流体力学 第三章 流体动力学

合集下载

吉林大学流体力学3

吉林大学流体力学3

所以: v dz v dy=0 y z
v z dx v x dz=0 v dy v dx=0 y x
dx dy dz 即: vx v y vz
流线微分方程
流线的性质
(1)定常流动中流线不随时间变化,而且流体质点的 轨迹与流线重合。 (2)实际流场中除驻点或奇点外,流线不能相交,不 能突然转折。(速度为0的点称为驻点,速度为无穷大 的点称为奇点,奇点是一种抽象的理论模型。)
如何用欧拉法表示流体质点的加速度 a
应当注意到的是:速度是坐标和时间的函数,同时 运动质点的坐标也是随时间变化的,即坐标 x,y,z 本身也是时间的函数,因此用欧拉法表示某质点的 加速度实际上是一个对复合函数求导的问题,必须 按照复合函数求导法则进行求导。
如用加速度矢量 a 和速度矢量 来表示,则有 υ a (υ ) υ t
0
dp gdz 0
积分得: z
p C g
详细论证请参看教材P64
3.2.4 缓变流和急变流 流线不是严格平行,但流线之间夹角很小,或流线的曲率 半径很大,或两者皆有,这种流动称为缓变流,其有效断面 称为缓变流断面。
在缓变流断面上可以认为流线近似平行,有效断面为一平面,
压强分布近似与静止流体相同。
(即也近似满足: Z
p C 条件是:质量力只有重力,不可压缩流体) g
那种流线不平行,加速度较大的流动称为急变流。
均匀流、急变流和缓变流
均匀流、急变流和缓变流
均匀流
急变流
缓变流
急变流
3.3 用欧拉法描述流体运动的基本概念
3.3.1 流线 3.3.2 流管、流束、和有效断面
3.3.3 流量 3.3.4 平均流速

第三章 流体力学

第三章 流体力学
1、理想流体:
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax

P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0

gh

p0

1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮

1 2
V

v
2 1

gh2V


gh1V
即:
p1

1 2

v
2 1

gh1

第3章-流体力学连续性方程微分形式

第3章-流体力学连续性方程微分形式

• 符号说明
物理意义
z 单位重流体的位能(比位能)
p
单位重流体的压能(比压能)
u 2 单位重流体的动能(比动能)
2g
z
p
单位重流体总势能(比势能)
z
p
u2 2g
总比能
第四节 欧拉运动微分方程的积分
几何意义
位置水头 压强水头 流速水头 测压管水头 总水头
( Xdx Ydy
Zdz)
1
(
p x
0
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) ,
与流出的流体体积(质量)之差等于零。
适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
第三节 流体动力学基本方程式
6
二、理想流体运动微分方程
理想流体的动水压强特性与静水压强的特性相同:
px py pz p
从理想流体中任取一(x,y,z)为 中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。
u2
( )dx ( )dy ( )dz
z x x 2
y 2
z 2
u2 d( )
2
由以上得:
gdz
d
(
p
)
d
u2 (
)
2
积分得:
z
p
u2 2g
C
第四节 欧拉运动微分方程的积分
• 理想势流伯努里方程
17
z
p
u2 2g
C

z1
p 1
u2 1
2g
z2
p2
u22 2g
物理意义:在同一恒定不可压缩流体重力势流中 ,理想流体各点的总比能 相等即在整个势流场中,伯努里常数C均相等。(应用条件:“——”所示)

流体力学基础-第三章-一维流体动力学基础

流体力学基础-第三章-一维流体动力学基础

1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。

工程流体力学 - 第3章 - M

工程流体力学 - 第3章 - M

2 、 水力半径 Rh :在总流的过流断面上与流
体相接触的固体边壁周长称为湿周,用χ表 示。总流过流断面面积与湿周χ之比称为水 力半径R,即
R
A

3、当量直径de=4Rh
五、流量与平均流速
1、流量
单位时间内通过过流断面的流体量称为流量。 流体量可以用体积、质量和重量表示,其相应的流量 分别是体积流量qv (m3/s)、质量流量qm (kg/s)和重量 流量Qg(N/s)。
v1 A1 v 2 A 2 q v
上式为一维流动连续性方程。
§3.6理想流体一维稳定流动的伯努里方程 一、欧拉方程
如图,在微元流管中 取一圆柱流体微团, 考察理想流体在重 力场中的一维流动。
轴向长度:δs,
端面面积:δA,
端面⊥轴线,
侧面∥轴线。

