下1非惯性系中的质点动力学讲解
第二章 非惯性系中的质点动力学
M1-28
积分可得
mgR(cos jmax 1 1) m 2 R 2 sin 2 jmax 0 2
因 sin 2 jmax 1 cos2 jmax 上式变为
mgR(cos jmax 1) 1 m 2 R 2 (1 cos 2 jmax ) 0 2
z
或
2 R cos2 jmax 2 g cos jmax 2 g 2 R 0
2. 当加速度 ae 2 g tan 时,牵连惯性力 FIe 2mg tan ,应用 相对运动动能定理,有
m v 2 0 ( F cos )l (mg sin )l Ie 2 r
整理后得
y' m
FN FIe
mg θ ae x'
m 2 vr (mg sin )l 2
力大小为 FIe m 2 R sin j ,方向如图。 经过微小角度dj 时,此惯性力作功为
z
W FIe R cos jdj m 2 R sin j cos jRdj
相对运动的动能定理,得
R
0 0 mgR(1 cos j max )
jmax
0
Байду номын сангаас
j
mg
FIe
m 2 R 2 sin j cos j dj
vr 质点相对动参考系速度
M1-20
上式两端点乘相对位移
dr
dvr m dr F dr FIe dr FIC dr dt
dr 注意到vr , 且科氏惯性力垂直于vr , 有FIC dr 0, 则 dt mvr dvr F dr FIe dr
第四章非惯性系中的质点力学
r 的相对变率: 矢量 A 的相对变率:
r d A & r & r & r = Ax′i ′ + Ay′ j ′ + Az′k ′ dt
• • • 非惯性系内质点的动力学方程 非惯性系内质点的动力学 地球自转的动力学效应
§4.1 两参考系间速度和加速度的变换关系 一. 静止系和运动系
静止系记为 s ,运动系记为 s′ .用描述刚体的一般运 运动系记为 用描述刚体的一般运 系的运动,即 动的方法来描述 s′系相对 s 系的运动 即 s′系随基点 点的转动合成. o′ 的平动与绕 o′ 点的转动合成
速度. b)由于转动 引起相对速度方向的变化, 速度. b)由于转动 ω引起相对速度方向的变化,从而产 生了加速度. 总之, 生了加速度. 总之,科氏加速度是相对运动和牵连运动 相互作用的结果. 相互作用的结果.
r r r v = v ′ + vt r r 2 ∗r r d v ′ d R dω a= + 2 + dt dt dt
r r r d v′ v ′ = 0, a ′ = =0 dt
∗
r r r 2 r r r d v ′ d R dω r r r r a= + 2 + × r ′ + ω × (ω × r ′) + 2ω × v ′ dt dt dt r r 2 d R dω r r r r = 2 + × r ′ + ω × (ω × r ′) dt dt r r dω r r r r = ao + × r ′ + ω × (ω × r ′) dt
第九章质点在惯性与非惯性参考系中的动力学复习课程
方向相同。即
maF
第三定律——作用反作用定律:两物体之间的作用力和反 作用力大小相等,方向相反,并沿同一条直线分别作用在两 个物体上。
? 质点在惯性系中的运动微分方程
当物体受几个力作用时,右端应为这几个力的合力。
即
maF
或
m
d2r dt2
F
? 质点在惯性系中的运动微分方程
● 矢量形式 m r Fi(t,rr, )
求球的运动和杆对球的约束力。
解:本题先由已知的主动力mg求质点的运动规律,再根据 求得的运动求未知约束力,故同时包含第一类问题和第二类 问题。
质点运动轨迹是圆弧,故用自然轴系研究
sl, vdsl
dt 建立小球的运动微分方程:
m mg cos
讨论:(1)微幅摆动
i
m x F ix
i
●直角坐标形式
m y F iy
i
m z F iz
i
● 弧坐标形式
m s F iτ
i
m s2
F in
i
0 F i b
i
? 质点动力学两类问题应用举例
第一类问题:已知质点的运动, 求作用于质点的力;
第二类问题:已知作用于质点的力, 求质点的运动。
? 质点动力学两类问题应用举例
x
st
O
x
W
l0
x
m
W=mgi
讨 论:
x
F=-k( x+ st)
1)、物块垂直悬挂时,运动规律如何?
