运输问题模型和算法
运输问题模型
。
目标可以减少,说明当前
解不是最优解
闭回路法调整
选x22进基,找到闭回路
x12 5-
x14 1 +
x22 +
x24 5-
X22最多增加5
x12 5-5 x22 + 5
x14 1 +5 x24 5-5
X22进基,x12和x24经过调整同时变成 零。但是要注意只有一个变量出基。
例如:令x12出基
B1
B2
B3
B4
产量
A1 A2 A3 销量
× 2
3 1
× 8
3 ,0
×
9
10
×
3
4
4
4
2
8
4,0
79 2 5,2 5 7,3 6
B1
B2
B3
B4
产量
A1 A2 A3 销量
×
×
2
9
10
7
3
×
×
2
1
3
4
2
×
4
8
4
2
5
3 ,0
8
4,0 6,4
9 5,2,0 7,3
B1
B2
B3
B4
产量
A1 A2 A3 销量
7
-1
2
5
1
3
4
2
7
3
4
3
8
4
2
5
3 ,0
8,5 4,0 6,4,0
9,5 5,2,0 7,3,0
重新计算检验数
A1 u1=0
A2 u2=-5
A3 u3=-5 销量
B1
广工管理运筹学第三章运输问题
闭合回路法的优点是能够找到全局最 优解,适用于大型复杂运输问题。但 该方法的计算复杂度较高,需要较长 的计算时间。
商位法
01
商位法是一种基于商位划分的优化算法,用于解决运输问题。该方法通过将供 应点和需求点划分为不同的商位,并最小化总运输成本。
02
商位法的计算步骤包括:根据地理位置和货物需求量,将供应点和需求点划分 为不同的商位;根据商位的地理位置和货物需求量,计算总运输成本;通过比 较不同商位的总运输成本,确定最优的配送路线。
80%
线性规划法
通过建立线性规划模型,利用数 学软件求解最优解,得到最小化 总成本的运输方案。
100%
启发式算法
采用启发式规则逐步逼近最优解 ,常用的算法包括节约算法、扫 描算法等。
80%
遗传算法
基于生物进化原理的优化算法, 通过模拟自然选择和遗传机制来 寻找最优解。
02
运输问题的数学模型
变量与参数
约束条件
供需平衡
每个供应点的供应量等于对应 需求点的需求量,这是运输问 题的基本约束条件。
非负约束
运输量不能为负数,即每个供 应点对每个需求点的运输量都 应大于等于零。
其他约束条件
根据实际情况,可能还有其他 约束条件,如运输能力的限制 、运输路线的限制等。
03
运输问题的求解算法
表上作业法
总结词
直到达到最优解。这两种方法都可以通过构建线性规划模型来求解最优解。
04
运输问题的优化策略
节约法
节约法是一种基于节约里程的优化算法,用于解决 运输问题。该方法通过比较不同配送路线的距离和 货物需求量,以最小化总运输距离为目标,确定最 优的配送路线。
节约法的计算步骤包括:计算各供应点到需求点的 距离,找出最短路径;根据最短路径和货物需求量 ,计算节约里程;按照节约里程排序,确定最优配 送路线。
(典型例题)《运筹学》运输问题
xj0,yij0,zij0,(i=1,┈,4;j=1,┈,5)
2008/11
--22--
--《Ⅵ 产量
新购 1 第一天 M 第二天 M 第三天 M
第四天 M
1 1 1 1 0 5200
0.2 0.1 0.1 0.1 0 1000
2008/11
--21--
建立模型:
--《运筹学》 运输问题--
设 xj—第j天使用新毛巾的数量;yij—第i天送第j天使用快洗 餐巾的数量;zij—第i天送第j天使用慢洗餐巾的数量;
Min z=∑xj+∑∑0.2yij+∑∑0.1zij
第一天:x1=1000
需 第二天:x2+y12=700
求 约
m1
xij b j (j 1,2,...,n)
i1
x 0 (i 1,...,m,m 1; j 1,...,n) ij
2008/11
--16--
--《运筹学》 运输问题--
销>产问题单位运价表
产地销地 B1 B2 ┈
A1
C11 C12 ┈
A2
C21 C22 ┈
┊ ┆┊┈
Am Cm1 Cm2 ┈
2008/11
--8--
产销平衡表
--《运筹学》 运输问题--
单位运价表
B1 B2 B3 B4 产量
A1 (1) (2) 4 3 7 A2 3 (1) 1 (-1) 4 A3 (10) 6 (12) 3 9 销量 3 6 5 6
B1 B2 B3 B4 A1 3 11 3 10 A2 1 9 2 8 A3 7 4 10 5
Ⅰ Ⅱ
示。又如果生产出来的柴
Ⅲ
运筹学经典模型
LINDO软件虽然给出最优解,但上述模型还存在 着缺点,例如,上述方法不便于推广的一般情况,特 别是当产地和销地的个数较多时,情况更为突出. 下面写出求解该问题的LINGO程序,并在程序中 用到在第三章介绍的集与数据段,以及相关的循环函 数. 写出相应的LINGO程序,程序名: exam0702.lg4
解:从前面的分析来看,运输问题属于线性规划问 题,因此,不论是LINDO软件或LINGO软件都可以对 该问题求解.为了便于比较两种软件的优缺点,以及各 自的特点,我们用两种软件分别求解该运输问题. 首先写出LINDO软件的模型(程序),程序名: Exam3.1.ltx.