流体微团受力分析: 方向:垂直向下
质量力:重力,大小:ρgδAδs 表面力:
一.拉格朗日方法
拉格朗日方法着眼于流体质点,跟踪每个 流体质点的运动全过程及描述运动过程中各质 点、各物理量随时间变化的规律。又称轨迹法。 设t=t0时,流体质点的坐标值是(a,b,c)。 流体质点的空间位置、密度、压强和温度 可表示为: r r a,b,c,t = a,b,c,t p p a,b,c,t T T a,b,c,t
第三章 流体动力学

流体运动学是用几何学的观点来研究流体的运动 规律,是流体力学的一个组成部分。 掌握描述流动的两种方法(拉格朗日法及欧拉

法),结合迹线,流线,流体线等显示流动特性 的曲线图谱研究流动特性。

掌握流体动力学的基本方程,即质量守恒方程, 能量守恒方程动量定理,动量矩定理,重点是关 于控制体的欧拉型方程。

流体力学

流体力学

表明流速不变或流速的改变可以忽略时,理
想流体稳定流动过程中流体压强能与重力势
能之间的转换关系,即高处的压强较小,低处 的压强较大. 两点的压强差为
p1 p2 g (h2 h1 )
空吸原理
SB SA SC
S AvA SB vB
S A SB
vB vA
1 1 2 2 P vA P vB A B 2 2
vB 2 gh

管涌

铜壶滴漏 “寸金难买寸光阴”是再熟 悉不过的诗句了,其中揭示 了计量时间的方法.我国古 代用铜壶滴漏计时,使水从 高度不等的几个容器里依次 滴下来,最后滴到最低的有 浮标的容器里,根据浮标上 铜壶滴漏 的刻度也就是根据最低容器 说明其计时原理. 里的水位来读取时间.
(三) 压强与流速的关系 在许多问题中,所研究的流体是在水平或接近 水平条件下流动.此时,有 h1=h2或 h1≈h2,伯 努利方程可直接写成 1 2 1 2 p1 v1 p 2 v 2 2 2 1 2 p v 常量 2 平行流动的流体,流速小的地方压强大,流速 大的地方压强小(例).
(2)求虹吸管内B、C 两处的压强. 解:水面为参考面,则 有A、B点的高度为零,
C 点的高度为2.50 m, D点的高度为-4.50m.
(1)取虹吸管为细流管,对于A、D 两点,根据伯 努利方程有 1 2 1 2 ghA v A p A ghD vD pD 2 2 由连续性方程有
1 2 1 2 p A v A pB v B 2 2
1 2 PB P0 vB 2
根据连续性方程可知,均匀虹吸管内,水的速率
处处相等,vB=vD.
1 2 PB P0 vB 5.7 10 4 Pa 2 结果表明,在稳定流动的情况下,流速大处压强

流体力学 第三章 流体动力学

流体力学 第三章 流体动力学

vx vx vx dv x vx vx vy vz 解: (1)a x t x y z dt
(4 y 6 x) (4 y 6 x)t (6t ) (6 y 9 x)t (4t )
将t=2,x=2,y=4代入得
ax 4m / s 2
同理 ay 6m / s 2 m / s2 a 4i 6 j
满足连续性方程,此流动可能出现
例:已知不可压缩流场ux=2x2+y,uy=2y2+z,且在z=0处
uz=0,求uz。 解:由
得 积分
u x u y u z 0 x y z u z 4 x 4 y z
uz 4( x y) z c
得 c=0
由z=0,uz=0
a.流体质点的加速度
dv a dt
dv x vx vx dx vx dy vx dz ax dt t x dt y dt z dt
同理
vx vx vx vx vx vy vz t x y z
ay
v y t
vx
是均匀流
3.流线与迹线 (1)流线——某瞬时在流场中所作的一条空间曲线,曲
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转 流线微分方程:
流线上任一点的切线方向 (dr ) 与该点速度矢量 (v ) 一致
dr v dx dy dz 0 vx vy vz
dy (a, b, c, t ) vy dt
dvy (a, b, c, t ) dt
dz (a, b, c, t ) vz dt
dv z (a, b, c, t ) az dt

