一次函数与二元一次方程专题

合集下载

(完整版)二元一次方程组及一次函数专题训练含答案,推荐文档

(完整版)二元一次方程组及一次函数专题训练含答案,推荐文档

二元一次方程组与一次函数专题训练一.解答题(共12小题)1.(2011•葫芦岛)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A 城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为 _________ 千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.2.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y 的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由. 3.已知函数y=kx+b的图象过点A(﹣1,2),B(3,0)(1)求直线AB的解析式;(2)在给出的直角坐标系中,画出y=|x|和y=kx+b 的图象,并根据图象写出方程组的解.4.用图象法求下面二元一次方程组的近似解..5.如下面第一幅图,点A的坐标为(﹣1,1)(1)那么点B,点C的坐标分别为 _________ ;(2)若一个关于x,y 的二元一次方程,有两个解是和请写出这个二元一次方程,并检验说明点C的坐标值是否是它的解.(3)任取(2)中方程的又一个解(不与前面的解雷同),将该解中x的值作为点D的横坐标,y的值作为点D的纵坐标,在下面第一幅图中描出点D;(4)在下面第一幅图中作直线AB与直线AC,则直线AB与直线AC的位置关系是 _________ ,点D与直线AB的位置关系是 _________ .(5)若把直线AB叫做(2)中方程的图象,类似地请在备用图上画出二元一次方程组中两个二元一次方程的图象,并用一句话来概括你对二元一次方程组的解与它图象之间的发现.6.在直角坐标系中,直线L1的解析式为y=2x﹣1,直线L2过原点且L2与直线L1交于点P(﹣2,a).(1)试求a的值;(2)试问(﹣2,a)可以看作是怎样的二元一次方程组的解;(3)设直线L1与x轴交于点A,你能求出△APO的面积吗?试试看;(4)在直线L1上是否存在点M,使点M到x轴和y轴的距离相等?若存在,求出点M的坐标;不存在,说明理由.7.如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(﹣2,a),根据以上信息解答下列问题:(1)求a的值,判断直线l3:y=﹣nx﹣2m是否也经过点P?请说明理由;(2)不解关于x,y 的方程组,请你直接写出它的解;(3)若直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,求直线l2的函数解析式8.在平面直角坐标系中,直线y=﹣x+4的图象,如图所示(1)在同一坐标系中,作出一次函数y=2x﹣5的图象;(2)用作图象的方法解方程组:(3)求直线y=﹣x+4与一次函数y=2x﹣5的图象与x轴围成的三角形面积.9.二元一次方程x﹣2y=0的解有无数个,其中它有一个解为,所以在平面直角坐标系中就可以用点(2,1)表示它的一个解,(1)请在下图中的平面直角坐标系中再描出三个以方程x﹣2y=0的解为坐标的点;(2)过这四个点中的任意两点作直线,你有什么发现?直接写出结果;(3)以方程x﹣2y=0的解为坐标的点的全体叫做方程x﹣2y=0的图象.想一想,方程x﹣2y=0的图象是什么?(直接回答)(4)由(3)的结论,在同一平面直角坐标系中,画出二元一次方程组的图象(画在图中)、由这两个二元一次方程的图象,能得出这个二元一次方程组的解吗?请将表示其解的点P标在平面直角坐标系中,并写出它的坐标. 10.在平面直角坐标系中,一次函数y=ax+b的图象过点B(﹣1,),与x轴交于点A(4,0),与y轴交于点C,与直线y=kx交于点P,且PO=PA,(1)求a+b的值.(2)求k的值.(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.11.学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(2,b)(1)求b的值;(2)不解关于x,y 的方程组,请你直接写出它的解;(3)直线l3:y=nx+2m﹣n是否也经过点P,请说明理由.二元一次方程组与一次函数专题训练参考答案与试题解析一.解答题(共12小题)1.(2011•葫芦岛)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为 120 千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.考点:一次函数的应用;待定系数法求一次函数解析式;一次函数与二元一次方程(组).专题:数形结合.分析:(1)根据点(1,120)在乙的函数关系式上可得乙车的速度;(2)根据甲的函数关系式为一次函数解析式,乙的函数关系式为正比例函数解析式,找到相应的点代入即可求得相应的函数解析式;(3)让甲的函数关系式的t=0即可求得两城之间的距离,让两个函数解析式的y相等即可求得两车相遇时t的值;(4)让甲的函数关系式减去乙的函数关系式为300或乙的函数关系式减去甲的函数关系式为300即可求得所求的时间.解答:解:(1)120÷1=120千米/时,故答案为120;(1分)(2)设s甲与t的函数关系为s甲=k1t+b,∵图象过点(3,60)与(1,420),∴解得∴s甲与t的函数关系式为s甲=﹣180t+600.(4分)设s乙与t的函数关系式为s乙=k2t,∵图象过点(1,120),∴k2=120.∴s乙与t的函数关系式为s乙=120t.(5分)(3)当t=0,s甲=600,∴两城之间的路程为600千米.(6分)∵s甲=s乙,即﹣180t+600=120t,解得t=2.∴当t=2时,两车相遇.(8分)(4)当相遇前两车相距300千米时,s甲﹣s乙=300,即﹣180t+600﹣120t=300,解得t=1.(9分)当相遇后两车相距300千米时,s乙﹣s甲=300,即 120t+180t﹣600=300.解得t=3.(10分)点评:考查用待定系数法求一次函数解析式以及一次函数解析式的应用;得到两个函数的关系式是解决本题的破点;用数形结合的方法判断出所求值与得到函数关系式的关系是解决本题的难点.2.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.考点:一次函数与二元一次方程(组).专题:数形结合.分析:(1)将交点P的坐标代入直线l1的解析式中便可求出b的值;(2)由于函数图象交点坐标为两函数解析式组成的方程组的解.因此把函数交点的横坐标当作x的值,纵坐标当作y的值,就是所求方程组的解;(3)将P点的坐标代入直线l3的解析式中,即可判断出P点是否在直线l3的图象上.解答:解:(1)∵(1,b)在直线y=x+1上,∴当x=1时,b=1+1=2;(2)方程组的解是;(3)直线y=nx+m也经过点P.理由如下:∵点P(1,2),在直线y=mx+n上,∴m+n=2,∴2=n×1+m,这说明直线y=nx+m也经过点P.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.3.已知函数y=kx+b的图象过点A(﹣1,2),B(3,0)(1)求直线AB的解析式;(2)在给出的直角坐标系中,画出y=|x|和y=kx+b的图象,并根据图象写出方程组的解.考点:待定系数法求一次函数解析式;一次函数的图象;正比例函数的图象;一次函数与二元一次方程(组).分析:(1)设直线AB的解析式为:y=kx+b(k≠0),利用待定系数法把A(﹣1,2),B(3,0),代入函数解析式,即可得到关于k、b的方程组,再解方程组即可;(2)首先画出函数y=|x|和y=﹣x+的图象,两函数图象的交点就是方程组的解.解答:解:(1)设直线AB的解析式为:y=kx+b(k≠0),∵图象过点A(﹣1,2),B(3,0),∴,解得,故直线AB的解析式为:.(2)如图所示:根据图象可得方程组的解是或.点评:此题主要考查了待定系数法求一次函数解析式,以及方程组与函数的关系,解决问题的关键是掌握方程与函数的关系,方程组的解就是两函数图象的交点坐标.4.用图象法求下面二元一次方程组的近似解..考点:一次函数与二元一次方程(组).专题:作图题;数形结合.分析:两条直线的交点坐标应该是这个二元一次方程组的解.先根据方程组求出两直线的解析式,并画出图象(如图),方程3x ﹣y=6的解析式是y=3x ﹣6,经过(2,0)、(3,3)两点,方程x+y=4的解析式是y=4﹣x ,经过(2,2)、(3,1)两点,两条直线的交点坐标(2,2)应该是这个二元一次方程组的解.解答:解:方程3x ﹣y=6的解析式是y=3x ﹣6,经过(2,0)、(3,3)两点,方程x+y=4的解析式是y=4﹣x ,经过(2,2)、(3,1)两点,画出两条直线的图象,如图,两条直线的交点坐标是(2,2),所以这个二元一次方程组的解为是(2,2).点评:本题主要考查了一次函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 5.如下面第一幅图,点A 的坐标为(﹣1,1)(1)那么点B ,点C 的坐标分别为 (﹣2,2),(0,0) ;(2)若一个关于x ,y 的二元一次方程,有两个解是和请写出这个二元一次方程,并检验说明点C 的坐标值是否是它的解.(3)任取(2)中方程的又一个解(不与前面的解雷同),将该解中x 的值作为点D 的横坐标,y 的值作为点D 的纵坐标,在下面第一幅图中描出点D ;(4)在下面第一幅图中作直线AB 与直线AC ,则直线AB 与直线AC 的位置关系是 重合 ,点D 与直线AB 的位置关系是 点D 在直线AB 上 .(5)若把直线AB 叫做(2)中方程的图象,类似地请在备用图上画出二元一次方程组中两个二元一次方程的图象,并用一句话来概括你对二元一次方程组的解与它图象之间的发现.考点:一次函数与二元一次方程(组).专题:综合题.分析:(1)由题意,先建立合适的坐标系,再求得点B ,点C 的坐标;(2)由(1)写出两个解,再写出这个二元一次方程,并检验点C 的坐标是否是这个二元一次方程的解(3)先找到点D 的坐标,再描出点D ;(4)分别作出直线AB 、AC ,然后再判断两条直线的位置关系以及点D 和直线AB 的位置关系;(5)通过描点、连线作出两个二元一次方程的图象,可发现两条直线的交点坐标恰好是方程组的解.解答:解:(1)∵点A 的坐标为(﹣1,1),∴点B 的坐标为(﹣2,2),点C 的坐标为(0,0);(2)∴,,这个二元一次方程为x+y=0,∵0+0=0,∴点C 的坐标值是它的解;(3),点D 的坐标为(1,﹣1),(4)由(3)题图知,直线AB 与直线AC 重合,点D 在直线AB 上;(5)如图:直线x+y=4与直线x ﹣y=﹣2的交点为:(1,3);将x=1,y=3代入原方程组知,是原方程组的解;因此二元一次方程组的解,是方程组中两个一次函数图象的交点坐标.点评:此题实际考查的是用图象法解二元一次方程组的方法,比较简单. 6.在直角坐标系中,直线L 1的解析式为y=2x ﹣1,直线L 2过原点且L 2与直线L 1交于点P (﹣2,a ).(1)试求a 的值;(2)试问(﹣2,a )可以看作是怎样的二元一次方程组的解;(3)设直线L 1与x 轴交于点A ,你能求出△APO 的面积吗?试试看;(4)在直线L 1上是否存在点M ,使点M 到x 轴和y 轴的距离相等?若存在,求出点M 的坐标;不存在,说明理由.考点:一次函数与二元一次方程(组).专题:开放型.分析:(1)由于P 是两个函数的交点,因此可将P 点坐标代入直线L 1的解析式中,求出a 的值.(2)由于直线L 2过原点,因此一次函数L 2是个正比例函数,根据P 点坐标,可确定其解析式.联立两个直线解析式所组成的方程组的解,即为两个函数图象的交点坐标.(3)根据直线L 1的解析式,可求出A 点坐标;以OA 为底,P 点纵坐标绝对值为高,可求出△OAP 的积.(4)若点M 到x 轴、y 轴的距离相等,那么点M 的坐标有两种情况:①横坐标与纵坐标相等;②横坐标与纵坐标互为相反数;因此本题要分情况讨论.解答:解:(1)把(﹣2,a )代入y=2x ﹣1,得:﹣4﹣1=a ,解得a=﹣5.(2)由(1)知:点P (﹣2,﹣5);则直线L 2的解析式是y=x ;因此(﹣2,a )可以看作二元一次方程组的解.(3)直线L 1与x 轴交于点A (,0),所以S △APO =××5=.(4)存在点M ,使得点M 到x 轴和y 轴的距离相等.设点M 的坐标为(a ,b );①当a=b时,点M的坐标为(a,a);代入y=2x﹣1得:2a﹣1=a,a=1;即点M的坐标为(1,1);②当a=﹣b时,点M的坐标为(a,﹣a);代入y=2x﹣1得:2a﹣1=﹣a,a=;即点M的坐标为(,﹣).综上所述,存在符合条件的点M坐标为(1,1)或(,﹣).点评:本题是一个开放性问题,综合考查了函数图象交点、图形面积求法等知识.解答(4)题时需注意,由于点M的坐标存在两种情况,因此要分类讨论,以免漏解.7.如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(﹣2,a),根据以上信息解答下列问题:(1)求a的值,判断直线l3:y=﹣nx﹣2m是否也经过点P?请说明理由;(2)不解关于x,y的方程组,请你直接写出它的解;(3)若直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,求直线l2的函数解析式.考点:一次函数与二元一次方程(组);一次函数图象上点的坐标特征;待定系数法求一次函数解析式.专题:计算题;数形结合.分析:(1)因为(﹣2,a)在直线y=3x+1上,可求出a=﹣5;由点P(﹣2,﹣5)在直线y=mx+n上,可得﹣2m+n=﹣5,将P点横坐标﹣2代入y=﹣nx﹣2m,得y=﹣n×(﹣2)﹣2m=﹣2m+n=﹣5,这说明直线l3也经过点P;(2)因为直线y=3x+1直线y=mx+n交于点P,所以方程组的解就是P点的坐标;(3)因为直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,所以直线l2过点(3,0),又有直线l2过点P(﹣2,﹣5),可得关于m、n的方程组,解方程组即可.解答:解:(1)∵(﹣2,a)在直线y=3x+1上,∴当x=﹣2时,a=﹣5(2分)直线y=﹣nx﹣2m也经过点P,∵点P(﹣2,﹣5)在直线y=mx+n上,∴﹣2m+n=﹣5,∴将P点横坐标﹣2代入y=﹣nx﹣2m,得y=﹣n×(﹣2)﹣2m=﹣2m+n=﹣5,这说明直线l3也经过点P.(4分)(2)解为.(6分)(3)∵直线l1,l2表示的两个一次函数都大于0,此时恰好x>3∴直线l2过点(3,0),(7分)又∵直线l2过点P(﹣2,﹣5)∴解得(8分)∴直线l2的函数解析式为y=x﹣3.(9分)点评:用待定系数法确定函数的解析式,是常用的一种解题方法,另外本题还渗透了数形结合的思想,题出的较好.8.在平面直角坐标系中,直线y=﹣x+4的图象,如图所示(1)在同一坐标系中,作出一次函数y=2x﹣5的图象;(2)用作图象的方法解方程组:(3)求直线y=﹣x+4与一次函数y=2x﹣5的图象与x轴围成的三角形面积.考点:一次函数与二元一次方程(组);一次函数的图象.专题:计算题.分析:(1)正确画出一次函数的图象;(2)先画出一次函数y=2x﹣5的图象,根据两图象即可得出答案;(3)先求出直线y=﹣x+4与一次函数y=2x﹣5的图象与x轴的交点,根据面积公式即可得答案.解答:解:(1)(2)由图象看出两直线的交点为P(3,1),所以方程组的解为;(3)y=﹣x+4与x轴的交点A(4,0),y=2x﹣5的图象与x轴的交点B(,0),三角形面积=×|4﹣|×1=.点评:本题考查了一次函数与二元一次方程组,比较简单,关键是正确的画一次函数y=2x﹣5的图象.9.二元一次方程x﹣2y=0的解有无数个,其中它有一个解为,所以在平面直角坐标系中就可以用点(2,1)表示它的一个解,(1)请在下图中的平面直角坐标系中再描出三个以方程x﹣2y=0的解为坐标的点;(2)过这四个点中的任意两点作直线,你有什么发现?直接写出结果;(3)以方程x﹣2y=0的解为坐标的点的全体叫做方程x﹣2y=0的图象.想一想,方程x﹣2y=0的图象是什么?(直接回答)(4)由(3)的结论,在同一平面直角坐标系中,画出二元一次方程组的图象(画在图中)、由这两个二元一次方程的图象,能得出这个二元一次方程组的解吗?请将表示其解的点P标在平面直角坐标系中,并写出它的坐标.考点:一次函数与二元一次方程(组).专题:综合题.分析:(1)先解出方程x﹣2y=0的三个解,再在平面直角坐标系中利用描点法解答;(2)根据(1)的图象作答;(3)由方程x﹣2y=0变形为y=,即正比例函数,根据正比例函数图象的性质回答;(4)在平面直角坐标系中分别画出x+y=1、2x﹣y=2的图象,两个图象的交点即为所求.解答:解:(1)二元一次方程x﹣2y=0的解可以为:、、、,所以,以方程x ﹣2y=0的解为坐标的点分别为:(2,1)、(4,2)、(1,)、(3,),它们在平面直角坐标系中的图象如下图所示:(2)由(1)图,知,四个点在一条直线上;(3)由原方程,得y=,∵以方程x ﹣2y=0的解为坐标的点的全体叫做方程x ﹣2y=0的图象,∴方程x ﹣2y=0的图象就是正比例函数y=的图象,∵正比例函数y=的图象是经过第一、三象限且过原点的一条直线,∴方程x ﹣2y=0的图象是经过第一、三象限且过原点的一条直线;(4)①对于方程x+y=1,当x=0时,y=1;当y=0时,x=0;所以方程x+y=1经过(0,1),(1,0)这两点;②对于方程2x ﹣y=2,当x=0时,y=﹣1;当y=0时,x=1;所以方程x+y=1经过(0,﹣1),(1,0)这两点;综合①②,在平面直角坐标系中画出的二元一次方程组的图象如下所示:故原方程组的解是,并且能在坐标系中用P (1,0)表示.点评:本题主要考查的是二元一次方程组的解及其直线方程的图象,题目比较长,要注意耐心解答. 10.在平面直角坐标系中,一次函数y=ax+b 的图象过点B (﹣1,),与x 轴交于点A (4,0),与y 轴交于点C ,与直线y=kx 交于点P ,且PO=PA ,(1)求a+b 的值.(2)求k 的值.(3)D 为PC 上一点,DF ⊥x 轴于点F ,交OP 于点E ,若DE=2EF ,求D 点坐标.考点:一次函数与二元一次方程(组).专题:计算题;数形结合;待定系数法.分析:(1)根据题意知,一次函数y=ax+b 的图象过点B (﹣1,)和点A (4,0),把A 、B 代入求值即可;(2)设P (x ,y ),根据PO=PA ,列出方程,并与y=kx 组成方程组,解方程组;(3)设点D (x ,﹣+2),因为点E 在直线y=上,所以E (x ,),F (x ,0),再根据等量关系DE=2EF 列方程求解.建议收藏下载本文,以便随时学习!解答:解:(1)根据题意得:,解方程组得:,∴a+b=﹣+2=,即a+b=;(2)设P(x,y),则点P即在一次函数y=ax+b上,又在直线y=kx上,由(1)得:一次函数y=ax+b的解析式是y=﹣+2,又∵PO=PA,∴,解方程组得:,∴k的值是;(3)设点D(x,﹣+2),则E(x,),F(x,0),∵DE=2EF,∴=2×,解得:x=1,则﹣+2=×1+2=,∴D(1,).点评:本题要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.11.学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?考点:一次函数与二元一次方程(组).专题:计算题;应用题.分析:(1)当两函数图象相交时,两家旅行社收费相同,由图象即可得出答案.(2)由图象比较收费y1、y2,即可得出答案.(3)当有50人时,比较收费y1、y2,即可得出答案.解答:解:(1)当两函数图象相交时,两家旅行社收费相同,由图象知为30人;(2)由图象知:当有30人以下时,y1<y2,所以选择甲旅行社合算;(3)由图象知:当有50人参加时,y1>y2,所以选择乙旅行社合算;点评:本题考查了一次函数与二元一次方程组,属于基础题,关键正确理解图象的几何意义.12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(2,b)(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+2m﹣n是否也经过点P,请说明理由.考点:两条直线相交或平行问题;一次函数与二元一次方程(组).分析:(1)把点P的坐标代入直线l1:y=x+1,计算即可求出b的值;(2)根据一次函数与二元一次方程组的关系可知,点P的坐标也就是方程组的解解答;(3)把点P坐标代入直线l2,得到关于m、n的等式,再把点P代入直线l3,如果得到同样的m、n的系式,则点P在直线l3上,否则不在.解答:解:(1)∵点P(2,b)在直线l1上,∴2+1=b,解得b=3;(2)∵点P(2,3),∴方程组的解为;(3)在.理由如下:∵点P(2,3)在直线l2:y=mx+n上,∴2m+n=3,当x=2时,直线l3:y=2n+2m﹣n=2m+n=3,所以点P在直线l3:y=nx+2m﹣n上.点评:本题考查了两直线相交的问题,一次函数与二元一次方程组的关系,以及点在直线上的判断,把交点P的坐标代入直线l1求出b的值是解题的关键.。

