DF // BC,DF = BC因为 DE = 1/2 DF所以 DE // BC,DE = 1/2 BC通过以上证明,我们得出了三角形中位线定理。
三、三角形中位线定理的应用1、证明线段平行如果已知一条线段是三角形的中位线,那么可以直接得出这条线段与三角形的第三边平行。
例如,在△ABC 中,D、E 分别是 AB、AC 的中点,连接 DE,则DE // BC。
2、证明线段的数量关系可以利用中位线等于第三边的一半来证明线段之间的倍数关系。
比如,已知△ABC 中,DE 是中位线,那么 DE = 1/2 BC。
3、计算线段的长度在一些几何计算题中,如果能找到三角形的中位线,就可以利用中位线定理求出相关线段的长度。
例如,在△ABC 中,AB = 10,D、E 分别是 AB、AC 的中点,那么 DE = 5。
4、求图形的面积通过中位线与底边的关系,可以求出相关三角形的面积比。
假设△ABC 中,DE 是中位线,△ADE 的面积为 S1,△ABC 的面积为 S2。
因为 DE // BC,所以△ADE ∽△ABC,相似比为 1 : 2。
三角形中位线定理及推论
三角形中位线定理及推论一、三角形中位线定理三角形中位线定理是指在任意三角形中,连接一个顶点与对边中点的线段称为中位线,三条中位线交于一点,且该点与三个顶点的距离相等。
具体表述为:三角形三条中位线的交点与三个顶点的距离相等。
以三角形ABC为例,连接顶点A与边BC的中点D,顶点B与边AC 的中点E,顶点C与边AB的中点F,根据中位线定理可知,中位线AD、BE和CF三条线段交于一点G,并且AG=BG=CG。
中位线定理的证明可以通过向量法或平面几何法进行,这里我们选择平面几何法证明。
证明思路如下:1. 连接顶点A与边BC的中点D,假设点G是中位线AD与中位线BE 的交点;2. 连接顶点B与边AC的中点E;3. 通过顶点C以平行于边AB的直线与中位线AD交于点H;4. 由平行线的性质可知,AH=CH;5. 进一步,由三角形的对应边成比例可得:AH/AD=CH/CF;6. 由于AH=CH,所以AD=CF;7. 同样地,由中位线定理可得:BE=CF;8. 综上所述,AD=BE=CF,即证明了中位线定理。
二、三角形中位线推论基于中位线定理,我们可以得出一些有关三角形的推论。
1. 三角形中位线长度关系推论根据中位线定理,三角形三条中位线的交点与三个顶点的距离相等,即AG=BG=CG。
由此可得,中位线上的点距离顶点的距离是相等的。
进一步推论,三角形中位线的长度满足以下关系:AG=2GD,BG=2GE,CG=2GF。
2. 三角形中位线与三角形面积推论由三角形中位线定理可知,三条中位线交于一点G。
以G为顶点,三边中点分别为D、E、F,连接DG、EG和FG。
我们可以发现,连接G与三角形顶点的线段将三角形分成了六个小三角形,而这些小三角形的面积相等。
因此,我们可以推论得到:三角形中位线所分割的三个小三角形的面积相等。
3. 三角形中位线与三角形高度推论在三角形中,如果我们将中位线作为底边,那么与之对应的高度就是顶点到底边中点的距离。
三角形的中位线习题精讲精析PPT课件
(1) AB∥CD, BC∥AD
(2) AB=CD,BC=AD (3) AB∥CD,AB=CD (4) ∠A= ∠C , ∠ B=∠ D
□ ABCD
(5) AO=OC, BO=OD
A
D
O
B.
C
1
A、B两点被池塘隔开,现在要测量出A、B两 点间的距离 ,但又无法直接去测量,怎么办?
⑶若四边形EFGH是正方形,AC与BD C 应满足什么条件?
.
27
作业
.
28
9 1. 如图,AF=FD=DB,FG∥DE∥BC,PE=1.5,则BC= ———
A
F3G
D 4.5 1.5 E P
B
C
9
.
29
2. 已知:如图 E、F把四边形ABCD的对角线BD三等分, CE、CF的延长线分别平分AB、AD .
A
D
A’
D’
O
B’
C’
B
C
.
23
4. 在A、B外选一点C,连结AC和BC,并分别找出
AC和BC的中点D、E,如果能测量出DE的长度,
也就能知道AB的距离了。为什么?如果测的DE
=20m,那么A、B两点间的距离是多少?为什么?
A。
D。
40
20
C。
。
。B
E
.
学随
们着
解 决 这 个 问 题
将 会 有 更 多 的 办
如果 DE. 是△ABC的中位线
A
那么 ⑴ DE∥BC,
D
⑵ DE=1/2BC E 定理的主要用途:
B
C
① 证明平行
② 证明一条线段是另一条线段
三角形中位线
三角形中位线在我们学习三角形的众多知识中,三角形中位线是一个非常重要且有趣的概念。
它不仅在数学理论中有着重要的地位,在实际生活中的应用也十分广泛。
首先,咱们来明确一下什么是三角形中位线。
连接三角形两边中点的线段就叫做三角形的中位线。
一个三角形有三条中位线。
比如说,在三角形 ABC 中,点 D 是 AB 的中点,点 E 是 AC 的中点,那么线段DE 就是三角形 ABC 的一条中位线。
那么三角形中位线有哪些神奇的性质呢?这可得好好说道说道。
三角形的中位线平行于第三边,并且等于第三边的一半。
这是一个非常关键且有用的性质。
咱们来证明一下这个性质。
假设在三角形 ABC 中,D、E 分别是 AB、AC 的中点。
延长 DE 到点 F,使 EF = DE,连接 CF。
因为 AE = EC,DE = EF,且∠AED =∠CEF(对顶角相等),所以可以证明三角形 ADE 全等于三角形CFE。
这样一来,AD = CF,∠ADE =∠CFE,所以 AB 平行于 CF。
又因为 AD = BD,AD = CF,所以 BD = CF。
而且 BD 平行于 CF,所以四边形 BCFD 是平行四边形。
根据平行四边形的性质,DF 平行于BC 且 DF = BC,又因为 DE = EF = 1/2 DF,所以 DE 平行于 BC 且DE = 1/2 BC。
这个性质在解决很多数学问题时都能发挥巨大的作用。
比如,已知一个三角形的中位线长度和位置关系,就可以推断出第三边的长度和位置关系。
接下来咱们看看三角形中位线在实际生活中的应用。
比如说,在测量无法直接到达的两点之间的距离时,就可以利用三角形中位线的性质。
假设要测量一条河的宽度,但又无法直接测量。
我们可以在河的一侧找两个点 A 和 B,再在河的另一侧找一个点 C,使得 AC 和 BC 与河的两岸大致垂直。
然后分别找出 AB 和 AC 的中点 D 和 E,测量出DE 的长度。
因为 DE 是三角形 ABC 的中位线,所以河的宽度(也就是 BC 的长度)就是 DE 的两倍。
三角形中位线的性质
三角形中位线定理的应用
三角形中位线定理在几何学中有着广泛的应用,如证明某些几何命题、解决几何问题等。
三角形中位线定理的证明方法
证明方法一
利用相似三角形性质证明
第一步
根据相似三角形的性质,如果两个三角形相似,则它们的对应边成 比例。
三角形中位线的长度等于它所截得的相对边长的一半。即,如果中位线截取的 相对边长为AB,则中位线的长度为$frac{1}{2}AB$。
三角形中位线与第三边的关系
三角形中位线所截得的第三边与中位线平行且等于中位线长度的两倍。即,如 果中位线截取的第三边为CD,则CD平行于中位线且CD的长度为2倍的中位线 长度。
通过中位线定理,可以求解三角形的 边长。
在解决实际问题中的应用
解决工程问题
在工程设计中,可以利用 中位线定理解决实际的结 构和机械问题。
解决建筑问题
在建筑设计时,可以利用 中位线定理优化建筑物的 结构布局和稳定性。
解决数学建模问题
在数学建模中,可以利用 中位线定理解决一些实际 问题,如最优路径、最短 距离等。
三角形中位线的平行性质
三角形中位线的平行性质
三角形中位线与第三边平行。即,如果中位线为EF,第三边为CD,则EF平行于CD。
中位线与对角线的关系
三角形中位线与对角线互相平分。即,如果中位线为EF,对角线为AC,则E和F分别是AC的两个三等分点。
三角形中位线定理及
03
其证明
三角形中位线定理
三角形中位线定理定义
特殊情况下的三角形
05
中位线性质
等边三角形中的中位线性质
等边三角形中,任意一边的中 位线与相对的顶点连线垂直且 长度等于相对边的一半。
专题16 三角形中位线定理(解析版)
专题16 三角形中位线定理一.选择题1.在△ABC中,D、E分别是AB、AC的中点,则下列说法正确的是()A.CE=BC B.DE=AB C.∠AED=∠C D.∠A=∠C 解:∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE BC,故B选项说法错误;CE与BC不一定相等,故A选项说法错误;BD与DE不一定相等,B选项说法错误;由平行线的性质知∠AED=∠C,故选项C说法正确;∠A与∠C不一定相等,故选项D说法错误;故选:C.2.如图,D、E分别是△ABC的边AB、AC的中点,若BC=6,则DE=()A.2 B.3 C.4 D.5解:∵D、E分别是△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=3,故选:B.3.A,B两地被池塘隔开,小明先在AB外选一点C,然后分别步测出AC,BC的中点D,E,并测出DE 的长为20m,则AB的长为()A.10m B.20m C.30m D.40m解:∵点D,E是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=40m,故选:D.4.如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠EPF =140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°解:∵P是BD的中点,E是AB的中点,∴PE是△ABD的中位线,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠EFP=×(180°﹣∠EPF)=×(180°﹣140°)=20°,故选:D.5.如图,在△ABF中,点C在中位线DE上,且CE=CD,连接AC,BC,∠ACB=90°,若BF=20,则AB的长为()A.10 B.12 C.14 D.16解:∵DE是△ABC的中位线,BF=20,∴DE=BF=10,∵CE=CD,∴CD=DE=8,∵∠ACB=90°,∴AB=2CD=16,故选:D.6.如图,在△ABC中,BD平分∠ABC,AF⊥BD于点E,交BC于点F,点G是AC的中点,若BC=10,AB=7,则EG的长为()A.1.5 B.2 C.2.5 D.3.5解:∵BD平分∠ABC,AF⊥BD,∴∠ABE=∠FBE,∠AEB=∠FEB=90°,∵BE=BE,∴△ABE≌△FBE(ASA),∴BF=AB=7,AE=EF,∵BC=10,∴CF=3,∵点G是AC的中点,∴AG=CG,∴EG=CF=,故选:A.7.