1.2定义与命题

合集下载

1.2定义与命题-浙教版八年级数学上册教案

1.2定义与命题-浙教版八年级数学上册教案

1.2 定义与命题-浙教版八年级数学上册教案一、知识目标1.了解命题的基本定义2.掌握命题的符号表示方式3.学会命题的真值表达式的构造方法4.能够判断命题的真假二、教学重难点教学重点:1.命题的概念与符号表示方法2.命题的真值表达式构造方法3.命题的真假判断教学难点:1.真值表达式的构造方法2.命题真假的判断方法三、教学过程A. 导入新知1.引入数学中命题的基本概念,比如陈述句、命题的真假等。

2.介绍命题的符号表示方式,包括命题符号、逻辑联接符号等。

3.通过生活中的例子引导学生理解命题符号及逻辑联接符号的含义,并操练一些简单的命题符号的构造方法。

B. 理论讲授1.通过例题讲解命题的真值表达式的构造方法,要求学生熟记各逻辑联接符号的真值表。

2.对于一些特殊的命题,比如否定命题、充分必要条件命题、异或命题等,需要对其进行特别讲解。

C. 练习活动1.让学生自己构造一些命题,使用真值表达式的构造方法求出其真值表。

2.给出一些命题,让学生判断其真假,并解释判断过程。

D. 课堂小结1.老师回顾本节课的重点难点内容,检查学生掌握情况。

2.学生提出自己对问题的疑问,与老师和同学进行互动交流,并得出结论。

四、教学资源1.教材:浙教版八年级数学上册2.幻灯片:PPT等五、教学反思命题是数学中非常基础的一个概念,在后续学习中也是必要的工具之一。

本节课主要通过例子引入命题的概念,并介绍命题的符号表示方式以及真值表达式的构造方法,从而培养学生对于数学命题的敏感度。

在后续课堂中,需要将命题的应用和实际问题结合起来,让学生更好地理解和掌握命题的应用技巧。

浙教版八上第一章1.2定义与命题

浙教版八上第一章1.2定义与命题

1.2 定义与命题知识点梳理1、命题与定理1、判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、定理是真命题,但真命题不一定是定理.4、命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.5、命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE3、三角形的外角性质(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.题型梳理题型一真假命题的辨析1.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3 2.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.33.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A.3B.2C.1D.04.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个5.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形6.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行7.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形8.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=29.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直10.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°11.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.−12C.0D.1212.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.直角的补角仍然是直角D.垂线段最短13.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:√7,则△ABC是直角三角形14.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连接菱形各边中点所得的四边形是矩形题型二寻找“条件”与“结论”1.把命题“对顶角相等”改写成“如果…那么…”的形式:.2.把命题“等角的补角相等”改写成“如果…那么…”的形式是.3.命题“对顶角相等”的逆命题是.4.命题“对顶角相等”的逆命题是命题(填“真”或“假”).5.把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:.6.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为.题型三角平分线性质的应用1.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.42.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.23.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:54.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.√3B.2C.3D.√3+25.如图,△ABC中,∠ABC、∠EAC的角平分线P A、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③6.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD =4,则四边形ABCD的面积是()A.24B.30C.36D.427.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC长是.9.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.10.已知如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是度.11.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC =18cm,则DE的长为cm.题型四“燕尾模型”与三角形的外角性质1.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°2.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④4.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.5.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.6.如图,∠BCD=150°,则∠A+∠B+∠D的度数为.7.如图,在△ABC中,∠A、∠B的平分线相交于点I,若∠C=70°,则∠AIB=度,若∠AIB=155°,则∠C=度.8.已知:如图,在△ABC中,∠A=55°,H是高BD、CE的交点,则∠BHC=度.9.如图,CE平分∠ACD,交AB于点E,∠A=40°,∠B=30°,∠D=104°,则∠BEC 的度数为.10.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.11.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∠1=12∠ABC,∠2=12∠ACB∴∠1+∠2=12(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A∴∠1+∠2=12(180°−∠A)=90°−12∠A∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°−12∠A)=90°+12∠A探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC 与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC 与∠A有怎样的关系?(只写结论,不需证明)结论:.12.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.13.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.题型五“拐点模型”与三角形的外角性质1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°2.如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D 的度数是()A.24°B.59°C.60°D.69°3.如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E的度数是()A.20°B.30°C.50°D.70°4.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为度.答案和解析题型一真假命题的辨析1.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选:B.2.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.3【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C ,则DF ∥AC ,可得:∠A =∠F ,即①②}⇒③;当①∠1=∠2,则∠3=∠2,故DB ∥EC ,则∠D =∠4,当③∠A =∠F ,故DF ∥AC ,则∠4=∠C ,故可得:∠C =∠D ,即①③}⇒②;当③∠A =∠F ,故DF ∥AC ,则∠4=∠C ,当②∠C =∠D ,则∠4=∠D ,故DB ∥EC ,则∠2=∠3,可得:∠1=∠2,即②③}⇒①,故正确的有3个.故选:D .3.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A.3B.2C.1D.0【分析】根据平行公理、图形的平移、平行线的性质定理判断即可.【解答】解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;图形平移的方向不一定是水平的,③是假命题;两直线平行,内错角相等,④是假命题;相等的角不一定是对顶角,⑤是假命题;垂线段最短,⑥是真命题,故选:C.4.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个【分析】①根据对顶角的定义进行判断;②根据同位角的知识判断;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;根据点到直线的距离的定义对④进行判断.【解答】解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题;④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题;真命题的个数为0,故选:A.5.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.6.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行【分析】根据平行线的判定和性质、对顶角的性质、直角三角形的性质判断即可.【解答】解:A、两直线平行,同位角相等,故本选项说法是假命题;B、对顶角相等,本选项说法是真命题;C、直角三角形两锐角互余,本选项说法是真命题;D、平行于同一直线的两条直线平行,本选项说法是真命题;故选:A.7.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.8.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.9.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.10.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.11.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.−12C.0D.12【分析】反例中的n满足n<1,使n2﹣1≥0,从而对各选项进行判断.【解答】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.12.