! 3 Warehouse, 4 Customer Transportation Problem ! The objective min 6x11 + 2x12 + 6x13 + 7x14 + 4x21 + 9x22 + 5x23 + 3x24 + 8x31 + 8x32 + x33 + 5x34 subject to 2018/10/3
1 2 1 2 1
2. 运输问题的数学表达式
c
i 1 j 1
m
n
ij
xij .
第 i 个产地的运出量应小于或等于该地的生产量,即:
x
j 1
m
n
ij
ai .
第 j 个销地的运入量应等于该地的需求量,即:
i 1
xi j b j .
因此
(1) ~ (4)
二、 指派问题
返 回 导 航
(指派问题)设有n个人, 计划作n项工作, 其中 c 表示第 i个人做第j项工作的收益, 现求一种指派方 式,使得每个人完成一项工作,使总收益最大. 例7.3就是指派问题(Assignment Problem).指派 问题也是图论中的重要问题,有相应的求解方法,如 匈牙利算法.从问题的形式来看,指派问题是运输问 题的特例,也可以看成0-1规划问题.
表上作业法
第三章 运输问题主要内容 运输问题的模型、算法 讲授重点 运输问题的模型、算法 讲授方式讲授式、启发式第一节 运输问题及其数学模型一、运输问题的数学模型设某种物品有m 个产地A 1,A 2,…,A m ,各产地的产量分别是a 1,a 2,…,a m ;有n 个销地B l ,B 2,…,B n ,各销地的销量分别为b l ,b 2,…,b n 。
假定从产地A i (i =1,2,…,m)向销地B j (j =1,2,…,n)运输单位物品的运价是c ij ,问怎样调运这些物品才能使总运费最小?这是由多个产地供应多个销地的单品种物品运输问题。
为直观清楚起见,可列出该出该问题的运输表,如表3-1所示。
设ij表示从A i 运往B j 的物品数量,ij表示从A i 运往B j 的单位物品的运价。
则对于平衡运输问题(∑∑===nj jm i i ba 11),其数学模型的一般形式可表示为:∑∑===n j mi ijij x c s 11min()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧==≥====∑∑==n j m i x n j b x m i a x ij j m i ij inj ij ,2,1;,2,10,,2,1,,2,111 (3.1)二、运输问题数学模型的特点对于平衡运输问题(∑∑===nj jm i iba 11),可以证明其有如下两个特点: (1)矩阵A 的秩R(A)=m+n-1。
(2)问题必有最优解,而且当ji b a ,皆为整数时,其最优解必为整数最优解。
第二节 表上作业法求解运输问题一、给出运输问题的初始可行解(初始调运方案) 1、最小元素法 解题步骤:⑴在运价表中找到最小运价c 1k ; ⑵将的A L 产品给B k ;①若a L>b k,则将a L改写为a L-b k,划掉b k,同时将运价表中K列的运价划掉;②若a L<b k,则将a L改写为b k-a L,划掉a L,同时将运价表中L列的运价划掉。
物流运输路线优化模型研究
物流运输路线优化模型研究物流运输是现代经济发展中不可或缺的一环,而物流运输路线的优化则是提高效率、降低成本的重要手段。
为了解决物流运输中的路线选择问题,学者们提出了许多优化模型。
本文旨在通过研究和分析不同的物流运输路线优化模型,探讨其方法和优缺点。
一、传统的物流运输路线优化模型1. TSP模型(旅行商问题)TSP模型是最经典的物流运输路线优化模型之一。
它的目标是找到一条最短路径,使得经过所有城市,且回到起点。
TSP模型虽然简单易懂,但是当城市数量增加时,计算复杂度呈指数级增长,难以应用于实际物流环境中。
2. VRP模型(车辆路径问题)VRP模型是一种更为复杂的物流运输路线优化模型。
