上海交大版大学物理第六章参考答案

合集下载

《大学物理教程习题答案》上海交通大学出版社

《大学物理教程习题答案》上海交通大学出版社

习题 11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而vv =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d rv dt=,有速度:82v t i j =+从0=t到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)而vv =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt ==222t n a a a =+有: n a ==1-4.一升降机以加速度上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

上海交大版大学物理第六章参考答案

上海交大版大学物理第六章参考答案

上海交大版大学物理第六章参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2版权归原著所有 本答案仅供参考习题66-1.设固有长度m 50.20=l 的汽车,以m/s 0.30=v 的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:l l =2112x =-+22112u c ≈-,2140021 1.25102u l l l l m c-∆=-=⨯=⨯。

6-2.在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系,c t x u 5.0/=∆∆=利用t '∆=∆0.866t s '∆==。

6-3.从加速器中以速度c v 8.0=飞出的离子在它的运动方向上又发射出光子。

求这光子相对于加速器的速度。

解:设加速器为S 系,离子为S '系,利用:21x x xv uv uv c'+='+,则:220.80.811x x x v u c cv c uv c c c c'++==='⨯++ 。

6-4 1000m 的高空大气层中产生了一个π介子,以速度0.8v c =飞向地球,假定该π介子在其自身的静止参照系中的寿命等于其平均寿命62.410s -×,试分别从下面两个角度,即地面上观测者相对π介子静止系中的观测者来判断该π介子能否到达地球表面。

3解:(1)地面上的观察者认为时间膨胀:有t ∆=66410t sa -∆==⨯由860.83104109601000l v t m m -=∆=⋅⨯⋅⨯=<,∴到达不了地球; (2)π介子静止系中的观测者认为长度收缩:有l l =600l m ==而682.4100.8310576600s v t m m -=∆=⨯⋅⋅⨯=<,∴到达不了地球。

物理学教程上册课后答案第六章

物理学教程上册课后答案第六章

第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率?、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 6-7 波源作简谐运动,周期为s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ?;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度?=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ?= ×103 m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为 ()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为 ()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差.解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /?= m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3)中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。

《大学物理教程习题答案》上海交通大学出版社

《大学物理教程习题答案》上海交通大学出版社

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d rv dt =,有速度:82v t i j =+从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =,有:22v t i j =+,d va dt =,有:2a i =;(2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt==,利用222t n a a a =+有: n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

物理学教程上册课后答案第六章

物理学教程上册课后答案第六章

第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率?、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 6-7 波源作简谐运动,周期为s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ?;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度?=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ?= ×103 m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为 ()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为 ()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差.解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /?= m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3)中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。

上海交大版大学物理参考答案

上海交大版大学物理参考答案

上海交大版大学物理参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-版权归原着所有 本答案仅供参考习题99-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。

容器与大气相通排出一部分气体后,气压下降了。

若温度不变,求排出气体的质量。

解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。

由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV L P ⨯= 则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯= 。

根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。

如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O H HOm mM M =,代入数据有: 1.6O m kg = 。

9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。

用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。

要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少则体积和压强相同,如图。

由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。

《大学物理教程习题答案》上海交通大学出版社

《大学物理教程习题答案》上海交通大学出版社

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dva dt==222t n a a a =+有:n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

大物 上海交大课后答案 第六章

大物 上海交大课后答案 第六章

习题66-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。

解:1q 在C 点产生的场强:11204ACq E i rπε=,2q 在C 点产生的场强:22204BCq E j r =, ∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:4123.2410VE E E m=+=⨯,方向如图: 1.8arctan 33.73342'2.7α===。

6-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。

解:∵棒长为2 3.12l r d m π=-=,∴电荷线密度:911.010qC m lλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。

解法1:利用微元积分:21cos 4O x Rd dE R λθθπε=⋅,∴2000cos 2sin 2444O d E d R R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅; 解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V m R πε--'⨯==⨯⨯=⋅。

方向由圆心指向缝隙处。

ix6-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强。

大学物理第6章习题参考答案

大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

上海交大版物理第六章答案

上海交大版物理第六章答案

上海交大版物理第六章答案习题66-1. 设置自然长度l0?2.50米汽车,v?当以30.0m/s的速度直线行驶时,询问站在路边的观察者,根据相对论,汽车的长度缩短了多少?222解:l?l01?(uc),由泰勒展开,知1?x?1?12x??2221u1u?1.25?10?14m。

∴1?(u2)?1?,?l?l0?l?l0?22c2c2c26-2. 在参考系s中,粒子沿直线从坐标原点移动到x?1.5?108m处,经历时间为?t?1.00s,试计算该过程对应的固有时。

解:以粒子为s?系,u??x/?t?0.5c使用22?Tt1?(加州大学)有:1.5?1082?t??1?()?0.866s。

83?106-3. 以v的速度从加速器上?从0.8摄氏度飞出的离子沿其运动方向发射光子。

求光子相对于加速器的速度。

解:设加速器为s系,离子为s?系,利用:vx?v??uc?0.8c则:vx?x??c。

紫外线?0.8摄氏度?c1?2x1?c2cv?十、Uuv?1?2xc在6-4100m的高层大气中产生了一个π介子,其速度为v?假设π介子在其自身静态参考系中的寿命等于其平均寿命2.4×10s,尝试从以下两个角度来判断π介子是否能到达地球表面,即地面上的观察者相对于π介子静态系统中的观察者。

解决方案:(1)实地观察者认为时间会延长:是吗?T6.t'u21?2c∴? T2.4? 106(0.8摄氏度)21?c2?6.4.10? 6sa由l?v?t?0.8?3?10?4?108?960m?1000m,∴到达不了地球;(2)? 介子静止系统中的观察者认为,长度收缩:(0.8c)2u2有l?l01?2,∴l?10001??600m2cc而s?v?t?2.4?10?0.8?3?10?576m?600m,∴到达不了地球。