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.直角的补角仍然是直角D.垂线段最短【分析】根据线段、垂线段的公理、平行线的性质以及直角的概念判断即可.【解答】解:A、两点之间,线段最短,是真命题;B、两直线平行,同旁内角互补,原命题是假命题;C、直角的补角仍然是直角,是真命题;D、垂线段最短,是真命题;故选:B.13.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:√7,则△ABC是直角三角形【分析】根据勾股定理的逆定理和直角三角形的判定解答即可.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:√7,32+(√7)2=42,则△ABC是直角三角形,正确;故选:D.14.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连接菱形各边中点所得的四边形是矩形【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B 进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.【解答】解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连接菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.题型二寻找“条件”与“结论”1.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.2.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么这两个角相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:它们相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么这两个角相等.故答案为:如果两个角是等角的补角,那么这两个角相等.3.命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.4.命题“对顶角相等”的逆命题是假命题(填“真”或“假”).【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【解答】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.5.把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:如果两条直线都与第三条直线平行,那么这两条直线互相平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线都与第三条直线平行,那么这两条直线互相平行”.故答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行.6.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为如果两条直线平行于同一条直线,那么这两条直线相互平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线相互平行”.题型三角平分线性质的应用1.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=12BC•EF=12×5×2=5,故选:C.2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得P A=PE,PD=PE,那么PE=P A=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,P A⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴P A=PE,PD=PE,∴PE=P A=PD,∵P A+PD=AD=8,∴P A=PD=4,∴PE=4.故选:C.3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=12•AB•OE:12•BC•OF:12•AC•OD=AB:BC:AC=2:3:4,故选:C.4.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.√3B.2C.3D.√3+2【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选:C.5.如图,△ABC中,∠ABC、∠EAC的角平分线P A、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③【分析】过点P分别作AB、BC、AC的垂线段,根据角平分线上的点到角的两边的距离相等可以证明点P到AC、BC的垂线段相等,再根据到角的两边距离相等的点在角的平分线上即可证明①正确;根据四边形的内角和等于360°可以证明②错误;根据①的结论先证明三角形全等,再根据全等三角形对应边相等即可证明③正确;利用三角形的一个外角等于与它不相邻的两个内角的和利用△ABC 与△PBC 写出关系式整理即可得到④正确.【解答】解:如图,过点P 作PM ⊥AB ,PN ⊥BC ,PD ⊥AC ,垂足分别为M 、N 、D , ①∵PB 平分∠ABC ,P A 平分∠EAC ,∴PM =PN ,PM =PD ,∴PM =PN =PD ,∴点P 在∠ACF 的角平分线上(到角的两边距离相等的点在角的平分线上),故本小题正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,很明显∠MPN ≠∠APC ,∴∠ABC +∠APC =180°错误,故本小题错误;③在Rt △APM 与Rt △APD 中,{AP =AP PM =PD, ∴Rt △APM ≌Rt △APD (HL ),∴AD =AM ,同理可得Rt △CPD ≌Rt △CPN ,∴CD =CN ,∴AM +CN =AD +CD =AC ,故本小题正确;④∵PB 平分∠ABC ,PC 平分∠ACF ,∴∠ACF =∠ABC +∠BAC ,∠PCN =12∠ACF =∠BPC +12∠ABC ,∴∠BAC =2∠BPC ,故本小题正确.综上所述,①③④正确.故选:B .6.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD =4,则四边形ABCD的面积是()A.24B.30C.36D.42【分析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=12AB•DH+12BC•CD=12×6×4+12×9×4=30,故选:B.7.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°【分析】过D作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,依据角平分线的性质,即可得到DE=DG,再根据三角形外角性质,以及角平分线的定义,即可得到∠ADB=∠DBE﹣∠BAD=12(∠CBE﹣∠BAC)=12∠ACB.【解答】解:如图所示,过D作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DF=DE,又∵∠ACD=136°,∠BCD=44°,∴∠ACB=92°,∠DCF=44°,∴CD平分∠BCF,又∵DF⊥AC于F,DG⊥BC于G,∴DF=DG,∴DE=DG,∴BD平分∠CBE,∴∠DBE=12∠CBE,∵AD平分∠BAC,∴∠BAD=12∠BAC,∴∠ADB=∠DBE﹣∠BAD=12(∠CBE﹣∠BAC)=12∠ACB=12×92°=46°,故选:D.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∴S △ABC =12×4×2+12AC •2=7,解得AC =3.故答案为:3.9.如图,在Rt △ABC 中,∠A =90°,∠ABC 的平分线BD 交AC 于点D ,AD =3,BC =10,则△BDC 的面积是 15 .【分析】过D 作DE ⊥BC 于E ,根据角平分线性质求出DE =3,根据三角形的面积求出即可.【解答】解:过D 作DE ⊥BC 于E ,∵∠A =90°,∴DA ⊥AB ,∵BD 平分∠ABC ,∴AD =DE =3,∴△BDC 的面积是12×DE ×BC =12×10×3=15, 故答案为:15.10.已知如图,∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,则∠EAB 是 35 度.【分析】过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°﹣35°=55°,进而得到∠CDA和∠DAB的度数,即可求得∠EAB的度数.【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∵∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,∴∠CDA=110°,∵∠B=∠C=90°,∴DC∥AB,∴∠CDA+∠DAB=180°,∴∠DAB=70°,∴∠EAB=35°.故答案为:35.11.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC =18cm,则DE的长为 2.4cm.【分析】过点D作DF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△BCD列出方程求解即可.【解答】解:如图,过点D作DF⊥AB于F,∵BD是∠ABC的平分线,DE⊥BC,∴DE=DF,S△ABC=S△ABD+S△BCD,=12AB•DF+12BC•DE,=12×12•DE+12×18•DE,=15DE,∵△ABC=36cm2,∴15DE=36,解得DE=2.4cm.故答案为:2.4.题型四“燕尾模型”与三角形的外角性质1.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P 的度数,即可求出结果.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.2.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=12∠ABC、∠ECM=12∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=12∠ACM,则∠BEC=∠ECM﹣∠EBM=12×(∠ACM﹣∠ABC)=12∠A=30°,故选:B.3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【分析】依据角平分线的性质以及三角形外角性质,即可得到∠1=2∠2,∠BOC=90°+12∠1,∠BOC=90°+∠2.【解答】解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=12∠ACD,∠DBE=12∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=12(∠ACD﹣∠ABC)=12∠1,故①正确;∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12ABC,∠OCB=12∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠1)=90°+12∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=12∠ACB,∠ACE=12ACD,∴∠OCE=12(∠ACB+∠ACD)=12×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.4.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=30°.【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.5.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是75°.【分析】先根据直角三角形两锐角互余求出∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,∴∠α=30°+45°=75°.故答案为:75°.6.如图,∠BCD=150°,则∠A+∠B+∠D的度数为150°.。