它考虑到了多车辆、容量限制、时间窗口等实际问题,使得其在解决实际物流运输中的路线选择问题上更具有实用性。
VRP模型可以通过遗传算法、模拟退火等启发式算法求解,但问题规模增大时,求解过程的时间复杂度也呈指数级增长。
二、改进的物流运输路线优化模型1. 基于模糊集的物流运输路线优化模型传统的物流运输路线优化模型大多只考虑到了时间和距离等数值因素,忽略了很多实际环境中的不确定性。
模糊集理论可以有效地处理模糊性和不确定性,因此运用模糊集理论构建的物流运输路线优化模型更能适应实际情况。
这种模型可以综合考虑路线长度、时间窗口、交通拥堵等因素,并通过模糊推理方法得出最优路线。
2. 基于人工智能的物流运输路线优化模型近年来,人工智能技术的快速发展为物流运输路线优化带来了全新的思路。
人工智能技术可以通过大数据分析、机器学习等方法,从历史数据中学习和总结经验,为物流运输提供更智能的路线选择。
例如,利用深度学习技术可以对交通拥堵情况进行实时预测,并根据预测结果调整路线,以提高运输效率。
三、物流运输路线优化模型的优缺点1. 优点:(1)提高运输效率:物流运输路线优化模型可以通过合理规划路线,避免交通拥堵,减少运输时间,提高运输效率。
(2)降低运输成本:优化后的路线可以减少里程、节省燃料消耗,降低运输成本。
运输问题
三、初始基础可行解的求法
• 1、西北角法 • 2、最小元素法
1、西北角法1 1 6 72 53 34 14
2
8
1 4 8
4
2
7
3
5
9
1 3
6
10 6
27
6
22 13 12 13
1 3
19
2、最小元素法(1)
1 6 1 8 2 5 3 22 9 4 7
2 5
3 3
4 14
2
7
12
10 6
27
15
运输问题系数矩阵的秩为m+n-1,即 基可行解只有m+n-1个变量
2、运输模型的特点
2) 对运输问题任一基B,其逆矩阵B 1必为一整数矩阵,若 ai , b j都为整数,则任一基可行解必为整数。 ( X B B 1b)
3) 对偶问题
max w ai ui b j v j
i 1 j 1 m n
19
0
最小元素法(6)
1 6 1 8 2 5 3 22 0 7
2 5
3 3
4 14 0
1
4 2 7
13 13
9 10
2 19
13 0
12
6
27
0
19 12 0 13 0
0
四、最优解的获得
1、检验数的求法:闭回路法
闭回路——从调运方案的某一空格出发,沿水平或垂直 的方向前进,遇到一个适当的数字格便按与前进方向垂 直的路径前进。经过若干次后,再回到原来出发的那个 格,由此形成的封闭折线称为闭回路。 闭回路的性质: 以空格出发的闭回路存在且唯一; 不存在所有顶点都为数字格的闭回路。
《管理运筹学》02-7运输问题
通过将问题分解为多个子问题,并应用分支定 界法等算法,可以找到满足所有约束条件的整 数解,实现运输资源的合理配置。
04运Leabharlann 问题的实际案例物资调拨案例
总结词
物资调拨案例是运输问题中常见的一种,主要涉及如何优化物资从供应地到需 求地的调配。
02
动态运输问题需要考虑运输过 程中的不确定性,如交通拥堵 、天气变化等,需要建立动态 优化模型来应对这些变化。
03
解决动态运输问题需要采用实 时优化算法,根据实际情况不 断调整运输计划,以实现最优 的运输效果。
多式联运问题
1
多式联运是指将不同运输方式组合起来完成一个 完整的运输任务,需要考虑不同运输方式之间的 衔接和配合。
生产计划案例
总结词
生产计划案例主要关注如何根据市场需求和生产能力制定合理的生产计划。
详细描述
生产计划案例需要考虑市场需求、产品特性、生产成本、生产周期等因素。通过 优化生产计划,可以提高生产效率、降低生产成本,并确保产品按时交付给客户 。
05
运输问题的扩展研究
动态运输问题
01
动态运输问题是指运输需求随 时间变化而变化的运输问题, 需要考虑时间因素对运输计划 的影响。
2
