延迟焦化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延迟焦化
delayed coking石油裂化的一种方法。其主要目的是将高残碳的残油转化为轻质油。所用装置可进行循环操作,即将重油的焦化馏出油中较重的馏分作为循环油,且在装置中停留时间较长。可提高轻质油的收率和脱碳效率。有操作连续化、处理量大、灵活性强、脱碳效率高的优点。延迟焦化是一种石油二次加工技术,是指以贫氢的重质油为原料,在高温(约500℃)进行深度的热裂化和缩合反应,生产气体、汽油、柴油、蜡油、和焦炭的技术。所谓延迟是指将焦化油(原料油和循环油)经过加热炉加热迅速升温至焦化反应温度,在反应炉管内不生焦,而进入焦炭塔再进行焦化反应,故有延迟作用,称为延迟焦化技术。渣油先经加热进入焦炭塔后再进行焦化反应的过程。是一种半连续工艺过程。一般都是一炉(加热炉)二塔(焦化塔)或二炉四塔,加热炉连续进料,焦化塔轮换操作。它是目前世界渣油深度加工的主要方法之一。原料油(减压渣油或其他重质油如脱油沥青、澄清油甚至污油)经加热到495~505℃进入焦炭塔,待陆续装满(留一定的空间)后,改进入另一焦炭塔。热原料油在焦炭塔内进行焦化反应,生成的轻质产物从顶部出来进入分馏塔,分馏出石油气、汽油、柴油和重馏分油。重馏分油可以送去进一步加工(如作裂化原料)也可以全部或部分循环回原料油系统。残留在焦炭塔中的焦炭以钻头或水力除焦卸出。焦炭塔恢复空塔后再进热原料。该过程焦炭的收率随原料油残炭而变,石油气产量一般10%(质量)左右,其余因循环比不同而异,但柴/汽比大于1。
编辑本段延迟焦化工艺
延迟焦化与热裂化相似,只是在短时间内加热到焦化反应所需温度,控制原料在炉管中基本上不发生裂化反应,而延缓到专设的焦炭塔中进行裂化反应,“延迟焦化”也正是因此得名。延迟焦化装置主要由8个部分组成:(1)焦化部分,主要设备是加热炉和焦炭塔。有一炉两塔、两炉四塔,也有与其它装置直接联合的。(2)分馏部分,主要设备是分馏塔。(3)焦化气体回收和脱硫,主要设备是吸收解吸塔,稳定塔,再吸收塔等。(4)水力除焦部分。(5)焦炭的脱水和储运。(6)吹气放空系统。(7)蒸汽发生部分。(8)焦炭焙烧部分。国内选定炉出口温度为495~500℃,焦炭塔顶压力为0.15~0.2 Mpa。
延迟焦化原料可以是重油、渣油、甚至是沥青。延迟焦化产物分为气体、汽油、柴油、蜡油和焦炭。对于国产渣油,其气体收率为7.0~10%,粗汽油收率为8.2~16.0%,柴油收率为22.0~28.66%,蜡油收率为23.0~33.0%,焦炭收率为15.0~24.6%,外甩油为1~3.0%。焦化汽油和焦化柴油是延迟焦化的主要产品,但其质量较差。焦化汽油的辛烷值很低,一般为51~64(MON),柴油的十六烷值较高,一般为50~58。但两种油品的烯烃含量高,硫、氮、氧等杂质含量高,安定性差,只能作半成品
或中间产品,城经过精制处理后,才能作为汽油和柴油的调和组分。焦化蜡油由于含硫、氮化合物、胶质、残炭等含量高,是二次加工的劣质蜡油,目前通常掺炼到催化或加氢裂化作为原料。石油焦是延迟焦化过程的重要产品之一,根据质量不同可用做电极、冶金及燃料等。焦化气体经脱硫处理后可作为制氢原料或送燃料管网做燃料使用。
正是由于延迟焦化的上述优点,使得延迟焦化在我国得到了迅速的发展,这主要是因为:(1)延迟焦化是解决柴汽比供需矛盾的有效手段。这是由于我国原油普遍偏重,且含蜡量高,柴油的收率低,国内原油的柴油馏分收率比国外原油平均低5~7百分点。因此目前我国每年大约进口80×104t柴油,同时不得不出口30×104t汽油,以求国内供需平衡。其次是由于我国炼油企业二次加工均以催化裂化为主,柴汽比低(延迟焦化为1.94,催化裂化为0.56),因此发展延迟焦化是解决柴汽比供需矛盾,增产柴油的有效办法。(2)延迟焦化与加氢裂化相比,延迟焦化尽管存在轻质油产品安定性差、操作费用低(加工费约为加氢裂化操作费用的1/2~1/3),使其具有较强的竞争力。