6-5长度l0?1m的米尺仍在s'系统中,与X'轴的夹角?=30°s’是相对的68s系沿x轴运动,在s系中观测者测得米尺与x轴夹角为??45°。

大学物理教程习题答案上海交通大学出版社

大学物理教程习题答案上海交通大学出版社

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:1质点的轨道;2速度和速率;解:1 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在0,0处,半径为R 的圆; 2由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=;1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s ;求:1质点的轨道;2从0=t 到1=t 秒的位移;30=t 和1=t 秒两时刻的速度;解:1由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线; 2由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:1100(82)42r v d t t i j d t i j ∆==+=+⎰⎰30=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ ; 1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:1任一时刻的速度和加速度;2任一时刻的切向加速度和法向加速度; 解:1由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; 2而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt=221t t =+,利用222t n a a a =+有: 22221n t a a a t =-=+;1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间;解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为1y ,升降机上升的高度为2y ,运动方程分别为21012y v t gt =- 122012y v t at =+ 212y y d += 3注意到1y 为负值,有11y y =- 联立求解,有:2dt g a=+;解法二:以升降机为非惯性参照系,则重力加速度修正为'g g a =+,利用21'2d g t =,有:22'ddt g g a==+; 1-5.一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:1小球的运动方程;2小球在落地之前的轨迹方程;3落地前瞬时小球的d r d t ,d v d t ,d vd t; 解:1如图,可建立平抛运动学方程:0x v t = ,212y h g t =- ,∴201()2r v t i h g t j =+-;2联立上面两式,消去t 得小球轨迹方程:2202gx y h v =-+为抛物线方程;3∵201()2r v t i h g t j =+-,∴0d r v i g t j d t =-, 即:0v v i g t j =-,d vg j d t=- 在落地瞬时,有:2ht g=,∴02d r v i gh j d t =- 又∵ v =2222()xyv v v gt +=+-,∴2122220022[()]g gh g t dvdt v gh v gt ==++ ; 1-6.路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走;试证明人影的顶端作匀速运动,并求其速度2v .证明:设人向路灯行走,t 时刻人影中头的坐标为1x ,足的坐标为2, 由相似三角形关系可得:12211x x h x h -=, ∴11212h x x h h =- 两边对时间求导有:11212d x h d x d t h h d t =- ,考虑到:21d x v d t=, 知人影中头的速度:21112d x hv v d t h h ==-影常数;1-7.一质点沿直线运动,其运动方程为2242t t x -+=m,在 t 从0秒到3秒的时间间隔内,则质点走过的路程为多少解:由于是求质点通过的路程,所以可考虑在0~3s 的时间间隔内,质点速度为0的位置:t dtdxv 44-==若0=v 解得 s t 1=, m x x x 1021=∆+∆=∆;1-8.一弹性球直落在一斜面上,下落高度cm 20=h ,斜面对水平的倾角 30=θ,问它第二次碰到斜面的xy 0v h O O1x 2x 1h 2h位置距原来的下落点多远假设小球碰斜面前后速度数值相等,碰撞时人射角等于反射角;解:小球落地时速度为gh v 20=,建立沿斜面的直角坐标系,以小球第一次落地点为坐标原点如图示,00060cos v v x =→ 200060cos 2160cos t g t v x += 1 00060sin v v y =→ 200060sin 2160sin t g t v y -= 2第二次落地时:0=y ,代入2式得:g vt 02=,所以:2002002122cos 60cos 604802v gh x v t g t h cm g g ⋅=+====; 1-9.地球的自转角速度最大增加到若干倍时,赤道上的物体仍能保持在地球上而不致离开地球已知现在赤道上物体的向心加速度约为2s /cm 4.3,设赤道上重力加速度为2m/s 80.9;解:由向心力公式:2F m R ω=向,赤道上的物体仍能保持在地球必须满足:F mg =向,而现在赤道上物体的向心力为:'F ma =向∴016.9817ωω====≈ 1-10.已知子弹的轨迹为抛物线,初速为0v ,并且0v 与水平面的夹角为θ;试分别求出抛物线顶点及落地点的曲率半径;解:1抛物线顶点处子弹的速度0cos x v v θ=,顶点处切向加速度为0,法向加速度为g ;因此有:22011(cos )v vg θρρ==, 2201cos v gθρ=; 2在落地点时子弹的0v ,由抛物线对称性,知法向加速度方向与竖直方向成θ角,则:cos n a g θ=,有:202cos v g θρ= 则: 22cos v g ρθ=;1-11.一飞行火箭的运动学方程为1()ln(1)=+--x ut u t bt b,其中b 是与燃料燃烧速率有关的量,u 为燃气相对火箭的喷射速度;求: 1火箭飞行速度与时间的关系;2火箭的加速度;解:一维运动,直接利用公式:dx v dt =,dva dt=有: 1)1ln(bt u dt dx v --== , 2btub dt dv a -==1 1-12.飞机以s /m 1000=v 的速度沿水平直线飞行,在离地面高m 98=h 时,驾驶员要y把物品投到前方某一地面目标上,问:投放物品时,驾驶员看目标的视线和竖直线应成什么角度此时目标距飞机下方地点多远 解:设此时飞机距目标水平距离为x 有:t v x 0=┄①,221gt h =┄② 联立方程解得:m x 447≈,∴05.77arctan ≈=hx θ;1-13.一物体和探测气球从同一高度竖直向上运动,物体初速为s /m 0.490=v ,而气球以速度s /m 6.19=v 匀速上升,问气球中的观察者在第二秒末、第三秒末、第四秒末测得物体的速度各多少解:物体在任意时刻的速度表达式为:gt v v y -=0故气球中的观察者测得物体的速度v v v y -=∆代入时间t 可以得到第二秒末物体速度:29.8m v s ∆=,向上 第三秒末物体速度:30v ∆=第四秒末物体速度:49.8m v s ∆=-向下;思考题11-1.质点作曲线运动,其瞬时速度为v ,瞬时速率为v ,平均速度为v ,平均速率为v ,则它们之间的下列四种关系中哪一种是正确的A v v ==v v ,;B v v =≠v v ,;C v v ≠=v v ,;D v v ≠≠v v ,答:C1-2.沿直线运动的物体,其速度大小与时间成反比,则其加速度的大小与速度大小的关系是:A 与速度大小成正比;B 与速度大小平方成正比;C 与速度大小成反比;D 与速度大小平方成反比; 答:B1-3.如图所示为A,B 两个质点在同一直线上运动的-v t 图像,由图可知 A 两个质点一定从同一位置出发 B 两个质点都始终作匀加速运动 C 在2s t 末两个质点相遇D 在20s t 时间内质点B 可能领先质点A 答:D 1-4.质点的t x ~关系如图,图中a ,b ,c 三条线表示三个速度不同的运动.问它们属于什么类型的运动哪一个速度大哪一个速度小答:匀速直线运动;a b c v v v >>; 1-5.