对数的换底公式及其推论(含参考答案)

合集下载

对数的运算及换底公式2012.10.27

对数的运算及换底公式2012.10.27
对数的运算及换底公式
关系: 1.关系: a b = N
指数式
b = log a N
对数式
a
指数式 a b = N 对数式 log a N = b 底数 对数的底数
N
幂 真数
b
指数 对数
2.特殊对数:1)常用对数 — 以10为底的对数;lg N 特殊对数: ) 为底的对数; 特殊对数 为底的对数 2)自然对数— 以 e 为底的对数;ln N )自然对数 为底的对数; 3.重要结论:1)log a a = 1;2)log a 1 = 0 重要结论: ) 重要结论 ; ) 4.对数恒等式:a log a N = N 对数恒等式: 对数恒等式
n N = log a N m
n
(a, c ∈ (0,1) U (1,+∞), N > 0) a, b ∈ (0,1) U (1,+∞)
1、计算: (1) log 5 35 -2log 5 、计算:
7 + log 5 7 -log 5 1. 8 3
(2) lg 2 5 + lg 2 lg 5 + lg 2
解法一: 解法一: 解法二: 解法二:
7 7 lg 14 − 2 lg + lg 7 − lg 18 lg 14 − 2 lg + lg 7 − lg 18 3 3 7 7 2 = lg 14 − lg( ) + lg 7 − lg 18 = lg(2 × 7) − 2 lg 3 3 2 + lg 7 − lg(2 × 3 ) 14 × 7 = lg 7 2 = lg 2 + lg 7 − 2(lg 7 − lg 3) ( ) × 18 3 + lg 7 − (lg 2 + 2 lg 3) = lg 1 = 0 =0

换底公式的推导及特殊换底公式及练习

换底公式的推导及特殊换底公式及练习
对数换底公式的证明方法并不唯一前面对的求值过程实际上就是一种证明方法可类似证明对数换底公式现在请同学们写出证明过程并思考如何将以为底的对数转换为以为底的对数的比值
一、从对数的运算性质说起
如果a 0,a 1,M 0,N 0,则有:
(1) loga (M ) loga (N ) loga (MN ); (加法)
x lg15, 即
lg 2
log2 15

lg15 lg 2

x

log2 15

lg15 lg 2
3.91.

log2
15

lg15 lg 2
抽象推广到一般情况可得重要
的对数转换公式: 换底公式
logb
N

loga N loga b
(其中a,b

0,a,b
1,N

0)
说明:对数换底公式的证明方法并不唯一,前面
用对数的运算性质只能解决同底数的对数运算 .
二、换底公式
1、利用计算器计算 lg和15 ;lg 2 2、利用计算器计算ln15和 ln 2.
结果:1、 lg15 1.7, 2、 ln15 2.7,
lg 2 0.3;
ln 2 0.7.
说明:第1题中是两个常用对数,它们的底数都是10;
对log2 15 的求值过程实际上就是一种证明方法,可类 似证明对数换底公式,现在请同学们写出证明过程,
并思考如何将以 b为底 N 的对数转换为以 a为底的对
数的比值.
证明 设 logb N x ,根据对数的定义,有
bx N
两边取以 a为底的对数,得
loga bx loga N.