1.2 定义与命题

1.2 定义与命题

已学过的定理和基本事实举例:
1.定理: (1)三角形任何两边之和大于第三边. (2)两条平行直线被第三条直线所截,内错角相等. (3)线段中垂线上的点到线段两个端点的距离相等. 2.基本事实: (1)两点之间线段最短. (2)一条直线截两条平行直线所得的同位角相等. (3)两点确定一条直线. (4)经过直线外一点有且只有一条直线与这条直线平行. (5)经过直线外一点有且只有一条直线与这条直线垂直.
• 如图,若∠1+∠2=180°,则直线a∥b.用推理的方
法说明它是真命题.
小结: 今天你学到了什么?
(8) 2018年世界杯在俄罗斯举行.
例1 指出下列命题的条件和结论,并改写成“如果…… 那么……”的形式.
(1)等底等高的两个三角形面积相等.
(2)对顶角相等.
(3)同位角相等,两直线平行.
• 解:(1)这个命题的条件是“两个三角形有一条边和这 条边上的高线对应相等”,结论是“这两个三角形的 面积相等”.可以改写成“如果两个三角形有一条边和 这条边上的高线对应相等,那么这两个三角形的面积 相等”.
• 分别说出下列命题的条件和结论: (1) 三角形的两边之和大于第三边. (2) 三角形三个内角的和等于180°. (3) 两点确定一条直线.
(4) 对于任何实数x,x2<0.
上述命题中,哪些正确?哪些不正确?
• 总结:命题有正确与不正确之分
• 正确的命题称为真命题.
• 不正确的命题称为假命题.
• 判断下列命题的真假,并说明理由. (1) 如图,已知∠α和∠β,则∠α>∠β.
条件
结论
• 命题可以写成“如果……,那么……”的形式.
例如:如果两直线平行,那么同位角相等.

初中数学八年级上 1.2 定义和命题 课件

初中数学八年级上 1.2  定义和命题 课件
1.2定义和命题(1)
一对父子的谈话
爸爸,什么 叫法律?
法律就是法国 的律师.
那么什么是 法盲?
法盲就是法国 的盲人.
这个父亲的话有歧义吗?
为了不产生歧义,我们在进行各种沟通、交 流时常要用许多名称和术语的含义必须有明 确的规定。
例如: (1)商店以比原来标价低的价格出售商品叫做打折 ;
(2)单位体积内所含有某一物质的质量叫做密度; (3)在同一平面内不相交的两条直线叫平行线。
学有所成
本节课你学到什么?
1、定义? 一般地,能清楚地规定某一名称或术语的 意义的句子叫做名称或术语的定义。 2、命题?
一般地,对某件事情作出正确或不正 确的判断的句子叫做命题。
命题的结构是题设(已知条件)与结论 (由已知条件推出的事项)。
找出下列命题的条件和结论,并改写成“如 果…,那么…”的形式:
比较上述句子在表述形式上,哪些对事情作了判断?
哪些没有对事情作了判断?
对事情作了判断的句子: (1) (4)
没有对事情作了判断的句子: (2) (3)
一般地,对某一件事情作出正确或 不正确的判断的句子叫做命题。
请你当判官
一般地,对某一件事情作出正确或 不正确的判断的句子叫做命题。
下列句子中,哪些是命题?哪些不是命题?
一般地,能清楚地规定某一名称或术语的意 义的句子叫做该名称或术语的定义。
例如: 1、“具有中华人民共和国国籍的人,叫做中华人
民共和国公民” 是“ 中华人民共和国公民 ”的定义;
2、 “两点之间 线段的长度,叫做这两点之间的距 离” 是“ 两点之间的距离 ”的定义;
问题一:
请说出下列名词的定义: ⑴无理数: 无限不循环小数叫做无理数。 ⑵直角三角形:有 直一角个三角角是形直。角的三角形叫做 ⑶一次函数:一般地,形如y=kx+b(k、b都是常数

1.2定义与命题

1.2定义与命题

1.2定义与命题(2)学习目标:1.理解真命题、假命题、公理和定义的概念.2.会判断一个命题的真假,会区分定理、公理和命题.3.通过判断一个命题的真假,提高推理能力、逻辑思维能力和表达能力.重点、难点:重点:命题真假的概念和判断.难点:判别命题的真假过程中所涉及的证明方法和表述.创设情境:1.复习:命题的概念是_____________________________________结构是__________________________________________2.合作学习:思考下列命题的条件是什么?结论是什么?(1)同角的余角相等.(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(3)对于任何实数x,2x<0.问:上述命题中,哪些正确?哪些不正确?理由是什么?_________________________________________________________________________________________________________________________________________3.真命题、假命题的概念:_________ __命题称为真命题,________命题称为假命题。