如图所示,两船A 和B 相距R ,分别以速度A v 和B v 匀速直线行驶,它们会不会相碰若不相碰,求两船相靠最近的距离.图中α和β为已知;答:方法一:如图,以A 船为参考系,在该参考系中船A 是静止的,而船B 的速度A v v v B -=';v '是船B 相对于船A 的速度,从船B 作一条平行于v '方向的直线BC,它不与船A 相交,这表明两船不会相碰.由A 作BC 垂线AC,其长度min r 就是两船相靠最近的距离 θsin min R r =作FDv v v A B '-=αβθsin sin sin )cos(222βα+++='B A B A v v v v v R v v v v v v r B A B A A B )cos(2sin sin 22min βααβ+++-=t 0)(=dt t dr Rv v v v v v r B A BA AB )cos(2sin sin 22min βααβ+++-=0d r d t =0d r d t ≠0d v d t =0d v d t ≠0d a d t =0d ad t==+x y v v i v j 0d d =⎰⎰ttxv t v t 0d d =⎰⎰ttyv t v td d =⎰⎰ttx v t v td d =⎰⎰tty v t v t 1t 111d ,d ,d t t t xyv t v t v t⎰⎰⎰A B⎰⎰⎰BABABAr d ,d ,d r r tv t xd 1⎰tvt yd 10⎰1d t v t⎰1t ⎰B Ar d d B A⎰r ⎰BAdr 16kg xOy6N x f =7N y f =0t =0x y ==2m /s x v =-0y v =2s t =x x f a m =x a 263m /168s ==27m /16y y f a s m -==2003522m /84x x x v v a dt s =+=-+⨯=-⎰200772m /168y y y v v a dt s -=+=⨯=-⎰2s 57m /s 48v i j =--22011()22x y r v t a t i a t j=++1317(224)()428216i j -=-⨯+⨯⨯+⨯2kg 2424=-F i t j 034=+v i jn F d v F m d t =24242d v i t j dt -=⋅0201(424)2v t v d v i t j dt =-⎰⎰3024v v t i t j =+-034v i j =+s t 1=15v i =t v v e =15v i =s t 1=s t 1=ij 2424F i t j =-s t 1=424424t n F i j e e =-=-24n F N=-45A a g=1m 2m μFmax 212222f mg f Fa m m m m m μ==<=+12()F m m g μ<+maxF max 12()F m m g μ=+12()F m m g μ<+θ)(θμtg <a θμμθtan 1tan 1+-=a g θμμθtan 1tan 2-+=a gtan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-'x 'y 'x sin cos 0mg ma f θθ-±='y cos sin 0N mg ma θθ--=f N μ=sin cos (cos sin )0mg ma mg ma θθμθθ-±+=sin cos tan cos sin 1tan a g g θμθθμθμθμθ±±==a tan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-m 0v k f kv =-dv f mdt=•m AR B dv kv m dt -=dv k dt v m =-000t v dv k dt v m =-⎰⎰t m ke v v -=00v =dv dv dx dt dx dt =dx v dt =mdx dvk=-00max 0v m mx dv v k k=-=⎰2m 1m θ2m 1m 2'a 1m 1a 2m 2m g 1N 21m a 1m 1m g 1N 2N 2m 21222cos sin 'm a m g m a θθ+=1212sin cos N m a m g θθ+=1m 111sin N m a θ=11212sin cos sin m a m a m g θθθ+=21212sin cos sin m a g m m θθθ=+122212()sin 'sin m m a g m m θθ+=+2'a 122212sin cos 'sin x x m a a a g m m θθθ=-=-+111sin m a N θ==g m m m m θθ22121sin cos +R μ0=t 0v 2v N m R =f Nμ=dtdvmf =-2dv v dt Rμ=-0201vt v dv dt v R μ-=⎰⎰t μv R R v v 00+=20R m =0.6F i =F R -R2020B A r r r i j∆=-=-+A F r =⋅∆0.6(2020)12A i i j =⋅-+=-0.5kg A F r=⋅∆250.5r t i j =+24(4)(2)60r r r i →∆=-=220.5105d rF m i i d t==⋅=560300A i i J =⋅=m2()F at i bt j =+t P F v =⋅P F v =⋅2232325111111()()()2323ati bt j at i bt j a t b t m m =+⋅+=+2(52.838.4)F x x i =--F x N m m 522.01=x m 34.12=x ()()F x F x i =f A 2v N G mR-=R G N mv )(21212-=2102f mgR A mv +=-11()(3)22f A N G R mgR N mg R =--=-1ρl 2ρAB B1212ρρρ<<max v H G F =浮hsg lsg 12ρρ=l h 12ρρ=212mgh mv A =+浮22max21012h slv sglh gsydy ρρρ=-⎰2max 1v gl ρρ=H 'H l h =+2110'l lsgH ysgdy lsgh ρρρ=+⎰2110()l lsgH ysgdy lsg H l ρρρ=+-⎰1122()lH ρρρ=-L m A A B A m B m k l B 0x A B A A B A B A22011()22A B m m v k x +=0x m m k v B A +=x l =A 221122A A m v kx =0AA A Bm x x m m =+m3e Gm m F r r =-e e ,R m e e 211e e P R R eE F dr Gm m dr Gm m r R ∞∞=⋅=-⋅=-⎰⎰I T I τ12v v =I mv =∆0I =cos T mgθ=2mgπωm Oxy cos sin r a t i b t j ωω=+0=t ωπ/2=t P mv =d r v dt ==2m 1m θθ1N2m 2m g21m a 1m θ1m g 2N 1N θy xOB AFθωl mg Tsin cosa t ib t jωωωω-+()(sin cos )P t m a t i b t jωωω=--2()(0)0I mv P P m b j m b j πωωω=∆=-=-= 2.0kg1.0m20g 0v 600m v 30m 01mv mv M v =+01 5.7mv mv v M-==/m s21v T Mg M l -=2184.6v T Mg M Nl=+=00.0257011.4I mv mv N s =-=-⨯=-⋅m /skg 102.122⋅⨯-236.410kg m/s -⨯⋅kg 108.526-⨯2222221.20.6410P P P -=+=+⨯核电子中微子0.64tan 1.2P P α==中微子电子028.1α=221.410/P kgm s -=⨯核9.151=-=απθ2180.17102k P E J m -==⨯核核m 2c x c x 112212c m x m x x m m +=+12m m m ==12c x x =2223,42c c c mx mx x x x m +== 30=α 1.0M kg =30x cm =0.01m kg=200/v m s =25/k N m =22111sin 22Mv kx Mgx α+=10.83/v m s ⇒=1cos Mv mv m M v α'-=+()0.89/v m