2)、物块垂直悬挂时,坐标原点选择 不同,对运动微分方程的影响。
? 质点动力学两类问题应用举例
例 题2
图示一单摆。设球的质量为m, 杆的质量不计,杆长为l。当杆 在铅垂位置时,球因受冲击,具
大学物理第二章质点动力学PPT课件
•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的
《理论力学 动力学》 第五讲 非惯性系中质点的动能定理
4、非惯性系中质点的动能定理惯性参考系中的动能定理只适用于惯性系。
在非惯性参考系中,由于质点的运动微分方程中含有惯性力,因此需要重新推导动能定理。
质点的相对运动动力学基本方程为r d d m t=++Ie IC v F F F 式中e C r2m m m =-=-=-´Ie IC F a F a ωv ,r d d tv 是对时间t 的相对导数r v 上式两端点乘相对位移d ¢r r d d d d d d m t¢¢¢¢×=×+×+×Ie IC v r F r F r F r 注意到,并且科氏惯性力垂直于相对速度,所以IC F r v d 0¢×=IC F r d d r t¢=r v 上式变为:r r d d d m ¢¢×=×+×Ie v v F r F r δW ¢Ie—表示牵连惯性力F Ie 在质点的相对位移上的元功。
δF W ¢—表示力F 在质点的相对位移上的元功。
则有:2r 1d()δδ2F mv W W ¢¢=+Ie 质点在非惯性系中相对动能的增量等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。
——质点相对运动动能定理(微分形式)4、非惯性系中质点的动能定理积分上式得22r r01122F mv mv W W ¢¢-=+Ie ——质点相对运动动能定理(积分形式)质点在非惯性系中相对动能的变化等于作用于质点上的力与牵连惯性力在相对路程上所作功的和。
注意:因为在非惯性系中科式惯性力始终垂直于相对速度,因此在相对运动中科式惯性力始终不做功。
例4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,如图所示,若不计摩擦等阻力。
求: (1)平板以多大加速度向右平移时,小球能保持相对静止?(2)若平板又以这个加速度的两倍向右平移时,小球应沿板向上运动。
非惯性系内质点的动力学方程
t0 时 y a, y 0
y a et et ach t 2
A B a/2
0 FRx 2my
FRx 2my 2m 2ash t
0 FRz mg
FRz mg
§5-2 非惯性系内质点的动力学方程
FR 2m 2ash ti mgk
例题4 解法一
§5-2 非惯性系内质点的动力学方程
ma F
ma ma mat mac F
F
m
m a F mat mac
d2R dt 2
m
r
m
r
2m
v
牵连惯性力 Ft mat
科里奥利惯性力 Fc mac
惯性力合力 FI Ft Fc
ma F FI
§5-2 非惯性系内质点的动力学方程
FN FNnen
受惯性力
md2R / dt 2 0(R 0)
m r 0( 0)
m
r
2ma
2
2m
v
2ma
en
coFsc2(veraFtet
)
§5-2 非惯性系内质点的动力学方程
沿圆圈切向的运动微分方程为
mat
ma
2ma
2
cos
2
sin
2
2 sin 0
可见,与大幅角单摆运动的微分方程完全相同.