如图,在△ABC中,BC=20,D、E分别是AB、AC的中点,F是DE上一点,DF=4,连接AF,CF,若∠AFC=90°,则AC的长度为()A.10 B.12 C.13 D.20解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=10,∴EF=DE﹣DF=10﹣4=6,在Rt△AFC中,AE=EC,∴AC=2EF=12,故选:B.8.如图,在△ABC中,AB=6,BC=8,D、E、F分别为AC、BC和AB边上的中点,则四边形BEDF的周长是()A.10 B.12 C.14 D.16解:∵D、E分别为AC、BC边上的中点,∴BE=BC=4,DE是△ACB的中位线,∴DE=AB=3,∵D、F分别为AC、AB边上的中点,∴BF=AB=3,DF是△ABC的中位线,∴DF=BC=4,∴四边形BEDF的周长=BE+DE+DF+BF=4+3+4+3=14,故选:C.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB =90°,且AB=8,BC=14,则EF的长是()A.2 B.3 C.4 D.5解:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE=BC=7,∵∠AFB=90°,AB=8,∴DF=AB=4,∴EF=DE﹣DF=7﹣4=3,故选:B.10.如图,点P是△ABC内一点,AP⊥BP,BP=12,CP=15,点D,E,F,G分别是AP,BP,BC,AC的中点,若四边形DEFG的周长为28,则AP长为()A.13 B.9 C.5 D.4解:∵点D,E,F,G分别是AP,BP,BC,AC的中点,∴DG=EF=PC=15=,DE=FG=AB,∵四边形DEFG的周长为28,∴DE=FG=×(28﹣﹣)=,∴AB=13,∵AP⊥BP,BP=12,∴AP===5,故选:C.11.如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为()A.1 B.1.5 C.2 D.2.5解:∵AC⊥BC,∴∠ACB=90°,∵BC=3,AC=4,∴AB=5,∵AD∥BC,∴∠ADB=∠DBC,∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD=5,连接BF并延长交AD于G,∵AD∥BC,∴∠GAC=∠BCA,∵F是AC的中点,∴AF=CF,∵∠AFG=∠CFB,∴△AFG≌△CFB(AAS),∴BF=FG,AG=BC=3,∴DG=5﹣3=2,∵E是BD的中点,∴EF=DG=1.故选:A.12.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.2B.5 C.4D.10解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二.填空题13.如图,已知线段AB,将线段AB沿某个方向平移4个单位得到线段DC,其中点D是A的对应点,且点D不在直线AB上.连接AC,BD交于点O,若E是CD中点,则OE的长度值是.解:如图,连接AD,BC,根据平移的性质知:AD=4,AB=CD且AB∥CD,则四边形ABCD是平行四边形,∴O点是AC的中点,∵E是CD中点,∴OE是△ACD的中位线,∴OE=AD=2.故答案是:2.14.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=4,则DN=.解:连接CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=2,∵M、N分别是AB、AC的中点,∴MN=BC,MN∥BC,∵CD=BD,∴MN=CD,又MN∥BC,∴四边形NDCM是平行四边形,∴DN=CM=2,故答案为:2.15.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别为AB、AC、AD的中点.若AB=6,则EF的长度为.解:在Rt△ABC中,D为AB的中点,∴CD=AB=3,∵E、F分别为AC、AD的中点,∴EF是△ACD的中位线,∴EF=CD=,故答案为:.16.如图,在△ABC中,AB=13,BC=12,D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的面积是.解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴AC=2DE=5,∵AC2+BC2=52+122=169,AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴△ABC的面积=×5×12=30,∵D是AB的中点,∴△ACD的面积=△ABC的面积×=15.故答案为:15.17.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线.①点M是边BC中点,则DM=;②探究:点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN、ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.解:(1)∵∠A=90°,AB=AC,BC=20,∴2AC2=BC2=202,∴AC=10,∵D,M分别是AB,BC的中点,∴DM=AC=5;(2)如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE=BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴=,∴=,∴DO′=;当∠MON=90°时,∵△DOE∽△EFM,∴=,∵EM==13,∴DO=,故答案为:或.三.解答题18.已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,求证:EG、HF互相平分.证明:连接EH,GH,GF,∵E、F、G、H分别是BD、BC、AC、AD的中点,∴AB∥EH∥GF,GH∥BC∥BF.∴四边形EHGF为平行四边形.∵GE,HF分别为其对角线,∴EG、HF互相平分.19.如图,点A(0,8),点B(4,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P,若△ABP是直角三角形,求点P的坐标.解:∵A(0,8)B(4,0),∴AB=4,∵点M,N分别是OA,OB的中点,∴MN∥AB,MN=OB=2,OM=4,∴点P的纵坐标为4,∵△ABP是直角三角形,∴∠APB=90°或∠ABP=90°,①当∠APB=90°时,则PN=AB=2,∴PM=2+2,∴P(2+2,4),②当∠ABP=90°时,过点P作PC⊥x轴于C,则四边形MOCP是矩形,过P作PC⊥x轴于C,则△ABO∽△BPC,∴==1,∴BP=AB=4,∴PC=OB=4,∴BC=8,∴PM=OC=4+8=12,∴P(12,4),综上可得点P的坐标为(2+2,4)或(12,4).20.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E 是AB的中点,连结EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为3,求△AEF的面积.解:(1)∵DC=AC,CF平行∠ACD,∴F是AD的中点,又∵E是AB的中点,∴EF是△ABD的中位线,∴EF∥BC;(2)∵EF是△ABD的中位线,∴EF∥BC,EF:BD=1:2,如图,连接DE,则S△DEF:S△DEB=1:2,又∵四边形BDFE的面积为3,∴S△DEF=1,又∵F是AD的中点,∴S△DEF=S△AEF=1.21.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=6,AC=4,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.解:(1)∵AD是高,∴∠ACB=∠ADC=90°,在Rt△ADB中,E是AB的中点,∴DE=AB=3,AE=AB=3,同理可得,AF=DF=AC=2,∴四边形AEDF的周长=3+3+2+2=10;(2)EF垂直平分AD,理由如下:∵EA=ED,FA=FD,∴EF是AD的垂直平分线.22.如图,△ABC中,D,E,F分别是AB,AC,BC的中点.(1)若EF=5cm,则AB=cm;若BC=9cm,则DE=cm;(2)中线AF与中位线DE有什么特殊的关系?证明你的猜想.解:(1)∵在△ABC中,点E、F分别是AC、BC的中点,∴EF是△ABC的中位线,∴EF∥AB且EF=AB.又EF=5cm,∴AB=10cm.同理,DE=BC=4.5cm;故答案是:10、4.5(2)互相平分,理由:如图,连接DF,∵AD=EF,AD∥EF,∴四边形ADFE为平行四边形,∴中线AF与DE的关系是互相平分.23.在△ABC中,D、E分别是AB,AC的中点,作∠B的角平分线(1)如图1,若∠B的平分线恰好经过点E,猜想△ABC是怎样的特殊三角形,并说明理由.(2)如图2,若∠B的平分线交线段DE于点F,已知AB=8,BC=10,求EF的长度.(3)若∠B的平分线交直线DE于点F,直接写出AB、BC、EF三者之间的数量关系.解:(1)∵D、E分别是AB,AC的中点,∴DE=BC,DE∥BC,∴∠DEB=∠EBC,∵BE是∠B的角平分线,∴∠DBE=∠EBC,∴∠DEB=∠DBE,∴DE=DB=AB,∴AB=BC,∴△ABC是等腰三角形;(2)由(1)得,DE=BC=5,DF=AB=4,∴EF=DE﹣DF=1;(3)当点F在线段DE上时,由(2)得,EF=(BC﹣AB);当点F在线段DE的延长线上时,EF=(AB﹣BC).。
三角形中位线定理
三角形中位线定理三角形中位线定理是欧几里得几何学中一个重要的定理,它描述了三角形中位线的性质。
中位线是指连接三角形两边中点的线段。
在三角形中,每条边都有一个对应的中位线,因此一个三角形总共有三条中位线。
定理内容:在任意三角形中,三条中位线相交于一点,这个点被称为三角形的质心(Centroid)。
质心具有以下性质:1. 它将每条中位线分为两段,其中一段是另一段的两倍长。
2. 质心将三角形的每条中线平分,即从质心到三角形顶点的线段是从中点到顶点线段的两倍。
证明:我们可以通过构造辅助线和使用相似三角形的性质来证明这个定理。
1. 考虑任意三角形ABC,设D、E、F分别为边BC、CA、AB的中点。
2. 连接D和E,它们交于点G,这个点就是质心。
3. 连接AG并延长,交BC于点H。
4. 由于D和E是中点,DE是三角形ABC的中位线,所以根据中位线定理,AG是DH的两倍长。
5. 同理,连接BG和CG,它们也会在三角形的边AB和AC上分别找到中点,并且这些线段也会将中位线平分。
6. 由于AG、BG、CG都平分中位线,因此它们必然相交于同一点G。
应用:三角形中位线定理在解决几何问题时非常有用,尤其是在需要找到三角形内某一点到各边距离相等的点时,这个点就是质心。
