_正态分布及其性质 PPT
合集下载
课件3:§7.5 正态分布
( B) A.95.45%
B.99.73%
C.4.55%
D.0.27%
【解析】由 X~N(-2,14),知 μ=-2,σ=21,
∴P(-3.5<X≤-0.5)=P(-2-3×0.5<X≤-2+3×0.5)
=0.997 3.
3.已知正态分布总体的数据落在区间(-3,-1)内的概率 和落在区间(3,5)内的概率相等,那么这个正态总体的均值 为________. 【解析】区间(-3,-1)和区间(3,5)关于直线 x=1 对称, 所以均值 μ 为 1. 【答案】1
课堂检测
1.下列函数可以作为正态分布密度函数的是 ( A )
A.f(x)=
( x1)2
1e 2 2π
B.f(x)=σ
1
( xu)2
e 2 2
2π
C.f(x)=
1
e
(
x u )2 2 2
2πσ
D.f(x)=21π
e
(
xu 2π
)2
2.若 X~N(-2,41),则 X 落在(-3.5,-0.5]内的概率是
归纳领悟 1.在正态分布 X~N(μ,σ2)中,μ 就是随机变量 X 的均值,σ2 就是随机变量 X 的方差,它们分别反映 X 取值的平均大小和 稳定程度. 2.正态密度曲线的性质 (1)曲线位于 x 轴上方,与 x 轴不相交; (2)曲线是单峰的,它关于直线 x=μ 对称;
(3)曲线在
x=μ
处达到峰值 σ
课堂小结 1.知识清单: (1)正态曲线及其特点. (2)正态分布. (3)正态分布的应用,3σ原则. 2.方法归纳:转化化归、数形结合. 3.常见误区:概率区间转化不等价.
本节内容结束 更多精彩内容请登录:
2.4《正态分布》ppt
正态曲线下的面积规律
• X轴与正态曲线所夹面积恒等于1 。 • 对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)
正态曲线下的面积规律
• 对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
4、特殊区间的概率:
若X~N ( , ) ,则对于任何实数a>0,概率
0.1573
例2:
1.已知随机变量X服从正态分布 N(3,σ2),则P(X<3)等 于( ) A. 1/4 B. 1/3 C. 1/3 D. 1/2 2 2 2.设两个正态分布N(μ1, 1 ) (σ1>0)和N(μ2, ) 2 (σ2>0)的密度函数图象如图所示,则有 ( )
A.μ1<μ2,σ1<σ2 C.μ1>μ2,σ1<σ2
0.63
0.79 0.92 0.96 0.98 1.00
0.0227
0.0145 0.0118 0.0036 0.0018 0.0018
频率分布直方图
频率 组距
100件产品尺寸的频率分布直方图
产品内径尺寸/mm
o
200件产品尺寸的频率分布直方图
频率 组距
8 6 4 2
o
产品内径尺寸/mm
样本容量增大时频率分布直方图
A.0.1
B. 0.2
C. 0.3
D.0.4
5.已知随机变量X服从正态分布N(2,σ2),且P(X <4)=0.8,则P(0<X<2)=( ) A.0.6 B.0.4 C.0.3 D.0.2
6.
我们从上图看到,正态总体在 2 , 2 以外取值的概率只有4.56%,在 3 , 3 以外 取值的概率只有0.26 %。
大学正态分布ppt课件
记号
X服从正态分布时,记作X ~ N(μ, σ^2)。
正态分布的特点
钟形曲线
正态分布是一条钟形曲线,形状由均值和标准差决定。
均值为μ,方差为σ^2
正态分布的均值和方差是两个参数,均值为μ,方差为σ^2。
曲线下的面积
正态分布曲线下的面积为1,表示概率的累积分布。
正态分布的应用
自然现象
01
许多自然现象,如人类的身高、体重、智商等,都近
可靠性工程
在可靠性工程中,正态分布被用于描述设备的故 障概率和寿命分布,以及设计和优化设备的可靠 性。
PART 06
正态分布与其他统计分布 的关系
REPORTING
与二项分布的关系
01 02 03 04
二项分布是离散型的概率分布,而正态分布是连续型的概率分布。
二项分布中,随机变量取值是离散的,而正态分布中,随机变量取值 是连续的。
二项分布和正态分布的形状都呈现出钟形曲线,但二项分布的曲线比 较陡峭,而正态分布的曲线比较平缓。
二项分布和正态分布在一定条件下可以相互转化。例如,当二项分布 的试验次数足够大时,二项分布的极限分布就是正态分布。
与泊松分布的关系
泊松分布也是离散型的概率分布,但与二项分 布不同的是,泊松分布适用于描述单位时间( 或单位面积)内随机事件发生的次数。
似服从正态分布。
社会科学
02 在社会科学中,很多现象也服从正态分布,如人的出
生率、死亡率等。
科学实验
03
在科学实验中,实验结果往往呈现正态分布,如化学
反应速率等。
PART 02
正态分布的性质
REPORTING
数学期望与方差
数学期望
正态分布的期望值,即概率分布的中 心,表示为μ。它描述了分布的中心 位置。
X服从正态分布时,记作X ~ N(μ, σ^2)。
正态分布的特点
钟形曲线
正态分布是一条钟形曲线,形状由均值和标准差决定。