要判定一个命题是真命题常常通过推理(即证明)的方式.而判定一个命题是假命题常常通过举反例的方式.生生合作:1.判断下列命题的真假,并说明理由.(1)一组对边平行,另一组对边相等的四边形是平行四边形.(2)aa=22. 如图,若21∠+∠=180°,则直线a∥b,用推理的方法说明它是真命题.师生合作:1.判断下列命题的真假,并说明理由.三角形一条边的两个顶点到这条边上的中线所在直线的距离相等. a b真情体验1.判断下列命题的真假,并说明理由.(1)如果ab>0,那么a>0,b>0. (2)内错角相等.(3)同角的补角相等。

八年级数学上册:1.2定义与命题

八年级数学上册:1.2定义与命题
两个角所对的边也相等。
(4)对顶角相等。
条件是: 两个角是对顶角 结论是: 这两个角相等 改写成: 如果两个角是对顶角,那么这两个角相等。
指出下列命题的条件和结论,并改写 “如果……那么……”的形式:
⑴两条边和它们的夹角对应相等的两个 三角形全等;
如果两个三角形有两条边和它们的夹角对 应相等,那么这两个三角形全等。
判断一个句子是不是命题的关键是什么?
下图表示某地的一个灌溉系统.
如果C地水流被污染,那么__E_、__F____的水流也被污染。
B EC
A
P D
F
GH I
JK
根据上图,你能说出其他的命题吗?
触类旁通
命题可看做由题设(条件)和结论两部分 组成。题设是已知事项,结论是由已知事项推 出的事项。
两直线平行,同位角相等。
题设:两条直线被第三条直线所截,同旁源自角互补结论:这两条直线平行
4、如果两条平行线被第三条直线所截, 那么内错角相等; 题设:两条平行线被第三条直线所截
结论:内错角相等
指出下列命题的条件和结论,并改写成“如 果……那么……”的形式: ⑴同位角相等,两直线平行;
条件是: 同位角相等 结论是: 两直线平行 改写成:如果同位角相等,那么两直线平行。
1.2 定义与命题(1)
什么叫法律? 什么是法盲?
法律就是法国 的律师
法盲就是法国 的盲人
可见,在交流时对名称和术语要有共同的认识才行。
一般地,能清楚地规定某一名称或术语的意义 的句子叫做该名称或术语的定义。
例如: 1、“具有中华人民共和国国籍的人,叫做中华人民 共和国公民” 是“ 中华人民”共的和定国义公; 民
2、 “两点之间 线段的长度,叫做这两点之间的距离” 是 “ 两点之”间的的定距义离;

浙教版数学八年级上册1.2《定义与命题》说课稿

浙教版数学八年级上册1.2《定义与命题》说课稿

浙教版数学八年级上册1.2《定义与命题》说课稿一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。

本节内容是在学生已经掌握了实数、不等式等基础知识的基础上进行讲授的,是学生学习数学语言和逻辑推理的重要基础。

本节课的主要内容是让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于实数、不等式等概念有一定的了解。

但是,学生对于抽象的数学概念的理解还存在一定的困难,需要通过具体的例子和实际操作来帮助学生理解和掌握。

此外,学生的逻辑思维能力和判断能力还在发展中,需要通过教师的引导和培养。

三. 说教学目标1.知识与技能目标:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。

2.过程与方法目标:通过学生的自主学习、合作交流和教师的引导,培养学生的逻辑思维能力和判断能力。

3.情感态度与价值观目标:让学生体验到数学的乐趣,培养学生对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题。

2.教学难点:让学生能够判断一个命题是真命题还是假命题。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主学习、合作交流和教师的引导相结合的教学方法。

同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个具体的例子,引出定义和命题的概念,激发学生的兴趣。

2.自主学习:让学生自主阅读教材,理解定义和命题的概念,并尝试判断一些简单的命题的真假。

3.合作交流:让学生分组讨论,分享自己的理解和判断,互相学习和交流。

4.教师引导:教师通过讲解和示范,引导学生理解和掌握定义和命题的概念,并教会学生如何判断一个命题是真命题还是假命题。

5.练习巩固:让学生进行一些相关的练习,巩固所学知识。

浙教版八年级数学上册课件:1.2定义与命题 (共13张PPT)

浙教版八年级数学上册课件:1.2定义与命题 (共13张PPT)

所有的定理是真命题 。 √
所有的公理是真命题 。 √
通过本节课的学习,你学到了什么?把 你的收获说出来,和大家一起分享!
课堂小结
• 1、命题都是由条件和结论两部分组成
“如果……那么……”
条件
举反例
结论
• 2、说明一个命题是假命题的方法: • 3、说明一个命题是真命题的方法:
证明
证明的依据:基本事实(等式的性质) 定义、已证明的定理
(1)人们经过长期实践后而公认为正确的.
数学中通常挑选一部分人类经过长期实践 后公认为正确的命题在本书中叫做基本事 实. (2)通过推理的方式,即根据已知的事实来推断
未知事实;
用推理的方法判断为正确的命题叫做定理.
定理和基本事实都可以作为判断其他命 题真假的依据.
判一判
所有的命题都是公理。Χ
Χ 所有的真命题都是定理 。
判别下列命题的真假,并说明理由:
(1)已知∠1和∠2如图,则∠1>∠2; (真命题) 。 。
因为∠1=60, ∠2=40 1 2
所以∠1>∠2
(2)三角形的两边之和大于第三边; (真命题)
根据“两点之间线段最短”。
(3)会飞的动物是鸟. (假命题)
因为会飞的不一定是鸟,如蝉。
判定一个命题是真命题的方法:
• 1.2 定义与命题
(1)什么是定义? 一般地,能清楚地规定某一名称或术语 的意义的句子叫做该名称或术语的定义.
(2)什么是命题?
命题由哪两部分组成?
一般地,对某一件事情作出正确或不正 确的判断的句子叫做命题. 命题由可看做由题设(或条件)和结论两 部分组成.
判断下列句子中,哪些是命题?哪些不是命题?
如何证实一个命题是真命题呢