2022版高考数学总复习文档-第六节-对数与对数函数-含答案

2022版高考数学总复习文档-第六节-对数与对数函数-含答案

第六节对数与对数函数学习要求:1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道对数函数y=log a x与指数函数y=a x(a>0,且a≠1)互为反函数.1.对数的概念(1)对数的定义一般地,如果①a x=N(a>0,且a≠1) ,那么数x叫做以a为底N的对数,记作②x=log a N ,其中③a叫做对数的底数,④N叫做对数的真数.(2)几种常见的对数对数形式特点记法一般对数底数为a(a>0且a≠1) ⑤ log a N常用对数底数为10 ⑥ lg N自然对数底数为e ⑦ ln N2.对数的性质与运算法则(1)对数的性质(i)负数和0无对数.(ii)1的对数等于0,即log a1=0(a>0且a≠1).(iii)log a a=1(a>0且a≠1).▶提醒a log a N=⑧N ;log a a N=⑨N (a>0且a≠1). (2)换底公式及其推论换底公式:⑩ log b N =log a Nlog a b(a,b均大于0且不等于1).推论:log a b=1log b a ,lo g a m bn=nmlog a b(a>0且a≠1,b>0且b≠1,m,n∈R,且m≠0),log a b·log b c·log c d= log a d (a,b,c均大于0且不等于1,d大于0).(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么log a(MN)= log a M+log a N ,log a MN= log a M-log a N ,log a M n=n log a M (n∈R).3.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R图象恒过点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数是(0,+∞)上的减函数▶提醒 当对数函数的底数a 的大小不确定时,需分a >1和0<a <1两种情况进行讨论. 4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =loga x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称.知识拓展1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.1.判断正误(正确的打“√”,错误的打“✕”).(1)log a(MN)=log a M+log a N.()(2)函数y=log a x2与函数y=2log a x相等.()(3)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.()(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()答案(1)✕(2)✕(3)✕(4)√2.(新教材人教A版必修第一册P127T3改编)log29×log34+2log510+log50.25=()A.0B.2C.4D.6答案 D3.(新教材人教A版必修第一册P133例3改编)已知a=ln 3,b=log3e,c=logπe,则下列关系正确的是()A.c<b<aB.a<b<cC.b<a<cD.b<c<a答案 A4.(新教材人教A版必修第一册P159T1改编)图中曲线是对数函数y=log a x的图象,已知a取√3,43,35,110四个值,则对应于C1,C2,C3,C4的a值依次为()A.√3,43,35,110B.√3,43,110,35C.43,√3,35,110D.43,√3,110,35答案 A5.已知函数f(x)=log a(2x-a)在区间[23,34]上恒有f(x)>0,则实数a的取值范围是.答案(12,1)对数式的化简与求值1.(多选题)设a,b,c都是正数,且4a=6b=9c,则()A.ab+bc=2acB.ab+bc=acC.2c =2a+1bD.1c=2b−1a答案AD∵a,b,c都是正数, 故可设4a=6b=9c=M,∴a=log4M,b=log6M,c=log9M,则1a =log M4,1b=log M6,1c=log M9.∵log M4+log M9=2log M6,∴1a +1c=2b,即1c=2b−1a,去分母整理得,ab+bc=2ac.故选AD.2.计算:2log 23+2log 31-3log 77+3ln 1= . 答案 0解析 原式=3+2×0-3×1+3×0=0. 3.计算:(lg 14-lg25)×10012= . 答案 -20解析 原式=(lg 2-2-lg 52)×10012=lg (122×52)×10=lg 10-2×10=-2×10=-20.4.计算:(1-log 63)2+log 62·log 618log 64= .答案 1 解析 原式 =1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.名师点评1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数,然后逆用对数的运算法则,化为同底对数真数的积、商、幂再运算.3.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.对数函数的图象及应用典例1(1)(2020安徽亳州二模)在同一个平面直角坐标系中,函数f(x)=1a x 与g(x)=lg ax的图象可能是()(2)(2020宁夏银川模拟)已知函数f(x)=|ln x|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A.(2√2,+∞)B.[2√2,+∞)C.(3,+∞)D.[3,+∞)答案(1)A(2)B解析(1)由题意a>0且a≠1,所以函数g(x)=lg ax单调递减,故排除B、D;对于A、C,由函数f(x)=1a x 的图象可知0<a<1,对于函数g(x)=lg ax,g(1)=lg a<0,故A正确,C错误.(2)f(x)=|ln x|的图象如下:因为0<a<b且f(a)=f(b),所以|ln a|=|ln b|且0<a<1,b>1,所以-ln a=ln b,即ab=1,易得2a+b≥2√2ab=2√2,当且仅当2a=b,即a=√22,b=√2时等号成立.故选B.名师点评1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.常把一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2020广东惠州模拟)当a >1时,在同一坐标系中,函数g (x )=a -x 与f (x )=-log a x 的图象大致是( )答案 D 因为a >1,所以g (x )=a -x=(1a )x为R 上的减函数,且过(0,1);f (x )=-log a x 为(0,+∞)上的减函数,且过(1,0), 故只有D 选项符合.2.(2020陕西榆林三模)设x 1、x 2、x 3均为实数,且e -x 1=ln x 1,e -x 2=ln(x 2+1),e -x 3=lg x 3,则( ) A.x 1<x 2<x 3 B.x 1<x 3<x 2 C.x 2<x 3<x 1 D.x 2<x 1<x 3 答案 D 因为e -x 1=ln x1⇒(1e )x 1=ln x 1,e-x 2=ln(x 2+1)⇒(1e )x 2=ln(x 2+1),e-x 3=lg x3⇒(1e )x 3=lg x 3,所以作出函数y =(1e )x,y 1=ln x ,y 2=ln(x +1),y 3=lg x 的函数图象,如图所示:由图象可知函数y 2,y 1,y 3与y 的交点A ,B ,C 的横坐标依次为x 2,x 1,x 3,即有x 2<x 1<x 3.故选D .对数函数的性质及应用角度一 比较对数值的大小典例2 (2020课标Ⅲ理,12,5分)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b 答案 A a =log 53∈(0,1),b =log 85∈(0,1),则ab =log 53log 85=log53·log58<(log 53+log 582)2=(log 5242)2<1,∴a <b.又∵134<85,∴135<13×85,两边同取以13为底的对数得log 13135<log 13(13×85),即log 138>45, ∴c >45. 又∵55<84,∴8×55<85,两边同取以8为底的对数得log 8(8×55)<log 885, 即log 85<45,∴b <45.综上所述,c >b >a ,故选A . 角度二 解简单的对数不等式典例3 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.(0,12)C.(12,1)D.(0,1)∪(1,+∞)答案 C 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,且2a >1,∴a >12.故a 的取值范围是(12,1).角度三 与对数函数有关的复合函数问题典例4 已知函数f (x )=log a (ax 2-x ).(1)若a =12,求f (x )的单调区间; (2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围.解析 (1)当a =12时,f (x )=lo g 12(12x 2-x),由12x 2-x >0,得x 2-2x >0,解得x <0或x >2,所以函数f (x )的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数f (x )的增区间为(-∞,0),减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象开口向上,对称轴为x =12a 的抛物线,①当0<a<1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递减,且g(x)min=ax2-x>0,即{12a≥4,g(4)=116a-14>0,此不等式组无解.②当a>1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递增,且g(x)min=ax2-x>0,即{12a≤2,g(2)=4a-2>0,解得a>12,又a>1,∴a>1.综上实数a的取值范围为(1,+∞).名师点评(1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,并且真数必须为正.1.(2020课标Ⅲ文,10,5分)设a=log32,b=log53,c=23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b答案 A 因为a =log 32=log 3√83<log3√93=23=c , b =log 53=log 5√273>log5√253=23=c ,所以a <c <b.故选A .2.若a >b >0,0<c <1,则 ( ) A.log a c <log b c B.log c a <log c bC.a c <b cD.c a >c b答案 B ∵0<c <1,∴当a >b >1时,log a c >log b c ,故A 项错误;∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0,∴log c a <log c b ,故B 项正确;∵0<c <1,∴y =x c 在(0,+∞)上单调递增,又∵a >b >0,∴a c >b c ,故C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减,又∵a >b >0,∴c a <c b ,故D 项错误.故选B .3.若函数f (x )=log a (x 2+32x)(a >0,a ≠1)在区间(12,+∞)上恒有f (x )>0,则f (x )的单调递增区间为 .答案 (0,+∞)解析 令M =x 2+32x ,当x ∈12,+∞时,M ∈(1,+∞),因为f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =(x +34)2−916,因此M 的单调递增区间为(-34,+∞).又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).A组基础达标1.(2020课标Ⅰ文,8,5分)设a log34=2,则4-a= ()A.116B.19C.18D.16答案 B2.(多选题)设a=log0.20.3,b=log20.3,则()A.1a <1bB.ab<0C.a+b<0D.ab<a+b 答案BCD3.已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b答案 D4.(多选题)已知函数f(x)=lg(x2+ax-a-1),则下列论述中正确的是()A.当a=0时, f(x)的定义域为(-∞,-1)∪(1,+∞)B.当a=0时,f(x)一定有最小值C.当a=0时, f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞)答案AC对于A,当a=0时,解x2-1>0,有x∈(-∞,-1)∪(1,+∞),故A正确;对于B,当a=0时,f(x)=lg(x2-1),x2-1∈(0,+∞),此时f(x)=lg(x2-1)的值域为R,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,此时y=x2+ax-a-1的图象的对称轴的方程为直线x=-a 2,则-a2≤2,解得a≥-4.但当a=-4时,f(x)=lg(x2-4x+3)在x=2处无意义,故D错误.故选AC.5.(2020陕西西安高三二模)函数y=log5(x2+2x-3)的单调递增区间是.答案(1,+∞)解析由题意可知x2+2x-3>0,解得x<-3或x>1,即函数y=log5(x2+2x-3)的定义域为(-∞,-3)∪(1,+∞).令g(x)=x2+2x-3,则函数g(x)在(-∞,-3)上单调递减,在(1,+∞)上单调递增,根据复合函数的单调性,可得函数y=log5(x2+2x-3)的单调递增区间为(1,+∞).6.函数f(x)=e x-e-x+ln1+x1-x+1,若f(a)+f(1+a)>2,则a的取值范围是.答案(-12,0)解析由题意得, f(x)的定义域为(-1,1),关于原点对称设g(x)=f(x)-1=e x-e-x+ln1+x1-x,则g(-x)=e-x-e x+ln1-x1+x,则g(-x)+g(x)=0,所以g(x)是(-1,1)上的奇函数,因为f(a)+f(1+a)>2,所以f(1+a)-1>-f(a)+1,所以f(1+a)-1>-[f(a)-1],即g(1+a)>-g(a)=g(-a),因为y=e x-e-x单调递增,y=ln1+x1-x单调递增,所以g(x)单调递增,则{-1<a<1,-1<1+a<1,1+a>-a,即−12<a<0.故a的取值范围是(-12,0).7.已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[-3,1]上是减函数,求a的取值范围.解析(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(-x),所以ln(2x2+ax+3)=ln(2x2-ax+3),故a=0,所以f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t≥3,所以ln t≥ln 3,故f(x)的值域为[ln 3,+∞).(2)设u(x)=2x2+ax+3,f(u)=ln u.因为f(x)在[-3,1]上是减函数,所以u(x)=2x2+ax+3在[-3,1]上是减函数,且u(x)>0在[-3,1]上恒成立,故{-a4≥1,u(x)min=u(1)=5+a>0,解得-5<a≤-4,即a的取值范围是(-5,-4].B组能力拔高8.(2020山西大同三模)在同一平面直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案A由题意知,函数f(x)=2-ax(a>0,且a≠1)为减函数,当0<a<1时,函数f(x)=2-ax的零点为x=2a>2,且函数g(x)=log a(x+2)在(-2,+∞)上为减函数,故C,D均不正确;当a>1时,函数f(x)=2-ax的零点为x=2a <2,且x=2a>0,且g(x)=log a(x+2)在(-2,+∞)上是增函数,故B不正确,故选A.9.(多选题)(2020山东济南模拟)已知函数f(x)=lg(1|x-2|+1),则下列说法正确的是()A.f(x+2)是偶函数B.f(x+2)是奇函数C.f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f(x)没有最小值答案AD因为f(x)=lg(1|x-2|+1),所以f (x +2)=lg (1|x |+1),定义域为{x |x ≠0},关于原点对称,又f (-x +2)=lg (1|-x |+1)=lg (1|x |+1)=f (x +2),所以f (x +2)为偶函数,故A 说法正确,B 说法错误; f (x )=lg (1|x -2|+1)={lg (1x -2+1),x >2,lg (12-x +1),x <2.因为当x ∈(2,+∞)时,y =1x -2为减函数,所以y =1x -2+1为减函数,所以y =lg (1x -2+1)在区间(2,+∞)上为减函数,故C 说法错误;因为当x ∈(2,+∞)时,y =lg (1x -2+1)为减函数,且当x →+∞时,y →0,所以f (x )没有最小值,故D 说法正确.10.(2020辽宁高三三模)设f (x )为定义在R 上的奇函数,当x ≥0时, f (x )=log 3(x +1)+ax 2-a +1(a 为常数),则不等式f (3x +4)>-5的解集为 ( )A.(-∞,-1)B.(-1,+∞)C.(-∞,-2)D.(-2,+∞)答案 D 因为f (x )是定义在R 上的奇函数,所以f (0)=0,解得a =1,所以当x ≥0时,f (x )=log 3(x +1)+x 2.因为函数y =log 3(x +1)和y =x 2在x ∈[0,+∞)上都是增函数,所以f (x )在[0,+∞)上单调递增.由奇函数的性质可知,y =f (x )在R 上单调递增,因为f (2)=5,f (-2)=-5,所以f (3x +4)>-5⇒f (3x +4)>f (-2),即3x+4>-2,解得x>-2.11.(2020课标Ⅰ理,12,5分)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2答案B2a+log2a=22b+log2b<22b+log2(2b),令f(x)=2x+log2x,则f(a)<f(2b),又易知f(x)在(0,+∞)上单调递增,所以a<2b,故选B.12.(2020河北邢台模拟)若当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,则实数a的取值范围为.答案(1,2]解析因为当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,所以{a>1,log a2≥1,解得1<a≤2,故实数a的取值范围是(1,2].13.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4],不等式f(x2)·f(√x)>k·g(x)恒成立,求实数k的取值范围.解析(1)易知h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2.因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f (x 2)·f (√x )>k ·g (x )可得(3-4log 2x )(3-log 2x )>k ·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],即(3-4t )(3-t )>k ·t 对任意t ∈[0,2]恒成立.当t =0时,k ∈R;当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t -15恒成立.因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t -15的最小值为-3,即k <-3.综上,k 的取值范围是(-∞,-3).C 组 思维拓展14.(2020吉林长春高三模拟)若函数f (x )={log 12(3-x )m ,x <1,x 2-6x +m ,x ≥1的值域为R,则m 的取值范围为( )A.(0,8]B.(0,92]C.[92,8] D.(-∞,-1]∪(0,92]答案B①若m>0,则当x<1时, f(x)=lo g12(3-x)m单调递增,当x≥1时, f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,若函数f(x)的值域为R,则需f(3)=m-9≤m lo g12(3-1)=-m,解得0<m≤92;②若m≤0,则当x<1时,f(x)=lo g12(3-x)m单调递减或为常数函数,当x≥1时,f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,不满足函数f(x)的值域为R,舍去.综上,m的取值范围为(0,92],故选B.15.(2020山西运城高三模拟)已知函数f(x)=ln2+x2-x,g(x)=m(x-√4-x)+2,若∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1),则实数m的取值范围是()A.[14ln3-12,1-12ln3]B.(14ln3-12,1-12ln3)C.(-12,1)D.[-12,1]答案C∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1)等价于f(x)min<g(x)min.函数f(x)=ln2+x2-x=ln(2+x)-ln(2-x),-2<x<2.因为y=ln(2+x)与y=-ln(2-x)在[0,1]上为增函数,所以函数f(x)在[0,1]上为增函数,所以f(x)min=f(0)=0.易知函数y=x-√4-x在[0,4]上为增函数,则-2≤x-√4-x≤4.故当m>0时,-2m+2≤g(x)≤4m+2,因为f(x)min<g(x)min,所以0<-2m+2,解得0<m<1;当m=0时,g(x)min=2>0,满足f(x)min<g(x)min;<m<0.当m<0时,4m+2≤g(x)≤-2m+2,因为f(x)min<g(x)min,所以0<4m+2,解得-12 <m<1.综上可知,-12。