均值为μ,方差为σ^2
正态分布的均值和方差是两个参数,均值为μ,方差为σ^2。
曲线下的面积
正态分布曲线下的面积为1,表示概率的累积分布。
正态分布的应用
自然现象
01
许多自然现象,如人类的身高、体重、智商等,都近
可靠性工程
在可靠性工程中,正态分布被用于描述设备的故 障概率和寿命分布,以及设计和优化设备的可靠 性。
PART 06
正态分布与其他统计分布 的关系
REPORTING
与二项分布的关系
01 02 03 04
二项分布是离散型的概率分布,而正态分布是连续型的概率分布。
二项分布中,随机变量取值是离散的,而正态分布中,随机变量取值 是连续的。
二项分布和正态分布的形状都呈现出钟形曲线,但二项分布的曲线比 较陡峭,而正态分布的曲线比较平缓。
二项分布和正态分布在一定条件下可以相互转化。例如,当二项分布 的试验次数足够大时,二项分布的极限分布就是正态分布。
与泊松分布的关系
泊松分布也是离散型的概率分布,但与二项分 布不同的是,泊松分布适用于描述单位时间( 或单位面积)内随机事件发生的次数。
似服从正态分布。
社会科学
02 在社会科学中,很多现象也服从正态分布,如人的出
生率、死亡率等。
科学实验
03
在科学实验中,实验结果往往呈现正态分布,如化学
反应速率等。
PART 02
正态分布的性质
REPORTING
数学期望与方差
数学期望
正态分布的期望值,即概率分布的中 心,表示为μ。它描述了分布的中心 位置。
正态分布完整ppt课件
正态性检验
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。
正态分布ppt课件
1.已知某地区中学生的身高 X 近似服从正态分布 N 164, 2 ,若 P X 170 0.3 ,
则 P158 X 1706
D.0.8
解析: P158 X 170 2P164 X 170 2 0.5 P X 170 0.4 .
2. 已 知 随 机 变 量 X 服 从 正 态 分 布 N 1, 2 , 若 P(X 0) P(X 3) 11 , 则 10 P(2 X 3) ( )
A.0.1
B.0.2
C.0.3
D.0.4
解析:因为随机变量 X 服从正态分布 N 1, 2 ,
所以随机变量 X 的均值 1 ,
所以随机变量 X 的密度曲线关于 x 1 对称, 所以 P(X 0) P(X 2) , 又 P(X 0) P(X 3) 11 ,
10
所以 P(X 2) P X 2 P(2 X 3) 11 ,
为“可用产品”,则在这批产品中任取 1 件,抽到“可用产品”的概率约为 _____________.
参考数据:若 X N , 2 ,则 P X 0.6827 ,
P 2 X 2 0.9545, P 3 X 3 0.9973
解析:由题意知,该产品服从 X N(25,0.16) ,则 25, 0.4 ,
10
因为 P(X 2) P X 2 1,所以 P(2 X 3) 0.1
3.已知随机变量 X ~ N , 2 ,Y ~ B6, p ,且 P X 3 1 , E X E Y ,则 2
p ( )
1
1
1
1
A. 6
B. 4
C. 3
D. 2
解析:由于 X 服从正态分布 N , 2 ,且 P X 3 1 ,故其均值 E X 3 . 2
正态分布分布ppt课件
通过样本数据可以估计总体的均值、方差等 参数,进而对总体进行推断和分析。
假设检验
质量控制
在假设检验中,通常需要比较样本数据与某 个理论分布的差异,中心极限定理提供了理 论依据。
在工业生产等领域中,可以利用中心极限定 理对产品质量进行监控和预测。
03
正态分布在各领域应用举例
自然科学领域应用
1 2
描述自然现象的概率分布 正态分布可以描述许多自然现象的概率分布情况, 如身高、体重、智商等的分布情况。
根据显著性水平和自由度 确定t分布的临界值,进 而确定拒绝域。
将计算得到的t统计量与 拒绝域进行比较,若t统 计量落在拒绝域内,则拒 绝原假设,否则接受原假 设。
配对样本t检验原理及步骤
01
02
03
04
05
原理:配对样本t检验是 提出假设:设立原假设 用于比较同一组受试者 (H0)和备择假设 在两个不同条件下的测 (H1),原假设通常为 量值是否存在显著差异 两个测量值的均值相等。 的统计方法。它基于正 态分布假设和配对设计, 通过计算t统计量来推断 两个测量值的差异是否 显著。
设立原假设(H0)和备择假 设(H1),原假设通常为样 本均值等于总体均值。
计算t统计量,公式为t=(样 本均值-总体均值)/标准误, 其中标准误=样本标准差/根 号n。
根据显著性水平和自由度确 定t分布的临界值,进而确 定拒绝域。
将计算得到的t统计量与拒 绝域进行比较,若t统计量 落在拒绝域内,则拒绝原假 设,否则接受原假设。
06
非参数检验在处理非正态数据 时应用
非参数检验方法简介
非参数检验的概念
非参数检验是一种基于数据秩次的统计推断方法,它不依赖于总 体分布的具体形式,因此适用于处理非正态数据。
正态分布-ppt课件
(14)曲(3线) (的4)对称位置由μ确定,曲线的形状由σ确定,σ越大,曲线越“矮胖”,反之,曲线越“瘦高”.