它也可以用来计算三角形的面积,因为质心到三角形各顶点的距离相等,可以构成三个小三角形,这些小三角形的面积之和等于原三角形的面积。
结论:三角形中位线定理不仅在理论上具有重要意义,而且在实际应用中也非常重要。
它帮助我们更好地理解三角形的结构和性质,是几何学中不可或缺的一部分。
通过这个定理,我们可以解决许多与三角形相关的几何问题,从而在数学和工程学等领域中发挥重要作用。
易错拔尖:三角形的中位线(解析版)
易错拔尖:三角形的中位线➢易错点忽视整体思想的应用而求不出中位线的长1.(2019春•红塔区期中)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF的长为.思路引领:根据AC+BD=24厘米,可得出出OA+OB=12cm,再根据△OAB的周长是18cm,即可求出AB,依据EF是△OAB的中位线即可得出EF的长度.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=12AB=3cm.故答案为:3cm.总结提升:本题考查了三角形的中位线定理以及平行四边形的性质,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.➢拔尖角度角度1利用三角形的中位线求线段的长2.(2016春•梅河口市校级月考)如图,在四边形ABCD中,AB=DC,P是对角线AC的中点,M是AD的中点,N是BC的中点.(1)若AB=6,求PM的长;(2)若∠PMN=20°,求∠MPN的度数.思路引领:(1)由题意可知PM是△ADC的中位线,进而可求出MP的长;(2)易证△PMN是等腰三角形,由等腰三角形的性质即可求出∠MPN的度数.解:(1)∵AB=DC,AB=6,∴DC=6,∵点P是AC的中点,点M是AD的中点,∴PM=12DC=12×6=3;(2)∵点P是AC的中点,点N是BC的中点,∴PN=12BC,∵AB=DC,∴PM=PN,∴∠PNM=∠PMN=20°,∴∠MPN=180°﹣∠PMN﹣∠PNM=140°.总结提升:此题主要考查了三角形中位线定理,以及等腰三角形的判定与性质,熟练掌握性质定理是解题的关键.角度2利用三角形的中位线巧证线段间的数量关系3.(2021春•浦城县月考)已知:如图,E为▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.思路引领:本题可先证明△ABF≌△ECF,从而得出BF=CF,这样就得出了OF是△ABC的中位线,从而利用中位线定理即可得出线段OF与线段AB的关系.解:AB=2OF,AB∥OF.证明:∵四边形ABCD是平行四边形,∴AB=CD,OA=OC.∴∠BAF=∠CEF,∠ABF=∠ECF.∵CE=DC,在平行四边形ABCD中,CD=AB,∴AB=CE.∴在△ABF和△ECF中,{∠BAF=∠CEF AB=CE∠ABF=∠BCF,∴△ABF≌△ECF(ASA),∴BF=CF.∵OA=OC,∴OF是△ABC的中位线,∴AB=2OF,AB∥OF.总结提升:此题主要考查了平行四边形的性质,全等三角形的性质与判定及三角形的中位线定理,综合的知识点比较多,解答本题的关键是判断出OF是△ABC的中位线.角度3 利用三角形中位线巧证角相等(构造中位线法)4.如图,四边形ABCD中,AB=CD,G,H分别是BC,AD的中点,BA,CD的延长线分别交GH的延长线于点E,F.求证:∠AEH=∠F.思路引领:连接AC,并取其中点M,得到中位线HM、GM,根据三角形中位线的性质,得到HM和GM 的大小关系,从而得到∠MHG和∠MGH的关系;再次根据中位线所得的平行关系,得到∠MHG和∠F、∠MGH和∠AEH的关系,利用等量代换即可得证.证明:如图,连接AC,取AC的中点M,连接HM,GM.∵H是AD的中点,M是AC的中点,∴HM∥CD,HM=12CD,∴∠MHG=∠F.同理:GM∥AB,GM=12AB.∴∠MGH=∠AEH.又∵AB=CD,∴GM=HM,∴∠MHG=∠MGH,∴∠AEH=∠F.总结提升:本题主要考查三角形的中位线性质定理,熟练运用三角形的中位线定理进行线段转换是解此题的关键,构造合理的辅助线是难点.角度2利用三角形中位线巧证线段相等(构造平行四边形法)5.(2020春•清河区校级期中)已知,如图平行四边形ABCD中,E是CD的中点,F是AE的中点,FC与BE交于点G,求证:GF=GC.思路引领:取BE的中点H,连接FH、CH,利用三角形的中位线定理和平行四边形的判定定理证明四边形EFHC为平行四边形即可得出结论.证明:取BE的中点H,连接FH、CH,如图所示:∵F是AE的中点,H是BE的中点,∴FH是三角形ABE的中位线,∴FH∥AB且FH=12AB,又∵点E是DC的中点,∴EC=12DC,∵四边形ABCD是平行四边形∴AB=DC,∴FH=EC,又∵AB∥DC,∴FH∥EC,∴四边形EFHC是平行四边形,∴GF=GC.总结提升:本题考查了平行四边形的判定和性质、三角形的中位线的判定和性质等知识;通过作BE的中点H构造平行四边形EFHC是解决问题的关键.。
人教版八年级下册三角形的中位线定理
连接三角形两边中点的线段叫做三角形的中位线.
2、三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半.
二、思想方法方面:倍长短线,转化思想.
平行四边形的判定 (3)
----三角形的中位线定理
温故知新
两组对边分别平行的四边形是平行四边形
平
边 两组对边分别相等的四边形是平行四边形
行 四
一组对边平行且相等的四边形是平行四边形
边
形
角 两组对角分别相等的四边形是平行四边形
的
判
定
对角线 对角线 互相平分 的四边形是平行四边形
情景导入
如图,A、B两点被池塘隔开,在AB外选一点
5
F6
∴DF= 1 BC=5cm
2
同理:EF=
1
AB=6cmB源自36 CDE= 12 AC=3cm
E 10
∴三角形DEF2的周长=DF+EF+DE=14cm。 你有何
发现?
5:如图,△ABC中,D是AB上一点,且
AD=AC , AE⊥CD于E,F是CB的中点。
求证:BD=2EF
证明:
C
A D A C , A E C D C E D E ( 等 腰 三 角 形 三 线 合 一 )
F是CB的中点
EF
∴CF BF
∵CE=DE,CF=BF
EF1BD,即BD2EFA
2
B D
6、如图,△ABC中,D、E、F分别是AB、AC、BC的中点, 中线AF与DE中位线有什么特殊的关系?证明你的猜想。
AF与DE互相平分 理由如下: 证明:连接DF
∵ E,F分别是AC、BC的中点 ∴EF∥AB, EF=½ AB ∵ D是AB中点 ∴AD =½ AB; ∴ EF∥AD, EF=AD ∴四边形ADFE平行四边形
三角形中位线定理 知识讲解
三角形中位线定理知识讲解本文介绍了三角形中位线定理和中点四边形的形成规律。
三角形的中位线是连接三角形两边中点的线段,定理为中位线平行于第三边且等于第三边的一半。
每个小三角形的周长为原三角形周长的1/2,面积为原三角形的1/4.中点四边形是由原四边形各边中点顺次连接而成的四边形,若原四边形对角线互相垂直,则新四边形是矩形;若对角线相等,则新四边形是菱形;若对角线垂直且相等,则新四边形是正方形。
举例来说,题目中给出了一个四边形ABCD,其中∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN。
要证明BM=MN,根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明。
另外,题目中还要求求出BN的长,首先证明∠BMN=90°,根据BN²=BM²+MN²即可解决问题。
根据中位线定理和勾股定理,可以得出 BN^2 = BM^2 + MN^2.因为 MN=BM=AC=1,所以BN=√3.这道题考查了中考常考的知识点,需要学生能够熟练地运用这些知识点解决问题。
变式题中,给定了一个矩形 OABC,其中 A、C 分别在 x 轴和 y 轴正半轴上,B 点坐标为 (3,2),OB 与 AC 相交于点 P,D、E、F、G 分别是线段 OP、AP、BP、CP 的中点。
我们需要求出四边形 DEFG 的周长。
根据矩形的性质,可以得到OA=3,AB=2.因为 D、E、F、G 分别是线段 OP、AP、BP、CP 的中点,所以 DE=GF=1.5,EF=DG=1.因此,四边形DEFG 的周长为 (1.5+1)*2=5.在三角形 ABC 中,已知点 D、E、F 分别是 AB、BC、CA 的中点,AH 是高。
第一问需要求出四边形ADEF 的面积。
根据三角形面积公式,可以得到 S△ABC=1/2*10*8=40.因为 D、E、F 分别是 AB、BC、CA 的中点,所以△BDE、△EFC 的面积都等于△ABC 面积的四分之一,因此四边形 ADEF 的面积为 40-20=20.第二问需要证明∠DHF=∠DEF。
中考数学专题复习学案 三角形中位线 (含答案)
中考复习之三角形中位线定义::连结三角形两边中点的线段叫做三角形的中位线一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理:直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半二、常见的题型题型一:求线段的长例1、已知:如图,E、D、F分别为AB、BC、CA的中点.(1)若AC=10cm,则DE= 5 cm. (2)若EF=6cm,则CB= 12 cm.(3)若AB=10,AC=12,BC=8,则△DEF的周长 15练习:1.已知△ABC的周长为50cm,中位线DE=8cm,中位线EF=10cm,则另一条中位线DF的长是()A.5cmB. 7cmC. 9cmD. 10cm【答案】B3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B. 60°C. 70°D. 80°【答案】C3.如图,在△ABC中,E,D,F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A. 10B. 20C. 30D. 40【答案】B4.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A. 20B. 16C. 12D. 8 【答案】D题型二:证明线段的倍分问题例1.如图,△ABC 中,AB=AC,AD 是中线,BE=CF.(1)求证: △BDE ≌△CDF;(2)当∠B=60°时,G 、H 分别是AB 、AD 的中点,求证:GH=14AB证明:(1)∵AB=AC ∴∠ B=∠ C ∵AD 为中线,∴BD=CD 又∵EB=FC ∴△BDE ≌△CDF(2)∵AB=AC ∴△ABC 为等腰三角形,又∵∠B=60°,∴△ABC 为等边三角形 ∴BC=AB ∵G 、H 分别是AB 、AD 的中点 ∴GH=21BD=14BC 又∵BC=AB 所以GH=41AB. 