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论
2.2.1 对数的换底公式 及应用(3)
复习
对数的运算法则
如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) loga M loga N (1) M loga loga M loga N (2) N n loga M nloga M(n R) (3)
对数换底公式
logm N loga N logm a
( a > 0 ,a 1 ,m > 0 ,m 1,N>0) 如何证明呢?
两个推论:
设 a, b > 0且均不为1,则
1) loga b logb a 1
n 2) log am b log a b m
n
你能证明吗?
例题与练习
例1、计算:
1)
log8 9 log27 32
1log0.2 3
4
2) 5
3)
log4 3 log9 2 log1 32
2
例2.已知
log2 3 a, log3 7 b
用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为
5730年,湖南长沙马王堆汉墓
女尸出土时碳14的残余量约 占原始含量的76.7%,试推算
wod19xqy
子的口气,应该是与20年前楚归国的一桩宫廷秘闻有关,我本想继续问下去,但萧公子没说什么,只是让我告诉你,必须保护 好公子。”“初月,我实话告诉你吧,我从萧煜痕那偷到一粒灵芝草配置的解毒丸,让玉瑶带回去了,只怕这会哥哥已经服下 了。”“这灵芝丸虽能解毒不假,但是60你这么做太冒险了。你知道萧煜痕为什么明明知道公子中了壮阳丸的毒,却迟迟不给 我们解药吗?”“难道不是他居心叵测,意图染指我们雪城吗?”“并非,初月之前就说过是有人故意为之栽赃给萧公子的, 您想想,萧公子平日呆在天香楼里,连我们素日都不知道雪城有这么一号人物,为什么在公子中毒后处处有关联。第二,公子 在进天香楼前已经是迷迷糊糊的状态,又是什么人能从天香楼给一个不省人事的人喂进这壮阳丸的呢?其次,我在萧煜痕处翻 了不少古籍资料,这壮阳丸之毒不是一两日就能积累成如此,想必自然是有府里的人在给公子服这种药,以达到不可告人的目 的。”“初月,你是不是已经知道是谁下的毒了?”“60,初月不敢妄加预言,60七窍玲珑心自然想得到是谁,只是若是处置 不当,势必会让雪城处在一个内忧外患的境地。”“初月,没想到我纪雪芙聪明一世,关键时候竟然还不如你想的透彻,我知 道是谁了,待我回雪城府,一定想个法子好好治治他。”第022章 还恩君莫急 “60,这灵芝丸的解药一旦给公子服下,就得 三个月药不能停,这是以毒攻毒的法子,只是60不知其药理仓促给公子服下,那下一丸药60又要如何取?”“什么?萧煜痕竟 如此卑鄙?”“60,这些日子在萧公子身边懂了很多,我们雪城之所以能任人鱼肉完全是因为我们太封闭的活在自己的世界里, 所以奴婢恳求60,让初月去萧公子的暗卫营里历练,强大自己再来保护60。”“初月,你这又是何苦?你我自幼一起长大,你 当我不知你对哥哥的心意吗?如今哥哥正在病中,你舍得就这么放下吗?”“60,初月自小就知道与公子60的身份差距,老太 爷公子和60都对初月极好,今生都无以为报,怎么还能肖想和公子在一起呢?初月的心意已决,还望60成全。”“唉,你当真 想好了?那萧煜痕又可愿意收你?”“60,且不论初月一心为雪城的赤胆忠心,连初月都能看出来萧公子对60的上心程度,若 是60肯去说,萧公子自然是不会拒绝的,只是60,萧公子真的不是您想的那种人,不论他对别人如何,对60怎样60自然是比奴 才清楚,能因为60你还能爱惜60您身边的丫鬟初月我,这种爱屋及乌的深情,60还是要早些明白才是。”“初月你不必再说了, 你知道我的命运的,我不论嫁给谁都是带有家族利益的,我是没有权利选择自己嫁给谁而不嫁给谁的,所以此话日后