s '⇒=-θM L 0cos M r F mg v t kθ=⨯=-200cos 2t mg v L r mv M dt t k θ=⨯==-⎰1v 2v 1122r mv r mv =122v v =0P MmE G r=-R Mm G mv R Mm G mv 421221022021-=-mg R Mm G =20321Rg v =62Rg v =ρρ220v m Mm G =R 38=ρ22v Rg =0E =24sin A mv R mv R θ=⋅22v Rg =030θ⇒=m r m 2m 2/2mr m2m ma T mg 222=-ma mg T =-12()T T r J β-=βJ r T T =-)(1βr a =2/2J mr =ga 41=mg T 811=l m μ0ωO l m =λdm d x λ=d f dmg gd x μμλ==d M g xd xμλ=20124lM g xd x mgl μλμ==⎰d M J J dt ωβ==000t Mdt Jd ωω-=⎰⎰2011412mglt m l μω-=-03l t g ωμ=0M t J J ωω-=-0ω=2112J ml =03l t g ωμ=2m kg 01.0⋅cm 7kg 5N/m 200=k x maxx 2max max 12k x mg x =max 20.49mg x m k ==222111222k x mv J mg x ω++=v Rω=2222111222k x m R J mg x ωω++=x0d d x ω=21()22d k x m R J mg d x ωω++⋅=0d d x ω=αP 中微子P 电子P 核cx /2c x xyO x y 0v vOz•θT)(245.0m k mg x ==0.245x =22max 2121()2mgx kx v J m r -=+max 1.31v =m 2l 31l 32m 0v m 021v 22004221()9933l l v l v l ω+=+032v l ω=mg N =αsin 212cos N N α=α1N 1F kx m gμ=+2kx m g μ=11A m a kx m g μ=+121A m m a g m μ+=22B m a kx m g μ=-0B a =F GF G F 2321μ+≤1322F F μ<33μ>Rv m mg N 2sin +=θA B F s F A F r =⋅∆F s k m m mg k x =k mg x =212mg x k x =kmgx 2=αx v x 120αI 21I m v m v =-21v v =αm Δ1v 2v m Δm Δf 'f 'm 1e 212e 222121r m Gm mv r m Gm mv -=-1122sin sin θθmv mv =2e 2rm Gm r mv =当两小孩质量相等时,M =0;则系统角动量守恒,两人的实际的速度相同,将同时到达滑轮处,与谁在用力,谁不在用力无关;选择C; 2-13.一圆盘绕过盘心且与盘面垂直的轴O 以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面方向同时作用到盘上,则盘的角速度ω怎样变化 答:增大2-14.一个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的: A 机械能守恒,角动量守恒;B 机械能守恒,角动量不守恒; C 机械能不守恒,角动量守恒;D 机械能不守恒,角动量不守恒; 答:C习题33-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式;g 取解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =; ∴ 9.8980.1k m ω===; 取竖直向下为x 正向,弹簧伸长为时为物体的平衡位置,所以如果使弹簧的初状态为原长,那么:A =,mg 1N 2N α1mv 2mv I风风'f //'f 'f ⊥当t =0时,x =-A ,那么就可以知道物体的初相位为π;所以:0.1cos x π=+)即:)x =-;3-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m ,0=t 时,小球正好经过rad 06.0-=θ处,并以角速度0.2rad/s θ=向平衡位置运动;设小球的运动可看作简谐振动,试求:1角频率、频率、周期;2用余弦函数形式写出小球的振动式;g 取解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了;1角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s ===;2振动方程可表示为:cos3.13A t θϕ=+(),∴ 3.13sin 3.13A t θϕ=-+() 根据初始条件,0t =时:cos Aθϕ=,0(12sin 0(34 3.13A θϕ>=-<,象限),象限)可解得:2008.810227133 2.32A m ϕ-=⨯==-=-,,所以得到振动方程:28.810cos3.13 2.32t m θ-=⨯-() ; 3-3.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2;当0=t 时,位移为cm 6,且向x 轴正方向运动;求:1振动表达式;2s 5.0=t 时,质点的位置、速度和加速度;3如果在某时刻质点位于cm 6-=x ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间;解:1由题已知 A =,T =2 s ,∴ 2Tπωπ==又∵t =0时,06x cm =,00v >,由旋转矢量图,可知:3πϕ=-故振动方程为:0.12cos3x t m ππ=-(); 2将t = s 代入得:0.12cos 0.12cos 0.10436x t m πππ=-==(),0.12sin 0.12cos 0.188/36v t m s ππππ=--==-(),2220.12cos 0.12cos 1.03/36a t m s πππππ=--=-=-(),方向指向坐标原点,即沿x 轴负向;3由题知,某时刻质点位于6cm 2Ax =-=-, 且向x 轴负方向运动,如图示,质点从P 位置回到平衡位置Q 处需要走32ππϕ∆=+,建立比例式:2tTϕπ∆∆=,有:56t s ∆= ;3-4.两质点作同方向、同频率的简谐振动,振幅相等;当质点1在 2/1A x =处,且x向左运动时,另一个质点2在 2/2A x -= 处,且向右运动;求这两个质点的位相差; 解:由旋转矢量图可知:当质点1在 2/1A x =处,且向左运动时,相位为3π,而质点2在 2/2A x -= 处,且向右运动,相位为43π;所以它们的相位差为π;3-5.当简谐振动的位移为振幅的一半时,其动能和势能各占总能量的多少物体在什么位置时其动能和势能各占总能量的一半解:由212P E k x =,212k E mv =,有:221cos ()2P E k A t ωϕ=+,2222211sin ()sin ()22k E m A t k A t ωωϕωϕ=+=+, 1当2Ax =时,由cos()x A t ωϕ=+,有:1cos()2t ωϕ+=,3sin()t ωϕ+=,∴14P E E =,34k E E =; 2当12P k E E E ==时,有:22cos ()sin ()t t ωϕωϕ+=+ ∴cos()2t ωϕ+=20.7072x A A ==±; 3-6.两个同方向的简谐振动曲线如图所示1求合振动的振幅;2求合振动的振动表达式; 解:通过旋转矢量图做最为简单; 由图可知,两个振动同频率,且1A 初相:12πϕ=,2A 初相:22πϕ=-,表明两者处于反相状态,反相21(21)k ϕϕϕπ∆=-=±+,012k =,,,∵12A A <,∴合成振动的振幅:21A A A =- ;合成振动的相位:22πϕϕ==- ;合成振动的方程:)()(22cos 12ππ--=t T A A x ;3-7.两个同方向,同频率的简谐振动,其合振动的振幅为cm 20,与第一个振动的位相差为6π;若第一个振动的振幅为cm 310;则1第二个振动的振幅为多少2两简谐振动的位相差为多少解:如图,可利用余弦定理:由图知 ︒-+=30cos 2122122A A A A A = m ∴A 2=0.1 m ,再利用正弦定理:02sin sin 30AA θ=,有: 2sin 12A A θ==,∴2πθ=;说明A 1与A 2间夹角为π/2,即两振动的位相差为π/2 ; 3-8. 