练习:如图,在△ABC 中,AB=AC,延长AB 到D,使BD=AB,E 为AB 中点,连结CE 、CD , 求证:CD=2EC证明:延长CE 使EF=CE=1/2CF 即 CF=2CE ∵∠AEC=∠BEF E 是AB 中点,即AE=BE CE=EF∴△ACE ≌△BFE(SAS) ∴BF=AC ∠FBE=∠A ∵AB=AC ∴∠ABC=∠ACB∵∠FBC=∠FBE+∠ABC=∠A+∠ABC ∠DBC=∠A+∠ACB ∴∠FBC=∠DBC∵BD=BA∴BF=BD∵BC=BC∠FBC=∠DBC∴△BCF≌△BCD(SAS)∴CF=CD∴CD=2CE题型三:常规辅助线的添加一:利用角平分线+垂直,构造等腰三角形如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【解析】1)证明:在△ABN和△ADN中,∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN≌△ADN,∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,DN=NB,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.1.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.18【答案】B2.如图,在△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.1 B.2 C. 3 D.7【答案】A3.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为()cm.【答案】3如图,△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,且AD⊥CD,E为BC中点,则DE=()A.3 B.5 C.2.5 D.1.5【答案】D二:取中点构造中位线如图,在四边形ABCD 中,AD=BC ,20,110,,,CBD BDA E F P ∠=︒∠=︒分别是AB 、CD 、BD 的中点,探索PF 与EF 的数量关系.证明:连接PE ,20,11090CBD BDA EPF ∠=︒∠=︒⇒∠=︒,易得EF =.三:借助平行四边形的性质1. 如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24cm ,△OAB 的周长是18cm ,则EF 的长为________cm .【答案】∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12厘米,∵△OAB的周长是18厘米,∴AB=6厘米,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=1/2AB=3厘米.题型三借助平行四边形的性质边AB、BC的中点,G、H为AC的两个三等分点,连接EG、例3.如图,(1)E,F为ABCFH,并延长交于D,连接AD、CD.求证:四边形ABCD是平行四边形.【答案】如图,E、F分别为△ABC的边AB、BC的中点,G、H是AC上的三等分点。
三角形的中位线及性质PPT课件
例如,如果中位线连接顶点A和顶点C 的中点,则表示为AC。
三角形中位线的性质
中位线平行于第三边
中位线与第三边平行,这是中位线的基本性质。
中位线长度是第三边的一半
中位线的长度等于第三边长度的一半。
中位线与第三边平行且等长
中位线与第三边平行且长度相等。
线的长度性质。
三角形中位线与第三边之间的角度相等
03
三角形的中位线与第三边之间的角度相等,这是三角形中位线
的角度性质。
三角形中位线的定理
三角形中位线定理
三角形的中位线长度等于第三边长度的一半,即ME=1/2EB,其中ME是中位 线,EB是第三边。
三角形中位线定理的推论
如果一个线段与三角形的两边平行,则该线段被三角形的另一边平分。
过程。
03
三角形中位线的证明
三角形中位线定理的证明方法
位线与底边平行且等于底 边一半的性质,证明中位 线定理。
平行四边形法
构造一个平行四边形,利 用平行四边形的性质,证 明中位线定理。
相似三角形法
通过构造相似三角形,利 用相似三角形的性质,证 明中位线定理。
三角形中位线定理证明的实例
实例一
利用定义法证明中位线定 理
实例二
利用平行四边形法证明中 位线定理
实例三
利用相似三角形法证明中 位线定理
三角形中位线定理证明的注意事项
注意中位线的定义和性质
注意证明方法的选取
在证明过程中,要明确中位线的定义 和性质,确保正确使用。
根据具体的情况,选取适当的证明方 法,以达到简洁明了的证明效果。
05
八年级数学-三角形中位线定理
八年级数学-三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半。
运用这个定理,可以证明线与线的平行关系;证明线段之间的相等或倍分关系;还可将分散的已知条件集中起来发挥作用。
例1:如图P3-3,已知△ABC中,D是AB中点,O是CD中点,BO延长后交AC于E.证明:取AE中点F,连结DF.∵D是AB中点,∵O是CD中点,例2:已知:如图P3-4,在四边形ABCD中,AD=BC,M、N分别是AB.DC的中点,延长AD.MN 交于E,延长BC.MN交于F.求证:∠AEM=∠BFM.证明:连BD,取中点O,连ON、OM,在△ABD与△BDC中,M、O为AB.BD边中点;N、O为DB.DC 边中点.∵AD=BC.∴OM=ON.∴∠1=∠2.而∠1=∠BFM,∠2=∠AEM,∴∠AEM=∠BFM.例3:选择题:(1)一个三角形三个内角度数的比为1∶2∶3,则这个三角形是 [ ](A)锐角三角形 (B)钝角三角形(C)直角三角形 (D)无法确定解:(C).设三个内角的度数分别为k、2k、3k,24根据三角形内角和定理,有k+2k+3k=180°解得 k=30°.∴三角形的三个内角分别为30°、60°、90°.故选(C).(2)如果等腰三角形的顶角为40°,那么其中一个底角的度数为[ ](A)50° (B)70°(C)100° (D)140°解:(B).(3)钝角三角形的三条高 [ ](A)相交于三角形内部的一点(B)相交于大边上的一点(C)相交于三角形外部的一点(D)不能相交于一点解:(C).(4)在△ABC中,AB>BC>CA,那么在①∠C=60°,②∠B=60°,③∠A=60°中,可能成立的是 [ ](A)③ (B)②(C)②③ (D) ①③解:(A).在△ABC中,∵ AB>BC>CA,∴∠C>∠A>∠B.若∠C=60°,则∠A与∠B的均小于60°,这与三角形内角和等于180°矛盾.若∠B=60°,则∠C和∠A均大于60°,这也与三角形内角和等于180°矛盾.∴∠A=60°,应选(A).(5)顺次连结周长为a的三角形三边中点所得三角形的周长为 [ ]解:(D).(6)在△ABC中,∠B.∠C的外角平分线相交于D,那么∠BDC等于 [ ]解:(C).如图P3-5,∵∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB).又∵∠A=180°-(∠ABC+∠ACB),∴∠ABC+∠ACB=180°-∠A.∴∠EBC+∠FCB=360°-180°+∠A=180°+∠A.∵BD.CD分别平分∠EBC.∠FCB,∴∠BDC=180°-(∠1+∠2)(7)下列命题中的假命题是 [ ](A)有一个内角是60°的等腰三角形是等边三角形(B)等边三角形是等腰三角形(C)等腰直角三角形中,斜边是任一直角边2倍。
中考数学专题16等腰三角形与直角三角形(共5题)(全国通用解析版)
等腰三角形与直角三角形一.选择题(共24小题)1.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm.则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm.而没有明确腰、底分别是多少.所以要进行讨论.还要应用三角形的三边关系验证能否组成三角形.【解析】当3cm是腰长时.3.3.5能组成三角形.当5cm是腰长时.5.5.3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.【点评】本题考查等腰三角形的性质及三角形三边关系.已知没有明确腰和底边的题目一定要想到两种情况.分类进行讨论.还应验证各种情况是否能构成三角形进行解答.这点非常重要.也是解题的关键.2.(2022•泰安)如图.l1∥l2.点A在直线l1上.点B在直线l2上.AB=BC.∠C=25°.∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°.利用平行线的性质得到∠BEA=95°.再根据三角形外角的性质即可求解.【解析】如图.∵AB=BC.∠C=25°.∴∠C=∠BAC=25°.∵l1∥l2.∠1=60°.∴∠BEA=180°﹣60°﹣25°=95°.∵∠BEA=∠C+∠2.∴∠2=95°﹣25°=70°.故选:A.【点评】本题考查了等腰三角形的性质.平行线的性质以及三角形外角的性质.解决问题的关键是注意运用两直线平行.同旁内角互补.3.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°.则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°.则顶角的度数为(2x+20)°.根据三角形内角和是180°列出方程.解方程即可得出答案.【解析】设底角的度数是x°.则顶角的度数为(2x+20)°.根据题意得:x+x+2x+20=180.解得:x=40.故选:B.【点评】本题考查了等腰三角形的性质.考查了方程思想.掌握等腰三角形两个底角相等是解题的关键.4.(2022•天津)如图.△OAB的顶点O(0.0).顶点A.B分别在第一、四象限.且AB⊥x轴.若AB=6.OA=OB=5.则点A的坐标是()A.(5.4)B.(3.4)C.(5.3)D.(4.3)【分析】根据等腰三角形的性质求出AC.根据勾股定理求出OC.根据坐标与图形性质写出点A的坐标.【解析】设AB与x轴交于点C.∵OA=OB.OC⊥AB.AB=6.∴AC=AB=3.由勾股定理得:OC===4.∴点A的坐标为(4.3).故选:D.【点评】本题考查的是等腰三角形的性质、坐标与图形性质.掌握等腰三角形的三线合一是解题的关键.5.(2022•台湾)如图.△ABC中.D点在AB上.E点在BC上.DE为AB的中垂线.若∠B=∠C.且∠EAC>90°.则根据图中标示的角.判断下列叙述何者正确?()A.∠1=∠2.∠1<∠3B.∠1=∠2.∠1>∠3C.∠1≠∠2.∠1<∠3D.∠1≠∠2.∠1>∠3【分析】根据线段垂直平分线的性质.