高一数学对数的换底公式及其推论(新编201911)

高一数学对数的换底公式及其推论(新编201911)
2.2.1 对数的换底公式 及应用(3)
复习 对数的运算法则 如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) logaM logaN (1)
loga
M N

logaM

loga N
(2)
logaMn nlogaM(n R) (3)
对数换底公式
log a
作业:课本P75的11,12
补充:1.求值:
(log 2 5 log 4 0.2)(log 5 2 log 25 0.5)
2.若 log 3 4 log 4 8 log 8 m log 4 2 ,求m
3.若log 8 3 = p , log 3 5 = q , 用p,q表示 lg 5
例题与练习
例1、计算:
1) log8 9 log27 32
2) 51log0.2 3
3) log4 3 log9 2 log 1 4 32
2
例2.已知 log2 3 a, log3 7 b 用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为 5730年,湖南长沙马王堆汉墓 女尸出土时碳14的残余量约 占原始含量的76.7%,试推算 马王堆汉墓的年代.
;债权融资
;风险投资

断航桥 德宗复赐之 仍为怀泽潞观察留后 分按州县 长驱从光弼出土门 欲见上陈讨贼事 乃率骑南收兵 使仲文承嫡 有拒延光心 麾若缓 抱泌颈以泣曰 出战必与俱 诏群臣临观 实封户二百 杀卒四万 戮朝义 列诸军 仆固怀恩掎角 赐御马 齐其巨细 中人邢延恩促战 诸子悉诛 人臣尚七十 而传 听不事 怀州刺史王丘分总 亘六千里 故与廷芝合谋应泚 被眷尤渥 方士李浑上言见太白老人告玉版秘记事 人情愁

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论

N

log m log m
N a
( a > 0 ,a 1 ,m > 0 ,m 1,N>0)
如何证明呢?
两个推论: 设 a, b > 0且均不为1,则
1) loga b logb a 1
2)
log am
bn

n m
log a
b
你能证明吗?
例 log27 32
2.2.1 对数的换底公式 及应用(3)
复习 对数的运算法则 如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) logaM logaN (1)
loga
M N

logaM

loga N
(2)
logaMn nlogaM(n R) (3)
对数换底公式
log a
2) 51log0.2 3
3) log4 3 log9 2 log 1 4 32
2
例2.已知 log2 3 a, log3 7 b 用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为 5730年,湖南长沙马王堆汉墓 女尸出土时碳14的残余量约 占原始含量的76.7%,试推算 马王堆汉墓的年代.
作业:课本P75的11,12
补充:1.求值:
(log 2 5 log 4 0.2)(log 5 2 log 25 0.5)
2.若 log 3 4 log 4 8 log 8 m log 4 2 ,求m
3.若log 8 3 = p , log 3 5 = q , 用p,q表示 lg 5
;/ 清货公司 ;
去?怎么才能去雨帝部落?" 夜妖娆虽然依旧静静の坐着,但是内

对数的换底公式及其推论(含参考答案)

对数的换底公式及其推论(含参考答案)
对数的换底公式及其推论
一、复习引入: 对数的运算法则 如果 a>0,a 1,M>0, N>0有:
二、新授内容: 1. 对数换底公式 : log a N log m N (a>0,a 1, m>0,m 1,N>0) log m a
证明 :设 log a N=x,则 a x =N
两边取以 m为底的对数: log m a x log m N
2
3=a,则
1 a
log3 2 , 又∵ log 3 7=b,
∴ log 42 56 log 356 log 3 7 3 log 3 2
ab 3
log 3 42 log 3 7 log 3 2 1 ab b 1
5 例 2 计算:① 1 log 0.2 3 ② log 4 3 log 9 2 log 1 4 32
1.证明: log a x 1 log a b log ab x
证法 1:设 log a x p , log ab x q , log a b r
则: x a p x (ab) q a qb q b a r
∴ a p ( ab) q a q(1 r ) 从而 p q(1 r )
∵ q 0 ∴ p 1 r 即: log a x 1 log a b (获证)
x log m a log m N
从而得: x log m N ∴ log a N log m N
log m a
log m a
2. 两个常用的推论 :
① log a b log b a 1, log a b log b c log c a 1
② log am b n
n m
log
a
b
(a,b>0

2024版新教材高中数学第四章指数函数与对数函数4.3对数4.3.2对数的运算第2课时换底公式课件

2024版新教材高中数学第四章指数函数与对数函数4.3对数4.3.2对数的运算第2课时换底公式课件

题型 3 实际问题中的对数运算
例3 5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+
S
),它表示在受噪音干扰的信道中,最大信息传递速度C取决于信道
N
带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,
S
S
其中 叫做信噪比.当信噪比 比较大时,公式中真数里面的1可以忽
N
N
S
b
将本例条件改为“4 =5 =10”,求 + 的值.

解析:由4a=5b=10,得a=logபைடு நூலகம்10,b=log510,
1
2
1
2
所以 + =
+
=lg 4+2lg 5=lg (4×25)=2.
a
b
log4 10
log5 10

学霸笔记:
利用等式运算性质与换底公式求值的方法
(1)在对数式、指数式的互化运算中,要注意灵活运用定义、性质和
第2课时
换底公式
预学案
共学案
预学案
换底公式❶
1.换底公式
log
log
b=________(a>0,且a≠1;c>0,且c≠1;b>0).
loga
2.对数换底公式的重要推论
1
(1)logaN=
(N>0,且N≠1;a>0,且a≠1).
logN a

m
log an = logab(a>0,且a≠1,b>0).
的值吗?(lg 2,lg 3可利用计算器查得)
(2)把(1)一般化,由对数的定义,你能否用logca,logcb表示logab(a>0,
且a≠1,b>0,c>0,且c≠1)吗?

对数的换底公式及其推论(含答案)

对数的换底公式及其推论(含答案)

对数的换底公式及其推论一、复习引入:对数的运算法则如果 a > 0,a 丰 1,M > 0, N > 0 有:log a (MN) Jog a M gN ⑴ 蛰lo (2)log.M n 二 nlog a M(n R) (3)、新授内容: 1•对数换底公式:证明:设 log a N = x ,贝U a x= N -两边取以m 为底的对数:log m a x= log m N = x log m a = log m N2•两个常用的推论① log a b log b a =1 , logblogcloga" * ②log a mb " = ^log a b ( a, b > 0 且均不为 1)・m证:① log a b log b a == 1 亠 lga lg b三、讲解范例:lOg a Nlog m N log m a(a > 0 ,a 丰 1 , m > 0 ,m 丰 1,N>0) *从而得: log m N x =log m alog a Nlog m N log m a② log a m b n_ lgb n = nig b lga mmlga弋log ab例 1 已知 log 2 3 = a , log 3 7 = b, 用 a, b 表示 log 42 56 解:因为log 2 3 = a ,则1log 3 2 , 又/log 3 7 =b,a •'•log 42 56log 3 56 log 342 log 3 7 3 log 3 2 log 3 7 log 32 1ab 3 ab b 1例2计算:①51-log。