1.2定义与命题(知识清单+经典例题+夯实基础+提优训练+中考链接)

1.2定义与命题(知识清单+经典例题+夯实基础+提优训练+中考链接)

C. 钝角三角形
D. 等腰三角形
12.下列命题中,是正确命题的是( )
A.若 2x+2=2x-3,则 5=0
B.若 3 = 1,则 x =1 4x −1
C.若 a = b = c = k ,则 k = 1
b+c a+c c+a
2
13.写出下列假命题的反例:
D.若 a 为实数,则 a2 = ( a)2
C. 3 个
D.4 个
2.下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,
其中不正确的命题的有
(填序号).
3.对于命题“若 a2>b2,则 a>b”,下面四组关于 a,b 的值中,能说明这个命题是
假命题的是( )
A.a=3,b=2 B.a=﹣3,b=2
(4)杭州湾跨海大桥是世界上第三长的跨海大桥;
(5)两条直线被第三条直线所截,同位角相等.
14.命题:“能被 5 整除的数,它的末尾数是 5”它是一个
15.判断下列语句是否是命题(填“是”或“否”)
(1)画一条线段 a=7cm(
);
(2)明天一定下雨( );
() () () () () 命题(填“真”或“假”)
题型 2 真命题和假命题、公理和定理
命 题:命题是判断一件事情的语句,即命题一定要对某件事情下结论,不管这个结论是对还是错. 真命题和假命题:真命题:正确的命题称为真命题; 假命题:不正确的命题称为假命题. 举 反 例:举一个例子,若符合该命题的条件,而不符合该命题的结论,这种例子叫做反例,这种方法称为举 反例.要说明一个命题是假命题,通常举一个反例.命题的反例是具备命题的条件,但不具备命题的结论的实例. 公 理:是人们在长期实践中总结出来的正确的命题(真命题),它不需要用其他的方法来证明,是作为判断其 他命题的依据.如初一几何中我们过的主要公理有: ①经过两点有一条直线,并且只有一条直线. ②经过直 线外一点有且只有一条直线与这条直线平行.③同位角相等,两直线平行. ④两直线平行,同位角相等. 定 理:用推理的方法判断正确的命题叫做定理.定理也可以作为判断其他命题的依据. 例如前面学过的定理 有:“对顶角相等”,“三角形任何两边的和大于第三 边”,“两条直线被第三条直线所截,如果内错角相等,那么 这两条直线平行”等都是定理.

1.2_定义与命题__课件

1.2_定义与命题__课件
推断出的结论。
每个命题都可以写成“如果....那么....”的形式,其中 “如果”引出的部分是条件,“那么”引出的部分是结论,
每个命题都有条件和结论
例1、 指出下列命题的题设和结论 1、如果两个角相等,那么这两个角是对顶角。
题设: 两个角相等 结论: 这两个角是对顶角 2、如果a>b,b>c,那么 a =c;
题设: 两个三角形的两角及其中一角对边对应相等 结论: 这两个三角形全等
6、全等三角形的面积相等。 改写成:如果两个三角形是全等三角形,那么这两个三角形的面积相等。 题设: 两个三角形是全等三角形 结论: 这两个三角形的面积相等
改写的经验:
命题的类型
补充的词语
判断一个事物的属性命题 如果一个()… 那么这个()…
做一做:判断上述例题中各命题的真假,若是假命题, 请举出反例。
1、如果两个三角形的三条边对应相等,那么这两个三角形 全等。
2、如果一个四边形的一组对边平行且相等,那么这个四边形 是平行四边形。
3、如果一个三角形是等腰三角形,那么这个三角形的两个底 角相等
4、如果一个四边的对角线相等,那么这个四边形是矩形。
题设: a>b,b>c 结论: a=c
3、对顶角相等。 改写成: 如果两个角是对顶角,那么这两个角相等。 题设: 两个角是对顶角 结论: 这两个角相等
例1、 指出下列命题的题设和结论 4、菱形的四条边相等。
题设: 一个四边形是菱形 结论: 这个四边形的四条边相等 5、两角及其中一角对边对应相等的两个三为一到组什,每么个小?组说出
三个命题,另一组把它改写“如果……那 么……”的形式。看哪一组表现较好。
习题7.2
“二元一次方程
”的定义;