等腰三角形的性质解答即可.【解析】∵DE为AB的中垂线.∴∠BDE=∠ADE.BE=AE.∴∠B=∠BAE.∴∠1=∠2.∵∠EAC>90°.∴∠3+∠C<90°.∵∠B+∠1=90°.∠B=∠C.∴∠1>∠3.∴∠1=∠2.∠1>∠3.故选:B.【点评】本题主要考查了线段垂直平分线的性质和等腰三角形的性质.熟练掌握相关的性质定理是解答本题的关键.6.(2022•广元)如图.在△ABC中.BC=6.AC=8.∠C=90°.以点B为圆心.BC长为半径画弧.与AB交于点D.再分别以A、D为圆心.大于AD的长为半径画弧.两弧交于点M、N.作直线MN.分别交AC、AB于点E、F.则AE的长度为()A.B.3C.2D.【分析】利用勾股定理求出AB.再利用相似三角形的性质求出AE即可.【解析】在Rt△ABC中.BC=6.AC=8.∴AB===10.∵BD=CB=6.∴AD=AB=BC=4.由作图可知EF垂直平分线段AD.∴AF=DF=2.∵∠A=∠A.∠AFE=∠ACB=90°.∴△AFE∽△ACB.∴=.∴=.∴AE=.故选:A.【点评】本题考查勾股定理.相似三角形的判定和性质等知识.解题的关键是正确寻找相似三角形解决问题.属于中考常考题型.7.(2022•金华)如图是城市某区域的示意图.建立平面直角坐标系后.学校和体育场的坐标分别是(3.1).(4.﹣2).下列各地点中.离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系.然后根据勾股定理.可以得到点O到超市、学校、体育场、医院的距离.再比较大小即可.【解析】如右图所示.点O到超市的距离为:=.点O到学校的距离为:=.点O到体育场的距离为:=.点O到医院的距离为:=.∵<=<.∴点O到超市的距离最近.故选:A.【点评】本题考查勾股定理、平面直角坐标系.解答本题的关键是明确题意.作出合适平面直角坐标系.8.(2022•温州)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.连结CF.作GM⊥CF于点M.BJ⊥GM于点J.AK⊥BJ于点K.交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5.CE=+.则CH的长为()A.B.C.2D.【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB=m.证明△AFL ≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=(m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP=.FP=m.BP=.即知P为AB中点.CP=AP=BP=.由△CPN∽△FP A.得CN =m.PN=m.即得AN=m.而tan∠BAC===.又△AEC∽△BCH.得=.即=.故CH=2.【解析】设CF交AB于P.过C作CN⊥AB于N.如图:设正方形JKLM边长为m.∴正方形JKLM面积为m2.∵正方形ABGF与正方形JKLM的面积之比为5.∴正方形ABGF的面积为5m2.∴AF=AB=m.由已知可得:∠AFL=90°﹣∠MFG=∠MGF.∠ALF=90°=∠FMG.AF=GF.∴△AFL≌△FGM(AAS).∴AL=FM.设AL=FM=x.则FL=FM+ML=x+m.在Rt△AFL中.AL2+FL2=AF2.∴x2+(x+m)2=(m)2.解得x=m或x=﹣2m(舍去).∴AL=FM=m.FL=2m.∵tan∠AFL====.∴=.∴AP=.∴FP===m.BP=AB﹣AP=m﹣=.∴AP=BP.即P为AB中点.∵∠ACB=90°.∴CP=AP=BP=.∵∠CPN=∠APF.∠CNP=90°=∠F AP.∴△CPN∽△FP A.∴==.即==.∴CN=m.PN=m.∴AN=AP+PN=m.∴tan∠BAC====.∵△AEC和△BCH是等腰直角三角形.∴△AEC∽△BCH.∴=.∵CE=+.∴=.∴CH=2.故选:C.【点评】本题考查正方形性质及应用.涉及全等三角形判定与性质.相似三角形判定与性质.勾股定理等知识.解题的关键是用含m的代数式表示相关线段的长度.9.(2022•安徽)已知点O是边长为6的等边△ABC的中心.点P在△ABC外.△ABC.△P AB.△PBC.△PCA的面积分别记为S0.S1.S2.S3.若S1+S2+S3=2S0.则线段OP长的最小值是()A.B.C.3D.【分析】如图.不妨假设点P在AB的左侧.证明△P AB的面积是定值.过点P作AB的平行线PM.连接CO延长CO交AB于点R.交PM于点T.因为△P AB的面积是定值.推出点P的运动轨迹是直线PM.求出OT的值.可得结论.【解析】如图.不妨假设点P在AB的左侧.∵S△P AB+S△ABC=S△PBC+S△P AC.∴S1+S0=S2+S3.∵S1+S2+S3=2S0.∴S1+S1+S0=2.∴S1=S0.∵△ABC是等边三角形.边长为6.∴S0=×62=9.∴S1=.过点P作AB的平行线PM.连接CO延长CO交AB于点R.交PM于点T.∵△P AB的面积是定值.∴点P的运动轨迹是直线PM.∵O是△ABC的中心.∴CT⊥AB.CT⊥PM.∴•AB•RT=.CR=3.OR=.∴RT=.∴OT=OR+TR=.∵OP≥OT.∴OP的最小值为.当点P在②区域时.同法可得OD的最小值为.如图.当点P在①③⑤区域时.OP的最小值为.当点P在②④⑥区域时.最小值为.∵<.故选:B.【点评】本题考查等边三角形的性质.解直角三角形.三角形的面积等知识.解题的关键是证明△P AB的面积是定值.10.(2022•南充)如图.在Rt△ABC中.∠C=90°.∠BAC的平分线交BC于点D.DE∥AB.交AC于点E.DF⊥AB于点F.DE=5.DF=3.则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理.可以求得CD和CE的长.再根据平行线的性质.即可得到AE的长.从而可以判断B和C.然后即可得到AC的长.即可判断D.再根据全等三角形的判定和性质即可得到BF的长.从而可以判断A.【解析】∵AD平分∠BAC.∠C=90°.DF⊥AB.∴∠1=∠2.DC=FD.∠C=∠DFB=90°.∵DE∥AB.∴∠2=∠3.∴∠1=∠3.∴AE=DE.∵DE=5.DF=3.∴AE=5.CD=3.故选项B、C正确.∴CE==4.∴AC=AE+EC=5+4=9.故选项D正确.∵DE∥AB.∠DFB=90°.∴∠EDF=∠DFB=90°.∴∠CDF+∠FDB=90°.∵∠CDF+∠DEC=90°.∴∠DEC=∠FDB.∵tan∠DEC=.tan∠FDB=.∴.解得BF=.故选项A错误.故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质.解答本题的关键是明确题意.利用数形结合的思想解答.11.(2022•宜昌)如图.在△ABC中.分别以点B和点C为圆心.大于BC长为半径画弧.两弧相交于点M.N.作直线MN.交AC于点D.交BC于点E.连接BD.若AB=7.AC=12.BC=6.则△ABD的周长为()A.25B.22C.19D.18【分析】根据题意可知MN垂直平分BC.即可得到DB=DC.然后即可得到AB+BD+AD=AB+DC+AD=AB+AC.从而可以求得△ABD的周长.【解析】由题意可得.MN垂直平分BC.∴DB=DC.∵△ABD的周长是AB+BD+AD.∴AB+BD+AD=AB+DC+AD=AB+AC.∵AB=7.AC=12.∴AB+AC=19.∴∵△ABD的周长是19.故选:C.【点评】本题考查线段垂直平分线的性质.三角形的周长.解答本题的关键是明确题意.利用数形结合的思想解答.12.(2022•河北)题目:“如图.∠B=45°.BC=2.在射线BM上取一点A.设AC =d.若对于d的一个数值.只能作出唯一一个△ABC.求d的取值范围.”对于其答案.甲答:d≥2.乙答:d=1.6.丙答:d=.则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整【分析】由题意知.当CA⊥BA或CA>BC时.能作出唯一一个△ABC.分这两种情况求解即可.【解析】由题意知.当CA⊥BA或CA>BC时.能作出唯一一个△ABC.①当CA⊥BA时.∵∠B=45°.BC=2.∴AC=BC•sin45°=2×=.即此时d=.②当CA=BC时.∵∠B=45°.BC=2.∴此时AC=2.即d>2.综上.当d=或d>2时能作出唯一一个△ABC.故选:B.【点评】本题主要考查三角形的三边关系及等腰直角三角形的知识.熟练掌握等腰直角三角形的性质及三角形的三边关系是解题的关键.13.(2022•宜宾)如图.△ABC和△ADE都是等腰直角三角形.∠BAC=∠DAE=90°.点D是BC边上的动点(不与点B、C重合).DE与AC交于点F.连结CE.下列结论:①BD=CE.②∠DAC=∠CED.③若BD=2CD.则=.④在△ABC内存在唯一一点P.使得P A+PB+PC的值最小.若点D在AP的延长线上.且AP的长为2.则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【分析】①正确.证明△BAD≌△DAE(SAS).可得结论.②正确.证明A.D.C.E四点共圆.利用圆周角定理证明.③正确.设CD=m.则BD=CE=2m.DE=m.OA=m.过点C作CJ⊥DF于点J.求出AO.CJ.可得结论.④错误.将△BPC绕点B顺时针旋转60°得到△BNM.连接PN.当点A.点P.点N.点M共线时.P A+PB+PC值最小.此时∠APB=∠APC=∠BPC=120°.PB =PC.AD⊥BC.设PD=t.则BD=AD=t.构建方程求出t.可得结论.【解析】如图1中.∵∠BAC=∠DAE=90°.∴∠BAD=∠CAE.∵AB=AC.AD=AE.∴△BAD≌△DAE(SAS).∴BD=EC.∠ADB=∠AEC.故①正确.∵∠ADB+∠ADC=180°.∴∠AEC+∠ADC=180°.∴∠DAE+∠DCE=180°.∴∠DAE=∠DCE=90°.取DE的中点O.连接OA.OA.OC.则OA=OD=OE=OC.∴A.D.C.E四点共圆.∴∠DAC=∠CED.故②正确.设CD=m.则BD=CE=2m.DE=m.OA=m.过点C作CJ⊥DF于点J.∵tan∠CDF===2.∴CJ=m.∵AO⊥DE.CJ⊥DE.∴AO∥CJ.∴===.故③正确.如图2中.将△BPC绕点B顺时针旋转60°得到△BNM.连接PN.∴BP=BN.PC=NM.∠PBN=60°.∴△BPN是等边三角形.∴BP=PN.∴P A+PB+PC=AP+PN+MN.∴当点A.点P.点N.点M共线时.P A+PB+PC值最小.此时∠APB=∠APC=∠BPC=120°.PB=PC.AD⊥BC.∴∠BPD=∠CPD=60°.设PD=t.则BD=AD=t.∴2+t=t.∴t=+1.∴CE=BD=t=3+.故④错误.