§5-2 非惯性系内质点的动力学方程
例题3
m
受惯性力
r m 2
yj
m
d2R dt 2
0
2m
v
2my
i
m r 0
mx 0 FRx 2my my m 2 y
mz 0 FRz mg
§5-2 非惯性系内质点的动力学方程
哈工大理论力学教研室《理论力学》(第7版)笔记和课后习题(含考研真题)详解(第16~17章)【圣才出
第16章非惯性系中的质点动力学16.1复习笔记一、基本方程1.非惯性系中的质点动力学基本方程(或称为质点相对运动动力学基本方程),其表达式为r Ie ICma F F F =++v v v v 式中,e Ie F ma =-v v ,表示牵连惯性力;C C I F ma =-v v ,表示科氏惯性力。
2.在动参考系内,把非惯性系质点动力学基本方程写成微分形式22Ie IC d d r m F F F t'=++v v v v 3.几种特殊情况(1)当动参考系相对于定参考系作平移时,则C 0a = ,0F =IC ,于是相对运动动力学基本方程为r Iema F F =+v v v (2)当动参考系相对于定参考系作匀速直线平移时,则C 0a = ,e 0a = ,Ie 0F F ==IC,于是相对运动动力学基本方程与相对于惯性参考系的基本方程形式一样,其表达式为r ma F= ①相对于惯性参考系做匀速直线平移的参考系都是惯性参考系。
②发生在惯性参考系本身的任何力学现象,都无助于发现该参考系本身的运动状况,这称为经典力学的相对性原理。
(3)当质点相对于动参考系静止时,则r r 00a υ==v v ,,0F =IC ,所以质点相对静止的平衡方程为F F +=Ie 上式称为质点相对静止的平衡方程,即当质点在非惯性参考系中保持相对静止时,作用在质点上的力与质点的牵连惯性力相互平衡。
(4)当质点相对于动参考系作等速直线运动时,有r 0a =,质点相对平衡方程为0Ie IC F F F ++=v v v 上式称为质点相对平衡方程。
可见在非惯性参考系中,质点相对静止和作等速直线运动时,其平衡条件是不相同的。
二、非惯性系中质点的动能定理1.质点相对运动动能定理的微分形式质点在非惯性系中相对动能的增量,等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。
即2r 1d()δδ2F mv W W ''=+Ie 2.质点相对运动动能定理的积分形式质点在非惯性参考系中相对动能的变化,等于作用在质点上的力与牵连惯性力在相对路程上所作的功之和。
力学2动力学II-非惯性系讲解
设有一质量为m的质点,在真实的外力F 的作 用下相对于某一惯性系S产生加速度 a ,
则根据牛顿第二定律,有:
F ma
假 沿设直线另运有动一。参在考S系参S考相系对中于,惯质性点系的S加以速加度速是度aa。0
则: a a a0
aAB aAC aCB
将此式代入上一式可得:
e
er
方向描述:er :径向方向
e :极角增加方向
O
位矢 r rer
速度
v
dr dt
d( rer dt
)
dr dt
er
r der dt
dr dt
er
r
d
dt
e
vr er
v e
r
P
X
e
r
der
d er
der der e der er d d
vr : v :
dt
参阅专业《力学》书
本地加速度
牵连横向 加速度
牵连向心 加速度
科里奥利 加速度
a a d r ( r ) 2 v
dt
a绝 a相 a牵
牵连加速度
f惯性力 ma牵
m
d
dt
r
[m
(
r
)]
2m(v )
欧拉力
对匀速转动的S'系:
非惯性系中的牛顿第二定律:
虚拟力
F ma F真实力 R
惯性力不是物体间的真实的相互作用,是一种假想的 力。它既无施力者, 也无反作用力, 不满足牛顿第三定律。
20第5章第二十讲 质点动力学
第五章质点动力学动力学的任务•研究物体机械运动一般规律动力学基本线索动力学内容•质点动力学、动力学普遍定理、刚体动力学、动静法、分析力学物体机械运动状态改变量力对物体机械作用量动力学两类问题第一类问题•已知运动,求力第二类问题•已知力,求运动舰载飞机在发动机和弹射器推力作用下从甲板上起飞若已知初速度、飞离甲板的速度,则需要弹射器施加多大推力,或者确定需要多长的跑道。