流体力学——流体动力学

流体力学——流体动力学
pB=47.04kN
pB
b
2
a
3.6 10 0 3.6 a 0.24
a=6.16m
v2 2g
2
3.15 如图, 水从敞口水池沿一截面有变化的管路排出, 若质量流量 qm=15kg/s, d1=100mm, d2=75mm,不计损失,试求所需的水头 H 以及第二管段中央 M 点的相对压强。 (参考分数: 12 分)

pm=3.94kPa
3.16 如图,由水池通过等直径虹吸管输水,A 点为虹吸管进口处,HA=0;B 点为虹吸管中 与水池液面齐高的部位,HB=6m;C 点为虹吸管中的最高点,HC=7m;D 点为虹吸管的出 口处,HD=4m。若不计流动中的能量损失,求虹吸管的断面平均流速和 A、B、C 各断面上 的绝对压强。 (参考分数:12 分)
Δh
uA A
d
2 uA p p A 2g
解:由能量方程
2 uA p p A ,得到 2g
由毕托管原理
p pA

12.6h
解得
u A 3.85m / s , v 0.84u A 3.24m / s , Q vA 0.102m 3 / s
3.10 如图,用抽水量 Q=24m3/h 的离心水泵由水池抽水,水泵的安装高程 hs=6m,吸水管 的直径为 d=100mm,如水流通过进口底阀、吸水管路、90º弯头至泵叶轮进口的总水头损 失为 hw=0.4mH2O,求该泵叶轮进口处的真空度 pv。 (参考分数:12 分)
B
C
解:取 1-1 断面在 C 处,2-2 断面在 B 处,自由液面为 0-0 断面,选基准面在 C 处。列 0、1 断面的能量方程,有
3.6 0 0 0 0

流体力学 第三章

流体力学 第三章
无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。

《流体力学》第三章一元流体动力学基础

《流体力学》第三章一元流体动力学基础

02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。

流体动力学基础

流体动力学基础
流场运动要素是时空(x,y,z,t)旳连续函数: 速度
(x,y,z,t)——欧拉变量
控制体:将孤立点上旳观察站扩大为一种有合适规模旳连续区域。控制体相对于坐 标系固定位置,有任意拟定旳形状,不随时间变化。控制体旳表面为控制面,控制 面上有流体进出。
质点旳加速度
流体质点运动速度在欧拉法中,因为位置又是时间t旳函数,所以流速是t旳复合函 数,对流速求导可得加速度:
性质:不能相交 ,流体质点不能穿过流管表面。 在定常时,形状和位置不随时间变化而变化。 非定常时,形状和位置可能随时间变化而变化。
2、流束 流管内旳全部流体为流束。流束旳极限是一条流线。极限近于一条流线旳流束为微元流束。
3、总流 把流管取在运动液体旳边界上,则边界内整股液流旳流束称为总流。
4、过流断面 流束中到处与速度方向相垂直旳横截面称为该流束旳过流断面。
动量修正系数—K — 是d实mv际动A量ρv与2dA按断面平均流速计算旳动量旳比值。
β
ρv 2 dA
A
ρv 2 A
1
1 v2A
v2dA 1
A
动量修正系数是无量纲数,它旳大小取决于总流过水断面旳流速分布,分布越均匀,β 值越小,越接近于1.0。
层流流速分布 湍流流速分布
圆管层流 圆管紊流
断面流速分布 旋转抛物面
流线旳作法: 在流场中任取一点,绘出某时刻经过该点旳流体质点旳流速矢量u1,再画出距1点很近
旳2点在同一时刻经过该处旳流体质点旳流速矢量u2…,如此继续下去,得一折线1234 …, 若各点无限接近,其极限就是某时刻旳流线。
流线旳方程
根据流线旳定义,能够求得流线旳微分方程:
设ds为流线上A处旳一微元弧长:
z
想一想:恒定、不可压情况下,连续性方程旳微分形式。