浙教版-数学-八年级上册1.2定义与命题 精品课件

浙教版-数学-八年级上册1.2定义与命题 精品课件
(2)直角三角形的两个锐角互余.
2.找出命题的条件和结论,并改写成“如果 …,那么…”的形式:
(1)两条边和他们的夹角对应相等的 两个三角形全等.
如果两个三角形的两条边和他们的夹角 对应相等,那么这两个三角形全等.
(2)直角三角形的两个锐角互余.
如果两个角是直角三角形的两个锐角, 那么这两个锐角互余.
(1)若a<b,则 b a; (2)三角形的三条高交于一点; (3)两点之间线段最短;
(4)1 2≠3;
(5)解方程 x2 2x 3 0
(6)在ΔABC中,若AB>AC,则∠C>∠B吗?
2.找出命题的条件和结论,并改写成“如果…,那 么…” 的形式:
(1)两条边和他们的夹角对应相等的两个三角 形全等.
说出下列名词的定义: (1)无理数;(2)直角三角形;数. (2)有一个角是直角的三角形是直角三角形. (3)一组数据的最大值与最小值的差叫做极差.
判断
比较下列句子在表述形式上,哪些对事情作 了判断?哪些没有对事情作出判断?
(1)鸟是动物. (2)若a2=4,求a的值. (3)若a2=b2,则a=b. (4)a,b两条直线平行吗? (5)画一个角等于已知角. (6)0.33是无理数. (7)两直线平行,同位角相等.
(3) 以下有一些关于多个“跳点”间关系的叙述: A.“跳点”(-1,-2)和(1,2)关于原点对称. B.三个“跳点”不可能构成三角形.
你能模仿以上命题来说一些命题吗?
1.定义:能清楚地规定某一名称或术语的意 义的句子。
2.命题:对某一件事情作出正确或不正确的 判断的句子。
3.命题的结构:由条件和结论两部分组成。
在平面直角坐标系中,有一列横坐标和纵坐标都是整数的点:

1.2定义与命题学习课件PPT

1.2定义与命题学习课件PPT

可见,在交流时对名称和术语要有共同的认识才行.
定义
一般地,能清楚地规定某一名称或术语的 意义的句子叫做该名称或术语的定义.
例如:1、“具有中华人民共和国国籍的人,叫做中华人民共 和国公民” 是“ 中华人民共”和国的公定民义;
2、 “两点之间 线段的长度,叫做这两点之间的距离” 是
“ 两点之间的”距的离定义;
(5)画一有个判角断等于已有知对角错. (6)0.33是无理数. (一7)般两地直,线对平某行一,件同事位情角作相出等正.确或不 正确的判断的句子叫做命题.
练一练
下列句子中,哪些是命题?哪些不是命题? ⑴负数都小于零. 是 ⑵两个等边三角形是全等三角形. 是 ⑶一组数据的方差越大,这组数据就越稳定. 是 ⑷下午会下雨吗? 不是 ⑸所有的素数都是奇数. 是 ⑹过直线外一点作直线l 的平行线. 不是 ⑺北京是中国的首都. 是 ⑻|a|<0 (a为实数). 是
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
命题的结构
命题: 两直线平行,同位角相等.
条件 (题设)
结论 (结论)
现阶段命题可看作由题设(条件)和结论 两部分组成,题设是已知事项,结论是由已知 事项推出的事项.
例 指出下列命题的条件和结论,并改写成“如果……那么……” 的形式: ⑴三条边对应相等的两个三角形全等;

浙教版数学八年级上册1.2《定义与命题》教案

浙教版数学八年级上册1.2《定义与命题》教案

浙教版数学八年级上册1.2《定义与命题》教案一. 教材分析《定义与命题》是浙教版数学八年级上册的第一章第二节内容。

本节课的主要内容是让学生理解命题的概念,学会用数学语言表述命题,并了解命题的逆命题、反命题和否定命题之间的关系。

教材通过具体的例子引导学生理解命题、逆命题、反命题和否定命题的概念,并让学生通过观察、思考、交流等活动,掌握这些概念之间的联系和转化。

二. 学情分析学生在七年级时已经接触过一些简单的命题,对命题的概念有一定的了解。

但是,对于逆命题、反命题和否定命题的概念以及它们之间的关系,可能还比较模糊。

因此,在教学过程中,需要引导学生通过具体的例子去理解这些概念,并通过对比、归纳等活动,找出它们之间的关系。

三. 教学目标1.理解命题、逆命题、反命题和否定命题的概念。

2.学会用数学语言表述命题,并能正确判断一个命题的逆命题、反命题和否定命题。

3.理解命题、逆命题、反命题和否定命题之间的关系,并能运用这些概念解决实际问题。

四. 教学重难点1.教学重点:命题、逆命题、反命题和否定命题的概念及它们之间的关系。

2.教学难点:逆命题、反命题和否定命题的判断和转化。

五. 教学方法1.采用引导发现法,让学生通过观察、思考、交流等活动,发现命题、逆命题、反命题和否定命题之间的关系。

2.采用实例分析法,让学生通过具体的例子,理解命题、逆命题、反命题和否定命题的概念。

3.采用对比归纳法,引导学生总结命题、逆命题、反命题和否定命题之间的关系。

六. 教学准备1.准备相关的教学素材,如PPT、黑板、粉笔等。

2.准备一些具体的例子,用于引导学生理解命题、逆命题、反命题和否定命题的概念。

七. 教学过程1.导入(5分钟)通过一个简单的例子,引出命题的概念,让学生思考:如何用数学语言表述一个命题?2.呈现(10分钟)呈现教材中的例子,引导学生观察、思考命题、逆命题、反命题和否定命题之间的关系。

通过对比、归纳等活动,让学生总结出它们之间的关系。

浙教版数学八年级上册《1.2定义与命题》说课稿

浙教版数学八年级上册《1.2定义与命题》说课稿

浙教版数学八年级上册《1.2 定义与命题》说课稿一. 教材分析《1.2 定义与命题》是浙教版数学八年级上册的第一课时,本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。

教材通过具体的例子,让学生初步认识定义与命题,并学会如何判断一个命题的真假。

本节课的内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力具有重要意义。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对于新知识有一定的接受能力。

但是,学生在学习过程中可能会对定义与命题的概念理解不深,难以区分两者之间的区别。

因此,在教学过程中,教师需要通过具体例子,让学生反复体会定义与命题的含义,提高学生的理解能力。

三. 说教学目标1.知识与技能目标:使学生了解定义与命题的概念,理解它们之间的联系与区别,学会判断一个命题的真假。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生独立思考和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,提高学生运用数学知识解决实际问题的能力。

四. 说教学重难点1.教学重点:定义与命题的概念,以及如何判断一个命题的真假。

2.教学难点:定义与命题之间的联系与区别,以及如何运用它们解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合具体例子,生动形象地展示定义与命题的概念。