布 N (0,1) , 已 知 p ( < - 1.96 ) =0.025 , 则 即2、考已试知成X绩~N在((08,10),1,00则)间X在的区概间率为0. 内取值的概率等于( )
(2)曲线对应的正态总体概率密度函数是偶函数;
(3)曲线在x= 处处于最高点,由这一点向左右两侧延
伸时,曲线逐渐降低;
(4)曲线的对称位置由μ确定,曲线的形状由σ确定, σ越大,曲线越“矮胖”,反之,曲线越“瘦高”.
上述叙述中,正确的有 (1) (3) (4) .
课堂练习
1. 右图是当 σ 分别取值 σ1,σ2,σ3 的三种正
(2)
1 , 2 1 (x1)2
(x) 新疆 王新敞 奎屯
e 8 ,x ( , )
22
说明:当0 , 1时,X 服从标准正态分布
记为X~N (0 , 1)
例2、下列函数是正态密度函数的是( B )
f(x) 1 e ,,(0)都 是 实 数 A. 说明:当m=0 , s =1时,X 服从标准正态分布 2 样本容量增大时频率分布直方图
随 着 重 复 次 数 ,这的个增频加率 直 方 图 的
会 越 来 越 像 一线 条图钟 2.4形 3曲 .
y
O
图2.43
x
这条曲线 (或就 近是 似 )下地 列函数:的图象
φμ,σx 1 ex 2 σ μ 22,x , ,
2π σ
其 中 μ 和 σ σ 实 0 为 数 .我 参φ 们 μ 数 ,σ x 的 称
1 即即(947)考考7曲2试 试线成成的D.绩绩对在在称((位8800置,,1100由00))μ间间确的的定概概,率率曲为为线00的.. 形状由σ确定,σ越(x大4,1)曲2线越“矮胖”,反之,曲线越“瘦高”.
《正态分布》ppt课件
《正态分布》ppt课件
目录
CONTENTS
• 正态分布基本概念 • 正态分布在统计学中应用 • 正态分布在自然科学领域应用 • 正态分布在社会科学领域应用 • 正态分布计算方法及工具介绍 • 正态分布在实际问题中案例分析
01 正态分布基本概念
CHAPTER
定义与性质
定义
对称性
正态分布是一种连续型概率分布,描述了许 多自然现象的概率分布情况。在统计学中, 正态分布又被称为高斯分布。
系统误差与随机误差
正态分布可以帮助区分系统误差和随机误差。系统误差是由于实验装置或方法本身的缺陷引 起的,而随机误差则是由于各种不可控因素引起的。通过正态分布分析,可以对这两类误差 进行识别和纠正。
化学中浓度分布规律研究
01
溶液浓度的正态分布
在化学实验中,溶液的浓度分布往往符合正态分布。通过测量不同位置
利用SPSS的图形功能,可以绘制多种统计图表,包括频率分布直 方图、正态分布曲线图等。
SPSS提供了丰富的统计分析方法,如参数估计、假设检验、方差 分析等,可以根据研究需求选择合适的方法进行分析。
06 正态分布在实际问题中案例分析
CHAPTER
质量控制过程中产品合格率评估
质量控制图
利用正态分布原理,通过绘制质 量控制图,可以直观地展示产品 质量的波动情况,从而及时发现 并处理异常波动,确保产品合格
数据输入与整理
在Excel中输入数据,并进行必要的整理,如删除重复值、处理缺失 值等。
使用内置函数计算均值和标准差
Excel提供了丰富的内置函数,可以直接计算数据集的均值 (AVERAGE函数)和标准差(STDEV函数)。
绘制图表
利用Excel的图表功能,可以根据数据快速生成频率分布直方图和正 态分布曲线图。
目录
CONTENTS
• 正态分布基本概念 • 正态分布在统计学中应用 • 正态分布在自然科学领域应用 • 正态分布在社会科学领域应用 • 正态分布计算方法及工具介绍 • 正态分布在实际问题中案例分析
01 正态分布基本概念
CHAPTER
定义与性质
定义
对称性
正态分布是一种连续型概率分布,描述了许 多自然现象的概率分布情况。在统计学中, 正态分布又被称为高斯分布。
系统误差与随机误差
正态分布可以帮助区分系统误差和随机误差。系统误差是由于实验装置或方法本身的缺陷引 起的,而随机误差则是由于各种不可控因素引起的。通过正态分布分析,可以对这两类误差 进行识别和纠正。
化学中浓度分布规律研究
01
溶液浓度的正态分布
在化学实验中,溶液的浓度分布往往符合正态分布。通过测量不同位置
利用SPSS的图形功能,可以绘制多种统计图表,包括频率分布直 方图、正态分布曲线图等。
SPSS提供了丰富的统计分析方法,如参数估计、假设检验、方差 分析等,可以根据研究需求选择合适的方法进行分析。
06 正态分布在实际问题中案例分析
CHAPTER
质量控制过程中产品合格率评估
质量控制图
利用正态分布原理,通过绘制质 量控制图,可以直观地展示产品 质量的波动情况,从而及时发现 并处理异常波动,确保产品合格
数据输入与整理
在Excel中输入数据,并进行必要的整理,如删除重复值、处理缺失 值等。
使用内置函数计算均值和标准差
Excel提供了丰富的内置函数,可以直接计算数据集的均值 (AVERAGE函数)和标准差(STDEV函数)。
绘制图表
利用Excel的图表功能,可以根据数据快速生成频率分布直方图和正 态分布曲线图。
《正态分布》教学课件(32张PPT)
x (,) 标准正态曲线 10
正态密度曲线的图像特征
方差相等、均数不等的正态分布图示
μ=0 μ= -1
μ= 1
σ=0.5
若 固定
, 随 值
的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