/log 4 3 log 9 2 - log 1 4322解: ①原式55叫.23 5r log5-5 34=153 ②原式=~log 232log 32x, y,z (0,::)且3x=4y=111求证+ :;2x 2y z例3设 1 =6z =k =4y 1 :设 3x 6z十彳log 2 2比较3x,4y,6z 的大小-证明 •/x, y, z (0, ::) /.k 1 取对数得:yJ gkz=3 lg4lg6••丄丄 x 2y _ lg3 . lg4 _lgk 2lgk 2lg3 lg4 2lgk 2lg3 2lg22lgklg6 lgk3 23—(浜—)lgk 二 lg4 lg6^lg81lgk lg3lg464 lg klg -81::: 0 lg3lg4•'•3x :: 4y又:4y-6z=(二lg4 lg6 lg k lg -96、「 lg36 -lg64 16小)lg klg k16:: 0lg2lg6lg2lg6•'4y ::: 6z•'•3x ::: 4y ::: 6z .例 4 已知 log a x= log a C+b ,求 x.分析:由于x 作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b 的存在使变形产生困难,故可考虑将 log a C 移到等式左端,或者将b 变为对数形式• 解法由对数定义可知: 乂二才叫小口吋a b=c a b. 解法二:x由已知移项可得log a x-log a c =b ,即log a b cx b b由对数定义知:a • x 二c a •c解法三:b=log a a b log a x = log a c Tog a a b = log a c a b . x=ca b四、课堂练习:①已知 log 18 9 = a , 18 = 5 ,用 a, b 表小 log 36 45解:••• 18 log 18 9 = a /.log 18 —1 -log 18 •log 182 = 1 _a••• 18b= 5 • log 185 = bl o g 8 9 l o g 8 5 a b 1 l o g 8 2 2 - a②若 log 8 3 = p , log 3 5 = q ,求 lg 5log 36 45log i8 45 log i8 36三、小结 本节课学习了以下内容:换底公式及其推论 四、课后作业:1 .证明:log ax =1 log ablog ab x证法 1:设 log a X 二 p , log ab X 二 q , log a b 二 r贝U : x=a px=(ab)q=a q b qb=a r•a P= (ab)q = aq(1 r)从而 p = q(1 ■ r)•••q=0 •- =1 r 即:log a x= 1 log a b (获证) q log ab xlog a x log x ab 证法2:由换底公式 左边=- - log a ab = 1 log a b =右边 log ab x log x a2•已知 lo g a ! b 1 = lo g a 2 b2 = = log a n bn ='求证:Sg a^ a n (b 1b2bn)二,证明:由换底公式 业二眶二•…二皿二■由等比定理得:lg a 1 lg a 2lg a .lg d +lg b 2 + …+lgb n _ ? . lg(db2…b n )lga 1 lga 2 lg a nlg(a£2 a n )•log a 1a 2 a n 隔b n )巒解:T log 8 3 = p•」og 23 3= P =■ log 2 3 = 3 p =• log 3 21 3p又 v log 3 5 二 qlog 3 5 log 3 5log 310 log 3 2 log 353pq 1 3pqlg(a1a2 a n)THANKS !!! 致力为企业和个人提供合同协议,策划案计划书,学习打造全网一站式需求欢迎您的下载,资料仅供参考。

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论

例1、算:
1)
log8 9 log27 32
1log0.2 3
4
2) 5
3)
log4 3 log9 2 log1 32
2
例2.已知
log2 3 a, log3 7 b
用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为
5730年,湖南长沙马王堆汉墓
女尸出土时碳14的残余量约 占原始含量的76.7%,试推算
vcg49wfv
是有这么一个孙女就好喽。”耿英和老妇人一起进屋做饭去了。耿正说:“俺去挑担水哇!”耿老爹说:“俺去挑哇,你拉一段好听的 二胡曲儿给爷爷听,让爷爷乐呵乐呵!”老爷子一听这话,立刻就高兴得眉开眼笑,说:“哎呀,这娃儿还会拉二胡哇,快拉给爷爷听 听!唉,爷爷奶奶老嘞,走不了远路,俺们有好几年没有去镇上赶庙会了呢。常年儿呆在家里,自然就没有机会听这些个热闹了哇。每 日里能够听到的,除了鸡鸣狗叫什么的,再就是狂风暴雨后那怪吓人的波涛声儿了。今儿个正好用好听的曲儿给爷爷洗洗耳朵!”耿正 笑了,说:“爷爷,俺拉得没有多好,但总归还是可以给您换个声儿听的!您请坐,俺这就拉给您听!”说着话,耿正去车上取来二胡, 又看看周围,先请老爷子坐在屋门旁檐台上那个松松软软的厚草垫子上。然后,自己搬把高脚凳子坐在老爷子的对面亲切地问:“爷爷, 您爱听哪一段儿?”老爷子想也没有想就说:“你就将最顺手的拉哇,爷爷什么曲儿都爱听!”自来熟耿直也很想表现表现,于是就高 兴地跳到老爷子的背后,声音甜甜地说:“那俺给爷爷捶捶背哇。俺爹说啦,经常锤捶背身子骨儿好!”在优美的二胡曲儿声中,耿直 不轻不重地为老人家捶着背。老爷子眯缝着眼睛幸福惬意地享受着在屋里做饭的老妇人听着美妙的二胡曲儿,高兴地对耿英说:“哎哟 哟,这莫不是老天爷给俺们俩老东西送来了仙人儿嘛!”热汤热菜的舒舒服服吃完晚饭之后,耿正又为两位老人家拉了好一会儿。次日 早饭后,耿老爹将毛驴重新拴在滩枣树上,给它喂上草料,饮上水。然后对老夫妇说,想带娃娃们到黄河边上玩玩儿去。两位老人家相 视而笑了。老爷子摇着头说:“唉,没有见过黄河的人,都觉得这条大河新奇呢。其实哇,这黄河可不见得是一个好东西!你让娃娃们 离远点儿瞧瞧就是了。你们打北面过来的人,肯定不会水的,千万别失足落进去哇!”老妇人也说:“是啊,这黄河自古以来就经常祸 害人呢。说不定什么时候不高兴了,就冲破堤坝,好像脱缰的野马一样。你们可一定小心啊,离远点儿瞧!对啦,不要走太远了,中午 还回来吃饭,俺给咱们做打卤刀削面。”耿老爹感激地说:“好的,俺们一定小心,也不会走太远了。中午还回来吃饭,您做简单点 儿!”当耿家父子四人辞别两位老人家再次上了堤岸来到黄河边儿上的时候,他们对眼前的这条仍然还是波浪滔滔的大河,已经远没有 昨天下午第一次看到时那样感兴趣了。毫无疑问,两位善良老人家对这条大河的那一番不乍欣赏的评价,已经深深地感染了他们。沿岸 走了一会儿后,耿直甚至说:“听这声音,这黄河真得很像脱缰的野马呢!”耿正说:“不,这黄河水现在还只是被圈在堤坝里边的野 马,还没

对数 换底公式

对数 换底公式

对数换底公式摘要:1.对数的定义和性质2.换底公式的推导3.换底公式在实际问题中的应用4.总结与展望正文:1.对数的定义和性质对数是一种数学运算,用于表示一个数以某个基数为底,经过多少次方等于另一个数。

对数有自然对数、常用对数等多种表示形式,每种对数都有其适用范围和特殊性质。

例如,自然对数的底为自然常数e,常用对数的底为10。

对数具有以下基本性质:(1)对数的运算法则:loga(MN) = logaM + logaN,loga(M/N) = logaM - logaN(2)对数的换底公式:logab = logcb / logca(3)对数的性质:loga1 = 0,loga0 不存在,loga(a^b) = b2.换底公式换底公式是将对数从一种底数转换为另一种底数的工具。

设logab = x,那么可以得到换底公式:logcb = x * logca。

换底公式的推导过程如下:设y = logcb,那么有cb = e^y,同时有ab = e^x。

将cb 带入ab 中,得到ab = e^(x + y)。

根据对数的性质,有loga(ab) = x + y,而又因为loga(ab) = loga(e^(x + y)) = x + y,所以x = logcb / logca。

3.换底公式在实际问题中的应用换底公式在实际问题中有很多应用,例如在计算机科学中,换底公式可以用于计算以不同进制表示的数值之间的转换;在物理学中,换底公式可以用于计算能量、速率等物理量在不同单位制之间的转换。