若已知推力和跑道长度,则需要多大的初速度和多长时间才能达到飞离甲板所需速度。
ABv1v2载人飞船的交会与对接质点动力学(dynamics of a particle)本章研究质点在惯性与非惯性系中的运动微分方程。
1.惯性系质点动力学基本方程2.非惯性系质点动力学基本方程3.地球自转对质点运动的影响1.惯性系质点动力学基本方程质点动力学基本方程(牛顿第二定律)(1683-1727)1. 惯性系质点动力学基本方程•矢量形式•直角坐标形式xy质点运动微分方程∑∑∑===iizi iyi ixF zm F ym F xm1.惯性系质点动力学基本方程•自然坐标形式•极坐标形式?质点运动微分方程∑∑∑===bi ni τi FF sm F s m 02ρ1. 惯性系质点动力学基本方程求解质点动力学问题的过程与步骤大致如下1.确定研究对象,选择适当的坐标系;2.进行受力分析,画受力图;3.进行运动分析,计算运动参数;4.列出质点的运动微分方程,分清是第一类问题还是第二类问题,分别用微分或积分法求解;对第一类问题,需要确定加速度,对第二类问题,加速度方向要和投影轴方向一致,并写出初条件。
5.根据需要对结果进行必要的分析讨论。
【例】圆锥摆。
质量为1kg 的重物,被绳限制在水平面内作圆周运动,成为锥摆形状;绳长l =30cm ,与铅垂线角度θ=60°。
求:速度v 及张力T 的大小。
1. 惯性系质点动力学基本方程G解:以小球为研究的质点,作用力:重力G ,绳子拉力T 。
大学物理-质点动力学学(2024版)
在同一直线上。
(2) 分别作用于两个物体上,不能抵消。
F F
(3) 属于同一种性质的力。 (4) 物体静止或运动均适用。
四、牛顿定律的应用 例2-1. 质量为m的物体被竖直上抛,初
解题步骤: (1) 确定研究对象。隔离
速度为v0,物体受到的空气阻力数值与 其速率成正比,即f = kv,k为常数,求
曲线下面的面积表示。
F
A F dx
O xa
xb x
力 位移曲线下的面积表示力F 所作的功的大小。
一、功
元功
dA F dr
dA F dr
Fxdx Fydy Fzdz
例2-1、一质点做圆周运动 ,有一力 F F0 xi yj
作用于质点,在 质点由原点至P(0, 2R)点过程中,F 力做的功为多少?
惯性质量:物体惯性大小的量度。 引力质量: 物体间相互作用的“能 力”大小的量度。 思考:什么情况下惯性质量与引 力质量相等?
2. 牛顿第一定律(惯性定律)
任何物体都保持静止
或匀速直线运动态,直至
其它物体所作用的力迫使
它改变这种状态为止。
3. 力的数学描述: 大小、方向、作用
点—矢量
二、牛顿第二定律
L2
路 径 绕 行 一 周 , 这 些
力所做的功恒为零,
a 若 A
F dr 0,
具有这种特性的力统
L
称为保守力。
若
A
F dr 0,
没有这种特性的力,
L
F 为保守力。 F 为非保守力。
统称为非保守力 或耗
保守力:重力、弹性力、万有引力、
散力。
静电力。
非保守力:摩擦力、爆炸力
五、势能
非惯性系中动力学问题的讨论讲解
包头师范学院本科毕业论文论文题目:非惯性系中动力学问题的讨论院系:物理科学与技术学院专业:物理学姓名:王文隆学号: 0809320007指导教师:鲁毅二〇一二年三月摘要综述了近几十年来国内外学者对非惯性系动力学方面的研究情况 ,以及对非惯性系动力学的实际应用情况。
介绍了在非惯性系中建立动力学方程的方法 ,惯性系中拉格朗日方程在非惯性系中的转换形式 ,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。
最后 ,概述了一些运用非惯性系动力学的方法来解决非惯性系中的理论和实际工程应用两方面的文献 ,并且对非惯性系的研究和应用进行了展望。
