电磁场实验1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场实验报告(一)

实验目的

(1)掌握有限差分法的原理与步骤。

(2)理解并掌握求解差分方程组的高斯迭代法和超松弛迭代法。

(3)分析超松弛迭代法中加速收敛因子α的作用。

(4)学习应用有限差分法求解接地金属槽问题,并编制计算程序。

实验原理

有限差分法是以差分原理为基础的一种数值计算方法。应用有限差分法通常所采取的的步骤是:

(1)采用一定的网格分割方式对求解场域离散化。

(2)进行差分离散化处理。用离散的、只含有限个未知数的差分方程组,来近似代替场域内具有连续变量的偏微分方程以及边界条件。

(3)结合选定的代数方程组的解法,编制计算机程序,求解由上面所得对应于待求边值问题的差分方程组,所得解答即为该边值问题的数值解。

程序框图如下:

实验内容

MATLAB程序如下:

a = zeros(21,41);

a(1,:) = 100;

a(21,:) = 0;

a(:,1) = 0;

a(:,41) = 0;

prea = zeros(21,41);

n=0;

pi = 1.74;

while(sum(sum(abs(a-prea)<10^-3)) ~= 861)

prea = a;

n=n+1;

for i = 2:20

for j = 2:40

a(i,j) = prea(i,j) + pi / 4 * (prea(i+1,j) + prea(i,j+1) + a(i-1,j) + a(i,j-1) - 4 * prea(i,j));

end

end

end

a(:,20)

contour3(a)

mesh(a)

结果如下:

100.0000

94.0829

88.1918

82.3519

76.5858

70.9139

65.3528

59.9154

54.6108

49.4439

44.4160

39.5248

34.7646

30.1273

25.6021

21.1764

16.8358

12.5648

8.3468

4.1644

n=72 绘图如下:

仿真程序如下:

0 0

1 4.10437213507669

2 8.28422081581828

3 12.5395460422248

4 16.8703478142963

5 21.2766261320327

6 25.7583809954341

7 30.3156124045004

8 34.9483203592317

9 39.6565048596279

10 44.5440404690112

11 49.6307935844152

12 54.8195117748626

13 60.1101950403533

14 65.5028433808873

15 70.9974567964646

16 76.5940352870852

17 82.2925788527492

18 88.0930874934565

19 93.995561209207

20 100.000000000001

实验分析

从上述实验过程中我们可以发现通过matlab的数值计算得到的数据与仿真实验得到的数据误差较小,因此可以认为实验过程是正确的。并且通过此次实验我们可以直观的体会到有限差分法在求解电磁场域的数值解中的应用、matlab和maxwell等工具在求解数值解和仿真实验中的应用,并且对进一步优化实验过程有了更深刻的体会。

相关文档
最新文档