正态密度曲线的图像特征
μ=0
均数相等、方差不等的正态分布图示
若 固定,
=0.5
大时, 曲线 矮而胖;
小时, 曲
在下列哪个区间内?( A)
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D ) A.0.9544 B.0.0456 C.0.9772 D.0.0228 3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
120.68260.3413, P ( 6 x 7 ) P ( 5 x 7 ) P ( 5 x 6 )
0 . 4 7 7 2 0 . 3 4 1 3 0 . 1 3 5 9 .
5、把一个正态曲线a沿着横轴方向向右移动2个单位, 得到新的一条曲线b。下列说法中不正确的是( )
P(2X2)= 0.9544 .
4、若X~N(5,1),求P(6<X<7).
27
4、若X~N(5,1),求P(6<X<7).
解:因为X~N(5,1), 5,1.
又因为正态密度曲线关于直线 x=5 对称 ,P(5x7)1 2P(3x7)1 2P(521x521)
120.95440.4772, P(5x6)1 2P(4x6)
μ= -1
y σ=0.5
正态密度曲线的图像特征
方差相等、均数不等的正态分布图示
μ=0 μ= -1
μ= 1
σ=0.5
若 固定
, 随 值
的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
正态密度曲线的图像特征
μ=0
均数相等、方差不等的正态分布图示
若 固定,
=0.5
大时, 曲线 矮而胖;
小时, 曲
在下列哪个区间内?( A)
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D ) A.0.9544 B.0.0456 C.0.9772 D.0.0228 3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
120.68260.3413, P ( 6 x 7 ) P ( 5 x 7 ) P ( 5 x 6 )
0 . 4 7 7 2 0 . 3 4 1 3 0 . 1 3 5 9 .
5、把一个正态曲线a沿着横轴方向向右移动2个单位, 得到新的一条曲线b。下列说法中不正确的是( )
P(2X2)= 0.9544 .
4、若X~N(5,1),求P(6<X<7).
27
4、若X~N(5,1),求P(6<X<7).
解:因为X~N(5,1), 5,1.
又因为正态密度曲线关于直线 x=5 对称 ,P(5x7)1 2P(3x7)1 2P(521x521)
120.95440.4772, P(5x6)1 2P(4x6)
μ= -1
y σ=0.5
正态分布的定义与表格PPT(29张)
过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。
•
2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。
•
3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。
•
4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。
设X~ N(,2) , X的分布函数是
F(x) 1 xe(t2 2)2d,tx
2
正态分布由它的两个参数μ和σ唯 一确定, 当μ和σ不同时,是不同的正 态分布.
下面我们介绍一种最重要的正态分布
标准正态分布
二、标准正态分布
0,1的正态分布称为标准正态分布.
•
16、人生在世:可以缺钱,但不能缺德;可以失言,但不能失信;可以倒下,但不能跪下;可以求名,但不能盗名;可以低落,但不能堕落;可以放松,但不能放纵;可以虚荣,但不能虚伪;可以平凡,但不能平庸;可以浪漫,但不能浪荡;可以生气,但不能生事。
•
17、人生没有笔直路,当你感到迷茫、失落时,找几部这种充满正能量的电影,坐下来静静欣赏,去发现生命中真正重要的东西。
•
19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。
•
20、没有收拾残局的能力,就别放纵善变的情绪。
•
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
•
2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
决定了图形的中心位置,决定了图形
中峰的陡峭程度.
•
2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。
•
3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。
•
4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。
设X~ N(,2) , X的分布函数是
F(x) 1 xe(t2 2)2d,tx
2
正态分布由它的两个参数μ和σ唯 一确定, 当μ和σ不同时,是不同的正 态分布.
下面我们介绍一种最重要的正态分布
标准正态分布
二、标准正态分布
0,1的正态分布称为标准正态分布.