质点分别参与下列三组互相垂直的谐振动:1 4cos 864cos 86x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩ ;2 4cos 8654cos 86x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩;3 4cos 8624cos 83x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩;试判别质点运动的轨迹;解:质点参与的运动是频率相同,振幅相同的垂直运动的叠加;对于cos()x x A t ωϕ=+,4cos()y y t ωϕ=+的叠加,可推得:1将6x πϕ=,6y πϕ=-代入有:2222cos 16sin 33x y x y ππ+-=,则方程化为:2212x y x y +-=,轨迹为一般的椭圆;2将6x πϕ=,56y πϕ=-代入有:2222cos 16sin x y x y ππ+-=则方程化为:2220x y x y +-=,即0x y +=,轨迹为一直线;3将6x πϕ=,23y πϕ=代入有:2222cos 16sin 22x y x y ππ+-=则方程化为:2224x y +=,轨迹为圆心在原点,半径为4m 的圆;3-9.沿一平面简谐波的波线上,有相距2.0m 的两质点A 与B ,B 点振动相位比A 点落后6π,已知振动周期为2.0s ,求波长和波速;解:根据题意,对于A 、B 两点,m x 2612=∆=-=∆,πϕϕϕ,而相位和波长之间满足关系:πλπλϕϕϕ221212xx x ∆-=--=-=∆,代入数据,可得:波长λ=24m;又∵T =2s ,所以波速12/u m s Tλ==;3-10.已知一平面波沿x 轴正向传播,距坐标原点O 为1x 处P 点的振动式为)cos(ϕω+=t A y ,波速为u ,求:1平面波的波动式;2若波沿x 轴负向传播,波动式又如何 解:1设平面波的波动式为0cos[]xy A t uωϕ=-+(),则P 点的振动式为:10cos[]P x y A t uωϕ=-+(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10xuωϕϕ=+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=-+;2若波沿x 轴负向传播,同理,设平面波的波动式为:0cos[]xy A t u ωϕ=++(),则P 点的振动式为:10cos[]P x y A t uωϕ=++(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10xuωϕϕ=-+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=++;3-11.一平面简谐波在空间传播,如图所示,已知A 点的振动规律为cos(2)y A t πνϕ=+,试写出: 1该平面简谐波的表达式;2B 点的振动表达式B 点位于A 点右方d 处; 解:1仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为:0cos[2]xy A t u πνϕ=++(),则A 点的振动式:0cos[2]A ly A t uπνϕ-=++()题设A 点的振动式cos(2)y A t πνϕ=+比较,有:02lu πνϕϕ=+, ∴该平面简谐波的表达式为:]2cos[ϕπν+++=)(uxu l t A y2B 点的振动表达式可直接将坐标x d l =-,代入波动方程:3-12.已知一沿x 正方向传播的平面余弦波,s 31=t 时的波形如图所示,且周期T 为s 2;1写出O 点的振动表达式;2写出该波的波动表达式; 3写出A 点的振动表达式; 4写出A 点离O 点的距离;解:由图可知:0.1A m =,0.4m λ=,而2T s =,则:/0.2/u T m s λ==,2T πωπ==,25k ππλ==,∴波动方程为:00.1cos(5)y t x ππϕ=-+O 点的振动方程可写成:00.1cos()O y t πϕ=+由图形可知:s 31=t 时:0.05O y =,有:00.050.1cos()3πϕ=+考虑到此时0O d y d t <,∴03πϕ=,53π舍去 那么:1O 点的振动表达式:0.1cos()3O y t ππ=+;2波动方程为:0.1cos(5)3y t x πππ=-+;3设A 点的振动表达式为:0.1cos()A A y t πϕ=+由图形可知:s 31=t 时:0A y =,有:cos()03A πϕ+=考虑到此时0A d y d t >,∴56A πϕ=-或76A πϕ=∴A 点的振动表达式:50.1cos()6A y t ππ=-,或70.1cos()6A y t ππ=+;4将A 点的坐标代入波动方程,可得到A 的振动方程为:0.1cos(5)3A A y t x πππ=-+,与3求得的A 点的振动表达式比较,有:5563A t t x πππππ-=-+,所以:m x A 233.0307== ; 3-13.一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播;已知原点的振动曲线如图所示;试写出:1原点的振动表达式; 2波动表达式;3同一时刻相距m 1的两点之间的位相差; 解:这是一个振动 图像由图可知A =0.5cm ,设原点处的振动方程为:30510cos()O y t ωϕ-=⨯+;1当0t =时,30 2.510O t y -==⨯,考虑到:00O t d y d t=>,有:03πϕ=-,当1t =时,10O t y ==,考虑到:10O t d y d t =<,有:32ππω-=,56πω=,∴原点的振动表达式:35510cos()63O y t ππ-=⨯-;2沿x 轴负方向传播,设波动表达式:35510cos()63y t k x ππ-=⨯+-而512460.825k u ωππ==⨯=,∴3524510cos()6253y t x πππ-=⨯+-; 3位相差:252 3.2724x k x rad ϕππλ∆∆==∆== ; 3-14.一正弦形式空气波沿直径为cm 14的圆柱形管行进,波的平均强度为39.010-⨯/()J s m ⋅,频率为Hz 300,波速为m/s 300;问波中的平均能量密度和最大能量密度各是多少每两个相邻同相面间的波段中含有多少能量解:1已知波的平均强度为:39.010I -=⨯/()J s m ⋅,由I w u =⋅ 有:53max 2610/w w J m -==⨯;2由W w V =⋅,∴221144uW w d w d πλπν=⋅=5327310/(0.14)1 4.62104J m m m J π--=⨯⨯⋅⋅=⨯ ;3-15.一弹性波在媒质中传播的速度310/u m s =,振幅41.010A m -=⨯,频率310Hz ν=;若该媒质的密度为3800/kg m ,求:1该波的平均能流密度;21分钟内垂直通过面积24m 100.4-⨯=S 的总能量; 解:1由:2212I u A ρω=,有:34232110800102102I π-=⨯⨯⨯⨯()()521.5810/W m =⨯; 21分钟为60秒,通过面积24m 100.4-⨯=S 的总能量为:W I S t =5431.581041060 3.7910J -=⨯⨯⨯⨯=⨯ ;3-16.设1S 与2S 为两个相干波源,相距41波长,1S 比2S 的位相超前2π;若两波在在1S 、2S 连线方向上的强度相同且不随距离变化,问1S 、2S 连线上在1S 外侧各点的合成波的强度如何又在2S 外侧各点的强度如何解:1如图,1S 、2S 连线上在1S 外侧,∵212122()24r r πππλϕϕϕπλλ∆=---=--⋅=-, ∴两波反相,合成波强度为0; 2如图,1S 、2S 连线上在2S 外侧,∵212122('')()024r r πππλϕϕϕλλ∆=---=---=, ∴两波同相,合成波的振幅为2A ,合成波的强度为:220(2)44I A A I === ;3-17.图中所示为声音干涉仪,用以演示声波的干涉;S 为声源,D 为声音探测器,如耳或话筒;路径SB D 的长度可以变化,但路径SAD 是固定的;干涉仪内有空气,且知声音强度在B 的第一位置时为极小值100单位,而渐增至B 距第一位置为cm65.1的第二位置时,有极大值900单位;求:1声源发出的声波频率;2抵达探测器的两波的振幅之比;解:根据驻波的定义,相邻两波节腹间距:2x λ∆=,相邻波节与波腹的间距:4x λ∆=,可得:4 6.6x cm λ=∆=;1声音的速度在空气中约为340m/s ,所以:234051516.610u Hz νλ-===⨯()。