多式联运问题需要考虑不同运输方式的成本、时 间、能力等因素,需要建立多目标优化模型来平 衡这些因素。
3
解决多式联运问题需要采用混合整数规划或遗传 算法等算法,以实现多目标优化的效果。
逆向物流问题
1
逆向物流是指对废旧物品进行回收、处 理和再利用的物流活动,需要考虑废旧 物品的回收、分类、处理和再利用等环 节。
的情况。如果存在这些问题,就需要进行调整,直到找到最优解为止。
运筹学 第二章 运输问题
=
j
j = 1
(
(
这就是运输问题的数学模型,它包含 m·n 变量, m + n 个约束条件。如果用单纯形法求解,先得在各约 束条件上加入一个人工变量(以便求出初始基可行解)。 因此,即使是 m = 3 , n = 4 这样的简单问题, 变量数 就有19个之多,计算起来非常复杂。因此,我们有必 要针对运输问题的某些特点,来寻求更为简单方便的 求解方法。
销地产地
B1
B2
B3
B4
A1
x11
x12
A2
x21
x24
A3
x32
x34
x11 、 x12 、 x32 、 x34 、 x24 、 x21 构成一个闭回路. 这里有: i1 = 1 , i2 = 3 , i3 = 2;j1 = 1 ,j2 = 2 ,j3 = 4. 若把闭回路 的顶点在表中画出, 并且把相邻两个变量用一条直线相连 (今后就称这些直线为闭回路的边)。
第二节 表上作业法1. 表上作业法的基本概念与重要结论针对运输问题的数学模型结构的特殊性,它的约束方 程组的系数矩阵具有如下形式( 具体见下一张幻灯片 ),该 矩阵中, 每列只有两个元素为1,其余都是0。根据这个特 点,在单纯形法的基础上,创造出一种专门用来求解运输 问题的方法,这种方法我们称为表上作业法。运输问题也是一个线性规划问题,当用单纯形法进 行求解时,我们首先应当知道它的基变量的个数;其次, 要知道这样一组基变量应当是由哪些变量来组成。由运输 问题系数矩阵的形式并结合第一章单纯形算法的讨论可以 知道: 运输问题的每一组基变量应由 m+n-1个变量组成。 (即基变量的个数 = 产地个数 + 销售地个数 – 1) 进一步我 们想知道, 怎样的 m+n-1个变量会构成一组基变量?
数学建模--运输问题
运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:1-5-7-6-3-4-8-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
物流配送优化模型及算法分析
物流配送优化模型及算法分析物流配送一直是各行业的重要环节,对于企业来说,优化配送方案不仅可以提高效率,降低成本,还可以增强客户满意度,提高企业竞争力。
因此,针对配送问题的优化模型和算法研究越来越受到关注。
一、物流配送模型物流配送优化模型的建立可以通过多维度的考虑来完成,其中包括以下几个方面。
1. 原料供应商和分销商之间的运输方式。
物流配送的第一环节就是以原料供应商和分销商之间的运输方式。
因此,在考虑物流配送的优化模型时,需要考虑实际运输的距离和时效性等因素。
2. 仓储设备的分布选择。
物流配送的第二环节就是仓储设备的选择。
在选择仓储设备时,需要考虑到运输成本和运输的时效性等因素,同时还要注意配送效率和仓库内作业效率的优化。
3. 成本控制问题。
物流配送的第三环节就是成本的控制问题。
在物流配送环节中,成本控制大多是通过物流配送方案的设计以及物流管理系统来实现的。
以上几个方面就是物流配送的主要模型与环节,但实际情况还会因为具体行业的差异而存在一定的区别。
二、物流配送算法目前,对于物流配送的算法研究已经比较成熟,常用的物流配送算法主要有以下几种。
1. 离散事件模拟器(DES)。
离散事件模拟器是近年来常见的用于物流配送的建模和仿真的方法,运用离散事件模拟器可以提高模型的计算效率,并且允许对系统的不同因素进行快速而准确的评估和比较。
2. 近似运动员算法。
近似运动员算法是一种启发式优化算法,主要用于解决物流配送的实际问题。