•
16、人生在世:可以缺钱,但不能缺德;可以失言,但不能失信;可以倒下,但不能跪下;可以求名,但不能盗名;可以低落,但不能堕落;可以放松,但不能放纵;可以虚荣,但不能虚伪;可以平凡,但不能平庸;可以浪漫,但不能浪荡;可以生气,但不能生事。
•
17、人生没有笔直路,当你感到迷茫、失落时,找几部这种充满正能量的电影,坐下来静静欣赏,去发现生命中真正重要的东西。
•
19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。
•
20、没有收拾残局的能力,就别放纵善变的情绪。
•
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
•
2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
决定了图形的中心位置,决定了图形
中峰的陡峭程度.
正态分布ppt课件
收集数据
从实际问题中收集相关数据,如某产品的质量指 标数据。
数据拟合
使用正态分布函数对数据进行拟合,判断数据是 否符合正态分布特征。
参数估计
采用最大似然估计等方法,估计出正态分布的均 值和标准差等参数值。
案例分析:某产品质量指标服从正态分布检验
案例背景介绍
介绍某产品的质量指标数据及其背景信息。
正态性检验
选举结果预测 在政治学中,选举结果的预测也往往基于正态分布模型, 通过分析选民的支持率和投票行为来预测选举结果。
经济金融数据中正态分布检验
在金融市场中,股票价格的波动往往呈现出正态分布 的特点,即大部分价格波动都集中在平均值附近,而
极端波动出现的概率很小。
输入 收益标率题分布
在投资组合理论和风险管理中,收益率的分布也往往 假设为正态分布,以便进行风险度量和资产配置。
连续型随机变量及其性质
均匀分布
均匀分布是描述在某一区间内取值的随机变量,其取值具有等可能性。
指数分布
指数分布是描述无记忆性的随机变量的概率分布,常用于可靠性分析 和排队论中。
正态分布
正态分布是描述连续型随机变量的最重要的一种分布,具有对称性和 集中性等特点,广泛应用于自然科学和社会科学领域。
其他连续型随机变量
概率分布的概念
概率分布用于描述随机变量取不同值 的概率规律,包括离散型概率分布和 连续型概率分布。
离散型随机变量的概率分布
离散型随机变量取值为有限个或可数 个,其概率分布通常用分布列表示。
连续型随机变量的概率分布
连续型随机变量取值充满某个区间, 其概率分布用概率密度函数表示。
期望与方差
期望的概念
方差的概念
利用正态分布性质,识别 并处理回归模型中的异常 值。
从实际问题中收集相关数据,如某产品的质量指 标数据。
数据拟合
使用正态分布函数对数据进行拟合,判断数据是 否符合正态分布特征。
参数估计
采用最大似然估计等方法,估计出正态分布的均 值和标准差等参数值。
案例分析:某产品质量指标服从正态分布检验
案例背景介绍
介绍某产品的质量指标数据及其背景信息。
正态性检验
选举结果预测 在政治学中,选举结果的预测也往往基于正态分布模型, 通过分析选民的支持率和投票行为来预测选举结果。
经济金融数据中正态分布检验
在金融市场中,股票价格的波动往往呈现出正态分布 的特点,即大部分价格波动都集中在平均值附近,而
极端波动出现的概率很小。
输入 收益标率题分布
在投资组合理论和风险管理中,收益率的分布也往往 假设为正态分布,以便进行风险度量和资产配置。
连续型随机变量及其性质
均匀分布
均匀分布是描述在某一区间内取值的随机变量,其取值具有等可能性。
指数分布
指数分布是描述无记忆性的随机变量的概率分布,常用于可靠性分析 和排队论中。
正态分布
正态分布是描述连续型随机变量的最重要的一种分布,具有对称性和 集中性等特点,广泛应用于自然科学和社会科学领域。
其他连续型随机变量
概率分布的概念
概率分布用于描述随机变量取不同值 的概率规律,包括离散型概率分布和 连续型概率分布。
离散型随机变量的概率分布
离散型随机变量取值为有限个或可数 个,其概率分布通常用分布列表示。
连续型随机变量的概率分布
连续型随机变量取值充满某个区间, 其概率分布用概率密度函数表示。
期望与方差
期望的概念
方差的概念
利用正态分布性质,识别 并处理回归模型中的异常 值。
《正态分布》课件
1
定义标准正态分布
标准正态分布是均值为0,标准差为1的正态分布。
2
概率密度函数
标准正态分布的概率密度函数是标准形式的正态分布。
3
转化为标准正态分布
通过标准化方法,可以将任意正态分布转化为标准正态分布。
正态分布的应用
1 股票市场
正态分布被广泛应用于股票市场的波动性分析和预测。
2 IQ 测试
正态分布在智商测评中用于解释测试结果的分布情况。
平均数和标准差
在正态分布中,平均数和标准差决定了分布的位置和形状。
对称性
正态分布以均值为对称中心,左右两侧呈对称分布。
正态分布的概率密度函数
概率密度函数
正态分布的概率密度函数描述了不同取值的概率分 布情况。
图形表示
概率密度函数可在图形上呈现出钟形曲线的形状, 帮助理解正态分布的特点。
标准正态分布
结论