六. 说教学过程1.导入新课:通过一个生活中的实例,引导学生思考如何用数学语言来描述这个实例,从而引出定义与命题的概念。

2.讲解新课:详细讲解定义与命题的概念,并通过具体例子让学生体会它们之间的联系与区别。

3.巩固新知:布置一些练习题,让学生独立完成,检验学生对定义与命题的理解程度。

4.拓展应用:引导学生运用定义与命题解决实际问题,提高学生的运用能力。

浙教版数学八年级上册《1.2 定义与命题》教案

浙教版数学八年级上册《1.2 定义与命题》教案

浙教版数学八年级上册《1.2 定义与命题》教案一. 教材分析《1.2 定义与命题》是浙教版数学八年级上册的第一课时,主要讲述了定义与命题的概念。

本节课的内容是学生学习数学的基础,对于学生理解数学概念、推理能力和逻辑思维的培养具有重要意义。

教材通过具体的例子引入定义与命题的概念,引导学生理解其内涵和外延,并通过练习题巩固所学知识。

二. 学情分析学生在学习本节课之前,已经学习了初中数学的一些基本概念和符号,具备一定的逻辑思维能力。

然而,对于定义与命题的概念,学生可能较为陌生,需要通过具体的例子和讲解来理解和掌握。

此外,学生可能对于抽象的概念有一定的恐惧心理,需要教师通过生动的讲解和引导来激发学生的学习兴趣。

三. 教学目标1.了解定义与命题的概念,能够正确辨别定义和命题。

2.能够运用定义与命题的方法,分析和解决问题。

3.培养学生的逻辑思维能力和推理能力。

4.激发学生学习数学的兴趣,提高学生对数学的认同感。

四. 教学重难点1.重点:定义与命题的概念及其运用。

2.难点:对定义与命题的理解和运用,特别是在解决问题中的应用。

五. 教学方法1.讲授法:通过讲解和举例,引导学生理解和掌握定义与命题的概念。

2.互动法:通过提问和小组讨论,激发学生的思考和参与,提高学生的理解能力。

3.练习法:通过布置练习题,让学生巩固所学知识,并培养学生的解题能力。

六. 教学准备1.教学课件:制作课件,包括图片、例子和练习题等,以便进行生动讲解和引导学生思考。

2.练习题:准备一些有关定义与命题的练习题,用于巩固所学知识。

3.黑板:准备黑板,用于板书定义与命题的例子和解题步骤。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习的基本概念和符号,为新课的学习做好铺垫。

2.呈现(15分钟)讲解定义与命题的概念,并举例说明。

让学生理解定义是对于某个概念的准确描述,命题是对于某个陈述的判断。

通过具体的例子,引导学生区分定义和命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小组合作(先独立完成, 若有困难,再小组合作)
思考下列命题的题设(条件)是什么?结论是什么? √3 a2 . (1)边长为a(a>0)的等边三角形的面积为 4 (2)两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行;
(3)对于任何实数 x, x2 <0.
上述命题中,哪些正确?哪些不正确?你的理由 是什么?
练一练 下列句子中,哪些是命题?哪些不是命题? ⑴负数都小于零. 是 ⑵两个等边三角形是全等三角形. 是 ⑶一组数据的方差越大,这组数据就越稳定.是 ⑷下午会下雨吗? 不是 ⑸所有的素数都是奇数. 是 ⑹过直线外一点作直线l 的平行线. 不是 ⑺北京是中国的首都. 是
⑻|a|<0 (a为实数). 是
⑵直角三角形两个锐角互余. 如果两个角是一个直角三角形的两个锐角, 那么这两个角互余. ⑶角平分线上的点到角两边的距离相等. 如果一个点在角平分线上,那么这个点到 角两边的距离相等.
练一练 1.请给下列图形命名,并给出名称的定义.
2.观察下列这类整式的次数和项数,找出它们的共 同特征,给以名称,并作出定义:
x 2x 1
2

2
2 x 3x 1
2

2
x 2 xy 2 y
2

4a 4ab b
2
.
先整理复习
判断下列句子中,哪些是命题?哪些不是命题?
(1)同角的余角相等.

不是 是
(2)在直线AB上任取一点C.
(3)相等的角是对顶角.
(4)全等的两个三角形的面积相等. 是
(5)不相交的两条直线叫做平行线. 是
(1)已知∠1和∠2如图,则∠1>∠2; (真命题)
1 2Βιβλιοθήκη (2)三角形的两边之和大于第三边;
A
(真命题) (真命题)
C
(3)如图,若∠B=∠C,则△ABC是等腰三角形; (4)会飞的动物是鸟. (假命题)
B
辨一辨 2、这几个命题哪些是真命题?哪些是假命题? (1)如果两个角相等,那么它们是对顶角; 假命题 (2)如果a>b,b>c,那么a=c; (3)两角和其中一角的对边对应相等的两 个三角形全等; (4)菱形的四条边都相等; 假命题