一次函数与二元一次方程组测试题(含答案)

一次函数与二元一次方程组测试题(含答案)

一次函数与二元一次方程(组) 练习题一、选择题1.图中两直线L 1,L 2的交点坐标可以看作方程组( )的解. A .121x y x y -=⎧⎨-=-⎩ B. 121x y x y -=-⎧⎨-=⎩C .321x y x y -=⎧⎨-=⎩ D. 321x y x y -=-⎧⎨-=-⎩2.把方程x+1=4y+3x化为y=kx+b 的形式,正确的是( ) A .y=13x+1 B .y=16x+14 C .y=16x+1 D .y=13x+143.若直线y=2x+n 与y=mx-1相交于点(1,-2),则( ).A .m=12,n=-52B .m=12,n=-1;C .m=-1,n=-52D .m=-3,n=-324.直线y=12x-6与直线y=-231x-1132的交点坐标是( ).A .(-8,-10)B .(0,-6);C .(10,-1)D .以上答案均不对5.在y=kx+b 中,当x=1时y=2;当x=2时y=4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B. 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D. 02k b =⎧⎨=⎩6.直线kx-3y=8,2x+5y=-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-2 二、填空题1.点(2,3)在一次函数y=2x-1的________;x=2,y=3是方程2x-y=1的_______.2.已知4,353x y ⎧=⎪⎪⎨⎪=⎪⎩ 是方程组3,12x y xy +=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x 和y=2x +1的交点是________.3.一次函数y=3x+7的图像与y 轴的交点在二元一次方程-•2x+•by=•18•上,•则b=_________.4.已知关系x ,y 的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.5.已知一次函数y=-32x+m 和y=12x+n 的图像都经过A(-2,•0)•,•则A•点可看成方程组________的解.6.已知方程组230,2360y x y x -+=⎧⎨+-=⎩的解为4,31,x y ⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P 的坐标是______.三、解答题1.若直线y=ax+7经过一次函数y=4-3x 和y=2x-1的交点,求a 的值.2.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像. (2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?_________________,•这说明方程组2,3,x y x y -=-⎧⎨-=⎩ ________.3.如图所示,求两直线的解析式及图像的交点坐标.探究应用拓展性训练1.(学科内综合题)在直角坐标系中,直线L 1经过点(2,3)和(-1,-3),直线L 2经过原点,且与直线L 1交于点(-2,a). (1)求a 的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P ,直线L 1与y 轴交于点A ,你能求出△APO 的面积吗? 2.(探究题)已知两条直线a 1x+b 1y=c 1和a 2x+b 2y=c 2,当12a a ≠12bb 时,方程组111222,,a xb yc a x b y c +=⎧⎨+=⎩ 有唯一解?•这两条直线相交?你知道当a 1,a 2,b 1,b 2,c 1,c 2分别满足什么条件时,方程组111222,,a x b y c a x b y c +=⎧⎨+=⎩无解?无数多组解?这时对应的两条直线的位置关系是怎样的?3.如图,L 1,L 2•分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h ,照明效果一样. (1)根据图像分别求出L 1,L 2的函数关系式. (2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).11.3.3 一次函数与二元一次方程(组) 同步练习答案:一、选择题1.B 解析:设L 1的关系式为y=kx-1,将x=2,y=3代入,得3=2k-1,解得k=2. ∴L 1的关系式为y=2x-1,即2x-y=1.设L 2的关系式为y=kx+1,将x=2,y=3代入,得3=2k+1,解得k=1. ∴L 2的关系式为y=x+1,即x-y=-1. 故应选B .2.B 解析:∵x+1=4y+3x ,∴4y=x+1-3x ,4y=23x+1,y=16x+14.故应选B . 3.C 解析:把x=1,y=-2代入y=2x +n 得-2=12+n ,n=-2-12,n=-52.把x=1,y=-2代入y=mx-1得-2=m-1,m=-2+1,m=-1,故应选C .4.C 解析:解方程组16,22113131y x y x ⎧=-⎪⎪⎨⎪=--⎪⎩,得10,1,x y =⎧⎨=-⎩∴直线y=12x-6与直线y=-231x-1131的交点为(10,-1),•故应选C .5.B 解析:把1,2,x y =⎧⎨=⎩ 2,4,x y =⎧⎨=⎩分别代入y=kx+b ,得2,24,k b k b +=⎧⎨+=⎩ 解得2,0,k b =⎧⎨=⎩故应选B .6.B 解析:把y=0代入2x+5y=-4,得2x=-4,x=-2. 所以交点坐标为(-2,0).把x=-2,y=0代入kx-3y=8,得-2k=8,k=-4,故应选B . 二、填空题1.解析:当x=2时,y=2x-1=2×2-1=3,∴(2,3)在一次函数y=2x-1的图像上. 即x=2,y=3是方程2x-y=1的解. 答案:图像上 解2.解析:因为方程组3,1,2x y x y +=⎧⎪⎨-=⎪⎩中的两个方程变形后为3,1,2y x xy =-+⎧⎪⎨=+⎪⎩ 所以函数y=3-x 与y=2x +1的交点坐标就是二元一次方程组的解,即为(43,53)。