流体动力学理论基础第三章解析

流体动力学理论基础第三章解析

az= x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
式中第一项叫时变加速度或当地加速度 (Local Acceleration),流动过程中流体由于速度 随时间变化而引起的加速度;第二项叫位变速度 ,流动过程中流体由于速度随位置变化而引起的 加速度(Connective Acceleration)。
uz uz (x、y、z、t)
(x,y,z,t)—欧拉变量
考察不同时刻液体质点通过流场中固定空间点 的运动情况,综合足够多的固定空间点的运动情 况,得到整个液流的运动规律。——流场法
欧拉法不直接追究质点的运动过程,而是研究各时 刻质点在流场中的变化规律。将个别流体质点运动过程 置之不理,而固守于流场各空间点。通过观察在流动空 间中的每一个空间点上运动要素随时间的变化,把足够 多的空间点综合起来而得出的整个流体的运动情况。
显然,在欧拉描述中,各空间点上的物理量(实际上是通 过此点的流体质点所具有的物理量)是随时间变化的。因此, 流体的运动参数应该是空间坐标和时间的函数。如流体的速 度、压强和密度可以表示为
z
t时刻
M (x,y,z) O
x
y
ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
算子
全质 导点 数导

d dt
=
t
+ (u )
时变导数 当地导数 局部导数
位变导数 迁移导数 对流导数

中南大学《流体力学》课件第三章动力学

中南大学《流体力学》课件第三章动力学

——迹线微分方程
第二节 基本概念
二、迹线和流线
流线
z u2 u1 o y
dl
是流场中的瞬时光滑曲线,曲线上各点的切线方向 与经过该点的流体质点的瞬时速度方向一致。 两矢量方向一致,则其叉积为零。

i

j

k
x
d l u dx dy dz 0 ux uy uz
——流线微分方程
dx dy dz ux u y uz
第一节 描述流体运动的方法
流场 —— 充满运动流体的空间称为流场
一、拉格朗日法 跟踪
是以流场中每一个流体质点作为对象描述流体运动的方法,它 以流体个别质点随时间的运动为基础,通过综合足够多的质点 (即质点系)运动求得整个流动。 ——质点系法
z
(x,y,z,t)
初始时刻t0
新的时刻t
某质点(a,b,c,to)
x f1 (a, b, c, t ) y f 2 (a, b, c, t ) z f (a, b, c, t ) 3
x f1 u x t t y f 2 u y t t u z f 3 z t t
流场运动要素是时空(x,y,z,t)的连续函数
u x F1 ( x, y, z, t ) u y F2 ( x, y, z , t ) u F ( x, y , z , t ) 3 z
x,y,z,t —欧拉变量
du x dF1 u x u x u x u x a u u u x x y z dt dt t x y z du y dF2 u y u y u y u y a u u u y x y z t x y z dt dt a du z dF3 u z u u z u u z u u z x y z z t x y z dt dt

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

流体力学3-动力学

流体力学3-动力学

二、流体动力学基本概念
1. 流束:指在流体中沿流动方向分离出一块基本元面积dA、长为 L的一束流体。 元流(微细流):指断面无穷小的流束。 总流:指无数微细流的总和。
微元流束
图 3-2 总流和微元流束
3. 流速
质点流速(点速):指过流断面上各质点的速度,以“u”表示,m/s 断面平均流速(流速): 指过流断面上各质点的速度的平均值,以“W” 表示,m/s 4.流量:指单位时间内通过某一断面积流体的量。 ① 体积流量(Q):指单位时间内通过某一断面积流体的体积。m3/s ② 质量流量(m):指单位时间内通过某一断面积流体的质量。Kg/s ③ 重量流量(G):指单位时间内通过某一断面积流体的重量。 三者之间关系: m = ρQ G = mg = ρQg 体积流量Q与流速W之间关系: Q = WA (A—流体通过的某一断面面积)
Q1 = Q2
W1 A1 = W2 A2
Q1 = Q2 + Q3
分流时:
W1 A1 = W2 A2 + W3 A3
Q1 + Q2 = Q3
合流时:
W1 A1 + W2 A2 = W3 A3
§3-4 流体流动伯努利方程
伯努利方程从功能原理出发,描述流体在外力作用下是按照什 么规律来运动的,从而求出流速的绝对值等。
ρw12
2
= ( ρ − ρ a ) gZ 2 + P2 +
2 ρ w2
2
+ ∆ P1− 2
对于1,3 断面的伯努利方程如下:
不同条件下临界流速Wk不同;但是临界雷诺数Rek都是相同的, 其值约为2000,
Re ≤ 2000 层流 2000 < Re < 4000 过渡态 Re ≥ 4000 紊流