上海交大版大学物理上册答案

上海交大版大学物理上册答案

第一章 质点运动学【例题】例1-1 A t= 1.19 s 例1-2 D 例1-3 D 例1-4 B 例1-5 3 3 例1-6 D 例1-7 C例1-8 证明:2d d d d d d d d v xv vtx xv tv K -==⋅= ∴ d v /v =-K d x⎰⎰-=xx K 0d d 10v vvv , Kx -=0lnv v ∴ v =v 0e-Kx例1-9 1 s 1.5 m 例1-10 B【练习题】1-1 x=(y-3)2 1-2 -0.5m/s -6m/s 2.25m 1-3 D 1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小t a 必为常数,即321t t t a a a ==,现在虽然321a a a ==, 但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即321t t t a a a ≠≠,故该质点不作匀变速率运动。

1-5 D 1-6证明:设质点在x 处的速度为v 62d d d d d d 2x tx xta +=⋅==v v()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v1-7 16 R t 24 rad /s21-8 Hv/(H-v) 1-9 C第二章 质点运动定律【例题】例2-1 B 例2-2 B 例2-3 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律∴⎰⎰=-=-vv 00vv d d ,vv d d tt mKt m K ∴ mKt /0e -=v v (2) 求最大深度 tx d d =vt x mKt d ed /0-=vt x mKt txd ed /000-⎰⎰=v ∴ )e1()/(/0mKt K m x --=vK m x /0max v = 例2-4 D 例2-5 答:(1) 不正确。

向心力是质点所受合外力在法向方向的分量。

质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。

大学物理第六章课后习题答案

大学物理第六章课后习题答案

第六章静电场中的导体与电介质6 —1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势。

由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6 —2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。

若将导体N的左端接地(如图所示),则()(B)N上的正电荷入地(A )N上的负电荷入地(C)N上的所有电荷入地地(D)N上所有的感应电荷入题6-2图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。

因而正确答案为( A )。

6 —3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图。

设无穷远处为零电势,则在导体球球心0点有()(A)E =0,V —4 n^d(B)E J,V L4 n%d 4 n %d (C)E = 0,V = 0题6-3图分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷 q 在导 体球表面感应等量异号的感应电荷土 q',导体球表面的感应电荷土 q'在球心 0点激发的电势为零,0点的电势等于点电荷q 在该处激发的电势。

因而正 确答案为(A )。

6 -4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合 曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是()(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有 自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代 数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有 极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零; 由于电介质会改变自由电荷的空间分布, 介质 中的电位移矢量与自由电荷与位移电荷的分布有关。

大物上海交大课后答案第六章共9页

大物上海交大课后答案第六章共9页

习题66-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。

解:1q 在C 点产生的场强:11204ACq E i rπε=,2q 在C 点产生的场强:22204BCq E j r =, ∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:4123.2410VE E E m=+=⨯,方向如图: 1.8arctan33.73342'2.7α===。

6-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。

解:∵棒长为2 3.12l r d m π=-=,∴电荷线密度:911.010qC m lλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。

解法1:利用微元积分:解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V m R πε--'⨯==⨯⨯=⋅。