专题04数形思想课之一次函数与二元一次方程(组)综合专练(原卷版)

专题04数形思想课之一次函数与二元一次方程(组)综合专练(原卷版)

练(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·浙江八年级期中)如图,直线1:12AB y x =+分别与x 轴、y 轴交于点A ,点B ,直线:CD y x b =+分别与x 轴,y 轴交于点C ,点D .直线AB 与CD 相交于点P ,已知4ABD S ∆=,则点P 的坐标是()A .5(3,)2B .(8,5)C .(4,3)D .1(2,5)42.(2021·浙江八年级期末)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩3.(2021·浙江)已知直线y =(3m+2)x +2和y =-3x +6交于x 轴上同一点,m 的值为()A .-2B .2C .-1D .04.(2021·浙江九年级专题练习)把直线53y x =-+向上平移m 个单位后,与直线二、填空题5.(2020·浙江)如图,直线1:2l y x =+与直线2:l y kx b =+相交于点(),4P m ,则方程组2y x y kx b=+⎧⎨=+⎩的解是____.6.(2020·浙江八年级期中)已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx b y mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.7.(2020·浙江)如图,直线1:22l y x =-+交x 轴于点A ,交y 轴于点B ,直线21:12y l x =+交x 轴于点D ,交y 轴于点C ,直线1l 、2l 交于点M .(1)点M 坐标为________;(2)若点E 在y 轴上,且BME 是以BM 为一腰的等腰三角形,则E 点坐标为________.8.(2021·浙江八年级期末)如图,已知直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,直线1l 交y 轴于点()0,4B ,交x 轴于点A ,直线2l 为y 轴交于点D ,P 为y 轴上任意一点,连接PA 、PC ,有以下说法:①方程组12y kx b y x m =+⎧⎪⎨=+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩;②BCD △为直角三角形;③6ABD S = ;④当PA PC +的值最小时,点P 的坐标为()0,1.其中正确的说法是______.9.(第12讲一次函数的应用及综合问题(讲练)-备战2021年中考数学一轮复习讲练测(浙江))对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.三、解答题10.(2020·浙江八年级期末)如图,在平面直角坐标系中,直线210y x =-+与x 轴交于点B ,与y 轴交于点C ,与直线12y x =交于点A ,点M 是y 轴上的一个动点,设()0,M m .(1)若MA MB +的值最小,求m 的值;(2)若直线AM 将ACO △分割成两个等腰三角形,请求出m 的值,并说明理由.11.(2020·台州市外国语学校九年级月考)如图,直线l 1的解析式为y =﹣3x +3,且l 1与x 轴交于点D ,直线l 2经过点A 、B ,直线l 1、l 2交于点C .(1)求直线l 2的解析表达式;(2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请求出点P 的坐标.12.(2019·金华市第五中学八年级期中)如图,点A 、B 的坐标分别为(0,2),(1,0),直线y=12x−3与y 轴交于点C ,与x 轴交于点D ,(1)求直线AB 与CD 交点E 的坐标;(1)若函数y 1的图象经过点(﹣1,5),求函数y 1的表达式.(2)已知点P(x 1,m )和Q(﹣3,n )在函数y 1的图象上,若m >n ,求x 1的取值范围.(3)若一次函数y 2=ax+b (a≠0)的图象与y 1的图象始终经过同一定点,探究实数a ,b 满足的关系式.14.(2020·浙江翠苑中学八年级月考)已知直线1:l y kx b =+(k ,b 为常数且0k <),经过点()()4,1,B 2,4A -.(1)求直线1l 的函数解析式;(2)若直线2l 是由直线2y x =-向上平移8个单位得到,求直线1l ,直线2l 和x 轴围成图形的面积.15.(2020·浙江)设一次函数()11y m x =-,()21y n x =+(m ,n 是常数,且m≠0,m≠n ,n>0)(1)当m=3,n=2时,①求函数y 1,y 2图象的交点坐标.②若y 1>y 2,求自变量x 的取值范围.(2)在0<x<1的范围内,有且只有部分函数值满足y 1>y 2,求证:m+n<0.16.(2020·浙江八年级期末)平面直角坐标系中,已知直线1l 经过原点与点(),2P m m ,直线2l :23y mx m =+-(0)m ≠;(1)求证:点(23)--,在直线2l 上;(2)当2m =时,请判断直线1l 与2l 是否相交?17.(2020·浙江八年级期末)已知一次函数1y ax b =+,2y bx a =+(0ab ≠,且a b ¹)(1)若1y 过点(1,2)与点(23)b a --,,求1y 的函数解析式.(2)1y 与2y 的图像交于点(),A m n ,用含a ,b 的式子表示n .(3)设3y =12y y -,421y y y =-,当34y y >时,求x 的取值范围.18.(2021·浙江九年级专题练习)已知:如图,直线l 1:y 1=﹣x +n 与y 轴交于A (0,6),直线l 2:y =kx +1分别与x 轴交于点B (﹣2,0),与y 轴交于点C ,两条直线相交于点D ,连接AB .(1)直接写出直线l 1、l 2的函数表达式;19.(2020·浙江)如图,在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴交于点A (﹣3,0),与y 轴交于点B ,且与正比例函数y =43x 的图象交点为C (m ,4).(1)求一次函数y =kx +b 的解析式;(2)求△BOC 的面积;(3)若点D 在第二象限,△DAB 为等腰直角三角形,则点D 的坐标为.20.(2021·浙江八年级期末)定义:函数()()2424x x m y x x m ⎧-+≥⎪=⎨+<⎪⎩叫做关于m 的对称函数,它与x 轴负半轴交点记为A ,与x 轴正半轴交点记为B .(1)关于1的对称函数()()241241x x y x x ⎧-+≥⎪=⎨+<⎪⎩与直线1x =交于点C ,如图.①(),0A ,(),0B ,()1,C .②P 为关于1的对称函数图象上一点(点P 不与点C 重合),当= ABC ABP S S 时,求点P 的坐标;(2)当直线y x =与关于m 的对称函数有两个交点时,求m 的取值范围.。

(完整版)一次函数与二元一次方程专题

(完整版)一次函数与二元一次方程专题

一次函数与二元一次方程专题一.选择题(共10小题)1.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.2.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.4.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.5.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.用图象法解方程组时,下图中正确的是()A.B.C.D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.8.若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)9.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+210.某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33二.填空题(共10小题)11.已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),则关于x的方程组的解是.12.如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第象限.13.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.14.如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.15.如图,点A的坐标可以看成是方程组的解.16.一次函数y=x+1与y=ax+3的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是.17.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.18.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.19.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.20.如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.三.解答题(共10小题)21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.22.如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.23.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.24.汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.25.已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.26.已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.27.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.28.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.29.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=时.30.某公司一辆绿化洒水车以每分50升的速度给一片树林浇水,一段时间后关闭洒水阀门,行驶到一片草坪处,以另一洒水速度匀速给草坪浇水,直到洒水车内的水全部用光,洒水车内的水量y(升)与时间x(分)之间的函数图象如图所示.(1)求a的值;(2)求洒水车给草坪浇水时y与x之间的函数关系式.(3)当x=13时,洒水车共浇水多少升?一次函数与二元一次方程专题参考答案与试题解析一.选择题(共10小题)1.(2017•昌平区二模)如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故答案为A【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.(2016•临清市二模)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.(2016春•单县期末)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.4.(2016秋•滕州市期末)如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.【点评】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.5.(2016春•迁安市期末)直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先用含x的代数式表示y可得一次函数解析式,再根据一次函数图象与系数的关系即可求解.【解答】解:∵8x﹣4y=5,∴y=2x﹣,∵k=2>0,b=﹣<0,∴图象经过第一、三、四象限,即不经过第二象限.故选B.【点评】此题考查了一次函数与二元一次方程,任何一个二元一次方程都可以化成一个一次函数.同时考查了一次函数图象与系数的关系.6.(2015秋•连云港期末)用图象法解方程组时,下图中正确的是()A.B.C.D.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.7.(2016春•长春期中)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选A.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.(2015秋•兴化市校级月考)若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)【分析】二元一次方程可以化为一次函数,两个二元一次方程组的解就是两个函数的交点坐标.【解答】解:∵二元一次方程组的解是,∴直线与y=﹣x+5的交点坐标为(4,1).故选A.【点评】本题主要考查了一次函数与二元一次方程组,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.10.(2013•荆州模拟)某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33【分析】本题的等量关系是:捐1元的人数+捐2元的人数+捐3元的人数+捐4元的人数=40人,1元的捐款+2元的捐款+3元的捐款+4元的捐款=100元.由此可得出方程组,求出未知数的解,进而代入各选项解析式,即可得出答案.【解答】解:设捐款2元的有x人,捐款3元的有y人,则,解之得:.则捐款2元的有15人,捐款3元的有12人,当x=15,y=12时,只有代入A使得两函数解析式左右相等,故选:A.【点评】此题主要考查了二元一次方程组的应用以及两函数交点问题,解题关键是求出x,y的值.二.填空题(共10小题)11.(2017春•云梦县期中)已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P (3,1),则关于x的方程组的解是.【分析】根据方程组的解即为函数图象的交点坐标解答.【解答】解:∵一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),∴方程组的解是;故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.(2017春•威海期中)如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第二象限.【分析】方程组无解,即直线y=﹣x+1与y=(2k+1)x﹣3平行,那么﹣1=2k+1,求出k的值,进而求解即可.【解答】解:∵方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,在直线y=2x﹣3中,∵2>0,﹣3<0,∴直线y=2x﹣3经过第一、三、四象限,不经过第二象限.故答案为二.【点评】本题考查了一次函数与二元一次方程组的关系,一次函数图象与系数的关系,求出k的值是解题的关键.13.(2016•莘县二模)如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2016•重庆校级二模)如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.【分析】根据函数图象可以分别求得直线l1、l2的函数解析式,从而可以解答本题.【解答】解:由函数图象可知,直线l1过点(0,),(2,3),设解析式为:y=k1+b,则,解得,,即直线l1的解析式为:y=;直线l2过点(0,0),(2,3),设解析式为y=k2x,则3=2k2,得k2=,即直线l2的解析式为:y=,故这个方程组为:,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确一次函数与二元一次方程组的关系,利用数形结合的思想解答问题.15.(2016春•安陆市期末)如图,点A的坐标可以看成是方程组的解.【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.16.(2016秋•郓城县期末)一次函数y=x+1与y=ax+3的图象交于点P,且点P 的横坐标为1,则关于x,y的方程组的解是.【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.(2016秋•南海区期末)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.【分析】根据图象可得两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.(2016春•沙坪坝区期中)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标,属于中考常考题型.19.(2016秋•曲江区校级期中)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故答案为:.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.20.(2015•西藏一模)如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线l1与l2的交点的坐标.【解答】解:根据题意知,二元一次方程组的解就是直线l1与l2的交点的坐标,又∵交点坐标(2,3),∴原方程组的解是:.故答案是:【点评】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.三.解答题(共10小题)21.(2016春•浠水县期末)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P (1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【分析】(1)直接把P(1,b)代入y=x+1可求出b的值;(2)利用方程组的解就是两个相应的一次函数图象的交点坐标求解;(3)根据一次函数图象上点的坐标特征进行判断.【解答】解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.利用一次函数图象上点的坐标特征对(3)进行判断.22.(2014秋•陕西校级月考)如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.【分析】(1)先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案;(2)根据函数图象与坐标轴的交点坐标和两函数的交点坐标利用三角形的面积公式进行计算即可.【解答】解:(1)设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为:;(2)围成的三角形的面积为:S=[5﹣(﹣1)]×2=6.【点评】本题考查了一次函数与二元一次方程(组)的知识,函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.23.(2017•农安县模拟)某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1800(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.24.(2017•青羊区模拟)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶3h后加油,中途加油31L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)根据函数图象3小时时油箱油量变多解答;(2)利用待定系数法求一次函数解析式解答;(3)求出加油前行驶的路程和用油量,再求出从加油站到目的地所需要的油量,然后判断即可.【解答】解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45﹣14=31升;(2)因为函数图象过点(0,50)和(3,14),所以设函数关系式为y=kt+b,则,解得,因此,y=﹣12t+50;(3)油箱中的油够用.∵汽车加油前行驶了3小时,行驶了3×70=210(km),用去了50﹣14=36升油,而目的地距加油站还有210km,∴要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.【点评】本题考查了一次函数的应用,读懂题目信息并准确识图,观察出油箱中的油量的变化是解题的关键.25.(2017春•普陀区期中)已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.【分析】根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、B(4,4).∴,解得:.∴这个一次函数的解析式为:y=x+2.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.26.(2017春•沙坪坝区期中)已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.【分析】(1)根据点的坐标,利用待定系数法求出一次函数关系式即可;(2)将x=4代入一次函数关系式中,求出y值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(0,3)、(2,7)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=2x+3.(2)当x=4时,y=2x+3=2×4+3=11.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)将x=4代入一次函数关系式求出y值.27.(2016秋•二道区校级期末)已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求。

