中考几何考题题型解题思路

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合几何考题

(2019年中考)

如图,在平行四边形ABCD 中,点E 在边BC 上,连接AE 、EM ⊥AE ,垂足为E 点,角CD 于点M ,AF ⊥BC ,垂足为F ,交AF 于点N ,点P 是AD 上的一点,连接CP 。 (1)若DP=2AP=4,CP=17,CD=5,求△ACD 的面积; (2)若AE=BN,AN=CE ,求证:AD=CE CM 2.

(2018年中考)

(2017年中考)

24.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.

(1)如图1,若BC=5,求AC的长;

(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.

【答案】(2)证明见解析.

【解析】

(2)延长EF到点G,使得FG=EF,连接BG.

由DM=MC,∠BMD=∠AMC,BM=AM,

∴△BMD≌△AMC(SAS),

∴AC=BD,

又CE=AC,

考点:1.全等三角形的判定与性质;2.勾股定理.

(2016年中考)

25.在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.

(1)若AB=2,求BC的长;

(2)如图1,当点G在AC上时,求证:BD=CG;

(3)如图2,当点G在AC的垂直平分线上时,直接写出的值.

【分析】(1)如图1中,过点A作AH⊥BC于H,分别在RT△ABH,RT△AHC中求出BH、HC即可.

(2)如图1中,过点A作AP⊥AB交BC于P,连接PG,由△ABD≌△APG推出BD=PG,再利用30

度角性质即可解决问题.

(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,作DK⊥AB

于K,设BK=DK=a,则AK=a,AD=2a,只要证明∠BAD=30°即可解决问题.

【解答】解:(1)如图1中,过点A作AH⊥BC于H.

∴∠AHB=∠AHC=90°,

在RT△AHB中,∵AB=2,∠B=45°,

∴BH=ABcosB=2×=2,

AH=ABsinB=2,

在RT△AHC中,∵∠C=30°,

∴AC=2AH=4,CH=ACcosC=2,

∴BC=BH+CH=2+2.

(2)证明:如图1中,过点A作AP⊥AB交BC于P,连接PG,

∵AG⊥AD,∴∠DAF=∠EAC=90°,

在△DAF和△GAE中,

∴△DAF≌△GAE,

∴AD=AG,

∴∠BAP=90°=∠DAG,

∴∠BAD=∠PAG,

∵∠B=∠APB=45°,

∴AB=AP,

在△ABD和△APG中,

∴△ABD≌△APG,

∴BD=PG,∠B=∠APG=45°,

∴∠GPB=∠GPC=90°,

∵∠C=30°,

∴PG=GC,

∴BD=CG.

(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,

在RT△AHC中,∵∠ACH=30°,

∴AC=2AH,

∴AH=AP,

在RT△AHD和RT△APG中,

∴△AHD≌△APG,

∴∠DAH=∠GAP,

∵GM⊥AC,PA=PC,

∴MA=MC,

∴∠MAC=∠MCA=∠MAH=30°,

∴∠DAM=∠GAM=45°,

∴∠DAH=∠GAP=15°,

∴∠BAD=∠BAH﹣∠DAH=30°,

作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,

∴==,

∵AG=CG=AD,

∴=.

【点评】本题考查相似三角形综合题、全等三角形的判定和性质、直角三角形30度角性质、线段垂直平分线性质等知识,解题的关键是添加辅助线构造全等三角形,学会设参数解决问题,属于中考压轴题.

(2016年中考)

25.在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.

(1)若AB=2,求BC的长;

(2)如图1,当点G在AC上时,求证:BD=CG;

(3)如图2,当点G在AC的垂直平分线上时,直接写出的值.

【分析】(1)如图1中,过点A作AH⊥BC于H,分别在RT△ABH,RT△AHC中求出BH、HC即可.

(2)如图1中,过点A作AP⊥AB交BC于P,连接PG,由△ABD≌△APG推出BD=PG,再利用30

度角性质即可解决问题.

(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,作DK⊥AB

于K,设BK=DK=a,则AK=a,AD=2a,只要证明∠BAD=30°即可解决问题.

【解答】解:(1)如图1中,过点A作AH⊥BC于H.

∴∠AHB=∠AHC=90°,

在RT△AHB中,∵AB=2,∠B=45°,

∴BH=ABcosB=2×=2,

AH=ABsinB=2,

在RT△AHC中,∵∠C=30°,

∴AC=2AH=4,CH=ACcosC=2,

∴BC=BH+CH=2+2.

(2)证明:如图1中,过点A作AP⊥AB交BC于P,连接PG,

∵AG⊥AD,∴∠DAF=∠EAC=90°,

相关文档
最新文档