大学课程《工程流体力学》PPT课件:第三章

大学课程《工程流体力学》PPT课件:第三章

§3.1 研究流体运动的方法
➢ 欧拉法时间导数的一般表达式
d (v ) dt t
d :称为全导数,或随体导数。
dt
:称为当地导数。
t
v
:称为迁移导数。
例如,密度的导数可表示为: d (v )
dt t
§3.1 研究流体运动的方法
3.1.2 拉格朗日法
拉格朗日法的着眼点:特定的流体质点。
lim t0
(
dV
III
)
t
t
t
CS2 vndA
单位时间内流入控制体的物理量:
z

Ⅱ’

y
lim
t 0
(IdV )t t t CS1vndA
x
§3.3 雷诺输运方程
➢ 雷诺输运方程
dN dt
t
CV dV
CSvndA
雷诺输运方程说明,系统物理量 N 的时间变化率,等于控 制体该种物理量的时间变化率加上单位时间内经过控制面 的净通量。
d dt
V
dV
t
CV
dV
CS
vndA
0
因此,连续性方程的一般表达形式为:
t
CV
dV
CS
vndA
0
连续性方程是质量守恒定律在流体力学中的表现形式。
对定常流动,连续性方程简化为:
CS vndA 0
§3.4 连续性方程
对一维管流,取有效截面 A1 和 A2,及
v2
管壁 A3 组成的封闭空间为控制体:
ay
dv y dt
v y t
vx
v y x
vy
v y y
vz
v y z
az

流体力学讲义 第三章 流体动力学基础.

流体力学讲义 第三章 流体动力学基础.

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

流体力学 第3章流体动力学基础

流体力学 第3章流体动力学基础

第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。

如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。

如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。

前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。

如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。

与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。

由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。

教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。

在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。

3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。

在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。

3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。

该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。

按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。

若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。

3流体动力学

3流体动力学
19
工程流体力学
连续性方程的应用
3.流体动力学
连续性方程表明:
通过各个断面上的流体质量是相等的,流体通过管 道各断面上的流速和其断面面积成反比。在图a所示的管 路中,由于A1>A2,所以V1<V2。
对于有分支的管道,连续性方程就是: Q1=Q2+Q3+Q4即在有分支的管道中,各输入管道的
流量之和等于各输出管道流量之和。
流线可以形象地给出流场的流动状态。通过流 线,可以清楚地看出某时刻流场中各点的速度方向, 由流线的密集程度,也可以判定出速度的大小。流线 的引入是欧拉法的研究特点。例如在流动水面上同时 撤一大片木屑,这时可看到这些木屑将连成若干条曲 线,每一条曲线表示在同一瞬时各水点的流动方向线 就是流线。
12
工程流体力学
9
工程流体力学
3.流体动力学
2、 二元流(two-dimensional flow):
流体主要表现在两个方向的流动,而第三个方向的流 动可忽略不计,即流动流体的运动要素是二个空间坐标 (不限于直角坐标)函数。 如实际液体在圆截面(轴对 称)管道中的流动。
3、三元流(three-dimensional flow):
2)质量流量Qm
单位时间内通过过流截面的流体质量称为质量流量,以 Qm表示,其单位为kg/s.
3)关系:
Qm Q
17
工程流体力学
3.流体动力学
3、断面平均流速
平均流速为流量与过流断面通流面积之比。实
际上由于液体具有粘性,液体在管道内流动时,通 流截面上各点的流速是不相等的。管道中心处流速 最大;越靠近管壁流速越小;管壁处的流速为零。 为方便起见,以后所指流速均为平均流速。
21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按周界性质: ①总流四周全部被固体边界限制——有压流。如 自来水管、矿井排水管、液压管道。 ②总流周界一部分为固体限制,一部分与气体接 触——无压流。如河流、明渠。 ③总流四周不与固体接触——射流。如孔口、管 嘴出流。
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2