正态分布是统计学中的重要概念,具有广泛的应用领域。深入理解正态分布有助于我们在实践中进行数据分析 和预测。
《正态分布》PPT课件
# 正态分布 PPT 课件大纲 正态分布是一种常见的概率分布,广泛应用于统计学和科学研究中。
引言
正态分布是一种对称分布,具有许多重要的性质和应用。通过本节课件,我 们将了解正态分布的基本概念和实际应用。
正态分布的定义和性质
定义正态分布
正态分布是一种连续型概率分布,其概率密度函数呈钟形曲线。
正态分布ppt精品课件
结果解释
根据检验结果,解释两组数据 是否存在显著差异,并结合实
际背景进行讨论。
06
正态分布在生活中的应用举例
质量控制领域应用举例
01
产品规格设定
在制造业中,正态分布用于设定产品规格。通过对产品特性进行统计分
析,可以确定产品特性的均值和标准差,进而设定合理的上下规格限。
02 03
过程能力分析
正态分布也用于评估生产过程的能力。通过计算过程能力指数(如Cp 和Cpk),可以了解生产过程是否稳定,并确定是否需要采取改进措施 。
多元方差分析(MANOVA)与多元回归分析( Multiple Regression Analysis):当涉及多个自 变量或多个因变量时,可以使用多元方差分析或 多元回归分析来探究它们之间的关系。
回归分析(Regression Analysis):用于探究自 变量与因变量之间的线性或非线性关系,通过拟 合回归方程来预测因变量的取值。
概率密度函数性质 f(x)≥0,对于所有x∈R。
02
正态分布在统计学中应用
描述性统计量计算
均值(Mean):表示数据的“中心 ”或“平均”水平,计算方法是所有 数值之和除以数值个数。
偏度(Skewness):描述数据分布 形态的偏斜程度,正偏态表示数据向 右偏,负偏态表示数据向左偏。
标准差(Standard Deviation):衡 量数据分布的离散程度,即数据偏离 均值的程度,计算方法是方差的平方 根。
实例分析:两组数据是否存在显著差异
数据描述
给出两组数据的描述性统计量, 如均值、标准差等。
假设检验步骤
按照上述假设检验步骤,对两组 数据进行假设检验。
结果解释
根据检验结果,判断两组数据是 否存在显著差异,并给出相应的
根据检验结果,解释两组数据 是否存在显著差异,并结合实
际背景进行讨论。
06
正态分布在生活中的应用举例
质量控制领域应用举例
01
产品规格设定
在制造业中,正态分布用于设定产品规格。通过对产品特性进行统计分
析,可以确定产品特性的均值和标准差,进而设定合理的上下规格限。
02 03
过程能力分析
正态分布也用于评估生产过程的能力。通过计算过程能力指数(如Cp 和Cpk),可以了解生产过程是否稳定,并确定是否需要采取改进措施 。
多元方差分析(MANOVA)与多元回归分析( Multiple Regression Analysis):当涉及多个自 变量或多个因变量时,可以使用多元方差分析或 多元回归分析来探究它们之间的关系。
回归分析(Regression Analysis):用于探究自 变量与因变量之间的线性或非线性关系,通过拟 合回归方程来预测因变量的取值。
概率密度函数性质 f(x)≥0,对于所有x∈R。
02
正态分布在统计学中应用
描述性统计量计算
均值(Mean):表示数据的“中心 ”或“平均”水平,计算方法是所有 数值之和除以数值个数。
偏度(Skewness):描述数据分布 形态的偏斜程度,正偏态表示数据向 右偏,负偏态表示数据向左偏。
标准差(Standard Deviation):衡 量数据分布的离散程度,即数据偏离 均值的程度,计算方法是方差的平方 根。
实例分析:两组数据是否存在显著差异
数据描述
给出两组数据的描述性统计量, 如均值、标准差等。
假设检验步骤
按照上述假设检验步骤,对两组 数据进行假设检验。
结果解释
根据检验结果,判断两组数据是 否存在显著差异,并给出相应的
10-10 正态分布(共41张PPT)
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
2
思考题 2 1 ( ) 设 X~N2 1 ( ,
), 试 求 :
①P(-1<X≤3);②P3 ( < X≤5);③P(X≥5).
【 解 析 】 ∵X~N2 1 ( , 2),∴μ=1,σ=2. ①P(-1<X≤3)=P(1-2<X≤1+2) =P(μ-σ<X≤μ+σ)=6 0 8 . 6 2 . ②P3 ( < X≤5)=P(-3<X≤-1), 1 ∴P3 ( < X≤5)= [P(-3<X≤5)-P(-1<X≤3 ] ) 2 1 = [P(1-4<X≤1+4)-P(1-2<X≤1+2 ] ) 2 1 = [P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)] 2 1 = ×9 0 5 ( 4 . -6 0 8 . 6 2 ) =1 0 3 . 9 5 . 2
3.2 ( 0 1 ·
湖北)已 知 随 机 变 量
ξ 服从正态分布 N(2,σ2),且 ) B.4 0 . D.2 0 .