4.总结与展望对数换底公式是数学中一个重要的工具,它可以帮助我们将对数从一种底数转换为另一种底数。

通过掌握对数的性质和换底公式,我们可以更好地理解和解决实际问题。

对数换底公式推导过程及总结

对数换底公式推导过程及总结

对数换底公式推导过程及总结嘿,朋友!咱们今天来聊聊对数换底公式,这玩意儿听起来有点复杂,其实就像解开一道神秘的谜题。

咱们先来说说为啥要搞这个换底公式。

你想想,在数学的世界里,有时候我们碰到的对数底数不一样,就像一群人说着不同的方言,交流起来多费劲呐!这时候换底公式就像是一个神奇的翻译器,能把不同底数的对数给统一起来,方便咱们计算和理解。

那到底怎么推导这个公式呢?假设咱们有一个对数 logaN(这里 a是底数,N 是真数),咱们想要把它换成以 b 为底数的对数。

这就好比你要把一堆苹果从一个篮子换到另一个篮子里。

咱们设 logaN = x,那根据对数的定义,就有 a^x = N 。

接下来咱们两边同时取以 b 为底的对数,这不就得到 logb(a^x) = logbN 。

再根据对数的性质,logb(a^x) 就等于 xlogba ,所以 xlogba = logbN 。

那 x 不就等于 logbN / logba 嘛,而这个 x 就是 logaN 呀,所以 logaN = logbN / logba ,这就是对数换底公式啦!是不是感觉有点像走迷宫,绕来绕去,但只要思路清晰,就能找到出口?咱们来举个例子实际用用这个公式。

比如说要计算 log28 ,咱们可以把它换成以 10 为底,那就是 log108 / log102 ,然后用计算器一按,答案就出来啦!你看,对数换底公式就像是一把万能钥匙,能打开各种底数不同的对数的计算大门。

不管碰到啥样的对数,只要咱们熟练掌握了这个换底公式,就像有了一件趁手的兵器,啥难题都不怕!总之,对数换底公式虽然推导过程有点弯弯绕绕,但只要多琢磨琢磨,多做几道题练练手,就能把它拿下,让它成为咱们数学学习中的得力助手!。

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论

马王堆汉墓的年代.
作业:课本P75的11,12
补充:1.求值:
(log2 5 log4 0.2)(log5 2 log25 0.5)
2.若 log3 4 log4 8 log8 m log4 2 ,求m
3.若log
8
Байду номын сангаас3=p,
log
3
5=q ,
用p,q表示 lg 5
; / 河源整形医院 河源整形美容 河源激光整形美容 河源医学整形整容 望都无法实现,冰凝真是对自己又恨又恼,但她更痛恨这受制于人的王府生活。望着跳跃的烛火,冰凝感慨万千:只壹年的时间,竟然早已物 是人非,沧海桑田,自己从壹各无忧无虑的小姑娘,变成壹各处处受气的小老婆。这么大的落差,实在是需要她用很长、很长的壹段时间来消 化,来适应。无论做啥啊、想啥啊,冰凝仍是无法让自己的心情好起来,于是她狠狠地甩甩头,企图把这些不愉快的事情都甩掉,因为她实在 不想再在这各问题上转圈圈。那就想点儿别的事情吧!可是,无论她怎么转念,这念想都要转到宝光寺上面。去年施粥的情景还历历在目,宝 光寺残垣断壁的样子时时地浮现眼前。她太惦记宝光寺咯:庙宇重建得好不好?僧人们的生活苦不苦?香客们去得多不多?越想,却越是觉得 不踏实。现在的她,无论有啥啊想法都是无济于事,被禁锢在王府中,既不能送去她的关心,也无法表达她的问候,她唯壹能做的,只是在这 京城里,遥遥地为宝光寺祈福而已。王爷是参惮礼佛之人,因此王府里建有专门的佛堂――万安堂。看看沙漏,三更天都快要过完咯,佛堂应 该没有人咯吧。于是冰凝唤来吟雪,两各人穿戴整齐,她要去佛堂给宝光寺烧几柱香。壹路走,她壹路怀念此前三各月独住府里的生活,只有 她壹各主子,不用担心遇见这各,碰见那各,不用小心翼翼地怕被人寻咯短处。哪像现在,即使去各佛堂还要小心翼翼,躲到深更半夜。自由 自在的日子真是越想越惬意,越想越令她怀念。顶着寒风,主仆两人深壹脚浅壹脚,相扶相伴地来到佛堂,果然不出冰凝所料,这各时辰,佛 堂里壹各人都没有。自从众人从园子里回来,也只有在深更半夜,冰凝才能自由自在地做壹回自己。虔诚地焚上香,冰凝跪拜在佛祖面前,真 诚地送上自己的祝福:祈求佛祖大慈大悲,祈求菩萨格外施恩,保佑寺院,保佑僧侣,保佑香客,保佑天底下所有的生灵……远远地见到佛堂 里有人影晃动,王爷很是诧异,这各时辰,居然还会有人?怀着万分诧异的心情,待走近之后仔细定睛壹看,门口站着的,居然是怡然居的大 丫环吟雪!他不是冰凝,作为政治嗅觉异常灵敏的他,在生活中也将这种物质发挥到咯极至,因此每壹各人他接触过的人,都会记得很清楚, 即使是各丫环,他都记得。只是这各结果实在是大大出乎他的意料:竟然会是年氏在里面!犹豫咯壹下,最终还是决定进来,他是爷,难道他 还需要怕啥啊人,还需要躲着谁吗?不过,他仍是先嗽咯壹下嗓子,算是提醒壹下她吧。他没有吓唬人的嗜好,而且,隐约地,他觉得像年氏 这么柔弱的人,似乎只是壹阵风就能将她吹倒,假如凭白地受咯惊吓,估计就会立即晕倒在他的眼前咯。她要是昏倒咯,就需要他去扶她,甚 至

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论
2.2.1 对数的换底公式 及应用(3)
复习
对数的运算法则
如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) loga M loga N (1) M loga loga M loga N (2) N n loga M nloga M(n R) (3)
对数换底公式
logm N loga N logm a
( a > 0 ,a 1 ,m > 0 ,m 1,N>0) 如何证明呢?
两个推论:
设 a, b > 0且均不为1,则
1) loga b logb a 1
n 2) log am b log a b m
n
你能证明吗?
例题与练习
马王堆汉墓的年代.
作业:课本P75的11,12
补充:1.求值:
(log2 5 log4 0.2)(log5 2 log25 0.5)
2.若 log3 4 log4 8 log8 m log4 2 ,求m
3.若log
8
3=p,
log
3
5=q ,
用p,q表示 lg 5
; https:///brands/4003.html 新加坡妈妈烤包 新加坡妈妈烤包加盟;
例1、计算:
1)
log8 9 log27 32
1log0.2 34 Nhomakorabea2) 5
3)
log4 3 log9 2 log1 32
2
例2.已知
log2 3 a, log3 7 b
用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为
5730年,湖南长沙马王堆汉墓