6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
第三章 流体动力学基础
3.1 研究流体运动的两种方法
1.拉格朗日法(随体法)
t0时,初始坐标a、b、c作为该质点的标志 x=x(a,b,c,t),y=y(a,b,c,t) ,z=z(a,b,c,t)
物理概念 清晰,但 处理问题 十分困难
速度:
vx
dx(a,b,c,t) dt
加速度:
vy
dy(a,b,c,t) dt
(2)迹线:
dx dt
xt
dy dt
yt
x c1et t y c2et t
由t=0时,x=-1,y=-1 得 c1=c2=-1
x t 1
y t 1 xy2 ——迹线方程(直线)
(3)若恒定流:vx=x,vy=-y
流线 xy 1 迹线 xy 1
注意:恒定流中流线与迹线重合
4.流管与流束
az vtzvx v xzvy v yzvz vzz
a dv v v v
dt t
i j k x y z
时变加速度 b.质点导数
位变加速度
对质点的运动要素A:
dAAvA
dt t
时变导数
位变导数
d dA tvx A xvy A yvz A z A t
3.2 流体运动的基本概念
1.恒定流与非恒定流
(3)是均匀流还是非均匀流。
解:(1)a x
dv x dt
vtxvx vxxvy vyxvz vzx
( 4 y 6 x ) ( 4 y 6 x ) t ( 6 t ) ( 6 y 9 x ) t ( 4 t )
将t=2,x=2,y=4代入得
同理 ay 6m/s2 a 4i6 j m / s2
(3)恒定流动中,流线的形状不随时间而改变,流 线与迹线重合;非恒定流动中,一般情况下,流线 的形状随时间而变化,流线与迹线不重合。
例:速度场vx=a,vy=bt,vz=0(a、b为常数) 求:(1)流线方程及t =0、1、2时流线图;
(2)迹线方程及t =0时过(0,0)点的迹线。
解:(1)流线: dx dy
y
b 2a2
x2
——迹线方程(抛物线)
y
注意:流线与迹线不重合
o
x
例:已知速度vx=x+t,vy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
解:(1)流线: dx dy
xt yt
积分: lnx (t)y (t)c
t=0时,x=-1,y=-1 c=0
xy 1
——流线方程(双曲线)
a bt
积分: y bt x c a
y c=2
c=1
c=0
o
x
y c=2 c=1 c=0
o
——流线方程
y
x
o
c=2 c=1 c=0
x
t=0时流线
t=1时流线
T=2时流线
(2)迹线:dx dy dt
a bt

dx dt a
0xdx 0tad txat
dy bt
dt
0ydy0tbtd tybt22
(1)恒定流 所有运动要素A都满足
(2)非恒定流
A 0 t
2.均匀流与非均匀流
(1)均匀流
v A0
(2)非均匀流 v A0
A 0 t
例:速度场 v ( 4 y 6 x ) t i ( 6 y 9 x ) t j
求(1)t=2s时,在(2,4)点的加速度;
(2)是恒定流还是非恒定流;
vz
dz(a,b,c,t) dt
ax
d
vx(a,b,c,t) dt
ay
dvy(a,b,c,t) dt
az
d
vz(a,b,c,t) dt
2.欧拉法(局部法、当地法) 某瞬时,整个流场各空间点处的状态
vxvx(x,y,z,t)
vyvy(x,y,z,t) vzvz(x,y,z,t) pp(x,y,z,t)
ax 4m/s2
(2)
vvx ivy
j ( 4 y 6 x ) i ( 6 y 9 x ) j 0
t t t
是非恒定流
(3)vv vx v x xvy v y x i vx v x yvy v y y j0
是均匀流
3.流线与迹线
(1)流线——某瞬时在流场中所作的一条空间曲线,曲
dxvxdt dyvydt dzvzdt
dx dy dzdt ——迹线微分方程 vx vy vz
流线的特性:
(1)流线除驻点、奇点等特殊点,在一般情况下不 能相交,也不能是折线,而是光滑的曲线或直线
(2) 不可压缩流体中,流线的疏密程度反映了该时刻 流场中各点的速度大小,流线越密,流速越大,流 线越稀,流速越小。
(x,y,z,t)
以固定空 间、固定 断面或固 定点为对 象,应采 用欧拉法
x x t,y y t,z z t
a.流体质点的加速度
a
dv
dt
ax
dv xvxvxd xvxd yvxdz dt t xdt ydt zdt
同理
vtxvx vxxvy vyxvz vzx
ay vtyvx vxyvy vyyvz vzy
相关文档
最新文档