【2024版】2022年数学八上《二元一次方程与-一次函数》课件精品(新北师大版)

【2024版】2022年数学八上《二元一次方程与-一次函数》课件精品(新北师大版)
二元一次方程组与对应两条相交直线的关系
二元一次方程组与对应两条平行线的关系
北师大版 数学 八年级 上册
5.1 认识二元一次方程组
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队为了争取较好名次,想在全部16场比赛中得到28分,那么这个队胜负场数分别是多少?
用学过的一元一次方程能解决此问题吗?
解:没有,直线y=2-x与y=5 -x平行.
在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如下图,那么关于x,y的方程组 的解是___________.
〔2,2〕
3.如图,两条直线的交点坐标可以看作哪个方程组的解?
解:
3-1
2
-3
x
y
0
如图,一次函数y=ax+b与y=cx+d的图象交于点P,那么方程组 的解是多少?
D
中,是二元一次方
二元一次方程组的判断
提示:三个要素:
含有两个未知数
含有未知数的项的次数为1
整式方程
以下方程组中,哪些是二元一次方程组_______________
〔3〕
〔5〕
〔6〕
x
y
探究 公园门票问题中的方程 x+y=8 ,且符合问题的实际意义的值有哪些?把它们填入表中.
思考1 如果不考虑方程表示的实际意义,还可以取哪些值?这些值是有限的吗?
不是
例1 判断以下方程是否为二元一次方程:
(7) 4x+ π =0
(8) 2x=1-3y
不是

二元一次方程的判断
判断一个方程是否为二元一次方程的方法: 一看原方程是否是整式方程且只含有两个未知数;二看整理化简后的方程是否具备两个未知数的系数都不为0,且含未知数的项的次数都是1.

(完整版)一次函数与二元一次方程专题

(完整版)一次函数与二元一次方程专题

一次函数与二元一次方程专题一.选择题(共10小题)1.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.2.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.4.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.5.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.用图象法解方程组时,下图中正确的是()A.B.C.D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.8.若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)9.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+210.某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33二.填空题(共10小题)11.已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),则关于x的方程组的解是.12.如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第象限.13.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.14.如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.15.如图,点A的坐标可以看成是方程组的解.16.一次函数y=x+1与y=ax+3的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是.17.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.18.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.19.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.20.如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.三.解答题(共10小题)21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.22.如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.23.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.24.汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.25.已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.26.已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.27.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.28.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.29.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=时.30.某公司一辆绿化洒水车以每分50升的速度给一片树林浇水,一段时间后关闭洒水阀门,行驶到一片草坪处,以另一洒水速度匀速给草坪浇水,直到洒水车内的水全部用光,洒水车内的水量y(升)与时间x(分)之间的函数图象如图所示.(1)求a的值;(2)求洒水车给草坪浇水时y与x之间的函数关系式.(3)当x=13时,洒水车共浇水多少升?一次函数与二元一次方程专题参考答案与试题解析一.选择题(共10小题)1.(2017•昌平区二模)如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故答案为A【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.(2016•临清市二模)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.(2016春•单县期末)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.4.(2016秋•滕州市期末)如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.【点评】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.5.(2016春•迁安市期末)直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先用含x的代数式表示y可得一次函数解析式,再根据一次函数图象与系数的关系即可求解.【解答】解:∵8x﹣4y=5,∴y=2x﹣,∵k=2>0,b=﹣<0,∴图象经过第一、三、四象限,即不经过第二象限.故选B.【点评】此题考查了一次函数与二元一次方程,任何一个二元一次方程都可以化成一个一次函数.同时考查了一次函数图象与系数的关系.6.(2015秋•连云港期末)用图象法解方程组时,下图中正确的是()A.B.C.D.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.7.(2016春•长春期中)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选A.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.(2015秋•兴化市校级月考)若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)【分析】二元一次方程可以化为一次函数,两个二元一次方程组的解就是两个函数的交点坐标.【解答】解:∵二元一次方程组的解是,∴直线与y=﹣x+5的交点坐标为(4,1).故选A.【点评】本题主要考查了一次函数与二元一次方程组,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.10.(2013•荆州模拟)某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33【分析】本题的等量关系是:捐1元的人数+捐2元的人数+捐3元的人数+捐4元的人数=40人,1元的捐款+2元的捐款+3元的捐款+4元的捐款=100元.由此可得出方程组,求出未知数的解,进而代入各选项解析式,即可得出答案.【解答】解:设捐款2元的有x人,捐款3元的有y人,则,解之得:.则捐款2元的有15人,捐款3元的有12人,当x=15,y=12时,只有代入A使得两函数解析式左右相等,故选:A.【点评】此题主要考查了二元一次方程组的应用以及两函数交点问题,解题关键是求出x,y的值.二.填空题(共10小题)11.(2017春•云梦县期中)已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P (3,1),则关于x的方程组的解是.【分析】根据方程组的解即为函数图象的交点坐标解答.【解答】解:∵一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),∴方程组的解是;故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.(2017春•威海期中)如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第二象限.【分析】方程组无解,即直线y=﹣x+1与y=(2k+1)x﹣3平行,那么﹣1=2k+1,求出k的值,进而求解即可.【解答】解:∵方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,在直线y=2x﹣3中,∵2>0,﹣3<0,∴直线y=2x﹣3经过第一、三、四象限,不经过第二象限.故答案为二.【点评】本题考查了一次函数与二元一次方程组的关系,一次函数图象与系数的关系,求出k的值是解题的关键.13.(2016•莘县二模)如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2016•重庆校级二模)如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.【分析】根据函数图象可以分别求得直线l1、l2的函数解析式,从而可以解答本题.【解答】解:由函数图象可知,直线l1过点(0,),(2,3),设解析式为:y=k1+b,则,解得,,即直线l1的解析式为:y=;直线l2过点(0,0),(2,3),设解析式为y=k2x,则3=2k2,得k2=,即直线l2的解析式为:y=,故这个方程组为:,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确一次函数与二元一次方程组的关系,利用数形结合的思想解答问题.15.(2016春•安陆市期末)如图,点A的坐标可以看成是方程组的解.【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.16.(2016秋•郓城县期末)一次函数y=x+1与y=ax+3的图象交于点P,且点P 的横坐标为1,则关于x,y的方程组的解是.【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.(2016秋•南海区期末)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.【分析】根据图象可得两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.(2016春•沙坪坝区期中)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标,属于中考常考题型.19.(2016秋•曲江区校级期中)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故答案为:.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.20.(2015•西藏一模)如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线l1与l2的交点的坐标.【解答】解:根据题意知,二元一次方程组的解就是直线l1与l2的交点的坐标,又∵交点坐标(2,3),∴原方程组的解是:.故答案是:【点评】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.三.解答题(共10小题)21.(2016春•浠水县期末)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P (1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【分析】(1)直接把P(1,b)代入y=x+1可求出b的值;(2)利用方程组的解就是两个相应的一次函数图象的交点坐标求解;(3)根据一次函数图象上点的坐标特征进行判断.【解答】解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.利用一次函数图象上点的坐标特征对(3)进行判断.22.(2014秋•陕西校级月考)如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.【分析】(1)先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案;(2)根据函数图象与坐标轴的交点坐标和两函数的交点坐标利用三角形的面积公式进行计算即可.【解答】解:(1)设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为:;(2)围成的三角形的面积为:S=[5﹣(﹣1)]×2=6.【点评】本题考查了一次函数与二元一次方程(组)的知识,函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.23.(2017•农安县模拟)某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1800(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.24.(2017•青羊区模拟)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶3h后加油,中途加油31L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)根据函数图象3小时时油箱油量变多解答;(2)利用待定系数法求一次函数解析式解答;(3)求出加油前行驶的路程和用油量,再求出从加油站到目的地所需要的油量,然后判断即可.【解答】解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45﹣14=31升;(2)因为函数图象过点(0,50)和(3,14),所以设函数关系式为y=kt+b,则,解得,因此,y=﹣12t+50;(3)油箱中的油够用.∵汽车加油前行驶了3小时,行驶了3×70=210(km),用去了50﹣14=36升油,而目的地距加油站还有210km,∴要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.【点评】本题考查了一次函数的应用,读懂题目信息并准确识图,观察出油箱中的油量的变化是解题的关键.25.(2017春•普陀区期中)已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.【分析】根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、B(4,4).∴,解得:.∴这个一次函数的解析式为:y=x+2.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.26.(2017春•沙坪坝区期中)已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.【分析】(1)根据点的坐标,利用待定系数法求出一次函数关系式即可;(2)将x=4代入一次函数关系式中,求出y值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(0,3)、(2,7)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=2x+3.(2)当x=4时,y=2x+3=2×4+3=11.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)将x=4代入一次函数关系式求出y值.27.(2016秋•二道区校级期末)已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求。

《一次函数与二元一次方程的关系》PPT

《一次函数与二元一次方程的关系》PPT
方式 1 :按上网时间以每分钟 0.1 元计费;
方式 2 :月租费 20 元,再按上网时间 以每分钟 0.05 元计费。
请同学们帮老师选择:以何种方式上网更合算?
用函数方法解答如何选择计费方式更省钱 解:方式一费用: y1 = 0.3x + 30
方式二费用: y2 = 0.4x
当 x = 400分时,y1 =y2 , 方式一方式二一样 当 x >400 分时,y1>y2 ,方式二省钱 当 0≤x<400分时,y1<y2 ,方式一省钱
2 b=----.
探究学习二:探究一次函数与二元一次方程组的关系
x+y=1
1、解方程组
-x+y=1
2、在同一直角坐标系中画出一次函数y=x+1和 y=-x+1的图像。
y=-x+1
y
7 y=x+1
6 5 4 3
2
1 (0,1)
-5 -4 -3 -2 -1 0 1 2 3 4 5x
-1
x+y=1 -x+y=1
21.5 一次函数与二元一次方程的关系
学习目标:
1、理解一次函数与二元一次方程的关系 2、理解一次函数与二元一次方程组的关系
探究学习一: 探究一次函数与二元一次方程的关系
1、二元一次方程y-x=1有多少个解?你能
写出方程的几组解吗? PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/

《一次函数与二元一次方程的关系》课件

《一次函数与二元一次方程的关系》课件

07
习题及答案

习题一:基础题
01
总结词:了解
02
详细描述:本题要求学生了解一次函数与二元一次方程之间的关系, 掌握基本的定义和概念。
03
题目:什么是二元一次方程?举例说明。
04
答案:二元一次方程是指含有两个未知数,且未知数的最高次数为1 的方程。例如,x+y=10。
习题二:提高题
总结词:理解
需要求解的未知数值,如 :x或y。
一般形式
ax+by+c=0 (a,b,c为已知数,a≠0,b≠0)。
解释:方程的一般形式,其中ax和by是未知数的系数,c是常数。
解法
代入法
将一个未知数的值代入方 程,求出另一个未知数的 值。
消元法
通过变换方程,将两个未 知数转化为一个未知数, 然后求解。
求解步骤
08
参考文献及推荐阅读
参考文献
《中学数学教学参考》 《数学教育学报》
《数学通报》
推荐阅读
《如何理解一次函数与二元一 次方程的关系?》
《数形结合在解题中的应用》
《二元一次方程的解法及其几 何意义》
THANKS
谢谢您的观看
重要性
主体部分
详细介绍一次函数和二 元一次方程的概念及关

练习部分
举例说明利用一次函数 和二元一次方程解决实
际问题的具体方法
总结部分
总结本节课的重点内容 ,加深学生对知识的理
解和记忆
02
一次函数的基本概念
定义
一次函数:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数 。
一次函数的定义域:全体实数。