方向由圆心指向缝隙处。

6-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强。

解:以O 为坐标原点建立xOy 坐标,如图所示。

①对于半无限长导线A∞在O 点的场强:ix有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强:有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有: ∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j Rλπε=+。

《大学物理学》答案(上海交大版)上下册 1

《大学物理学》答案(上海交大版)上下册 1

dr 2ti 2 j dt dv a 2i dt
1 2
2) v [(2t ) 2 4]
2(t 2 1)
1
2
at
dv dt
2t t2 1
an a 2 at2
2 t2 1
1-4. 一升降机以加速度 a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为 d ,求螺 钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为
由 A 作 BC 垂线 AC,其长度 rmin 就是两船相靠最近的距离 rmin R sin 作 FD//AB,构成直角三角形 DEF,故有
sin
vB s i n vA s i n v
在三角形 BEF 中,由余弦定理可得
2 2 v v A vB 2v A v B c o s ( )
1-5. 如图所示,
两船 A 和 B 相距 R ,分别以速度
v A 和 v B 匀速直线行驶,它们会不会相碰?若不相碰,求两船相靠最近的距离.图中 和 为已知。
答:方法一 如图,以 A 船为参考系,在该参考系中船 A 是静止的,而船 B 的速度 v v B v A .
v 是船 B 相对于船 A 的速度,从船 B 作一条平行于 v 方向的直线 BC,它不与船 A 相交,这表明两船不会相碰.
v2


(v0 cos ) 2

gcos
2 v0

2 v0 cos 2 g
2 v0 g cos
在落地点速度为 v 0


1-11. 飞机以 v0 100m / s 的速度沿水平直线飞行,在离地面高 h 98m 时,驾驶员要把物品投到前方某一地面 目标上,问:投放物品时,驾驶员看目标的视线和竖直线应成什么角度?此时目标距飞机下方地点多远? 解:设此时飞机距目标水平距离为 x 有: x v0 t 联立方程解得: x 447m

大学物理上海交大参考答案

大学物理上海交大参考答案

大学物理上海交大参考答案大学物理上海交大参考答案在大学物理课程中,上海交通大学一直以来都是备受关注的学府。

其严谨的教学体系和扎实的学术研究基础,使得上海交大的物理学科在国内外享有盛誉。

学生们在学习物理课程时,常常会遇到各种难题,而参考答案则成为他们解决问题的重要依据。

本文将为大家提供一些大学物理上海交大参考答案,希望对广大学子有所帮助。

第一章:力学1. 一个物体以初速度v0沿着直线做匀加速运动,经过时间t后速度变为v,求物体的加速度a。

答案:根据物体匀加速运动的公式v = v0 + at,可以得到a = (v - v0) / t。

2. 一个质量为m的物体在水平面上受到一个恒力F作用,已知物体在受力方向上的加速度为a,求恒力F的大小。

答案:根据牛顿第二定律F = ma,可以得到F = ma。

第二章:热学1. 一个理想气体在等温过程中,体积从V1变为V2,求气体对外界所做的功。

答案:由于等温过程中气体的温度不变,根据理想气体的状态方程PV = nRT,可以得到P1V1 = P2V2。

所以气体对外界所做的功为W = P1(V1 - V2)。

2. 一个理想气体在绝热过程中,体积从V1变为V2,求气体对外界所做的功。

答案:由于绝热过程中气体与外界不发生热交换,根据理想气体的状态方程PV^γ = 常数,可以得到P1V1^γ = P2V2^γ。

所以气体对外界所做的功为W = P1(V1 - V2) / (γ - 1)。

第三章:电磁学1. 一个电容器由两块平行金属板组成,两板间的电容为C,电压为U,求电容器储存的电能。

答案:电容器储存的电能为E = (1/2)CU^2。

2. 一个电感器的感抗为X,通过的电流为I,求电感器的电压。

答案:电感器的电压为U = IX。

第四章:光学1. 一束光线从空气射入玻璃中,入射角为θ1,折射角为θ2,求光线的折射率。

答案:光线的折射率为n = sinθ1 / sinθ2。

2. 一束平行光通过一个凸透镜后,光线会汇聚于焦点处,求凸透镜的焦距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

版权归原著所有 本答案仅供参考习题66-1.设固有长度m 50.20=l 的汽车,以m/s 0.30=v 的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少解:l l =2112x =-+22112u c ≈-,2140021 1.25102ul l l l m c-∆=-=⨯=⨯。

6-2.在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系,c t x u 5.0/=∆∆=利用t '∆=∆0.866t s '∆==。

6-3.从加速器中以速度c v 8.0=飞出的离子在它的运动方向上又发射出光子。

求这光子相对于加速器的速度。

解:设加速器为S 系,离子为S '系,利用:21x x xv u v uv c'+='+,则:220.80.811x x x v u c c v c uv c c c c'++==='⨯++ 。

6-4 1000m 的高空大气层中产生了一个π介子,以速度0.8v c =飞向地球,假定该π介子在其自身的静止参照系中的寿命等于其平均寿命62.410s -×,试分别从下面两个角度,即地面上观测者相对π介子静止系中的观测者来判断该π介子能否到达地球表面。

解:(1)地面上的观察者认为时间膨胀:有t ∆=66410t sa -∆==⨯由860.83104109601000l v t m m -=∆=⋅⨯⋅⨯=<,∴到达不了地球;(2)π介子静止系中的观测者认为长度收缩:有l l =600l m ==而682.4100.8310576600s v t m m -=∆=⨯⋅⋅⨯=<,∴到达不了地球。

6-5 长度01m l =的米尺静止于'S 系中,与x ′轴的夹角'θ=30°,'S 系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45°。

试求:(1)'S 系和S 系的相对运动速度。

(2)S 系中测得的米尺长度。

解:(1)米尺相对S '静止,它在,x y ''轴上的投影分别为:0cos 0.866m x L L θ''==,0sin 0.5m y L L θ''==。

米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y方向的长度不变,即:x L L =y y L L '=故:tan y y xxL L L L L θ''===。