由于延迟焦化具有投资少,操作费用低,转化深度高等优点,延迟焦化已发展成为渣油轻质化最主要的加工方法之一。因此,在目前我国资金紧张,轻油产品尤其是柴汽比供需矛盾突出的情况下,延迟焦化是解决这一矛盾的较理想的手段之一。
编辑词条催化裂化
催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。原料采用原油蒸馏(或其他石油炼制过程)所得的重质馏分油;或重质馏分油中混入少量渣油,经溶剂脱沥青后的脱沥青渣油;或全部用常压渣油或减压渣油。在反应过程中由于不挥发的类碳物质沉积在催化剂上,缩合为焦炭,使催化剂活性下降,需要用空气烧去(见催化剂再生),以恢复催化活性,并提供裂化反应所需热量。催化裂化是石油炼厂从重质油生产汽油的主要过程之一。所产汽油辛烷值高(马达法80左右),安定性好,裂化气(一种炼厂气)含丙烯、丁烯、异构烃多。编辑本段沿革
催化裂化技术由法国E.J.胡德利研究成功,于1936年由美国索康尼真空油公司和太阳石油公司合作实现工业化,当时采用固定床反应器,反庆和催化剂再生交替进行。由于高压缩比的汽油发动机需要较高辛烷值汽油,催化裂化向移动床(反应和催化剂再生在移动床反应器中进行)和流化床(反应和催化剂再生在流化床反应器中进行)两个方向发展。移动床催化裂化因设备复杂逐渐被淘汰;流化床催化裂化设备较简单、处理能力大、较易操作,得到较大发展。60年代,出现分子筛催化剂,因其活性高,裂化反应改在一个管式反应器(提升管反应器)中进行,称为提升管催化裂化。
中国1958年在兰州建成移动床催化裂化装置,1965年在抚顺建成流化床催化裂化装置,1974年在玉门建成提升管催化裂化装置。1984年,中国催化裂化装置共39套,占原油加工能力23%。
催化剂主要成分为硅酸铝,起催化作用的是其中的酸性活性中心(见固体酸催化剂)。移动床催化裂化采用3~5mm小球形催化剂。流化床催化裂化早期所用的是粉状催化剂,活性、稳定性和流化性能较差。40年代起,开发了微球形(40~80μm)硅铝催化剂,并在制备工艺上作了改进,70年代初期,开发了高活性含稀土元素的 X型分子筛硅铝微球催化剂。70 年代起, 又开发了活性更高的Y型分子筛微球催化剂(见石油炼制催化剂)。
化学反应与按自由基反应机理进行的热裂化不同,催化裂化是按碳正离子机理进行的,催化剂促进了裂化、异构化和芳构化反应,裂化产物比热裂化具有更高的经济价值,气体中C3和C4较多,异构物多;汽油中异构烃多,二烯烃极少,芳烃较多。其主要反应包括:①分解,使重质烃转变为轻质烃;②异构化;③氢转移;④芳构化;⑤缩合反应、生焦反应。异构化和芳构化使低辛烷值的直链烃转变为高辛烷值的异构烃和芳烃。
工艺过程催化裂化的流程包括三个部分:①原料油催化裂化;②催化剂再生;③产物分离。原料经换热后与回炼油混合喷入提升管反应器下部,在此处与高温催化剂混合、气化并发生反应。反应温度480~530℃,压力0.14MPa(表压)。反应油气与催化剂在沉降器和旋风分离器(简称旋分器),分离后,进入分馏塔分出汽油、柴油和重质回炼油。裂化气经压缩后去气体分离系统。结焦的催化剂在再生器用空气烧去焦炭后循环使用,再生温度为600~730℃。
使用分子筛催化剂时,为了使炼厂产品方案有一定的灵活性,可根据市场需要改变操作条件以得到最大量的汽油、柴油或液化气。
装置类型流化床催化裂化装置有多种类型,按反应器(或沉降器)和再生器布置的相对位置的不同可分为两大类:①反应器和再生器分开布置的并列式;②反应器和再生器架叠在一起的同轴式。并列式又由于反应器(或沉降器)和再生器位置高低的不同而分为同高并列式和高低并列式两类。
同高并列式主要特点是:①催化剂由U型管密相输送;②反应器和再生器间的催化剂循环主要靠改变 U型管两端的催化剂密度来调节;③由反应器输送到再生器的催化剂,不通过再生器的分布板,直接由密相提升管送入分布板上的流化床可以减少分布板的磨蚀。
高低并列式特点是反应时间短,减少了二次反应;催化剂循环采用滑阀控制,比较灵活。
同轴式装置形式特点是:①反应器和再生器之间的催化剂输送采用塞阀控制;②采用垂直提升管和90°耐磨蚀的弯头;③原料用多个喷嘴喷入提升管。
编辑本段发展