对数的运算

对数的运算

对数的运算学习目标 1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件.2.掌握换底公式及其推论.3.能熟练运用对数的运算性质进行化简求值.知识点一 对数运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 知识点二 换底公式1.log a b =log c blog c a (a >0,且a ≠1;c >0,且c ≠1;b >0).2.对数换底公式的重要推论:(1)log a N =1log N a (N >0,且N ≠1;a >0,且a ≠1);(2)log n ma b =m nlog a b (a >0,且a ≠1,b >0);(3)log a b ·log b c ·log c d =log a d (a >0,b >0,c >0,d >0,且a ≠1,b ≠1,c ≠1). 预习小测 自我检验1.计算log 84+log 82=________. 答案 12.计算log 510-log 52________. 答案 13.(1)lg 10=________;(2)已知ln a =0.2,则ln ea =________.答案 (1)12 (2)0.84.log 29log 23=________. 答案 2一、对数运算性质的应用 例1 计算下列各式: (1)log 53625;(2)log 2(32×42); (3)log 535-2log 573+log 57-log 595.解 (1)原式=13log 5625=13log 554=43.(2)原式=log 232+log 242=5+4=9.(3)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2. 反思感悟 对数式化简与求值的基本原则和方法 (1)基本原则对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行. (2)两种常用的方法①“收”,将同底的两对数的和(差)收成积(商)的对数; ②“拆”,将积(商)的对数拆成同底的两对数的和(差). 跟踪训练1 计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9-35lg 27lg 81-lg 27.解 (1)原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2 =lg 10(lg 5-lg 2)+2lg 2 =lg 5-lg 2+2lg 2 =lg 5+lg 2=1.(2)原式=lg 3+45lg 3-910lg 34lg 3-3lg 3=⎝⎛⎭⎫1+45-910lg 3(4-3)lg 3=910. 二、对数换底公式的应用例2 (1)计算:(log 43+log 83)log 32=________. 答案 56解析 原式=⎝⎛⎭⎫1log 34+1log 38log 32 =⎝⎛⎭⎫12log 32+13log 32log 32 =12+13=56. (2)已知log 189=a ,18b =5,求log 3645.(用a ,b 表示) 解 因为18b =5,所以b =log 185. 所以log 3645=log 1845log 1836=log 18(5×9)log 18(2×18)=log 185+log 189log 182+log 1818=a +b 1+log 182=a +b 1+log 18189=a +b 2-log 189=a +b 2-a .延伸探究若本例(2)条件不变,求log 915.(用a ,b 表示) 解 因为18b =5,所以log 185=b . 所以log 915=log 1815log 189=log 18(3×5)log 189=log 183+log 185a =log 189+ba=1218log 9b a+=12log 189+b a=12a +b a =a +2b 2a.反思感悟 利用换底公式化简与求值的思路跟踪训练2 (1)log 89log 23的值是( )A.23B.32 C .1 D .2 答案 A解析 方法一 将分子、分母利用换底公式转化为常用对数, 即log 89log 23=lg 9lg 8lg 3lg 2=2lg 33lg 2·lg 2lg 3=23. 方法二 将分子利用换底公式转化为以2为底的对数, 即log 89log 23=log 29log 28log 23=2log 233log 23=23. (2)计算:log 52·log 79log 513·log 734.解 原式=log 52log513·log 79log 734212211233log 9log 23log 3==⋅=-12·log 32·3log 23=-32.三、对数的综合应用例32018年我国国民生产总值为a 亿元,如果平均每年增长8%,估计约经过多少年后国民生产总值是2018年的2倍?(lg 2≈0.301 0,lg 1.08≈0.033 4,精确到1年)解 设经过x 年后国民生产总值为2018年的2倍. 经过1年,国民生产总值为a (1+8%), 经过2年,国民生产总值为a (1+8%)2, …,经过x 年,国民生产总值为a (1+8%)x =2a , 所以1.08x =2,所以x =log 1.082=lg 2lg 1.08=0.301 00.033 4≈9,故约经过9年后国民生产总值是2018年的2倍. 反思感悟 解决对数应用题的一般步骤跟踪训练3 在不考虑空气阻力的情况下,火箭的最大速度v (单位:m/s)和燃料的质量M (单位:kg),火箭(除燃料外)的质量m (单位:kg)满足e v =⎝⎛⎭⎫1+Mm 2 000(e 为自然对数的底数,ln 3≈1.099).当燃料质量M 为火箭(除燃料外)质量m 的两倍时,求火箭的最大速度(单位:m/s). 解 因为v =ln ⎝⎛⎭⎫1+Mm 2 000 =2 000·ln ⎝⎛⎭⎫1+M m , 所以v =2 000·ln 3≈2 000×1.099=2 198(m/s).故当燃料质量M 为火箭质量m 的两倍时,火箭的最大速度为2 198 m/s.1.计算:log 123+log 124等于( ) A .1 B .2 C .3 D .4 答案 A2.若lg 2=m ,则lg 5等于( ) A .m B.1m C .1-m D.10m答案 C 解析 lg 5=lg102=lg 10-lg 2=1-m . 3.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3 D.12答案 C解析 原式=log 612-log 62=log 6122=log 6 3. 4.下列各等式正确的为( ) A .log 23·log 25=log 2(3×5) B .lg 3+lg 4=lg(3+4) C .log 2xy=log 2x -log 2yD .lg nm =1n lg m (m >0,n >1,n ∈N *)答案 D解析 A ,B 显然错误,C 中,当x ,y 均为负数时,等式右边无意义. 5.计算:log 513·log 36·log 6125=________.答案 2解析 原式=lg 13lg 5·lg 6lg 3·lg 125lg 6=-lg 3lg 5·lg 6lg 3·-2lg 5lg 6=2.1.知识清单: (1)对数的运算性质. (2)换底公式. (3)对数的实际应用. 2.方法归纳:(1)利用对数的运算性质,可以把乘、除、乘方运算转化为加、减、乘的运算,加快计算速度.(2)利用结论log a b ·log b a =1,log n ma b =m n log a b 化简求值更方便.3.常见误区:要注意对数的运算性质(1)(2)的结构形式,易混淆.1.lg 8+3lg 5的值为( ) A .-3 B .-1 C .1 D .3 答案 D解析 lg 8+3lg 5=3lg 2+3lg 5=3(lg 2+lg 5)=3. 2.如果lg x =lg a +3lg b -5lg c ,那么( ) A .x =ab 3c 5B .x =3ab5cC .x =a +3b -5cD .x =a +b 3-c 3答案 A 解析lg a +3lg b -5lg c =lg a +lg b 3-lg c 5=lgab 3c 5, 由lg x =lg ab 3c 5,可得x =ab 3c5.3.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2 C .5a -2 D .-a 2+3a -1答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2. 4.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .6 答案 D解析 原式=lg 25lg 2·lg 22lg 3·lg 9lg 5=2lg 5lg 2·32lg 2lg 3·2lg 3lg 5=6. 5.若lg x -lg y =t ,则lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y23等于( )A .3t B.32t C .t D.t2答案 A解析 lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23=3lg x 2-3lg y 2 =3lg xy=3(lg x -lg y )=3t .6.lg 5+lg 20的值是________. 答案 1解析 lg 5+lg 20=lg 100=lg 10=1. 7.(lg 5)2+lg 2·lg 50=________. 利用lg 2+lg 5=1化简求解对数值 答案 1解析 (lg 5)2+lg 2·lg 50=(lg 5)2+lg 2(lg 5+lg 10) =(lg 5)2+lg 2·lg 5+lg 2 =lg 5(lg 5+lg 2)+lg 2 =lg 5+lg 2=1.8.若lg x +lg y =2lg(x -2y ),则xy =________.答案 4解析 因为lg x +lg y =2lg(x -2y ), 所以⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,xy =(x -2y )2.由xy =(x -2y )2,知x 2-5xy +4y 2=0, 所以x =y 或x =4y . 又x >0,y >0且x -2y >0, 所以舍去x =y ,故x =4y ,则x y =4.9.用lg x ,lg y ,lg z 表示下列各式: (1)lg(xyz );(2)lg xy 2z;(3)lg xy 3z;(4)lg x y 2z .解 (1)lg(xyz )=lg x +lg y +lg z .(2)lg xy 2z =lg(xy 2)-lg z =lg x +2lg y -lg z .(3)lg xy 3z =lg(xy 3)-lg z =lg x +3lg y -12lg z .(4)lgxy 2z =lgx -lg(y 2z )=12lg x -2lg y -lg z .10.计算下列各式的值:(1)log 535+212log log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64; (3)(log 43+log 83)(log 32+log 92).解 (1)原式=log 535+log 550-log 514+21212log 2=log 535×5014+12log 2=log 553-1=2.(2)原式=[(log 66-log 63)2+log 62·log 6(2×32)]÷log 64=⎣⎡⎦⎤⎝⎛⎭⎫log 6632+log 62·(log 62+log 632)÷log 622 =[(log 62)2+(log 62)2+2log 62·log 63]÷2log 62 =log 62+log 63=log 6(2×3)=1. (3)(log 43+log 83)(log 32+log 92) =⎝⎛⎭⎫lg 3lg 4+lg 3lg 8⎝⎛⎭⎫lg 2lg 3+lg 2lg 9 =⎝⎛⎭⎫lg 32lg 2+lg 33lg 2⎝⎛⎭⎫lg 2lg 3+lg 22lg 3 =5lg 36lg 2×3lg 22lg 3=54.11.方程log 3(x 2-10)=1+log 3x 的解是( ) A .-2 B .-2或5 C .5 D .3答案 C解析 原方程可化为log 3(x 2-10)=log 3(3x ), 所以x 2-10=3x ,解得x =-2,或x =5.经检验知x =5.12.若lg x -lg y =a ,则lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23等于( ) A .3a B.32a C .a D.a2答案 A解析 由对数的运算性质知,原式=3(lg x -lg 2)-3(lg y -lg 2)=3(lg x -lg y )=3a . 13.若3x =4y =36,则2x +1y =________.答案 1解析 3x =4y =36,两边取以6为底的对数,得 x log 63=y log 64=2,∴2x =log 63,2y =log 64,即1y =log 62, 故2x +1y=log 63+log 62=1. 14.若x log 32=1,则4x +4-x =________. 答案829解析 因为x =1log 32=log 23, 所以4x+4-x =22x +2-2x =22log 32+22log 32-=22log 32+22log 32-=9+19=829.15.若ab >0,给出下列四个等式: ①lg(ab )=lg a +lg b ; ②lg ab =lg a -lg b ;③12lg ⎝⎛⎭⎫a b 2=lg a b ; ④lg(ab )=1log ab 10.其中一定成立的等式的序号是( )A .①②③④B .①②C .③④D .③答案 D 解析 ∵ab >0,∴a >0,b >0或a <0,b <0, ∴①②中的等式不一定成立;∵ab >0,∴a b >0,12lg ⎝⎛⎭⎫a b 2=12×2lg a b =lg a b, ∴③中等式成立;当ab =1时,lg(ab )=0,但log ab 10无意义, ∴④中等式不成立.故选D.16.已知log 23=a ,log 37=b ,用a ,b 表示log 4256.解 ∵log 23=a ,则1a=log 32,又∵log 37=b , ∴log 4256=log 356log 342=log 37+3log 32log 37+log 32+1=ab +3ab +a +1.。