该算法通过尝试将某个物流配送问题转化为一个代表解决方案的“路径”,然后通过寻找最优路径逐步优化方案。
3. 遗传算法(GA)。
遗传算法是一种基于自然界生物进化过程的模拟算法,它通过模拟自然界中的繁殖和进化机制,来寻求最优化解决方案。
以上三种算法都具有可以用于实际物流配送问题的优点,但具体选择哪一种算法还需要根据实际情况进行选择和运用,以达到最优解决方案的成效。
三、物流配送优化案例综上所述,物流配送的优化模型和算法给出了一种解决物流配送的方法,可以增强企业对物流资源的有效利用和提高物流配送的效率。
管理运筹学运输问题中的多种计算方法类比
管理运筹学是运用数学、统计学、经济学等方法来解决组织内部和外部问题的学科。
在管理运筹学中,运输问题是一个非常重要的课题,它涉及到如何有效地运输物资和产品,以最大限度地降低成本并提高效率。
为了解决这个问题,管理者可以使用多种计算方法进行类比,以找到最佳的解决方案。
本文将介绍几种常见的计算方法,并对它们进行比较分析。
1. 线性规划方法线性规划是一种常用的数学优化方法,它旨在寻找一个线性模型的最佳解。
在运输问题中,可以使用线性规划方法来确定最佳的运输路线和成本分配。
通过设置合适的约束条件和目标函数,线性规划可以帮助管理者找到最优的解决方案,从而在运输过程中节约成本并提高效率。
2. 最短路径算法最短路径算法是一种用于寻找图中最短路径的算法。
在运输问题中,最短路径算法可以帮助管理者确定最佳的运输路线,从而减少运输时间和成本。
通过将地理空间网络建模成图,并使用最短路径算法来计算最佳路径,管理者可以更好地规划运输路线,提高运输效率。
3. 整数规划方法整数规划是线性规划的一种扩展,它要求决策变量是整数。
在运输问题中,整数规划方法可以帮助管理者解决一些现实中存在的离散性问题,比如车辆数量限制等。
通过将运输问题建模为整数规划问题,并使用相应的算法来求解,管理者可以更好地考虑实际情况,确保运输过程的顺利进行。
4. 蒙特卡洛模拟蒙特卡洛模拟是一种基于随机抽样的数学方法,用于模拟问题的随机性和不确定性。
在运输问题中,蒙特卡洛模拟可以帮助管理者评估不同风险场景下的运输方案,并选择最优的决策。
通过进行大量的随机抽样和模拟计算,管理者可以更好地了解不同情况下的运输成本和效率,从而做出更好的决策。
5. 遗传算法遗传算法是一种模拟生物进化过程的启发式优化方法,可以用于求解复杂的优化问题。
在运输问题中,遗传算法可以帮助管理者寻找最佳的运输路线和分配方案,特别是对于大规模和复杂的运输网络。
通过模拟自然选择和遗传变异的过程,遗传算法可以帮助管理者在复杂的运输环境中找到最优解决方案。
最短路径、指派、运输问题
第二步:进行试指派以寻求最优解。
(1)进行行检验:从只有一个0元素的行开始,给这 个0元素加(),记作(0);再划去(0)所在列的其它 0元素,记作φ。若遇到有两个0元素以上的行,先放下。 (2)进行列检验:给只有一个0元素的列0元素加() ,记作(0);然后划去(0)所在行的0元素,记作φ。 (3)再对两个以上0元素的行和列标记,任意取一个 加()。
B1 A1 A2 A3 4 7 6
B2 8 9 9
B3 7 17 12
B4 15 14 8
B5 12 10 7
A4
A5
6
6
7
9
14
12
6
10
10
6
三、其它指派问题
(1)目标函数求最大值的指派问 题 对于此问题可做一个新的 矩阵B=(bij)。找出原矩阵的最 大元素m,令B=(bij)=m-cij
∑
产 量 与 销 量 平 衡
解: 设产地Ai到销地Bi的运量为xij,由问题构造运量平衡表
可以知道:
(1)产销平衡 (2)Ai运出量等于产量 (3)Bj运入量等于销量
a b
i 1 i j1
m
n
j
x
j 1
n
ij
ai
x
i 1
m
ij
bj
运量平衡表
销地Bi 运价 产地Ai A1 A2 C11 C21 C12 C22 B1 B2