把ο45θ=及,y L L ''代入,0.50.866=,故 :0.816v c =(2)在S 系中测得米尺长度为0.707m sin 45y L L ==︒。

6-6 一门宽为a ,今有一固有长度0l (0l >a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少解:门外观测者测得杆长为运动长度,l l =,当a l ≤时,可认为能被拉进门,则:a l ≤解得杆的运动速率至少为:u =6-7 两个惯性系中的观察者O 和O '以(c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇 解: O 测得相遇时间为t ∆:0200.6L t v c∆==O '测得的是固有时t '∆:∴tt γ∆'∆==88.8910s -=⨯,或者,O '测得长度收缩:0208.01L L L =-=β8080.80.8208.8910s 0.60.6310L t c -⨯'∆===⨯⨯⨯6-8一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少解: 由长度缩短公式得:5311220=-⇒-='ββl l ,c v 54=6-9.两个宇宙飞船相对于恒星参考系以0.8c 的速度沿相反方向飞行,求两飞船的相对速度。

解:设宇宙船A 为S 系,测得恒星的速度为0.8x v c =,宇宙船B 为S '系,测得恒星的速度为'0.8x v c =-,两个飞船的相对速度为u ,根据洛伦兹速度变换公式:''21x x x v uv uv c+=+,有: 20.80.80.81c uc cu c -+=-+得:0.976u c = 。

6-10.从S 系观察到有一粒子在01=t 时由m 1001=x 处以速度c v 98.0=沿x 方向运动,s 10后到达2x 点,如在S '系(相对S 系以速度c u 96.0=沿x 方向运动)观察,粒子出发和到达的时空坐标2211,,,x t x t ''''各为多少(0='=t t 时,S '与S 的原点重合),并算出粒子相对S '系的速度。

解:利用洛仑兹变换:2u t x t -'=,x '=,0.28==,有:1122610.960100 1.14710u ct x t s ---⨯'===-⨯;222220.96109.8 2.11u c t x c t s --⨯'===; m cc c c uut x x 14.357)96.0(1096.0100)(1222111=-⨯-=--=';m cc c c cuut x x 82222221014.2)96.0(11096.08.9)(1⨯=-⨯-=--=';'8220.980.96 1.014100.96110.98x x x v u c cv u cv c c c--===⨯--⨯m/s 。

6-11.一飞船静长0l ,以速度u 相对于恒星系作匀速直线飞行,飞船内一小球从尾部运动到头部,宇航员测得小球运动速度为v ,试算出恒星系观察者测得小球的运动时间。

解:设恒星系为S 系,飞船为S '系,由题意:vl t 0='∆, ∴)(1)1()(1)1()(12220222222cu v v c ul c u t x c u t c u x c u t t -+=-'∆'∆+'∆=-'∆+'∆=∆。

6-12.一个静止的0K 介子能衰变成一个+π介子和一个-π介子,这两个π介子的速率均为c 85.0.现有一个以速率c 90.0相对于实验室运动的0K 介子发生上述衰变。

以实验室为参考系,两个π介子可能有的最大速率和最小速率是多少解:以实验室为S 系,运动的0K 介子为S '系,利用21x x xv u v uv c'+='+,有:最大速度:max 220.850.90.9920.90.8511x x x v u c c v c uv c c c c'++==='⨯++ , 最小速度 min 22(0.85)0.90.2130.9(0.85)11x x x v u c c v c uv c c c c'+-+==='⨯-++ 。

6-13.一个电子从静止开始加速到c 1.0,需对它做多少功,若速度从c 9.0增加到c 99.0又要做多少功 解:由相对论动能:220k E m c m c =-:(1)26101)0.51101)k E m c ==⨯- 2.57MeV =;(2)220k E m c =60.5110=⨯ 2.44MeV = 。

6-14.一静止电子(静止能量为MeV 51.0)被1.3MeV 的电势差加速,然后以恒定速度运动。

求:(1)电子在达到最终速度后飞越m 4.8的距离需要多少时间(2)在电子的静止系中测量,此段距离是多少解:(1)∵MeV c m 51.020=,MeV E k 3.1=∴MeV E c m mc k 81.1202=+=,考虑到:2201c v m m -=,202m c mc=,可求得:810.96 2.8810v c m s -==⨯⋅ ,那么,s v l t 881092.21088.24.8-⨯=⨯==; (2)由l '=8.4 2.37l m '==。

6-15.有两个中子A 和B ,沿同一直线相向运动,在实验室中测得每个中子的速率为c β.试证明相对中子A 静止的参考系中测得的中子B 的总能量为:202211c m E ββ-+=,其中0m 为中子的静质量。

证明:设中子A 为S 系,实验室为S '系,中子B 相对于中子A 速度为:22121ββ+='++'=c v cu u v v x x x ,代入2E m c =,有:22220211E m c ββ+===- 。

6-16.一电子在电场中从静止开始加速,电子的静止质量为kg 1011.931-⨯.(1)问电子应通过多大的电势差才能使其质量增加%4.0 (2)此时电子的速率是多少解:(1)由220k E m c m c =-,且eU E k =,004.00=-m m m , 有:222000.004eU mc m c m c =-=,∴2030.004 2.0510m c U V e==⨯;(2)∵01.004m m =,∴m m=,可求得:17107.2-⋅⨯=s m v 。

6-17.已知一粒子的动能等于其静止能量的n 倍,求:(1)粒子的速率,(2)粒子的动量。

解:(1)依题意知:20c nm E k =,又∵220k E m c m c =-,22200m c nm c =,有:22211(1)v c n -=+ 整理得:1)2(++=n n n c v ;(2)由420222c m c P E +=,而:20)1(c m n E +=, 得:)2(0+=n n c m P 。

6-18.太阳的辐射能来源于内部一系列核反应,其中之一是氢核(H 11)和氘核(H 21)聚变为氦核(He 32),同时放出γ光子,反应方程为:γ+→+He H H 322111已知氢、氘和He 3的原子质量依次为u 007825.1、2.014102u 和3.016029u . 原子质量单位kg 1066.1u 127-⨯=. 试估算γ光子的能量。

解: 1.007825 2.014102 3.016029m u u u ∆=+-290.0058980.97910u kg -==⨯ 根据质能方程:29822190.97910(310) 5.5MeV 1.610E mc --⨯⨯⨯∆=∆==⨯。

相关文档
最新文档