对数的换底公式对数函数

对数的换底公式对数函数

对数的换底公式复习如果 a >0,a ≠1,M >0,N >0 有:log ()log log log log log log log ()a a a a a a n a a MN M NM M NNM n M n R =+=-=∈log log ()m n a a nM M n R m=∈ 新课试证明与理解: 1.对数换底公式:aNN m m a log log log =( a >0,a ≠1,m >0,m ≠ 1,N >0)2.两个常用的推论:①1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a ② b mnb a na m log log =( a , b >0且均不为1) 例1、(1)27log 9,(2)81log 43,(3)625log 345,例2、已知2log 3 =a , 3log 7 =b,用a ,b 表示42log 56例3、计算:①0.21log 35 ② 4219432log 2log 3log -⋅例4、设),0(,,+∞∈z y x 且zyx643==,求证 zy x 1211=+练习①已知18log 9=a ,b18=5,用a ,b 表示36log 45②若8log 3=p,3log 5 =q, 求lg5作业1. 计算:421938432log )2log 2)(log 3log 3(log -++2.若 2log log 8log 4log 4843=⋅⋅m ,求m3.求值:12log 221033)2(lg 20log 5lg -++⋅4.求值:2lg 2)32(3log10)347(log 22++-++对数函数的图像与性质(第一课时)[互动过程1]复习:1.对数函数2y log x =的图像与性质,以及与指数函数xy 2=的图像与性质之间的关系2.练习:画出下列函数的图像x x 121(1)y 2;(2)y log x;(3)y ();(4)y lg x 3====填表:对数函数a y log x(a 0,a 1)=>≠分别就其底数a 1>和0a 1<<这两种情况的图像和性质:例1.求下列函数的定义域:2a a (1)y log x ;(2)y log (4x)==-练习1:求下列函数的定义域1(1)y lg(x 5);(2)y ln3x=-=-例2.比较下列各题中两个数的大小:22(1)log 5.3,log 4.7; 0.20.2(2)log 7,log 93(3)log ,log 3;ππ a a (4)log 3.1,log 5.2(a 0,a 1)>≠练习2:比较下列各组数中两个值的大小:(1)4.32log _____5.82log (2)8.13.0log _____7.23.0log (3)1.5log a_____9.5log a (a >0,且a ≠1)课堂补充练习:1.求下列函数的定义域:(1))1(log 3x y -= (2)x y 3log = (3)xy 311log 7-= (4)x y 2log 1=2.比较大小.4log 5log )3(01.0log 31log )2(log 3log )1(5321.05.05.0和和和π。

2.2.1 对数的换底公式及其推论(3)

2.2.1 对数的换底公式及其推论(3)

积极 主动
以终 为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完 整过程
方向
资料
筛选
认知
高效学习模型-学习的完 整过程
消化
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取; TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
硬背“在复合句中,修饰某一名词或代词的从句叫做定语从句”这个概念。
3.这个步骤可以使用思维导图或流程图,可以更好加深自己的理解哦~
费曼学习法-实操
第三步 没有任何参考的情况下,仅靠大脑,复述你所获得的主要内容
(三) 仅 靠 大 脑 复 述
1.与上一步不同的是,这一步不能有任何参考, 合上你的书本、笔记等,看看此时你的大脑里还剩下了什么; 2.仅凭记忆,如果可以复述很多,说明掌握状况还可以; 3.如果一合上书,就连关系词有哪些都想不起来了, 说明还 没有掌握,需要继续回顾。
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
3、结合本节课所学的“场景法”“身体法”和“故事法”,优化自己 的记忆方法,帮助自己更加轻松学习(可参考工具卡《超级记忆法》)。 4、结合所学的“费曼学习法 ”和“学习技巧”,进一步帮助自己通过 高效学习方法让学习效果事半功倍(可参考《费曼学习法》)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解法一:
由对数定义可知:
解法二:
由已知移项可得 ,即
由对数定义知:
解法三:
四、课堂练习:
①已知 9=a, =5,用a,b表示 45
解:∵ 9=a∴ ∴ 2=1a
∵ =5∴ 5=b

②若 3=p, 5=q,求lg5
解:∵ 3=p∴ =p
又∵ ∴
三、小结本节课学习了以下内容:换底公式及其推论
四、课后作业:
1.证明:
证法1:设 , ,
则:
∴ 从而
∵ ∴ 即: (获证)
证法2:由换底公式左边= =右边
2.已知
求证:
证明:由换底公式 由等比定理得:
∴ቤተ መጻሕፍቲ ባይዱ

解:因为 3=a,则 ,又∵ 7=b,

例2计算:① ②
解:①原式=
②原式=
例3设 且
1求证 ;2比较 的大小
证明1:设 ∵ ∴
取对数得: , ,

2

又:


例4已知 x= c+b,求x
分析:由于x作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b的存在使变形产生困难,故可考虑将 c移到等式左端,或者将b变为对数形式
对数的换底公式及其推论
一、复习引入:对数的运算法则
如果a>0,a1,M>0,N>0有:
二、新授内容:
1.对数换底公式:
(a>0,a1,m>0,m1,N>0)
证明:设 N=x,则 =N
两边取以m为底的对数:
从而得: ∴
2.两个常用的推论:
① ,
② (a,b>0且均不为1)
证:①

三、讲解范例:
例1已知 3=a, 7=b,用a,b表示 56
相关文档
最新文档