第20章 专题04 数形结合之一次函数与二元一次方程组(学生

第20章 专题04 数形结合之一次函数与二元一次方程组(学生

编者小k 君小注:本专辑专为2022年初中沪教版数学第二学期研发,供中等及以上学生使用。

思路设计:重在培优训练,分选择、填空、解答三种类型题,知识难度层层递进,由中等到压轴,基础差的学生选做每种类型题的前4题;基础中等的学生必做前4题、选做5-8题;尖子生全部题型必做,冲刺压轴题。

专题04 数形结合之一次函数与二元一次方程组(学生版)错误率:___________易错题号:___________一、单选题1.如图所示,一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,下列判断错误的是( )A .关于x 的方程3kx x b -=-+的解是2x =B .关于x 的不等式3x b kx -+>-的解集是2x >C .当0x <时,函数3y kx =-的值比函数y x b =-+的值小D .关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩2.对于实数a ,b ,我们定义符号max {a ,b }的意义为:当a ≥b 时,max {a ,b }=a ;当a <b 时,max {a ,b }=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于x 的函数为y =max (2x ﹣1,﹣x +2},则该函数的最小值是( )A .2B .1C .0D .﹣13.如图,在平面直角坐标系中,点A ,B 分别在x 轴和y 轴上,2OB OA =,AOB ∠的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数k y x=的图象过点C ,当ACD △面积为1时,k 的值为( )A .1B .2C .3D .44.若直线y x m =-+与直线24y x =+的交点在第一象限,则m 的取值范围是( ).A .4m ≥B .1m ≥-C .4m >D .1m >-5.已知两直线()0y kx k k =+≠与36y x =-相交于第四象限,则k 的取值范围是( )A .60k -<<B .30k -<<C .3k <-D .6k <-6.如图,在平面直角坐标系中,点()()()()1,5,4,1,,,3,4A B C m m D m m ---+,当四边形 ABCD 的周长最小时,则 m 的值为( ).A B .32 C .2 D .37.如图,等腰Rt△ABC 中,BC =AC 为斜边向右做等腰Rt△ACD ,点E 是线段CD 的中点,连接 AE .作线段CE 关于直线AC 的对称线段CF ,连接BF ,并延长BF 交线段AE 于点G ,则线段BG 长为( )A .B .C .D .8.已知直线l 1:y =kx+b 与直线l 2:y =﹣12x+m 都经过C (﹣65,85),直线l 1交y 轴于点B (0,4),交x 轴于点A ,直线l 2交y 轴于点D ,P 为y 轴上任意一点,连接PA 、PC ,有以下说法:△方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩;△△BCD 为直角三角形;△S △ABD =6;△当PA+PC 的值最小时,点P 的坐标为(0,1).其中正确的说法是( )A .△△△B .△△△C .△△△D .△△△△9.在平面直角坐标系中,将函数3y x =的图象向上平移m 个单位长度,使其与36y x =-+的交点在位于第二象限,则m 的取值范围为( )A .6m <B .6m >C .2m <D .2m >10.已知函数222y kx k =++(k 为常数,0k >)的图象经过点(),a b ,且实数a ,b ,k 满足等式:()2224212a k b b bk +++=+,则一次函数()2220y kx k k =++>与y 轴的交点坐标为( )A .()0,2B.()1 C.(0,6- D .()0,4二、填空题 11.如图,根据函数图象回答问题:方程组3y kx y ax b=+⎧⎨=+⎩的解为_________.12.如图,点A 是一次函数21y x =+图象上的动点,作AC △x 轴与C ,交一次函数4y x =-+的图象于B .设点A的横坐标为m,当m=____________时,AB=1.13.在平面直角坐标系xOy中,直线y=﹣x+1与直线y=﹣2x交于点A,点B(m,0)是x轴上的一个动点,过点B作y轴的平行线分别交直线y=﹣x+1、直线y=﹣2x于C、D两点,若5ACDS=,则m的值为____________.14.若函数y=2x+b的图象与两坐标轴围成的三角形面积为4,那么b=_______.15.如图,已知一次函数y=-53x+6的图像与x轴,y轴分别相交于点A、B,与一次函数y=13x的图像相交于点C,若点Q在直线AB上,且△OCQ的面积等于12,则点Q的坐标为__________________.16.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若△EAB=△ABO,则点E的坐标为_____________.17.如图,在平面直角坐标系xOy 中,直线y =﹣x ﹣2与x 轴,y 轴分别交于点D ,C .点G ,H 是线段CD 上的两个动点,且△GOH =45°,过点G 作GA△x 轴于A ,过点H 作HB△y 轴于B ,延长AG ,BH 交于点E ,则过点E 的反比例函数y =k x的解析式为_____.18.已知直线11y k x b =+与直线22y k x b =+的交点坐标为()2,3-,则直线11y k x b =-与直线22y k x b =-的交点坐标为____________.19.对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.20.若直线112y x =-与直线31y kx k =++交于点(,)P m n ,且函数31y kx k =++的值随x 值的增大而减小,则m 的取值范围是______.三、解答题21.如图1,直线AB 的解析式为6y kx =+,D 点坐标为()8,0,O 点关于直线AB 的对称点C 点在直线AD 上.(1)求直线AD 、AB 的解析式;(2)如图2,若OC 交AB 于点E ,在线段AD 上是否存在一点F ,使ABC ∆与AEF ∆的面积相等,若存在求出F 点坐标,若不存在,请说明理由;(3)如图3,过点D 的直线:l y mx b =+.当它与直线AB 夹角等于45︒时,求出相应m 的值.22.定义:图象与x 轴有两个交点的函数y =24(),24()x x m x x m -+≥⎧⎨+<⎩.叫做关于m 的对称函数,它与x 轴负半轴交点记为A ,与x 轴正半轴交点记为B ,(1)关于l 的对称函数y =24(1),24(1)x x x x -+≥⎧⎨+<⎩.与直线x =1交于点C ,如图. △直接写出点的坐标:A ( ,0);B ( ,0);C (1, );△P 为关于l 的对称函数图象上一点(点P 不与点C 重合),当=ABC ABP S S 时,求点P 的坐标; (2)当直线y =x 与关于m 的对称函数有两个交点时,求m 的取值范围.23.如图1,直线11:32l y x =-+与坐标轴分别交于点A 、B ,与直线2:l y x =交于点C .(1)求A 、C 两点的坐标;(2)如图2,若有一条垂直于x 轴的直线l 以每秒1个单位的速度从点A 出发沿射线AO 方向作匀速滑动,分别交直线1l 、2l 及x 轴于点M 、N 和Q .设运动时间为()s t ,连接CQ .△当2OA MN =时,求t 的值.△若四边形CMEN 为平行四边形,试求出E 点的坐标;(3)试探究在坐标平面内是否存在点P ,使得以O 、Q 、C 、P 为顶点的四边形构成菱形?若存在,请直.接写出...t 的值;若不存在,请说明理由.24.在平面直角坐标系中,点A 坐标为(0,)n , 点B 坐标为(,0)m -,点C 坐标为(,0)m ,且m 、n 满足方程组32120m n m n +=⎧⎨-=⎩. (1)如图1,直接写出点A 和点B 的坐标;(2)如图2,在线段AB 上有一点D (点D 不与A 、B 重合),过点D 作AB 的垂线,分别交y 轴和线段AC 于点E 和点F ,连接DO ,若2AFD AOD ∠=∠,求BDO ∠的度数;(3)如图3,在(2)的条件下,延长DF 交x 轴于点G ,若EO CG =,连接BF 交AO 于点K ,求点K 的坐标.25.如图,在平面直角坐标系中,点O 为坐标原点.△ABO 的顶点A 在y 轴的正半轴上,且OA =16,顶点B 在x 轴正半轴上,且B (12,0),BE 是△ABO 的角平分线,且AB =20.(1)直接写出E 点坐标;(2)点D 是射线BO 上的一个动点(点D 不与点B 、点O 重合),连接DE ,设D 点的横坐标为t ,△BDE 的面积为S ,求S 与t 的关系式,并直接写出t 的取值范围;(3)在(2)的条件下,如图3,当点D 在线段OB 上,连接AD ,AD 、BE 相交于点F ,过点F 作FM △AD 交AB 于点M ,FN △BE 交AB 于点N ,当S =20时,求线段MN 的长度.26.定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知ABC ,请用尺规作出ABC 的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴的正半轴上、OC 在y 轴的正半轴上,6,4OA OC ==.△请判断直线4833y x =-是否为矩形OABC 的面积等分线,并说明理由; △若矩形OABC 的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式. (3)如图3,在ABC 中,点A 的坐标为()2,0-,点B 的坐标为()4,3,点C 的坐标为()2,0,点D 的坐标()0,2-,求过点D 的一条ABC 的面积等分线的解析式.(4)在ABC 中点A 的坐标为()1,0-,点B 的坐标为()1,0,点C 的坐标为()0,1,直线()0y ax b a =+>是ABC 的一条面积等分线,请直接写出b 的取值范围.27.平面直角坐标系中,直线11:32l y x =-+与x 轴交于点A ,与y 轴交于点B ,直线2:2l y kx k =+与x 轴交于点C ,与直线1l 交于点P .(1)当1k =时,求点P 的坐标;(2)如图1,点D 为PA 的中点,过点D 作DE x ⊥轴于E ,交直线2l 于点F ,若2DF DE =,求k 的值; (3)如图2,点P 在第二象限内,PM x ⊥轴于M ,以PM 为边向左作正方形PMNQ ,NQ 的延长线交直线1l 于点R ,若PR PC =,求点P 的坐标.28.已知:在平面直角坐标系中,直线4x =与直线(1)2y m x m =+-交于点A .(1)请证明:无论m 为何值,直线(1)2y m x m =+-,总经过点()2,2.(2)当12m =-时,求点A 的坐标. (3)函数1(04)y x x=<≤的图像与直线4x =、直线(1)2y m x m =+-围成的封闭区域(不含边界)为W ,横纵坐标都为整数的点叫做整点.△当12m =-时,画出函数图像,并直接写出区域W 内整点的个数. △当区域W 内恰好有三个整点时,直接写出m 的取值范围.29.如图,在平面直角坐标系中,直线y =﹣0.5x +2与x 轴,y 轴分别交于点A 和点B ,与直线y =x 交于点C 、P (m ,0)为x 轴上一动点(P 不与原点重合),过P 作x 轴垂线与直线y =x 和y =﹣0.5x +2分别交于点M 和点N ,过N 作x 轴的平行线交直线y =x 于D .(1)求C 点坐标;(2)求当MN =OB 时,m 的值;并直接写出此时四边形COPN 的面积= ;(3)直接写出当DN =2NP 时,m 的值= ;(4)过D 作y 轴平行线交直线AB 于点E ,P 点在运动过程中,MN DE的值= .x+3,与x轴、y轴30.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣12分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在y轴上是否存在一点P,使得△PBC为等腰三角形?若存在,请直接写出点P坐标,若不存在,请说明理由.。