故选:B.【点评】本题考查等腰直角三角形的性质.全等三角形的判定和性质.四点共圆.圆周角定理.解直角三角形等知识.解题的关键是学会添加常用辅助线.构造特殊三角形解决问题.属于中考选择题中的压轴题.14.(2022•眉山)在△ABC中.AB=4.BC=6.AC=8.点D.E.F分别为边AB.AC.BC 的中点.则△DEF的周长为()A.9B.12C.14D.16【分析】根据三角形的中位线平行于第三边.并且等于第三边的一半.可得出△ABC的周长=2△DEF的周长.【解析】如图.点E.F分别为各边的中点.∴DE、EF、DF是△ABC的中位线.∴DE=BC=3.EF=AB=2.DF=AC=4.∴△DEF的周长=3+2+4=9.故选:A.【点评】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.15.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时.用4个全等的直角三角形拼成正方形(如图).并用它证明了勾股定理.这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1.α为直角三角形中的一个锐角.则tanα=()A.2B.C.D.【分析】根据题意和题目中的数据.可以先求出大正方形的面积.然后设出小直角三角形的两条直角边.再根据勾股定理和两直角边的关系可求得直角三角形的两条直角边的长.然后即可求得tanα的值.【解析】由已知可得.大正方形的面积为1×4+1=5.设直角三角形的长直角边为a.短直角边为b.则a2+b2=5.a﹣b=1.解得a=2.b=1或a=1.b=﹣2(不合题意.舍去).∴tanα===2.故选:A.【点评】本题考查勾股定理的证明、解直角三角形.解答本题的关键是求出直角三角形的两条直角边长.16.(2022•苏州)如图.点A的坐标为(0.2).点B是x轴正半轴上的一点.将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m.3).则m的值为()A.B.C.D.【分析】过C作CD⊥x轴于D.CE⊥y轴于E.根据将线段AB绕点A按逆时针方向旋转60°得到线段AC.可得△ABC是等边三角形.又A(0.2).C(m.3).即得AC==BC=AB.可得BD==.OB==.从而+=m.即可解得m=.【解析】过C作CD⊥x轴于D.CE⊥y轴于E.如图:∵CD⊥x轴.CE⊥y轴.∠DOE=90°.∴四边形EODC是矩形.∵将线段AB绕点A按逆时针方向旋转60°得到线段AC.∴AB=AC.∠BAC=60°.∴△ABC是等边三角形.∴AB=AC=BC.∵A(0.2).C(m.3).∴CE=m=OD.CD=3.OA=2.∴AE=OE﹣OA=CD﹣OA=1.∴AC===BC=AB.在Rt△BCD中.BD==.在Rt△AOB中.OB==.∵OB+BD=OD=m.∴+=m.化简变形得:3m4﹣22m2﹣25=0.解得m=或m=﹣(舍去).∴m=.故选:C.【点评】本题考查直角坐标系中的旋转变换.解题的关键是熟练应用勾股定理.用含m的代数式表示相关线段的长度.17.(2022•扬州)如图.小明家仿古家具的一块三角形形状的玻璃坏了.需要重新配一块.小明通过电话给玻璃店老板提供相关数据.为了方便表述.将该三角形记为△ABC.提供下列各组元素的数据.配出来的玻璃不一定符合要求的是()A.AB.BC.CA B.AB.BC.∠B C.AB.AC.∠B D.∠A.∠B.BC 【分析】直接利用全等三角形的判定方法分析得出答案.【解析】A.利用三角形三边对应相等.两三角形全等.三角形形状确定.故此选项不合题意.B.利用三角形两边、且夹角对应相等.两三角形全等.三角形形状确定.故此选项不合题意.C.AB.AC.∠B.无法确定三角形的形状.故此选项符合题意.D.根据∠A.∠B.BC.三角形形状确定.故此选项不合题意.故选:C.【点评】此题主要考查了全等三角形的应用.正确掌握全等三角形的判定方法是解题关键.18.(2022•湖州)如图.已知在锐角△ABC中.AB=AC.AD是△ABC的角平分线.E 是AD上一点.连结EB.EC.若∠EBC=45°.BC=6.则△EBC的面积是()A.12B.9C.6D.3【分析】根据等腰三角形的性质得到BD=CD=3.AD⊥BC.根据等腰直角三角形的性质求出ED.根据三角形的面积公式计算.得到答案.【解析】∵AB=AC.AD是△ABC的角平分线.∴BD=CD=BC=3.AD⊥BC.在Rt△EBD中.∠EBC=45°.∴ED=BD=3.∴S△EBC=BC•ED=×6×3=9.故选:B.【点评】本题考查的是等腰三角形的性质、直角三角形的性质.掌握等腰三角形的三线合一是解题的关键.19.(2022•宁波)如图.在Rt△ABC中.D为斜边AC的中点.E为BD上一点.F为CE中点.若AE=AD.DF=2.则BD的长为()A.2B.3C.2D.4【分析】根据三角形中位线可以求得AE的长.再根据AE=AD.可以得到AD的长.然后根据直角三角形斜边上的中线和斜边的关系.可以求得BD的长.【解析】∵D为斜边AC的中点.F为CE中点.DF=2.∴AE=2DF=4.∵AE=AD.∴AD=4.在Rt△ABC中.D为斜边AC的中点.∴BD=AC=AD=4.故选:D.【点评】本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线.解答本题的关键是求出AD的长.20.(2022•云南)如图.OB平分∠AOC.D、E、F分别是射线OA、射线OB、射线OC上的点.D、E、F与O点都不重合.连接ED、EF.若添加下列条件中的某一个.就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【分析】由OB平分∠AOC.得∠DOE=∠FOE.由OE=OE.可知∠ODE=∠OFE.即可根据AAS得△DOE≌△FOE.可得答案.【解析】∵OB平分∠AOC.∴∠DOE=∠FOE.又OE=OE.若∠ODE=∠OFE.则根据AAS可得△DOE≌△FOE.故选项D符合题意.而增加OD=OE不能得到△DOE≌△FOE.故选项A不符合题意.增加OE=OF不能得到△DOE≌△FOE.故选项B不符合题意.增加∠ODE=∠OED不能得到△DOE≌△FOE.故选项C不符合题意.故选:D.【点评】本题考查全等三角形的判定.解题的关键是掌握全等三角形判定定理并会应用.21.(2022•达州)如图.AB∥CD.直线EF分别交AB.CD于点M.N.将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=80°.则∠PNM等于()A.15°B.25°C.35°D.45°【分析】根据平行线的性质得到∠DNM=∠BME=80°.由等腰直角三角形的性质得到∠PND=45°.即可得到结论.【解析】∵AB∥CD.∴∠DNM=∠BME=80°.∵∠PND=45°.∴∠PNM=∠DNM﹣∠DNP=80°﹣45°=35°.故选:C.【点评】本题考查了平行线的性质.等腰直角三角形的性质.熟练掌握平行线的性质是解题的关键.22.(2022•金华)如图.圆柱的底面直径为AB.高为AC.一只蚂蚁在C处.沿圆柱的侧面爬到B处.现将圆柱侧面沿AC“剪开”.在侧面展开图上画出蚂蚁爬行的最近路线.正确的是()A.B.C.D.【分析】利用圆柱的侧面展开图是矩形.而点B是展开图的一边的中点.再利用蚂蚁爬行的最近路线为线段可以得出结论.【解析】将圆柱侧面沿AC“剪开”.侧面展开图为矩形.∵圆柱的底面直径为AB.∴点B是展开图的一边的中点.∵蚂蚁爬行的最近路线为线段.∴C选项符合题意.故选:C.【点评】本题主要考查了圆柱的侧面展开图.最短路径问题.掌握两点之间线段最短是解题的关键.23.(2022•舟山)如图.在Rt△ABC和Rt△BDE中.∠ABC=∠BDE=90°.点A 在边DE的中点上.若AB=BC.DB=DE=2.连结CE.则CE的长为()A.B.C.4D.【分析】根据题意先作出合适的辅助线.然后根据勾股定理可以得到AB和BC 的长.根据等面积法可以求得EG的长.再根据勾股定理求得EF的长.最后计算出CE的长即可.【解析】作EF⊥CB交CB的延长线于点F.作EG⊥BA交BA的延长线于点G.∵DB=DE=2.∠BDE=90°.点A是DE的中点.∴BE===2.DA=EA=1.∴AB===.∵AB=BC.∴BC=.∵=.∴.解得EG=.∵EG⊥BG.EF⊥BF.∠ABF=90°.∴四边形EFBG是矩形.∴EG=BF=.∵BE=2.BF=.∴EF===.CF=BF+BC=+=.∵∠EFC=90°.∴EC===.故选:D.【点评】本题考查勾股定理、等腰直角三角形.解答本题的关键是明确题意.求出EF和CF的长.24.(2022•遂宁)如图.D、E、F分别是△ABC三边上的点.其中BC=8.BC边上的高为6.且DE∥BC.则△DEF面积的最大值为()A.6B.8C.10D.12【分析】过点A作AM⊥BC于M.交DE于点N.则AN⊥DE.设AN=a.根据DE ∥BC.证出△ADE∽△ABC.根据相似三角形对应高的比等于相似比得到DE=a.列出△DEF面积S的函数表达式.根据配方法求最值即可.【解析】如图.过点A作AM⊥BC于M.交DE于点N.则AN⊥DE.设AN=a.∵DE∥BC.∴∠ADE=∠B.∠AED=∠C.∴△ADE∽△ABC.∴=.∴=.∴DE=a.∴△DEF面积S=×DE×MN=×a•(6﹣a)=﹣a2+4a=﹣(a﹣3)2+6.∴当a=3时.S有最大值.最大值为6.故选:A.【点评】本题考查了三角形的面积.平行线的性质.列出△DEF面积S的函数表达式.根据配方法求最值是解题的关键.二.填空题(共15小题)25.(2022•岳阳)如图.在△ABC中.AB=AC.AD⊥BC于点D.若BC=6.则CD=3.【分析】根据等腰三角形的性质可知D是BC的中点.即可求出CD的长.【解析】∵AB=AC.AD⊥BC.∴CD=BD.∵BC=6.∴CD=3.故答案为:3.【点评】本题考查了等腰三角形的性质.熟练掌握等腰三角形三线合一是解题的关键.26.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍.这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”.底边BC的长为3.则腰AB的长为6.【分析】由等腰△ABC是“倍长三角形”.可知AB=2BC或BC=2AB.若AB =2BC=6.可得AB的长为6.若BC=3=2AB.因1.5+1.5=3.故此时不能构成三角形.这种情况不存在.即可得答案.【解析】∵等腰△ABC是“倍长三角形”.∴AB=2BC或BC=2AB.若AB=2BC=6.则△ABC三边分别是6.6.3.符合题意.∴腰AB的长为6.若BC=3=2AB.则AB=1.5.△ABC三边分别是1.5.1.5.3.∵1.5+1.5=3.∴此时不能构成三角形.这种情况不存在.综上所述.腰AB的长是6.