关键词:非惯性系;惯性力;动力学方程;拉格朗日方程;动量定理; 动能定律;守恒定律AbstractAnd under classical mechanics frame, the conservation law, leads into the inertial force concept according to kinetic energy theorem , moment of momenum theorem , mechanical energy in inertia department, equation having infered out now that the sort having translation , having rotating is not that inertia is to be hit by dynamics, priority explains a few representative Mechanics phenomenon in being not an inertia department.Key words:Non- inertia Inertial force Kinetic energy theorem Mechanical energy conserves Apply目录引言 (5)1非惯性系概述 (6)1.1非惯性系 (6)1.2 惯性力 (6)2 动力学方程 (7)2.1 质点动力学方程 (7)2.2 拉格朗日方程 (8)3 能量问题 (9)4 应用研究举例 (9)5 研究展望 (10)参考文献 (11)致谢 (12)非惯性系中动力学问题的讨论引言实际工程中有许多系统处于非惯性系内工作 ,如航空航天、天文和外星空探索等领域的许多转子系统。
非惯性系质心动量概述课件
非惯性系动量与力的关系
01
在非惯性系中,动量与力的关系 表现为动量定理的形式,即力在 时间上的积累等于物体动量的变 化。
02
在非惯性系中,由于存在外部力 作用,物体的动量会发生变化, 这种变化与外部力的作用时间和 大小有关。
非惯性系质心动量与力的关系
在非惯性系中,质心动量与力的关系 表现为质心动量定理的形式,即力在 时间上的积累等于物体质心动量的变 化。
在非惯性系中,物体受到的力包括真实力和惯性力两部分。真实力直接 改变物体的运动状态,而惯性力则是因为参考系加速运动而产生的虚拟 力。
质心动量与力之间的关系可以通过质心运动定理来描述,即质心动量的 改变与受到的外力(真实力和惯性力之和)成正比。
质心动量是描述物体相对于质心的动量,其改变反映了物体整体动量的 变化。因此,在分析非惯性系中的运动问题时,需要考虑质心动量的影 响,以便更准确地应用牛顿第二定律。
质心动量在非惯性参考系中的变化
当观察者处于非惯性参考系中时,由于观察者的加速度或旋转,会导致观察到的质心动量发生变化。这个变化与 相对论效应有关,需要进行相应的修正。
非惯性系质心动量与相对论的关系
在处理非惯性系中的质心动量时,需要考虑相对论效应的影响。这有助于更准确地描述物理现象,并深入理解质 心动量与相对论之间的关系。
THANKS
在非惯性系中,由于参考系本身具有加速度,物体受到的力除了受到真实力外,还 会受到惯性力作用。
质心动量是描述物体相对于惯性系或非惯性系中质心的动量。在非惯性系中,质心 动量可能会发生变化,从而影响物体的运动状态。
因此,在非惯性系中应用牛顿第二定律时,需要考虑质心动量的影响。
非惯性系质心动量与力的关系
非惯性系质心动量概述课件
大学物理1,第2章 质点动力学
O
x
mg
tan a1 , arctan a1
g
g
l
m
a1
(2)以小球为研究对象,当小车沿斜面作匀加速运
动时,分析受力如图,建立图示坐标系。
x方向:FT2 sin(α θ) mg sin α ma2
FT 2
y方向:FT2 cos(α θ) mg cos α 0 a2
m
FT2 m 2ga22 sin α a22 g 2
• 强力(strong interaction)
在原子核内(亚微观领域)才表现出来,存在于 核子、介子和超子之间的、把原子内的一些质子和中 子紧紧束缚在一起的一种力。
其强度是电磁力的百倍,两个相邻质子之间的强 力可达104 N 。力程:<10-15 m
• 弱力(weak interaction)
亚微观领域内的另一种短程力。导致衰变放出 电子和中微子。两个相邻质子之间的弱力只有10-2 N 左右。
重力(gravity) 重力是地球表面物体所受地球引力的一个分量。
G mg
g g0 (1 0.0035cos2 φ)
地理纬度角 g0 是地球两极处的重力加速度。
重力
引力
重力与重力加速度的方向都是竖直向下。
忽略地球自转的影响物体所受的重力就等于它所受的
万有引力:
mg
G
mEm R2
弹力(elastic force)