4 2 (cij ) 4 3 3 3 3 2 4 6 5 6 1 - 1 3 5 - 2 0 1 4 - 3 5 -2 1 2 1 0 0 3 0 - 1 3 4 3 - 2 0 1 2 1-3 4 3 -2 1 -2 2 1 0 0 1 2 0 2 0 3 (b ) ij 1 3
管理运筹学
3.1 运输问题的数学模型 3.2 表上作业法 3.3 不平衡的运输问题 3.4 运输问题的实际案例
概 述: 运输问题(The Transportation Problem, TP)是 运输问题 是 一类特殊而且极其典型的线性规划问题。 一类特殊而且极其典型的线性规划问题。 运输问题可用单纯形法来求解。 运输问题可用单纯形法来求解。由于运输问题 数学模型具有特殊的结构, 数学模型具有特殊的结构,存在一种更简便的 计算方法 表上作业法——实质仍是单纯形法。 实质仍是单纯形法。 表上作业法 实质仍是单纯形法 从运输问题的解决及表上作业法的理论解释, 从运输问题的解决及表上作业法的理论解释, 我们可更充分体会到单纯形法的魅力。 我们可更充分体会到单纯形法的魅力。
3.1 运输问题的数学模型
运输问题的数学模型; 运输问题的数学模型; 运输问题数学模型的特点; 运输问题数学模型的特点; 运输问题解的情况. 运输问题解的情况
一、运输问题的数学模型 1、实际案例 、 设某种物资有3个产地 设某种物资有 个产地 A1,A2,A3, 生产量分别 个销地B 为9,5,7;有4个销地 1,B2,B3,B4 ,销售量分 , , 有 个销地 别为3, , , 已知从 已知从A 别为 ,8,4,6 ;已知从 i到Bj 物资的单位运价见 下表。求总运费最小的调运方案。 下表。求总运费最小的调运方案。 B1 A1 A2 A3 销量 2 1 8 3 B2 9 3 4 8 B3 10 4 2 4 B4 7 2 5 6 产量 9 5 7
x11 x12 x1n 1 1 1 D= A= 1 1 1
x21 x22 x2n ... xm1 xm2 xmn 1 1 1 1 1 1 1 1 1 1 1 1
a1 a2 am b 1 b2 bn
第二次--运输问题
第二次 运输问题1.运输问题的一般提法设有m 个产地m A A A ,,,21 ,将生产的物资联合运往n 个销地n B B B ,,,21 ;各产地i A 的产量为i a ,各销地j B 的销量为j b ;从i A 产地到j B 销地的单位运价为j i c ,问如何组织运输,可使总的运费最少?如果总的产量=∑=mi i a 1总的销量∑=nj j b 1,则称它为产销平衡运输问题2.产销平衡运输问题的数学模型引入决策变量:用j i x 表示从i A 产地运到j B 销地的物资数量确定目标函数:使总运输费用最少 ∑∑===mi nj j i j i x c Z 11m i n写出约束条件:从i A 产地运出的物资数量应等于i A 产地的物资供应量 即i nj ji a x=∑=1m i ,,2,1 =运到j B 销地的物资数量应等于j B 销地的需求量 即j mi ji b x=∑=1n j ,,2,1 =j i x 取值非负。
说明:① 运输问题是一线性规划问题;② db a x j i j i ⋅=(其中∑∑====nj j m i i b a d 11)是运输问题的一个可行解,从而它有基本可行解;又{}j i j i b a x ,min ≤,故运输问题的任一可行解都是有限的,即可行域有界;因此运输 问题必有有限最优解且最优解同样可在基本可行解处得到。
③ 针对m 个产地n 个销地的产销平衡运输问题,其约束条件中共有n m +个方程,但这 n m +个方程中,任一方程都可以通过其余1-+n m 方程得到。
因此真正有效的方程个数是1-+n m 个,我们可以将多余的一个方程划掉。
这样以来,运输问题的基本可行解中只含1-+n m 个基变量。
④ 当m 和n 取值较大时,引入的决策变量较多,采用表格单纯形法计算量较大,通常采用 表上作业法求解运输问题。