一次函数与二元一次方程组培优练习题.doc

一次函数与二元一次方程组培优练习题.doc

一次函数与二元一次方程(组)培优专题图屮两直线Li ,L2的交点坐标可以看作方程组()的解.二.填空题x + y = 3,XX 的解,那么一次函数y 二3-X 和y 二一+1的交点是 y ——=1 2・22. 一•次函数y 二3x+7的图像与y 轴的交点在二元一次方程- 2x+ by 二18上,贝ij b= ________ ・3. 已知关系x, y 的二元--次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点处标 为(1, -1),贝 lj a= ________ , b= _________ .3 14. 己知一次函数y 二-一x+m 和y 二一x+n 的图像都经过A(-2, 0),则A 点可看成方程组 ______________2 2的解.3、A.x-y = \ 2x-y = -1B.x-y = -1C.2x-y = lx —y = 32x-y = 1D.x-y =-3 2x - y = -12.3. x把方程x+l=4y+ —化为y 二kx+b 的形式,正确的是()3A. y=— x+1'3x B.宀丄6 4 C. y 二一x+1 6D.1 y_3 1 x+— 44. 若直线y= —+n 与y 二mxT 相交于点(1, -2),贝ij(). 21A. m= — 2 直线y=— x 2 A. (-8, 5. 5 n 二一―B. 26与直线y=-—x- 31B. (0, -6);-10) 1 m=— , n 二一 1; (2 耳的交点坐标是( 32C. ).C. (10, -1) 直线kx-3y=8, 2x+5y 二-4交点的纵坐标为0,则k 的值为(A. 4B. -4C. 2D. -25 n 二一―2D. m 二一3, 3 n 二一―2D.以上答案均不对 )1-已知<5已知方程组冷囂醫的解为' 一、选择题 1.3则一次函数y=3x-3与y二-一x+3的交点P的处标是. 2三、解答题1.若直线y=ax+7经过一次函数y=4-3x和y=2x-l的交点,求a的值.2.(1)在同一直角坐标系中作Hl—次函数y二x+2, y二x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y二2, x-y=3吗?3.如图所示,求两直线的解析式及图像的交点坐标.探究应用拓展性训练1.(学科内综合题)在直角坐标系屮,直线L]经过点(2, 3)和(-1, -3),直线L?经过原点,且与直线4交于点(-2, a). ⑴求a的值.(2)( 2, a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L]与y轴交于点A,你能求{BAAP0的面积吗?2.(探究题)已知两条直线a|X+biy=C|和azx+bzyF,当―^ — H'J*,方程组|、“,?冇唯一a2 b2[a2x-^b2y = c2,解?这两条直线相交?你知道当a】,a2, b P b2, C1, C2分别满足什么条件时,方程纽严"+严=5'[a2x-^-b2y = c2,无解?无数多组解?这时对应的两条直线的位置关系是怎样的?3.(2004年福州卷)如图,L,, L2分别表示一种白炽灯和一种节能灯的费用y(费用二灯的售价+电费, 单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h,照明效果一样.(1)根据图像分别求illLp L2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个口炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).同步练习答案: 一、 选择题1. B2. B3. C4. C5. B 二、 填空题34518-x+y = -3, 41.答案:(-,-)2.答案:—3.答案:2 3 4答案:25.答案:(-3 371 3 -x-y = -1. 〔2 -三、 解答题 f y = 4 —3x fx = L1.解析:解方程组^ 得4 ・・・两函数的交点坐标为(1, 1).[y = 2 兀-1 [y = l.把 x=l, y=l 代入 y=ax+7,得 l=a+7,解得 a=-6.2. 解析:⑴图像如答图所示.(2)尸x+2与y=x-3的图像平行.(3)y=x+2即x-y=-2, y=x-3即x-・・•直线y 二x+2与y 二x-3无交点,.••方程组无解.[x-y = 3.提示:当两肓线平行时无交点,即由两个函数解析式组成的二元一次方程组无解.[x = —2, f x = 0,3. 解析:设1“的解析式为y=k I x+b l ,把彳\分别代入得b ,= 0, [y = -3,L__2人- 2,b产一3,一 169b 2 =1,<解得v 2 4’L 的解析式为y 二-丄x+1.解方程组<4& +b 2= 0,|心1, 43 2 尸—厂3,『=_丁兀+ 1,4v=3.—2k\ + b] =0, b ]=一3,解得・・・1“的解析式为y 二-°x-3.2设L 2的解析式为y=k 2x+b 2,x = 0, 丿T ,x = 4,…分别代入,16 x = ----59.•.L]与a的交点坐标为(-—,—)。

中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案

中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案

中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案一、单选题1.已知一次函数 y =x +1 和一次函数 y =2x −2 的图象的交点坐标是 (3,4) ,据此可知方程组{x −y =−12x −y =2 的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−32.如图,直线y =kx+b 交x 轴于点A (﹣2,0),直线y =mx+n 交x 轴于点B (5,0),这两条直线相交于点C (2,c ),则关于x 的不等式组 {kx +b <0mx +n >0的解集为( )A .x <5B .1<x <5C .﹣2<x <5D .x <﹣23.用图象法解二元一次方程组{kx −y +b =0x −y +2=0时,小英所画图象如图所示,则方程组的解为( )A .{x =1y =2B .{x =2y =1C .{x =1y =2.5D .{x =1y =34.已知直线y =2x 与y =﹣x+b 的交点(﹣1,a ),则方程组 {2x −y =0x +y =b 的解为( ) A .{x =1y =2B .{x =−1y =2C .{x =1y =−2D .{x =−1y =−25.如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组{y =ax +b y =kx的解是( )A .{x =−2y =−4B .{x =−4y =−2C .{x =2y =−4D .{x =−4y =26.下面四条直线,其中直线上每个点的坐标都是二元一次方程2x ﹣y=2的解的是( )A .B .C .D .7.在平面直角坐标系中,直线l 1:y =x+3与直线l 2:y =mx+n 交于点A (﹣1,2),则关于x 、y 的方程组{y =x +3y =mx +n 的解为( ) A .{x =2y =1B .{x =2y =−1C .{x =−1y =2D .{x =−1y =−28.如图,是在同一坐标系内作出的一次函数l 1、l 2的图象,设l 1:y =k 1x+b 1,l 2:y =k 2x+b 2,则方程组 {y =k 1x +b 1y =k 2x +b 2的解是( )A .{x =−2y =2B .{x =−2y =3C .{x =−3y =3D . {x =−3y =49.如图,l 1经过点(0,1.5)和(2,3),l 2经过原点和点(2,3),以两条直线l 1,l 2的交点坐标为解的方程组是( )A .{3x −4y =−63x −2y =0B .{−3x +4y =63x +2y =0C .{3x −4y =63x −2y =0D .{3x −4y =63x +2y =010.直线 y =2x −3 与直线 y =x −1 的交点坐标是( )A .(2,1)B .(4,3)C .(2,−1)D .(−2,1)11.已知直线y=3x ﹣3与y=﹣32x+b 的交点的坐标为(43,a ),则方程组{−3x +y +3=03x +2y −2b =0的解是( )A .{x =43y =−1B .{x =43y =1C .{x =−43y =−1D .{x =−43y =112.如图,已知一次函数y=ax+b 和y=kx 的图象相交于点P ,则根据图象可得二元一次方程组 的解是( )A .{x =−4y =−2B .{x =−2y =−4C .{x =2y =4D .{x =2y =−4二、填空题13.已知方程组{x +y =12x −y =2的解为{x =1y =0,则一次函数y=﹣x+1和y=2x ﹣2的图象的交点坐标为14.如图,直线l 1的解析式是y =2x -1,直线l 2的解析式是y =x +1,则方程组 {x −y =−12x −y =1 的解是 .15.一次函数y =3x -5与y =2x +b 的图象的交点的坐标为P(1,-2),则方程组 {y =3x −5y =2x +b 中b的值为 .16.如图,已知函数y=x ﹣2和y=﹣2x+1的图象交于点P (1,﹣1),根据图象可得方程组{x −y =22x +y =1的解是 .17.已知函数y=2x+1和y=﹣x ﹣2的图象交于点P ,点P 的坐标为(﹣1,﹣1),则方程组{2x −y +1=0x +y +2=0的解为 . 18.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y =kx+b 与y =bx+k 互为交换函数,例如:y =5x+2的交换函数为y =2x+5.一次函数y =kx+2与它的交换函数图象的交点横坐标为 .三、综合题19.如图,在平面直角坐标系中,点O 为坐标原点,直线y =2x ﹣1与直线y = 34 x+ 32交于点A ,过点A 作x 轴的垂线,点B 为垂足,点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上,连接BC .(1)求点A的坐标;(2)求∠CBO的度数.20.如图,在直角坐标系中,直线y=−43x+4与分别于x、y轴交于点A,B,点C在x轴上CD∠AB.垂足为D,交y轴于点E (0,3).(1)求∠AOB的面积;(2)求线段CE的长;(3)求D点的坐标.21.如图,两直线l1:y=−x+4、l2:y=2x+1相交于点P,与x轴分别相交于A、B 两点.(1)求P点的坐标;(2)求S∠PAB.22.一般地,二元一次方程的解可以转化为点的坐标,其中x的值对应为点的横坐标,y的值对应为点的纵坐标,如二元一次方程x ﹣2y=0的解 {x =0y =0 和 {x =2y =1 可以转化为点的坐标A (0,0)和B (2,1).以方程x ﹣2y=0的解为坐标的点的全体叫做方程x ﹣2y=0的图象.(1)写出二元一次方程x ﹣2y=0的任意一组解 ,并把它转化为点C 的坐标 ;(2)在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,如方程x ﹣2y=0的图象是由该方程所有的解转化成的点组成,在图中描出点A 、点B 和点C ,观察它们是否在同一直线上; (3)取满足二元一次方程x+y=3的两个解,并把它们转化成点的坐标,画出二元一次方程x+y=3的图象;(4)根据图象,写出二元一次方程x ﹣2y=0的图象和二元一次方程x+y=3的图象的交点坐标 ,由此可得二元一次方程组 {x −2y =0x +y =3 的解是 .23.如图,直线y 1=kx+b 与坐标轴交于A (0,2),B (m ,0)两点,与直线y 2=-4x+12交于点P (2,n ),直线y 2=-4x+12交x 轴于点C ,交y 轴于点D .(1)求m ,n 值;(2)直接写出方程组{y =kx +b y =−4x +12的解为 ;(3)求∠PBC的面积.24.为便民惠民,树人公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.参考答案1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】B9.【答案】A10.【答案】A11.【答案】B12.【答案】A13.【答案】(1,0)14.【答案】15.【答案】-416.【答案】{x=1y=−117.【答案】{x=−1y=−1 18.【答案】119.【答案】(1)解:由{y=2x−1①y=34x+32②,解得{x=2y=3∴A(2,3);(2)解:过C点作CD∠x轴于D∵A(2,3)∴B (2,0)∵点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上 ∴y =2×(﹣1)﹣1=﹣3 ∴C (﹣1,﹣3) ∴BD =3,CD =3∴∠CBD 的等腰直角三角形 ∴∠CBO =45°.20.【答案】(1)解:∵当x=0时, y =4 ,∴B (0,4)∵当y=0时, x =3 ,∴A (3,0) ∴OA =3,OB =4 ∴S ∠AOB =12×3×4=6 (2)解:∵E (0,3) ∴OE=3 ∴OE=OA∵∠ECO+∠CEO=90°,∠BED+∠DBE=90°,∠CEO=∠BED ∴∠ECO=∠DBE 又∵∠COE=∠BDE=90° ∴∠AOB∠∠EOC (AAS ); ∴OC=OB=4∴Rt∠COE 中,CE =√OC 2+OE 2=√42+32=5 (3)解:由(2)得OC =4,即C (﹣4,0) 设直线CE 的解析式为y=kx+b 把C (﹣4,0),E (0,3)代入得 {−4k +b =0b =3 解得{b =3k =34∴直线CE 解析式为: y =34x +3由题意得方程组 {y =−43x +4y =34x +3解得: {x =1225y =8425 ∴D (1225,8425) .21.【答案】(1)解:联立方程组得: {y =−x +4y =2x +1,解得 {x =1y =3 ,因此 P(1,3) (2)解:在 y =−x +4 中,当 y =0 时, −x +4=0 , x =4 ,在 y =2x +1 中,当 y =0时 2x +1=0 , x =−12 ,∴A (−12,0) ,B (4,0) ,∴AB= |x A −x B |=92∴S ∠PAB = 92⋅|y P |⋅12=92×3×12=27422.【答案】(1){x =−2y =−1;(﹣2,﹣1)(2)解:如图,点A 、点B 和点C 同一直线上(3)二元一次方程x+y=3的两个解为 {x =3y =0 或 {x =0y =3 ,把它们转化成点的坐标为(3,0),(0,3) 如图(4)(2,1);{x =2y =123.【答案】(1)解:把点P (2,n )代入y 2=−4x +12得:n =−8+12=4第 11 页 共 11 ∴P (2,4)把A (0,2),P (2,4)代入y 1=kx +b 得,{b =22k +b =4解得:{k =1b =2∴y 1=x +2把B (m ,0)代入y 1=x +2得:0=m +2解得:m =−2∴m =−2,n =4;(2){x =2y =4(3)解:当y 2=−4x +12=0时解得:x =3∴C (3,0)∵P (2,4),B (-2,0),C (3,0)∴BC=5∴S △PBC =12×5×4=10. 24.【答案】(1)解:由题意得,普通卡:y 1=20x ;贵宾卡:y 2=10x +200; (2)解:令y 1=500得:20x =500,解得:x =25∴点B 坐标为(25,500);令y 2=500得:10x +200=500,解得:x =30∴点C 的坐标为(30,500);联立y 1、y 2得: {y =20x y =10x +200解得: {x =20y =400 ∴点A 的坐标为(20,400);∴A (20,400),B (25,500),C (30,500);(3)解:由图像可知:①当0<x <20时,选择普通卡更合算; ②当x =20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算; ③当20<x <30时,选择贵宾卡更合算;④当x =30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算; ⑤当x >30时,选择至尊卡更合算.。

一次函数与二元一次方程组(练习题)