物体受到外力作用时,它所获得的加速度的大小与合 外力的大小成正比,与物体的质量成反比;加速度的
方向与合外力F的方向相同。 F kma
比例系数k与单位制有关,在国际单位制中k=1
瞬时性:是力F的瞬m时a 作m用d规v律 dt
F
理论力学第四章
5. S 系与 S ′系间加速度变换公式
dv′ d 2 R dω dr ′ dv d dR + 2 + × r′ + ω × a= = v′ + + ω × r′ = dt dt dt dt dt dt dt
d *r ′ d*v′ d 2 R dω = + ω × v′ + 2 + × r′ + ω × dt + ω × r ′ dt dt dt
例3、内壁光滑的水平细管以匀角速度绕过其一端的竖直轴转动, 、内壁光滑的水平细管以匀角速度绕过其一端的竖直轴转动, 管内有一质量为m的小球 初始时小球与竖直轴的距离为a, 的小球, 管内有一质量为 的小球,初始时小球与竖直轴的距离为 ,且相 对管静止,求小球沿管的运动规律及所受的约束力。 对管静止,求小球沿管的运动规律及所受的约束力。 建立坐标系如图,受到惯性力如下: 解: 建立坐标系如图,受到惯性力如下:
ɺɺ + ω 2 sin θ = 0 θ
注:采用不同的坐标系,加速 采用不同的坐标系, 度变换公式的具体分解结果是 不同的. 相应在动力学问题中, 不同的. 相应在动力学问题中, 选用不同的非惯性系, 选用不同的非惯性系, 惯性力 中各项的具体内容是不同的. 中各项的具体内容是不同的.
非惯性系中,牛顿第二定律不能成立 非惯性系中,牛顿第二定律不能成立. 但是在引入惯性力之后, 但是在引入惯性力之后, 在非惯性系中可以把惯性力与相互作 用力等同看待, 此时在非惯性系内牛顿第二定律在形式上得以 用力等同看待, 此时在非惯性系内牛顿第二定律在形式上得以 等同看待 形式上 成立. 成立. 通过简单的类比, 通过简单的类比, 可以知道在惯性系中得到的动力学规 如三个定理、三个守恒定律等), 只要计入惯性力, 律 (如三个定理、三个守恒定律等), 只要计入惯性力, 则在 非惯性系中亦可形式上不变地成立.从某种意义上说, 形式上不变地成立 非惯性系中亦可形式上不变地成立.从某种意义上说,惯性系 与非惯性系的差别仅仅在于是否考虑惯性力而已. 是否考虑惯性力而已 与非惯性系的差别仅仅在于是否考虑惯性力而已.
《理论力学 动力学》 第五讲 非惯性系中质点动力学的应用
求:套筒运动到端点A所需的时间
z'
及此时对杆的水平压力。
y'
2、非惯性系中质点动力学的应 用
解:研究套筒B相对于OA的运动.
O
选取和杆OA一起转动的坐标
系O x’y’z’为动参考系.
分析套筒受力, 其中
FIe = mw2 x¢ FIC = 2mw x&¢
套筒的相对运动动力学方程为:
m
d2r¢ dt 2
2、非惯性系中质点动力学的应 用
(1)傅科摆
在北半球,球铰链悬挂一支摆,摆锤摆动时,与 地球表面有相对速度,由于地球自转的影响,会 产生向左的科氏加速度,对应的科式惯性力向 右,因此它不会像单摆一样在一个固定平面内运 动,而会向右偏斜,轨迹如右图所示。这种现象 是傅科1851年发现的,称之为傅科摆。它证明了 地球的自转。摆绳摆动的平面在缓慢地顺时针旋 转,旋转一周的周期为:
2、非惯性系中质点动力学的应 用
例 1 如图所示单摆,摆长为l,小球质量为m。其悬挂点O以加速度a0向上运动。
求:此时单摆作微振动的周期。
a0
解:在悬挂点固结一个平移坐标系O x’y’。
O
x'
小球相对于此动参考系的运动相当于悬挂点固定的单摆振动。
分析小球受力, 其中 FIe = ma0
φ
因动参考系作平移运动,所以科氏惯性力 FIC = 0
2
3) = 0.209s
m
d2r¢ dt 2
=
ห้องสมุดไป่ตู้mg
+
F1
+
F2
+
FIe
+
FIC
将相对运动动力学方程投影到y’轴上,得: F2 = FIC = 2mw x&¢
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前面讲过, 牛顿第二定律只适用于惯性系. 如果在非惯性系内建立动 力学方程, 则质量与非惯性系下的加速度乘积的度量, 除了与真实力 有关, 还与非惯性系下产生的各种惯性力有关.