3.求初始调运方案(初始基本可行解)1)左上角方法:从表格中左上角方格所对应的决策变量开始分配运输量,分配时让它取尽可能大的取值。
数学建模大赛-货物运输问题
数学建模大赛-货物运输问题问题重述:某港口需要将三种原材料A、B、C分别运往8个公司,运输车有三种型号:4吨、6吨、8吨。
每辆车有固定成本,每次出车也有固定成本。
运输车平均速度为60公里/小时,每日工作不超过8小时。
设计一个方案,使得耗时最少、费用最省。
方案设计:针对问题一,我们首先考虑最小化运输次数,然后根据卸载顺序和载重费用尽量小的原则,提出了较为合理的优化模型。
我们采用顺时针送货(①~④公司)和逆时针送货(⑤~⑧公司)的方案,并将方案分为两步:第一步是使每个车次满载并运往同一个公司;第二步是采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。
最后得出耗时为40.5007小时,费用为4685.6元的方案。
针对问题二,我们加上两个定理及其推论,设计的数学模型与问题一几乎相同,只是空载路径不同。
我们采用与问题一相同的算法,得出耗时为26.063小时,费用为4374.4元的方案。
针对问题三的第一小问,我们排除了4吨货车的使用,并仍旧采用顺时针送货(①~④公司)和逆时针送货(⑤~⑧公司)的方案。
最后在满足公司需求量的条件下,采用不同吨位满载运输方案,分为三步:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。
最后得出耗时为19.6844小时,费用为4403.2元的方案。
建立模型时,需要注意以下几个问题:目标层:在建立模型时,如果将调度车数、车次以及每车次的载重和卸货点都设为变量,会导致模型中变量过多,不易求解。
因此,可以将目标转化为两个阶段的求解过程。
第一阶段是规划车次阶段,求解车次总数和每车次的装卸方案;第二阶段是车辆调度阶段,安排尽量少的车辆数,每车次尽量满载,使总的运费最小。
约束层:1)运输车可以从顺时针或者逆时针方向送货,需要考虑不同方向时的载重用;(2)大小件的卸车顺序要求不同原料搭配运输时,沿途必须有序卸货;(3)每车次的送货量不能超过运输车的最大载重量;(4)满足各公司当日需求。
运输网络优化的算法与模型
汇报人:可编辑 2024-01-06
目录
• 运输网络优化概述 • 线性规划算法 • 非线性规划算法 • 启发式算法 • 元启发式算法 • 多目标优化算法
01
运输网络优化概述
定义与目标
定义
运输网络优化是指通过数学模型和算法,对运输网络进行优化,以实现运输成本降低、运输效率提高、运输过 程环保等目标。
运输网络优化问题通常涉及到如何选择最佳的 运输路径、分配运输量以及选择运输方式等, 以最小化运输成本或最大化运输效率。
线性规划算法可以用于解决这些问题,通过建 立相应的线性方程组来表示运输网络优化问题 ,并求解得到最优解。
在实际应用中,线性规划算法可以用于车辆路 径问题、货物配载问题、物流配送问题等。
缺点
非线性规划算法的求解过程通常比较复杂,需要大量的计算资源和时间;同时 ,对于大规模问题,非线性规划算法可能面临计算瓶颈和收敛困难等问题。
04
启发式算法
启发式算法简介
启发式算法是一种基于经验和 直观的求解方法,通过模拟或 借鉴人类的决策过程来寻找问 题的近似解。
它通常比精确算法更高效,适 用于大规模、复杂的问题。
03
动态规划
将问题分解为若干个子问题,通 过求解子问题的最优解来得到原 问题的最优解。
04
优化算法的应用场景
物流配送
优化车辆路径、货物配载、配送中心选址等 问题。
城市交通
优化航班计划、航线规划、机场调度等问题 。
航空运输
优化公交线路、出租车调度、交通信号灯控 制等问题。
铁路运输
优化列车运行计划、车站调度、货物配载等 问题。
目标
运输网络优化的目标是提高运输网络的效率、降低运输成本、减少运输过程中的环境污染、提高运输安全性等 。