一次函数与二元一次方程组(练习题)

一次函数与二元一次方程组题型一:基本回想例1.直线kx-3y=8,2x+5y=-4交点的纵坐标为0,那么k= .拓展变式演习1.在y=kx+b 中,当x=1时y=2;当x=2时y=4,则k,b 的值是.2.直线y=12x-6与直线y=-231x-1132的交点坐标是.3.若直线y=2x+n 与y=mx-1订交于点(1,-2),则____m =,____n =.题型二:技巧拓展例2.已知4,353x y ⎧=⎪⎪⎨⎪=⎪⎩ 是方程组3,12x y x y +=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x 和y=2x +1的交点是________.拓展变式演习1.一次函数y=3x+7的图像与y 轴的交点在二元一次方程-•2x+•by=•18•上,•则b=_________.2.已知关系x,y 的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.3.已知方程组230,2360y x y x -+=⎧⎨+-=⎩的解为4,31,x y ⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P的坐标是______.题型三:分解才能晋升例3.(福州卷)如图,L 1,L 2•分离暗示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时光x(h)的函数图像,假设两种灯的应用寿命都是2000h,照明后果一样.(1)依据图像分离求出L1,L2的函数关系式.(2)当照明时光为若干时,两种灯的费用相等?(3)小亮房间筹划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯办法(直接给出答案,不必写出解答进程).解析:(1)设L1的解析式为y1=k1x+2,由图像得17=500k1+2,解得k=0.03,∴y1=0.03x+2(0≤x≤2000).设L2的解析式为y2=k2x+20,由图像得26=500k2+20,解得k2=0.012.∴y2=0.012x+20(0≤x≤2000).(2)当y1=y2时,两种灯的费用相等,∴0.03x+2=0.012x+20,解得x=1000.∴当照明时光为1000h时,两种灯的费用相等.(3)最省钱的用灯办法:节能灯应用2000h,白炽灯应用500h.拓展变式演习1.(桂林)某蔬菜公司收购到某种蔬菜104吨,预备加工后上市发卖. 该公司加工该种蔬菜的才能是:天天可以精加工4吨或粗加工8吨. 现筹划用16天正好完成加工义务,则该公司应安插几天精加工,几天粗加工?解:设该公司安插x天粗加工, 安插y天精加工.……………1分据题意得:1684104x yx y+=⎧⎨+=⎩……………………………………4分解得:106xy=⎧⎨=⎩………………………………………………7分答: 该公司安插10天粗加工, 安插6天精加工.…………8分2.(湖南郴州市)受气象等身分的影响,本年某些农产品的价钱有所上涨. 张大叔在承包的10亩地里所栽种的甲.乙两种蔬菜共获利13800元.个中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲.乙两种蔬菜各类植了若干亩? 答案:(1)设甲.乙两种蔬菜的栽种面积分离为x.y 亩,依题意可得:101200150013800x y x y (4)分解这个方程组得46x y …………………………………………7分巩固演习:一.选择题1.(浙江省喜嘉兴市)依据以下对话,可以求得小红所买的笔和笔记本的价钱分离是( )【症结词】二元一次方程组 【答案】D 2.(辽宁省丹东市)某校春季活动会比赛中,八年级(1)班.(5)班的竞技实力相当,关于比赛成果,甲同窗说:(1)班与(5)班得分比为6:5;乙同窗说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,依据题意所列的方程组应为( )A .65,240x y x y =⎧⎨=-⎩B .65,240x y x y =⎧⎨=+⎩C .56,240x y x y =⎧⎨=+⎩D .56,240x y x y =⎧⎨=-⎩【症结词】二元一次方程组【答案】D3.(四川绵阳9,3)灾后重建,四川从悲壮走向豪放.灾平易近发扬巨大的抗震救灾精力,木樨村派男女村平易近共15 人到山外倾销建房所需的水泥,已知男村平易近一人挑两包,女村平易近两人抬一包,共购回15 包.请问此次倾销派男女村平易近各若干人?A .男村平易近3人,女村平易近12人B .男村平易近5人,女村平易近10人小红,你上周买的笔和笔记本的价钱是若干啊?哦,…,我忘了!只记得先后买了两次,第一次买了5支笔和10本笔记本共花了42元钱,第二次买了10支笔和5本笔记本共花了30元钱.C .男村平易近6人,女村平易近9人D .男村平易近7人,女村平易近8人【答案】B4.(山东枣庄,6,3分)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1B .1C .2D .3【答案】A5.(山东泰安,11 ,3分)某班为嘉奖在校运会上取得较好成绩的运发动,花了400元钱购置甲.乙两种奖品共30件,个中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买若干件?该问题中,若设购置甲种奖品x 件,乙种奖品y 件,则方程组准确的是( )A.⎩⎨⎧x+y=3012x+16y=400B.⎩⎨⎧x+y=3016x+12y=400C.⎩⎨⎧12x+16y=30x+y=400D.⎩⎨⎧16x+12y=30x+y=400 【答案】B二.填空1.一次函数的图象过点A (5,3)且平行于直线y =3x -21,则这个函数的解析式为________.y =7-4x 和y =1-x 的图象的交点坐标为_____,则方程组⎩⎨⎧=+=+174y x y x 的解为_________. 3.(江西)已知一次函数y=kx+b (k ≠0)经由(2,-1).(-3,4)两点,则它的图象不经由第象限.4.(陕西)在统一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M 的坐标为_________.5.(湖州)一次函数y=kx+b (k,b 为常数,且k ≠0)的图象如图所示,依据图象信息可求得关于x 的方程kx+b=0的解为x=.1.(安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是.【答案】5,1.x y =⎧⎨=-⎩2.(浙江省,13,3分)如图,母亲节那天,许多同窗给妈妈预备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为 元.【答案】4403.(湖北鄂州,7,3分)若关于x,y的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解知足2x y +<,则a 的取值规模为______.【答案】a <44.(河北,19,8分)已知.a y x 3y x 3y 2的解的二元一次方程,是关于+=⎩⎨⎧==x 求(a+1)(a-1)+7的值.【答案】将x=2,y=3代入a y x 3+=中,得a=3.∴(a+1)(a-1)+7=a 2-1+7=a 2+6=95.(湖北黄石,20,8分)解方程:0)10553(4222=--+--y x y x . 【答案】解:依据题意可得⎪⎩⎪⎨⎧=--=--0105530422y x y x ∴⎩⎨⎧==15y x 或⎩⎨⎧==452y x。

完整版一次函数与二元一次方程附答案

完整版一次函数与二元一次方程附答案

郭氏数学内部资料一次函数与二元一次方程(2)附答案一、选择题1.图中两直线 L 1, L 2 的交点坐标能够看作方程组 ( )的解.A.xy 1B.x y 12x y1 2x y 1 Cx y3D.x y 3.y12x y12x2.把方程 x+1=4y+ x化为 y=kx+b 的形式,正确的选项是 ( )3A. y= 1x+1B.y= 1x+1C. y= 1x+1D. y= 1x+1364634x+n 与 y=mx-1 订交于点 (1 , -2) ,则 ( ) .3.若直线 y=2A . m=1, n=-5B . m=1, n=-1 ; C . m=-1, n=-5D . m=-3, n=-3222224.直线 y= 1x-6 与直线 y=-2x-11的交点坐标是 ().231 32A. (-8 , -10) B . (0 , -6) ; C . (10 ,-1) D .以上答案均不对5.在 y=kx+b 中,当 x=1时 y=2;当 x=2 时 y=4,则 k , b 的值是 ( ) .Ak 0B. k 2 C.k 3 D.k 0 .b 0b1b 2b6.直线 kx-3y=8 , 2x+5y=-4 交点的纵坐标为 0,则 k 的值为 ()A . 4B .-4C . 2D . -2 二、填空题1.点 (2 , 3) 在一次函数 y=2x-1 的 ________; x=2, y=3 是方程 2x-y=1 的 _______.4 , x y 3,xx 2.已知3是方程组 x 的解,那么一次函数 y=3-x 和 y= 5 +1 的交点是y 2 12 y3________.3 .一次函数 y=3x+7 的图像与y 轴的交点在二元一次方程-?2x+?by=?18? 上, ? 则b=_________.4.已知关系 x , y 的二元一次方程 3ax+2by=0 和 5ax-3by=19 化成的两个一次函数的图像郭氏数学内部资料的交点坐标为 (1 , -1) ,则 a=_______, b=________.5.已知一次函数 y=- 3 x+m 和 y= 1x+n 的图像都经过 A(-2 ,?0)? ,?则 A?点可看作方程组22________的解.y 2x3 0,x4 , 则一次函数 y=3x-3 与 y=- 3x+3 的交点 P3 6.已知方程组3x 6 0 的解为2 yy 1, 2的坐标是 ______. 三、解答题1.若直线 y=ax+7 经过一次函数 y=4-3x 和 y=2x-1 的交点,求 a 的值.2. (1) 在同素来角坐标系中作出一次函数y=x+2, y=x-3 的图像.(2)两者的图像有何关系 ?(3) 你能找出一组数适合方程x-y=2 , x-y=3 吗 ?_________________ , ?这说明方程组x y 2,________ .x y 3,3.以下列图,求两直线的解析式及图像的交点坐标.研究应用拓展性训练1.( 学科内综合题 ) 在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线 L1交于点 (-2 , a) .(1)求 a 的值.(2)(-2,a)可看作怎样的二元一次方程组的解?(3)设交点为 P,直线 L 1与 y 轴交于点 A,你能求出△ APO的面积吗 ?2.( 研究题 ) 已知两条直线a1≠b1 a1 x b1 y c1, a1x+b1 y=c1和 a2x+b 2y=c 2,当b2时,方程组a2 a2 x b2 y c2 ,有唯一解 ??这两条直线订交 ?你知道当 a1, a2, b1,b2,c1,c2分别满足什么条件时,方a1x b1 y c1 ,无解 ?无数多组解 ?这时对应的两条直线的地址关系是怎样的?程组a2 x b2 y c2 ,3. (2004 年福州卷 ) 如图, L 1, L 2?分别表示一种白炽灯和一种节能灯的花销y( 花销 =灯的售价 +电费,单位:元 ) 与照明时间 x(h) 的函数图像,假设两种灯的使用寿命都是2000h,照明收效相同.(1)依照图像分别求出 L1, L 2的函数关系式.(2)当照明时间为多少时,两种灯的花销相等?(3)小亮房间计划照明 2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法 ( 直接给出答案,不用写出解答过程 ) .一、选择题1. B 解析:设 L 1 的关系式为 y=kx-1 ,将 x=2, y=3 代入,得 3=2k-1 ,解得 k=2.∴ L 1 的关系式为 y=2x-1 ,即 2x-y=1 .设 L 2 的关系式为 y=kx+1 ,将 x=2, y=3 代入,得 3=2k+1,解得 k=1.∴ L 2 的关系式为 y=x+1 ,即 x-y=-1 .故应选 B . 2. B解析:∵ x+1=4y+ x ,∴ 4y=x+1-x,4y= 2 x+1,y= 1 x+ 1.故应选 B .3336 43. C解析:把 x=1, y=-2 代入 y= x+n 得 -2=1+n ,n=-2-1,n=- 5.2 222把 x=1, y=-2 代入 y=mx-1 得 -2=m-1 , m=-2+1, m=-1,故应选 C .y 1 x 6,x 10,4. C 解析:解方程组22,得1,y x 11y31 31∴直线 y= 1x-6 与直线 y=- 2x-11 的交点为 (10 , -1) , ?故应选 C .231315. B x 1, x 2,k b 2, k 2, 解析:把2,y 4, 分别代入 y=kx+b ,得b解得b 0,y2k 4,故应选 B .6. B 解析:把 y=0 代入 2x+5y=-4 ,得 2x=-4 ,x=-2 .所以交点坐标为 (-2 , 0) .把 x=-2 , y=0 代入 kx-3y=8 ,得 -2k=8 , k=-4 ,故应选 B .二、填空题1.解析:当 x=2 时, y=2x-1=2 × 2-1=3 ,∴ (2 ,3) 在一次函数 y=2x-1 的图像上.即 x=2, y=3 是方程 2x-y=1 的解.答案:图像上 解x y3,yx3, 2.解析:因为方程组x中的两个方程变形后为x 1,y2 1,y2所以函数 y=3-x 与 y= x+1 的交点坐标就是二元一次方程组的解,即为(4 ,5)。