由牛顿第二定律和运动学的加速度合成公式, 有:
m a a m( a e a r a C ) F F 在 这 里 应 理 解 为 作 用质 在点 或 平 动 刚 体 上 的力 合. 上式可写成 : ma r F ma e ma C
代入 上 式 可得:
900
zk
o
R
1 y v0t cos gt 3 cos 3 1 z v0 t gt 2 2 2v0 设 z 0时 t ( 物体返回地面 ) g
2
x i
yj
1 4 x v02 t 3 sin2 g2 t 4 sin2 3 3 1 1 y v0t 2 cos gt 3 cos v03 t 4 cos 3 3 1 2 1 z v0 t gt 2 v02 t 3 cos2 g2 t 4 cos2 2 3 6
认识地球上的 科氏惯性力
在非惯性系下的力学系统, 无论处于什么状态, ( 静止、运动 ) 必存 在着惯性力. 这些惯性力所产生的力学效应, 可以通过相关的仪器测 出, 或可以通过人的感官感觉到. 公共汽车在转弯的时候对车上的物体作用有离心惯性力, 这已是 常识. 还有一些感觉是一般人体会不到的 . 飞机加速上升, 使人身上的血往下流, 脑中失血, 眼睛失明 — 这就是 飞行中的 ‘ 黑晕’ 现象. 飞机加速下降, 使人身上的血往上流, 脑中充血, 眼睛红视 — 这就是 飞行中的 ‘ 红视’ 现象. 地球本身就是一非惯性系, 而且是一有转动的非惯性系. 所以, 严 格地讲,以地球作为参照系的上的力学现象中, 应有牵连惯性力和科 氏惯性力的效应. 如果考察地球上局部空间内的力学现象, 把地球的这一部分运动空 间视为‘ 匀速直线平动’, 则许多力学现象的分析与计算结果是可 用的. 但是, 对于一些精确的力学问题, 以及大尺度的力学问题, 必须考虑 相应的惯性力. 对于地球上的许多大尺寸的运动学问题, 科氏惯性力的影响不容忽 视. 下面, 我们来研究地球上物体的运动与科氏惯性力.
900
zk
2y sin 1 x 2 x sin 2 z cos 2 y cos g 2y 3 z
o
R
x i
yj
< 1 > 自由落体偏东 设运动初始条件:
x0 y0 0 , z0 h . 0 y 0 z 0 0 x
6
900
zk
g sin2 g sin2 2 cos2t 1 x t 82 4
y g cos g cos sin 2 t t 2 4 2
4
5
6
o
R
这就是考虑科氏惯性力影响的自由落 x i 体公式. 这里, 地球的自转的角速度
0 y 0 0 x
0 v0 z
重复前面的解题过程可得:
x v 0 sin2 v sin2 g sin2 g sin2 2 sin2t 0 t cos 2 t 1 t 4 2 82 4
v0 cos g cos g cos cos2t 1 y sin2t t 2 2 4 2
yj
g cos2 1 2 z cos 2 t 1 gt cos2 1 h 2 4 2
7.29 105 rad / s 借助于幂级数, 我们来分析上面的方程.
4 3 3 sin 2 t 2 t t 取 3
2 cos 2t 1 22 t 2 4 t 4 3
900
zk
建立地面坐标系如图示 质点相对于地球的运动微分方程为
m r m g Fg C
o
R
x i
yj
即为:
m r mgk 2m r
I r gk 2 r
i j 0 y k sin z
解 : 若小球相对静止, 则 将
z ω Bτ M θ Fn ge r θ F O mg N x
ar 0
0 F N F ge m g 沿 切 向 投 影 0 Fge cos m r m r cos mg s i n 即 tg g 若 r为 任 意 值 即 是 变 量 y . 于 是 有:
单摆的摆长为L, 小球的质量为m , 其悬挂点O以加速度 ao 向上运 动. 求此单摆的微振动周期.