P(ξ< 4 ) =8 0 . ,则 P0 ( < ξ< 2 ) =( A.6 0 . C.3 0 .
答案 C
解析 由 P(ξ< 4 ) =8 0 . , 得 P(ξ> 4 ) =P(ξ< 0 ) =2 0 . , 故 P0 ( < ξ< 2 ) =3 0 . 故选 C.
2 ( ) P(-4<X≤4)=P(0-4<X≤0+4) =P(μ-σ<X≤μ+σ)=0.682 6. 1 【答案】 1 ( ) φμ,σ(x)= e ,x∈(-∞,+∞) 4 2π
概率论第四版课件3.4正态分布
D(X)=σ2
34
正态分布的数学期望与方差
定理3.5说明正态分布中的两个参数μ与σ分别是服从
正态分布的连续型随机变量的数学期望与标准差.因
而若已知数学期望与方差,则完全确定正态分布.
推论 如果连续型随机变量X服从标准正态分布,即
连续型随机变量X~N(0,1),则其数学期望E(X)=0,方
差D(X)=1
导数
Φ0'(x)=φ0(x)
说明函数Φ0(x)为φ0(x)的一个原函数
9
标准正态分布概率计算
➢由于连续型随机变量在任一区间上取值的概率等
于它的概率密度在该区间上的积分,因而概率
P{a<X<b}=P{a≤X<b}
=P{a<X≤b}=P{a≤X≤b}
b
=a φ0(x)dx
=Φ0(x)| ba
=Φ0(b)-Φ0(a)
43
例9
某批零件长度Xcm是一个连续型随机变量,它服从数
学期望为50cm、方差为0.5625cm2的正态分布,规定
长度在50±1.2cm之间的零件为合格品,从中随机抽
取1个零件,求这个零件为合格品的概率.(函数值
Φ0(1.6)=0.945 2)
解:由题意得到参数
μ=E(X)=50
σ= D(X)= 0.5625=0.75
Φ0(1.16)=0.877 0,则概率P{|X-μ|≤1.16σ}=
.
解:由于连续型随机变量X~N(μ,σ2),从而连续型随机
X−μ
变量Y=
~N(0,1)
σ
38
例6
根据标准正态分布概率的计算公式,并注意到参数
σ>0,因此概率
P{|X-μ|≤1.16σ}
34
正态分布的数学期望与方差
定理3.5说明正态分布中的两个参数μ与σ分别是服从
正态分布的连续型随机变量的数学期望与标准差.因
而若已知数学期望与方差,则完全确定正态分布.
推论 如果连续型随机变量X服从标准正态分布,即
连续型随机变量X~N(0,1),则其数学期望E(X)=0,方
差D(X)=1
导数
Φ0'(x)=φ0(x)
说明函数Φ0(x)为φ0(x)的一个原函数
9
标准正态分布概率计算
➢由于连续型随机变量在任一区间上取值的概率等
于它的概率密度在该区间上的积分,因而概率
P{a<X<b}=P{a≤X<b}
=P{a<X≤b}=P{a≤X≤b}
b
=a φ0(x)dx
=Φ0(x)| ba
=Φ0(b)-Φ0(a)
43
例9
某批零件长度Xcm是一个连续型随机变量,它服从数
学期望为50cm、方差为0.5625cm2的正态分布,规定
长度在50±1.2cm之间的零件为合格品,从中随机抽
取1个零件,求这个零件为合格品的概率.(函数值
Φ0(1.6)=0.945 2)
解:由题意得到参数
μ=E(X)=50
σ= D(X)= 0.5625=0.75
Φ0(1.16)=0.877 0,则概率P{|X-μ|≤1.16σ}=
.
解:由于连续型随机变量X~N(μ,σ2),从而连续型随机
X−μ
变量Y=
~N(0,1)
σ
38
例6
根据标准正态分布概率的计算公式,并注意到参数
σ>0,因此概率
P{|X-μ|≤1.16σ}
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表示总体的分布越集. 中
x
X
例题1.设随机变量 ~ N(2,2),
则D( 1 )的值为( C )
2 A.1; B.2; C. 1 ; D.4.
2
正态曲线下的面积规律
(1)正态曲线下面积的意义:正态曲线下一定 区间内的面积代表变量值落在该区间的概率。 整个曲线下的面积为1,代表总概率为1。 曲线下面积的求法:定积分法和标准正态分布法
0.0228
5.标准正态分布 (1 ) ~ N ( 0 ,1 ), 则 的分布函数通常 用 ( x ) 表示 , 且 ( x ) = P ( ≤ x ) 对于 x ≥ 0 , ( x )的值可在标准正态
分布表中查到
, 而 x < 0 的 ( x )的值
可用 : ( x ) = 1 - ( x )
f (x)
1
x2
e 2 ,xR
2
其相应的曲线称为标准正态曲线。标准正态总 体N(0,1)在正态总体的研究中占有重要 地位。任何正态分布的问题均可转化成标准
总体分布的概率问题。
标准正态总体N(0,1)的概率问题:
由于标准正态总体 N0,1在正态总体的研究
中有非常重要的地位,已专门制作了“标准正态
分布表” 。
然 后 , 通 过 查分 标布 准表 正中 态
xa,xb的(x)值.(课
表 中 相 对 于 x 0 的 值 是 指 P ( X x 0 ) 的 大 小 。 就是图中阴影 区域A的面积
该区域的面积表示?