二元一次方程与一次函数结合应用题

二元一次方程与一次函数结合应用题

二元一次方程与一次函数结合应用题二元一次方程和一次函数是数学中重要的概念和工具,它们在实际生活中的应用非常广泛。

本文将通过一系列的例子,详细介绍这两个数学概念与实际应用的关系。

首先,让我们来看一个简单的例子。

假设小明去工地搬砖,每小时搬运的砖头数为x个,他一共工作了y个小时。

我们知道,小明每小时搬运的砖头数是固定的,这可以表示为一个一次函数的形式:y = kx + b,其中k表示每小时的搬运数量,b表示小明一开始已经搬运的砖头数。

同时,我们可以将小明的总工作时间表示为y,这样就可以得到一个二元一次方程:x + y = t,其中t表示小明的总工作时间。

在实际应用中,我们会遇到类似这样的问题,需要使用二元一次方程和一次函数来解决。

比如说,小明每天去参加美术培训班,他每小时学习的艺术知识量为x个,他一共学习了y个小时。

我们知道小明学习的艺术知识量是固定的,可以表示为一个一次函数的形式:y = kx + b,其中k表示每小时学习的艺术知识量,b表示小明一开始已经学习的艺术知识量。

同时,我们可以将小明的总学习时间表示为y,这样就可以得到一个二元一次方程:x + y = t,其中t表示小明的总学习时间。

另一个应用二元一次方程和一次函数的例子是解决物理问题。

假设小明在距离地面10米高的楼顶上抛掷一个物体,小明抛掷物体的初速度为v米/秒,物体下落的时间为t秒。

我们知道物体下落的时间是固定的,可以表示为一个一次函数的形式:t = kv + b,其中k表示物体下落的时间,b表示小明抛掷物体的初始时间。

同时,我们可以将物体下落的距离表示为y,这样就可以得到一个二元一次方程:y = 10 - 0.5gt^2,其中g表示物体下落的加速度。

在生活中,我们还会遇到一些利用二元一次方程和一次函数解决的实际问题。

比如说,小明每天去超市购买水果,他购买的苹果数量为x个,每个苹果的价格为p元。

他一共花费了y元。

我们知道小明购买水果的总花费是固定的,可以表示为一个一次函数的形式:y =kx + b,其中k表示每个苹果的价格,b表示小明一开始的花费。

一次函数与二元一次方程组

一次函数与二元一次方程组

巩固练习
1、根据下列图象,你能说出它表示哪个方 程组的解?这个解是什么?
y
y=2x-1
方程组
2x–y= –1 3x+y=4
1
o
x
1
x=1 y=1
y=-3x+4
2:用图象法解方程组: 2x+y=4
2x-3y=12
① ② y=2/3 - 4 o y x
解:由①得: y 2 x 4
在同一坐标系中作出它们 的图象:(如图所示)
(1,-1)
从图中可知两直线的交点坐标为(1,-1)
显然:两个一次函数图象的交点 坐标就是它们所对应的二元一次 方程组的解。
0
-2
x
y=-2x+1
归纳总结:
一次函数与二元一次方程组
从数的角度看:
求二元一次方程组的解 x为何值时,两个函数的值相等
从形的角度看:
求二元一次方程组的解 是确定两条直线交点的坐标
问题:1、通话多少分 钟两种卡花费一样? 通话100分钟 2、通话多少分钟便民卡 优惠? 通话时间大 于100分钟 3、通话多少分钟如意卡 优惠? 通话时间小 于100分钟 (元) y 50 40 30 20 10
y=0.5x
如意卡 便民卡
y=30+0.2x
o
20 40 60 80 100 120
x(分)
x-y=2
2x+y=1 x-y=2 对应的两一次函数是怎样的? 2x+y=1 y=x-2, y=-2x+1
y=x-2 1
1/ 2
x=1 y=-1
(3)在同一直角坐标系中画出 y=x-2和y=-2x+1的图象。 y

二元一次方程和一次函数的应用题

二元一次方程和一次函数的应用题

题目:二元一次方程和一次函数的应用题一、引言在初中的数学学习中,我们接触到了二元一次方程和一次函数的概念。

这两个概念在日常生活中有着广泛的应用,能够帮助我们解决各种实际问题。

本文将通过一系列应用题的方式,来深入探讨二元一次方程和一次函数的实际应用,以帮助读者更加深入地理解和掌握这两个数学概念。

二、二元一次方程的应用题1. 风速问题某地温度为20摄氏度,风速为8米/秒时,室外温度高于室内温度。

如果风速减小到4米/秒,室外温度低于室内温度。

求室内室外温度。

解析:设室内温度为x摄氏度,室外温度为y摄氏度。

由题意可得到如下两个方程:x - y = k(式1)k = 2t(式2)将式2代入式1中,得到:x - y = 2t当风速为8米/秒时,室外温度高于室内温度,即y > x,代入上述方程组,可解得室内温度为18摄氏度,室外温度为20摄氏度。

当风速为4米/秒时,室外温度低于室内温度,即y < x,代入上述方程组,可解得室内温度为22摄氏度,室外温度为20摄氏度。

2. 速度问题甲、乙两地相距500公里,甲地到乙地有一辆以80km/h的汽车,乙地到甲地有一辆以100km/h的汽车。

两车同时出发相向而行,多久能相遇?解析:设甲地汽车行驶时间为x小时,乙地汽车行驶时间为y小时。

根据题意可得到如下两个方程:80x + 100y = 500(式1)x + y = t(式2)其中t为两车相遇的时间。

将式2代入式1中,得到:80x + 100(t-x) = 500解得x = 2.5,y = 2.5,所以两车相遇的时间为2.5小时。

三、一次函数的应用题1. 成本和收入问题某公司生产一种产品,每生产一件产品的成本为20元,售价为30元。

如果销售量为x件,求出销售x件产品的收入和成本之差的一次函数。

解析:收入为30x,成本为20x,所以收入和成本之差为30x - 20x = 10x。

销售x件产品的收入和成本之差为10x元,可以表示成y = 10x 的一次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与二元一次方程专题一.选择题(共10小题)1.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.2.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.4.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.5.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.用图象法解方程组时,下图中正确的是()A.B.C.D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.8.若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)9.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+210.某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33二.填空题(共10小题)11.已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),则关于x的方程组的解是.12.如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第象限.13.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.14.如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.15.如图,点A的坐标可以看成是方程组的解.16.一次函数y=x+1与y=ax+3的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是.17.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.18.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.19.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.20.如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.三.解答题(共10小题)21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.22.如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.23.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.24.汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.25.已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.26.已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.27.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.28.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.29.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=时.30.某公司一辆绿化洒水车以每分50升的速度给一片树林浇水,一段时间后关闭洒水阀门,行驶到一片草坪处,以另一洒水速度匀速给草坪浇水,直到洒水车内的水全部用光,洒水车内的水量y(升)与时间x(分)之间的函数图象如图所示.(1)求a的值;(2)求洒水车给草坪浇水时y与x之间的函数关系式.(3)当x=13时,洒水车共浇水多少升?一次函数与二元一次方程专题参考答案与试题解析一.选择题(共10小题)1.(2017•昌平区二模)如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故答案为A【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.(2016•临清市二模)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.(2016春•单县期末)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.4.(2016秋•滕州市期末)如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.【点评】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.5.(2016春•迁安市期末)直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先用含x的代数式表示y可得一次函数解析式,再根据一次函数图象与系数的关系即可求解.【解答】解:∵8x﹣4y=5,∴y=2x﹣,∵k=2>0,b=﹣<0,∴图象经过第一、三、四象限,即不经过第二象限.故选B.【点评】此题考查了一次函数与二元一次方程,任何一个二元一次方程都可以化成一个一次函数.同时考查了一次函数图象与系数的关系.6.(2015秋•连云港期末)用图象法解方程组时,下图中正确的是()A.B.C.D.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.7.(2016春•长春期中)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选A.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.(2015秋•兴化市校级月考)若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)【分析】二元一次方程可以化为一次函数,两个二元一次方程组的解就是两个函数的交点坐标.【解答】解:∵二元一次方程组的解是,∴直线与y=﹣x+5的交点坐标为(4,1).故选A.【点评】本题主要考查了一次函数与二元一次方程组,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.10.(2013•荆州模拟)某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33【分析】本题的等量关系是:捐1元的人数+捐2元的人数+捐3元的人数+捐4元的人数=40人,1元的捐款+2元的捐款+3元的捐款+4元的捐款=100元.由此可得出方程组,求出未知数的解,进而代入各选项解析式,即可得出答案.【解答】解:设捐款2元的有x人,捐款3元的有y人,则,解之得:.则捐款2元的有15人,捐款3元的有12人,当x=15,y=12时,只有代入A使得两函数解析式左右相等,故选:A.【点评】此题主要考查了二元一次方程组的应用以及两函数交点问题,解题关键是求出x,y的值.二.填空题(共10小题)11.(2017春•云梦县期中)已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P (3,1),则关于x的方程组的解是.【分析】根据方程组的解即为函数图象的交点坐标解答.【解答】解:∵一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),∴方程组的解是;故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.(2017春•威海期中)如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第二象限.【分析】方程组无解,即直线y=﹣x+1与y=(2k+1)x﹣3平行,那么﹣1=2k+1,求出k的值,进而求解即可.【解答】解:∵方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,在直线y=2x﹣3中,∵2>0,﹣3<0,∴直线y=2x﹣3经过第一、三、四象限,不经过第二象限.故答案为二.【点评】本题考查了一次函数与二元一次方程组的关系,一次函数图象与系数的关系,求出k的值是解题的关键.13.(2016•莘县二模)如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2016•重庆校级二模)如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.【分析】根据函数图象可以分别求得直线l1、l2的函数解析式,从而可以解答本题.【解答】解:由函数图象可知,直线l1过点(0,),(2,3),设解析式为:y=k1+b,则,解得,,即直线l1的解析式为:y=;直线l2过点(0,0),(2,3),设解析式为y=k2x,则3=2k2,得k2=,即直线l2的解析式为:y=,故这个方程组为:,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确一次函数与二元一次方程组的关系,利用数形结合的思想解答问题.15.(2016春•安陆市期末)如图,点A的坐标可以看成是方程组的解.【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.16.(2016秋•郓城县期末)一次函数y=x+1与y=ax+3的图象交于点P,且点P 的横坐标为1,则关于x,y的方程组的解是.【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.(2016秋•南海区期末)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.【分析】根据图象可得两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.(2016春•沙坪坝区期中)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标,属于中考常考题型.19.(2016秋•曲江区校级期中)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故答案为:.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.20.(2015•西藏一模)如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线l1与l2的交点的坐标.【解答】解:根据题意知,二元一次方程组的解就是直线l1与l2的交点的坐标,又∵交点坐标(2,3),∴原方程组的解是:.故答案是:【点评】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.三.解答题(共10小题)21.(2016春•浠水县期末)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P (1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【分析】(1)直接把P(1,b)代入y=x+1可求出b的值;(2)利用方程组的解就是两个相应的一次函数图象的交点坐标求解;(3)根据一次函数图象上点的坐标特征进行判断.【解答】解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.利用一次函数图象上点的坐标特征对(3)进行判断.22.(2014秋•陕西校级月考)如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.【分析】(1)先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案;(2)根据函数图象与坐标轴的交点坐标和两函数的交点坐标利用三角形的面积公式进行计算即可.【解答】解:(1)设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为:;(2)围成的三角形的面积为:S=[5﹣(﹣1)]×2=6.【点评】本题考查了一次函数与二元一次方程(组)的知识,函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.23.(2017•农安县模拟)某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1800(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.24.(2017•青羊区模拟)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶3h后加油,中途加油31L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)根据函数图象3小时时油箱油量变多解答;(2)利用待定系数法求一次函数解析式解答;(3)求出加油前行驶的路程和用油量,再求出从加油站到目的地所需要的油量,然后判断即可.【解答】解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45﹣14=31升;(2)因为函数图象过点(0,50)和(3,14),所以设函数关系式为y=kt+b,则,解得,因此,y=﹣12t+50;(3)油箱中的油够用.∵汽车加油前行驶了3小时,行驶了3×70=210(km),用去了50﹣14=36升油,而目的地距加油站还有210km,∴要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.【点评】本题考查了一次函数的应用,读懂题目信息并准确识图,观察出油箱中的油量的变化是解题的关键.25.(2017春•普陀区期中)已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.【分析】根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、B(4,4).∴,解得:.∴这个一次函数的解析式为:y=x+2.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.26.(2017春•沙坪坝区期中)已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.【分析】(1)根据点的坐标,利用待定系数法求出一次函数关系式即可;(2)将x=4代入一次函数关系式中,求出y值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(0,3)、(2,7)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=2x+3.(2)当x=4时,y=2x+3=2×4+3=11.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)将x=4代入一次函数关系式求出y值.27.(2016秋•二道区校级期末)已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求。

相关文档
最新文档