解 : (分 析: 求 运 动 周 期 就 要 先 求 动 运方 程 )
a0
O
取小球分析 ,小 球 相 对 以 O为 原 点 的 平 动 参 考 系 动 的力 学 方 程 为 m a r F m g F ge 将其沿切向投影 : mg si n mao si n ml
x
积 分 得: x
g sin2 g sin2 2 cos 2 t t E 2 8 4 g sin2 由 x0 0 得 : E 8 2
x g sin2 g sin2 2 cos 2 t 1 t 2 8 4
4
同理可得:
g cos2 1 2 2 z cos 2 t 1 gt cos 1 h 2 4 2
y
dz 2 tg y dy g
2 2 z y C 2g
由图示坐标系的选择知 可 C0 2 2 z y ( AOB线 为 抛 物 线 ) 2g
习 1 – 5 . 图示一离心分离机的鼓室, 鼓室的半径为R , 高为H . 以匀 角速度ω 绕 Oy轴转动. 当鼓室无盖时, 为使被分离的液体不致溢 出. 试求: (1) 鼓室旋转时, 在平面内液面所形成的曲线形状. (2) 注入液体的最大高度H´ .
若去掉 ² 以上的项则有:
gt cos 2 g cos y 2C sin2t 2D cos 2t 2 y C cos 2t D sin2t
2y sin x 可得 代入 z gt 2y cos
g sin2 g sin2 sin2t t 4 2
gt cos 2 g cos 2C sin2t 2D cos 2t y 2
22 y 2 gt cos y
900
zk
o
R
x i
yj
0 0 可 得C 0 由 y0 0 y
g cos D 4 2 g cos g cos y sin2t t 5 2 4 2
2
1 2 v0 cos2 g cos2 cos2t 1 z sin v0 t gt sin2t 2 2 2 4 4 2 取 si n2t 2t 3 t 3 cos 2t 1 22 t 2 4 t 4 3 3
y
ω
yo
n Fge
H H –h
o
mg
R
F
h x
解 : (1) 设 曲 线 方 程 为 y f ( x) 对 曲 线 上 相 对 静 止 的意 任 点m 进 行 受 力 分 析 , 由 上 一 题 的 解 答 可 知线 曲方 程 为 2 2 y x 2g
y ω
yo
n Fge
( 2) 设 旋 转 抛 物 面 下 xz 面 以 上 的 液 体 体 积 为 v v 2xydx
代入 ( 4 ) 、( 5 ) 、( 6 ) 式 可得: 1 x g sin2 2 t 4 12 1 y g cos t 3 3 1 2 1 z h gt g cos2 2 t 4 2 6
900
zk
o
R
x i
yj
1 x g sin2 2 t 4 12 1 y g cos t 3 3 1 2 1 z h gt g cos2 2 t 4 2 6
将( 1 ) 、( 3 ) 式分别积分: 2y sin A x gt 2y cos B z 由初始条件可得: A = 0, B = 0 2y sin x
gt 2y cos z
代入( 2 ) 式整理可得: 其解为: y C cos 2t D sin2t
0 R R 0
2 3 2 4 x dx R g 4g
H H –h
o
mg
R
F
h x
静止时 , xz面 以 上 的 液 体 体 积 为 R 2 yo 2 4 由 题 意 得 R yo v R 4g
2
2 R 2 yo 4g 2 2 由 曲 线 方 程 可 知h R 2g 2 2 H ' H h yo H R 4g
< 2 > 竖直上抛物体落点偏西
900
zk
0 0
o
R
由初始条件: x i x y z 0
yj
0
2y sin 1 x 2 x sin 2z cos 2 y cos g 2y 3 z
我们定义:牵连惯性力 F ge mae 即有
科氏惯性力 F gC maC
~ d 2 r 称为相对矢径r 的相对导数.(参见六版上册P178) 2 dt
mar F F ge F gC ~2 d r 写成微分方程的形式有: m 2 F F ge F gC dt