A
又该如何计算呢
5.标准正态分布 (1 ) ~ N ( 0 ,1 ), 则 的分布函数通常 用 ( x ) 表示 , 且 ( x ) = P ( ≤ x ) 对于 x ≥ 0 , ( x )的值可在标准正态
(2)对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)
对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
大家学习辛苦了,还是要坚持
继续保持安静
知识点:标准正态曲线
当μ=0,σ=1时,正态总体称为标准正态总 体,其相应的函数表达式是
例 题5.已 知 ~ N(,2),
E 3,D 1,则P(1 1) (B)
A.2(1) 1;B.(4) (2); C.(4) (2);D.(2) (4)
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D )
A.0.9544 B.0.0456 C.0.9772 D.0.0228
(2). ~N(,2),
P(ab)(b)(a),源自然 后 , 通 过 查分 标布 准表 正中 态
xa,xb的(x)值.(课
本 P58页)
从而,可计(算 ,2服 )的从 正态分布
的随机变 取量 值a在 与b之间的.概率
c 例题 4.正态总 N( 体 0, 1)在区间 2, ( 1)和
( 1, 2)上取值的概P率 1、P分 2,布 则为 () A.P1 P2;B.P1 P2;C.P1 P2;D.不确.定
当x 时,曲线下. 降
间 高 、 两 边 低 ” 的 钟 形曲 线.
并 且 当 曲 线 向 左 、两向边右无 限 延 伸 时 ,
以x轴为渐进线,x轴向无限的靠. 近
(5).当一定时,曲线的形状由确定 Y ,f(x)
越大,曲线越“矮胖,”
(x)2
1 e 22 2
表示总体的分布越分;散
越小,曲线越“瘦高,”
( 2 ) 若 ~ N ( u , 2 ), 则 的分布函数 用 F ( x ) 表示 , 且有 P ( ≤ x ) = F ( x )
=
(
x-
u
)
7.标准正态分布与一般正态分布的关系:
(1 )若 . ~ N ( , 2 )则 , ~ N (0 ,1 ).
(2). ~N(,2),
P(ab)(b)(a),
分布表中查到
, 而 x < 0 的 ( x )的值
可用 : ( x ) = 1 - ( x )
( 2 ) 若 ~ N ( u , 2 ), 则 的分布函数 用 F ( x ) 表示 , 且有 P ( ≤ x ) = F ( x )
=
(
x-
u
)
7.标准正态分布与一般正态分布的关系:
(1 )若 . ~ N ( , 2 )则 , ~ N (0 ,1 ).
_正态分布及其性质
1.正态分布与正态曲线
如果随机变 的量概率密度为:
f(x)
1
(x)2
e 22
2
(xR,,为常数,且0),称服从参数
为、的正态分布, N(用,2)表示,
f(x的 ) 表示式可简N记(为 ,2)或N(,),
它的密度曲线简称 态为 曲正 线 .
2.正态分布的期望与方差 若 ~ N(,2),则的期望与方差分布为: E = , D =2
3.正态曲线
f(x)
1
(x)2
e 22 ,xR
2
N(,)或 N(,2)
总 体 平 均 数 Y
D 标准差
x
X
4.正态曲线的性质
(1)曲 . 线x轴 在上方x轴 ,不 与相 ;(3).交 当x 时,曲线处于最高点,
(2)曲 . 线关 x于 线 直对 ; 称 当x向左、向右远离时,
(4).当x 时,曲线上升;曲线不断地降低,呈现出“中
x
72(kg)
x(,)
例6.(2).设 ~ N(0,1), 借助于标准
正态分布的函数表计:算
(1) p( > 1.24);
(2) p( < -1.24);(3)p( < 1).
ex: 一批灯泡的使用 (单 时位 间: 小时)服从 正态分N布 ,(1000,40002)则这批灯泡中使用
时间超1过 080小 0 时的灯泡的概率为
3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
P(2X2)= 0.9544 .
4、若已知正态总体落在区间 (0.3, ) 的概率为0.5,则
相应的正态曲线在x= 0.3
时达到最高点。
5、已知正态总体的数据落在(-3,-1)里的概率和落
在(3,5)里的概率相等,那么这个正态总体的数学
期望是 1
。
例2、已知 ~n(0,2),且 P (20)0.4,
则 P( 2) 等于( A )
A.0.1 B. 0.2
C. 0.3
D.0.4
例3、若X~N(5,1),求P(6<X<7).
y
例4、如图,为某地成年男
1
性体重的正态曲线图,请写 1 0 2
出其正态分布密度函数,并
求P(|X-72|<20).