故答案为:6.【点评】本题考查三角形三边关系.涉及新定义.解题的关键是分类思想的应用及掌握三角形任意两边的和大于第三边.27.(2022•云南)已知△ABC是等腰三角形.若∠A=40°.则△ABC的顶角度数是40°或100°.【分析】分∠A是顶角和底角两种情况讨论.即可解答.【解析】当∠A是顶角时.△ABC的顶角度数是40°.当∠A是底角时.则△ABC的顶角度数为180°﹣2×40°=100°.综上.△ABC的顶角度数是40°或100°.故答案为:40°或100°.【点评】本题考查了等腰三角形的性质.此类题目.难点在于要分情况讨论.28.(2022•滨州)如图.屋顶钢架外框是等腰三角形.其中AB=AC.立柱AD⊥BC.且顶角∠BAC=120°.则∠C的大小为30°.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解析】∵AB=AC且∠BAC=120°.∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.【点评】本题考查了等腰三角形的性质.熟练掌握等腰三角形的两个底角相等的性质是解题的关键.29.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣.3).则A点的坐标是(.﹣3).【分析】根据正六边形的性质可得点A和点B关于原点对称.进而可以解决问题.【解析】因为点A和点B关于原点对称.B点的坐标是(﹣.3).所以A点的坐标是(.﹣3).故答案为:(.﹣3).【点评】本题考查了正六边形的性质.中心对称图形.解决本题的关键是掌握关于原点对称的点的坐标特征.30.(2022•金华)如图.在Rt△ABC中.∠ACB=90°.∠A=30°.BC=2cm.把△ABC沿AB方向平移1cm.得到△A'B'C'.连结CC'.则四边形AB'C'C的周长为(8+2)cm.【分析】利用含30°角的直角三角形的性质.勾股定理和平移的性质.求得四边形AB'C'C的四边即可求得结论.【解析】∵在Rt△ABC中.∠ACB=90°.∠A=30°.BC=2cm.∴AB=2BC=4.∴AC==2.∵把△ABC沿AB方向平移1cm.得到△A'B'C'.∴B′C′=BC=2.AA′=CC′=1.A′B′=AB=4.∴AB′=AA′+A′B′=5.∴四边形AB'C'C的周长为AB′+B′C′+CC′+AC=5+2+1+2=(8+2)cm.故答案为:(8+2).【点评】本题主要考查了含30°角的直角三角形的性质.勾股定理和平移的性质.熟练掌握平移的性质是解题的关键.31.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作.书中提出了已知三角形三边a、b、c求面积的公式.其求法是:“以小斜幂并大斜幂减中斜幂.余半之.自乘于上.以小斜幂乘大斜幂减上.余四约之.为实.一为从隅.开平方得积.”若把以上这段文字写成公式.即为S=.现有周长为18的三角形的三边满足a:b:c =4:3:2.则用以上给出的公式求得这个三角形的面积为3.【分析】根据题意先求出a、b、c.再代入公式进行计算即可.【解析】根据a:b:c=4:3:2.设a=4k.b=3k.c=2k.则4k+3k+2k=18.解得:k=2.∴a=4k=4×2=8.b=3k=3×2=6.c=2k=2×2=4.∴S===3.故答案为:3.【点评】本题考查了二次根式的运算.要注意运算顺序.解答的关键是对相应的运算法则的熟练掌握.32.(2022•十堰)【阅读材料】如图①.四边形ABCD中.AB=AD.∠B+∠D=180°.点E.F分别在BC.CD上.若∠BAD=2∠EAF.则EF=BE+DF.【解决问题】如图②.在某公园的同一水平面上.四条道路围成四边形ABCD.已知CD=CB=100m.∠D=60°.∠ABC=120°.∠BCD=150°.道路AD.AB上分别有景点M.N.且DM=100m.BN=50(﹣1)m.若在M.N之间修一条直路.则路线M→N的长比路线M→A→N的长少370m(结果取整数.参考数据:≈1.7).【分析】解法一:如图.作辅助线.构建直角三角形.先根据四边形的内角和定理证明∠G=90°.分别计算AD.CG.AG.BG的长.由线段的和与差可得AM和AN 的长.最后由勾股定理可得MN的长.计算AM+AN﹣MN可得答案.解法二:构建【阅读材料】的图形.根据结论可得MN的长.从而得结论.【解析】解法一:如图.延长DC.AB交于点G.∵∠D=60°.∠ABC=120°.∠BCD=150°.∴∠A=360°﹣60°﹣120°﹣150°=30°.∴∠G=90°.∴AD=2DG.Rt△CGB中.∠BCG=180°﹣150°=30°.∴BG=BC=50.CG=50.∴DG=CD+CG=100+50.∴AD=2DG=200+100.AG=DG=150+100.∵DM=100.∴AM=AD﹣DM=200+100﹣100=100+100.∵BG=50.BN=50(﹣1).∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50.Rt△ANH中.∵∠A=30°.∴NH=AN=75+25.AH=NH=75+75.由勾股定理得:MN===50(+1).∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图.延长DC.AB交于点G.连接CN.CM.则∠G=90°.∵CD=DM.∠D=60°.∴△BCM是等边三角形.∴∠DCM=60°.由解法一可知:CG=50.GN=BG+BN=50+50(﹣1)=50.∴△CGN是等腰直角三角形.∴∠GCN=45°.∴∠BCN=45°﹣30°=15°.∴∠MCN=150°﹣60°﹣15°=75°=∠BCD.由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50.∵AM+AN﹣MN=AD+AG﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.【点评】此题重点考查了含30°的直角三角形的性质.勾股定理.二次根式的混合运算等知识与方法.解题的关键是作出所需要的辅助线.构造含30°的直角三角形.再利用线段的和与差进行计算即可.33.(2022•山西)如图.在正方形ABCD中.点E是边BC上的一点.点F在边CD 的延长线上.且BE=DF.连接EF交边AD于点G.过点A作AN⊥EF.垂足为点M.交边CD于点N.若BE==8.则线段AN的长为4.【分析】连接AE.AF.EN.由正方形的性质可得AB=AD.BC=CD.∠ABE=∠BCD=∠ADF=90°.可证得△ABE≌△ADF(SAS).可得∠BAE=∠DAF.AE =AF.从而可得∠EAF=90°.根据等腰三角形三线合一可得点M为EF中点.由AN⊥EF可证得△AEM≌△AFM(SAS).△EMN≌△FMN(SAS).可得EN =FN.设DN=x.则EN=FN=x+5.CE=x+3.由勾股定理解得x=12.可得AB=CD=20.由勾股定理可得AE=5.从而可得AM=EM=FM=.由勾股定理可得MN=.即可求解.【解析】如图.连接AE.AF.EN.∵四边形ABCD为正方形.∴AB=AD.BC=CD.∠ABE=∠BCD=∠ADF=90°.∵BE=DF.∴△ABE≌△ADF(SAS).∴∠BAE=∠DAF.AE=AF.∴∠EAF=90°.∴△EAF为等腰直角三角形.∵AN⊥EF.∴EM=FM.∠EAM=∠F AM=45°.∴△AEM≌△AFM(SAS).△EMN≌△FMN(SAS).∴EN=FN.设DN=x.∵BE=DF==8.∴CD=CN+DN=x+8.∴EN=FN=DN+DF=x+5.CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3.在Rt△ECN中.由勾股定理可得:CN2+CE2=EN2.即82+(x+3)2=(x+5)2.解得:x=12.∴AB=CD=x+8=20.EN=x+5=17.在Rt△ABE中.由勾股定理可得:AE===5.∴AM=EM=FM==.在Rt△EMN中.由勾股定理可得:MN===.∴AN=AM+MN=+=4.故答案为:4.【点评】本题考查正方形的性质.勾股定理.等腰三角形的性质.全等三角形的判定与性质等知识点.解题的关键是正确作出辅助线.构建全等三角形解决问题.34.(2022•武汉)如图.在Rt△ABC中.∠ACB=90°.AC>BC.分别以△ABC的三边为边向外作三个正方形ABHL.ACDE.BCFG.连接DF.过点C作AB的垂线CJ.垂足为J.分别交DF.LH于点I.K.若CI=5.CJ=4.则四边形AJKL的面积是80.【分析】过点D作DM⊥CI于点M.过点F作FN⊥CI于点N.由正方形的性质可证得△ACJ≌△CDM.△BCJ≌△CFN.可得DM=CJ.FN=CJ.可证得△DMI ≌△FNI.由直角三角形斜边上的中线的性质可得DI=FI=CI.由勾股定理可得MI.NI.从而可得CN.可得BJ与AJ.即可求解.【解析】过点D作DM⊥CI.交CI的延长线于点M.过点F作FN⊥CI于点N.∵△ABC为直角三角形.四边形ACDE.BCFG为正方形.过点C作AB的垂线CJ.CJ=4.∴AC=CD.∠ACD=90°.∠AJC=∠CMD=90°.∠CAJ+∠ACJ=90°.BC=CF.∠BCF=90°.∠CNF=∠BJC=90°.∠FCN+∠CFN=90°.∴∠ACJ+∠DCM=90°.∠FCN+∠BCJ=90°.∴∠CAJ=∠DCM.∠BCJ=∠CFN.∴△ACJ≌△CDM(AAS).△BCJ≌△CFN(AAS).∴AJ=CM.DM=CJ=4.BJ=CN.NF=CJ=4.∴DM=NF.∴△DMI≌△FNI(AAS).∴DI=FI.MI=NI.∵∠DCF=90°.∴DI=FI=CI=5.在Rt△DMI中.由勾股定理可得:MI===3.∴NI=MI=3.∴AJ=CM=CI+MI=5+3=8.BJ=CN=CI﹣NI=5﹣3=2.∴AB=AJ+BJ=8+2=10.∵四边形ABHL为正方形.∴AL=AB=10.∵四边形AJKL为矩形.∴四边形AJKL的面积为:AL•AJ=10×8=80.故答案为:80.【点评】本题考查正方形的性质.勾股定理.全等三角形的判定与性质等知识点.解题的关键是正确作出辅助线.利用全等三角形的性质进行求解.35.(2022•孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三.股修四.经隅五”.观察下列勾股数:3.4.5.5.12.13.7.24.25.….这类勾股数的特点是:勾为奇数.弦与股相差为1.柏拉图研究了勾为偶数.弦与股相差为2的一类勾股数.如:6.8.10.8.15.17.….若此类勾股数的勾为2m(m≥3.m为正整数).则其弦是m2+1(结果用含m的式子表示).【分析】根据题意得2m为偶数.设其股是a.则弦为a+2.根据勾股定理列方程即可得到结论.【解析】∵m为正整数.∴2m为偶数.设其股是a.则弦为a+2.根据勾股定理得.(2m)2+a2=(a+2)2.解得a=m2+1.综上所述.其弦是m2+1.故答案为:m2+1.【点评】本题考查了勾股数.勾股定理.熟练掌握勾股定理是解题的关键.36.(2022•台州)如图.在△ABC中.∠ACB=90°.D.E.F分别为AB.BC.CA的中点.若EF的长为10.则CD的长为10.【分析】根据三角形中位线定理求出AB.根据直角三角形斜边上的中线的性质即可求出CD.【解析】∵E.F分别为BC.CA的中点.∴EF是△ABC的中位线.∴EF=AB.∴AB=2EF=20.在Rt△ABC中.∠ACB=90°.D为AB中点.AB=20.。