总结:公理、定理、真命题、命题之间的关系 公理 真命题 定理 其它的真命题 命题 假命题
对顶角相等
(真命题)
2
3
1
∵∠1+∠3=180° ∠2+∠3=180° ∴∠1=∠2 (同角的补角相等)
先整理复习,后做作业…… 1.这节课主要学习了哪些内容? 2.这节课中哪些地方容易搞错?
课外作业
实验班
真命题
真命题
(5)全等三角形的面积相等。
真命题
辨一辨
3.判断下列命题的真假性?并说明为什么?
(1)如果
x 5 3 x 2 3
那么x<4
x 5 3 x 2 3
是假命题。因为 当 题是假命题
时 x>4.25 , 所以这个命
(2)如果a≠0,b≠0,那么a² +ab+b² =(a+b)² 是假命题。如:a=1,b=1时a² +ab+b² =3, (a+b)² =4,这时 a²+ab+b²≠ (a+b)² ,所以这个命题是假命题 (3)两个锐之和一定是钝角 是假命题,如一个锐角为30°,另一个锐角为40°,则两角之 和等于70°为锐角,所以这个命题是假命题
(6)所有的质数都是奇数吗?
不是
下列命题的条件是什么?结论是什么? (1)如果两个三角形的两边及其夹角对应相等, 那么这两个三角形全等.
条件:两个三角形的两边及其夹角对应相等 结论:这两个三角形全等 (2)直角三角形的两个锐角互余. 条件:两个角是一个直角三角形的锐角 结论:这两个角互余。 (3)有一个角是60°的等腰三角形是等边三角形. 条件:有一个角是60°的等腰三角形 结论:这个三角形是等边三角形
P5-6 T9,10,15,16,17,20,21
P7-8 T1,2,9,11,13
温馨提示:作业要规范……
条件是: 同一个三角形中的两个角相等 结论是: 这两个角所对的两条边相等 改写成: 如果在同一个三角形中,有两个角相等,那么这 两个角所对的边也相等。 ⑶对顶角相等; 条件是: 两个角是对顶角 结论是: 这两个角相等 改写成: 如果两个角是对顶角,那么这两个角相等。
练一练
指出下列命题的条件和结论,并改写“如 果……那么……”的形式: ⑴两条边和它们的夹角对应相等的两个三 角形全等; 如果两个三角形有两条边和它们的夹角对 应相等,那么这两个三角形全等.
可见,在交流时对名称和术语要有共同的认识才行.
定义
规定 一般地,能清楚地规定某一名称或术语的 意义 定义 意义的句子叫做该名称或术语的定义.
例如:1、“具有中华人民共和国国籍的人,叫做中华人民 中华人民共和国公民 ”的定义; 共和国公民” 是“
2、 “两点之间 线段的长度,叫做这两点之间的距离” 是 “ 两点之间的距离 ”的定义;
定理(举例):用推理的方法判断为正确的命题 叫做定理。
三角形任何两边的和大于第三边.
内错角相等, 两条直线平行.
线段垂直平分线上的点到线段两个端点的距离 相等. 前面我们已经学过的,用推理的方法得到的那些 用黑体字表述的图形的性质或判定都可以作为定 理.
辨一辨:
所有的命题都是公理.
所有的真命题都是定理. 所有的定理是真命题. √ 所有的公理是真命题.
1.2定义与命题

杭州英特初二数学备课组
生活情境 小华与小刚正在津津有味地阅读《我们爱科学》.
哈!这个黑客 终于被逮住了. 是的,现在的因特网广 泛运用于我们的生活, 中,给我们带来了方便, 但…….
坐在旁边的两个人一边听着他们的谈话,一边也 在悄悄地议论着。
这个黑客是个 小偷吧? 可能是个喜欢 穿黑衣服的贼.
自学课本P73,思考: 1.什么是公理?什么是定理? 2.谈谈公理与定理的区别和联系.
数学中通常挑选一部分人类经过长期实践后 公认为正确的命题叫做公理. 用推理的方法判断为正确的命题叫做定理.
定理和公理都可以作为判断其他命题真假 的依据.
公理:人类经过长期实践后公认为正确的命题, 作为判断其他命题的依据。这些公认为正确的命 题叫做公理。 1.两点确定一条直线. 2.两点之间线段最短. 3.过直线外一点可以作且只能作一条直线与已 知直线平行. 4.两直线平行,同位角相等. 5.两条直线被第三条直线所截,如果同位角相 等,那么这两条直线平行. 6.判断三角形全等的方法:SAS ASA SSS. 7.全等三角形的对应角相等,对应边相等.
(1) (2) 正确的是_______ (3) 不正确的是______
据此可知,一个命题有正确的和不正确的之分.
正确的命题叫做 真命题
不正确的命题叫做 假命题 说明真命题的方法: 已知事实 未知事实
说明假命题的方法:
举反例
使之具有命题的条件,而不具有命题的结论
辨一辨 1、判别下列命题的真假,并说明理由:
命题的结构
命题: 两直线平行,同位角相等.
条件 (题设) 结论 (结论)
现阶段命题可看作由题设(条件)和结论 两部分组成,题设是已知事项,结论是由已知 事项推出的事项.
例 指出下列命题的条件和结论,并改写成“如果……那么……” 的形式: ⑴三条边对应相等的两个三角形全等; 条件是: 两个三角形的三条边对应相等 结论是: 这两个三角形全等 改写成: 如果两个三角形有三条边对应相等,那么这两个 三角形全等。 ⑵在同一个三角形中,等角对等边;
练一练 请说出下列名词的定义: ⑴无理数:
无限不循环小数叫做无理数. 直角三角形.
⑵直角三角形:有一个角是直角的三角形叫做
⑶一次函数: 一般地,形如y=kx+b(k、b都是
常数且k≠0)叫做一次函数.
⑷压强: 说一说:
单位面积所受的压力叫做压强.
你过去还学过哪些名词或术语的定义?
判断
命题
比较下列句子在表述形式上,哪些对事 (1)鸟是动物. 情作了判断?哪些没有对事情作出判断? (2)若a2=b2,则a=b. (1)鸟是动物. (3)0.33是无理数. (2)若a2=4,求a的值. (4)两直线平行,同位角相等. (3)若a2=b2,则a=b. 上面句子的特征: (4)a,b两条直线平行吗? (5)画一个角等于已知角. 有判断 有对错 (6)0.33是无理数. 一般地,对某一件事情作出正确或不 (7)两直线平行,同位角相等. 正确的判断的句子叫做命题.
相关文档
最新文档