2020年中考数学必考专题16 全等三角形判定和性质问题(解析版)
专题16 全等三角形判定和性质问题1.全等三角形:能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
2.全等三角形的表示全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3.全等三角形的性质:全等三角形的对应角相等、对应边相等。
4.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
5.直角三角形全等的判定:HL定理:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例题1】(2019•贵州省安顺市)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【解答】选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;专题知识回顾专题典型题考法及解析选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.【例题2】(2019•黑龙江省齐齐哈尔市)如图,已知在△ABC和△DEF中,△B=△E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC△△DEF,则还需添加的一个条件是_________(只填一个即可).【答案】AB=DE.【解析】添加AB=DE;△BF=CE,△BC=EF,在△ABC和△DEF中,,△△ABC△△DEF(SAS)【例题3】(2019•铜仁)如图,AB=AC,AB△AC,AD△AE,且△ABD=△ACE.求证:BD=CE.【答案】见解析。
中考重点三角形的中位线定理
中考重点三角形的中位线定理三角形是几何学中一种基本的图形,其中位线定理作为三角形的重要定理在中考中往往会被重点考察。
本文将对中考重点三角形的中位线定理进行详细阐述,以帮助同学们更好地理解和掌握这一定理。
一、中位线的定义及性质在三角形ABC中,连接三角形的一个顶点到对边中点的线段称为该顶点的中位线。
设AD是BC的中线,可以得出以下几个性质:1. 中位线的三个交点连接起来一定是一个点,称为三角形的重心,用G表示。
重心是三角形内部离三边距离之和最小的点。
2. 重心将每条中位线分成两段,其中一段的长度是另一段的两倍。
3. 重心到三角形三个顶点的距离满足OG = 2DG,其中O是坐标原点。
二、中位线定理的表述中位线定理是指:三角形的三条中位线交于一点,且这个交点与三个顶点之间的距离满足OG = 2DG。
即在三角形ABC中,连接三个顶点到对边中点的中位线交于一点G,且OG = 2DG。
三、中位线定理的证明为了证明中位线定理,我们可以利用向量的方法进行推导。
设向量OA = a,OB = b,OC = c,且D为BC的中点,则向量OD = (b + c) / 2。
根据中位线的定义,由向量的加法运算,我们可以得到:OG = OA + OB + OC = a + b + cDG = OD - OG/3 = (b + c)/2 - (a + b + c)/3 = (c - a) / 6由此可以得到OG = 2DG,证明了中位线定理的正确性。
四、中位线定理的应用中位线定理在解决三角形相关问题时有着广泛的应用,下面将介绍两个常见的问题:1. 求三角形三条中位线的交点坐标已知三角形的三个顶点坐标A(x1, y1),B(x2, y2),C(x3, y3),可通过中位线的定义和公式求得交点坐标。
设中位线交点为G(x, y),则有:x = (x1 + x2 + x3) / 3y = (y1 + y2 + y3) / 3通过计算可得到交点G的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:过A作AH⊥BC于H,
∵D是AB的中点,
∴AD=BD,
∵DE∥BC,
∴AE=CE,
∴DE= BC,
∵DF⊥BC,
∴DF∥AH,DF⊥DE,
∴BF=HF,
∴DF= AH,
∵△DFE的面积为1,
∴ DE•DF=1,
∴DE•DF=2,
∴BC•AH=2DE•2DF=4×2=8,
故选:C.
9.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是( )
A.2B.3C.4D.5
解:∵点D,E分别是边AB,AC的中点,
∴DE是△ABC的中位线,
∵BC=14,
∴DE= BC=7,
∵∠AFB=90°,AB=8,
A.1B.1.5C.2D.2.5
解:∵AC⊥BC,
∴∠ACB=90°,
∵BC=3,AC=4,
∴AB=5,
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD为∠ABC的平分线,
∴∠ABD=∠CBD,
∴∠ABD=∠ADB,
∴AB=AD=5,
连接BF并延长交AD于G,
∵AD∥BC,
∴∠GAC=∠BCA,
∵F是AC的中点,
A.1.5B.2C.2.5D.3.5
解:∵BD平分∠ABC,AF⊥BD,
∴∠ABE=∠FBE,∠AEB=∠FEB=90°,
∵BE=BE,
∴△ABE≌△FBE(ASA),
∴BF=AB=7,AE=EF,
∵BC=10,
∴CF=3,
∵点G是AC的中点,
∴AG=CG,
∴EG= CF= ,
故选:A.
7.如图,在△ABC中,BC=20,D、E分别是AB、AC的中点,F是DE上一点,DF=4,连接AF,CF,若∠AFC=90°,则AC的长度为( )
A.10B.12C.14D.16
解:∵D、E分别为AC、BC边上的中点,
∴BE= BC=4,DE是△ACB的中位线,
∴DE= AB=3,
∵D、F分别为AC、AB边上的中点,
∴BF= AB=3,DF是△ABC的中位线,
∴DF= BC=4,
∴四边形BEDF的周长=BE+DE+DF+BF=4+3+4+3=14,
∴AF=CF,
∵∠AFG=∠CFB,
∴△AFG≌△CFB(AAS),
∴BF=FG,AG=BC =3,
∴DG=5﹣3=2,
∵E是BD的中点,
∴EF= DG=1.
故选:A.
12.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为( )
∴DF= AB=4,
∴EF=DE﹣DF=7﹣4=3,
故选:B.
10.如图,点P是△ABC内一点,AP⊥BP,BP=12,CP=15,点D,E,F,G分别是AP,BP,BC,AC的中点,若四边形DEFG的周长为28,则AP长为( )
A.13B.9C.5D.4
解:∵点D,E,F,G分别是AP,BP,BC,AC的中点,
A.10B.12C.13D.20
解:∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴DE= BC=10,
∴EF=DE﹣DF=10﹣4=6,
在Rt△AFC中,AE=EC,
∴AC=2EF=12,
故选:B.
8.如图,在△ABC中,AB=6,BC=8,D、E、F分别为AC、BC和AB边上的中点,则四边形BEDF的周长是( )
A.10B.12C.14D.16
解:∵DE是△ABC的中位线,BF=20,
∴DE= BF=10,
∵CE= CD,
∴CD= DE=8,
∵∠ACB=90°,
∴AB=2CD=16,
故选:D.
6.如图,在△ABC中,BD平分∠ABC,AF⊥BD于点E,交BC于点F,点G是AC的中点,若BC=10,AB=7,则EG的长为( )
∴DE= BC=3,
故选:B.
3.A,B两地被池塘隔开,小明先在AB外选一点C,然后分别步测出AC,BC的中点D,E,并测出DE的长为20m,则AB的长为( )
A.10mB.20mC.30mD.40m
解:∵点D,E是AC,BC的中点,
∴DE是△ABC的中位线,
∴AB=2DE=40m,
故选:D.
4.如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠EPF=140°,则∠EFP的度数是( )
A.50°B.40°C.30°D.20°
解:∵P是BD的中点,E是AB的中点,
∴PE是△ABD的中位线,
∴PE= AD,
同理,PF= BC,
∵AD=BC,
∴PE=PF,
∴∠EFP= ×(180°﹣∠EPF)= ×(180°﹣140°)=20°,
故选:D.
5.如图,在△ABF中,点C在中位线DE上,且CE= CD,连接AC,BC,∠ACB=90°,若BF=20,则AB的长为( )
BD与DE不一定相等,B选项说法错误;
由平行线的性质知∠AED=∠C,故选项C说法正确;
∠A与∠C不一定相等,故选项D说法错误;
故选:C.
2.如图,D、E分别是△ABC的边AB、AC的中点,若BC=6,则DE=( )
A.2B.3C.4D.5
解:∵D、E分别是△ABC的边AB、AC的中点,
∴DE是△ABC的中位线,
∴DG=EF= PC= 15= ,DE=FG= AB,
∵四边形DEFG的周长为28,
∴DE=FG= ×(28﹣ ﹣ )= ,
∴AB=13,
∵AP⊥BP,BP=12,
∴AP= = =5,
故选:C.Байду номын сангаас
11.如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为( )
专题16 三角形中位线定理
一.选择题
1.在△ABC中,D、E分别是AB、AC的中点,则下列说法正确的是( )
A.CE=BCB.DE= ABC.∠AED=∠CD.∠A=∠C
解:∵D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,
∴DE BC,故B选项说法错误;
CE与BC不一定相等,故A选项说法错误;
∴AB•AC=8,
∵AB=CE,
∴AB=AE=CE= AC,
∴AB•2AB=8,
∴AB=2(负值舍去),
∴AC=4,
∴BC= =2 .
故选:A.
二.填空题
13.如图,已知线段AB,将线段AB沿某个方向平移4个单位得到线段DC,其中点D是A的对应点,且点D不在直线AB上.连接AC,BD交于点O,若E是CD中点,则OE的长度值是.