四川省宜宾市2019届高三第三次诊断性考试数学(理)试题答案

合集下载

专题13 平面向量-2019年高考理数母题题源系列(全国Ⅲ专版)(原卷版)

专题13 平面向量-2019年高考理数母题题源系列(全国Ⅲ专版)(原卷版)

【母题原题1】【2019年高考全国Ⅲ卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c22133⋅==⨯⋅a c a c .故答案为:23. 【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【母题原题2】【2018年高考全国Ⅲ卷理数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=___________.【答案】12【解析】由题可得()24,2+=a b ,()2Q ∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为:12. 【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.【母题原题3】【2017年高考全国Ⅲ卷理数】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为A .3B .专题13 平面向量CD .2【答案】A【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A .【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【命题意图】主要考查考生的直观想象能力、数学运算能力和方程思想、数形结合思想的运用.【命题规律】在高考中的命题重点有平面向量的线性运算、共线向量定理、平面向量基本定理及向量的坐标运算,主要以选择题和填空题的形式呈现,难度不大. 【答题模板】1.向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.2.解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 3.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0; (2)若a ∥b (a ≠0),则b =λa ,应视题目条件灵活选择. 【知识总结】 1.向量的有关概念向量的定义及表示:既有大小又有方向的量叫作向量.以A 为起点、B 为终点的向量记作 AB u u u r,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.向量的长度(模):向量AB u u u r 的大小即向量AB u u u r 的长度(模),记为|AB u u u r|.(1)向量不同于数量,向量不仅有大小,而且还有方向. (2)任意向量a 的模都是非负实数,即|a |≥0.(3)向量不能比较大小,但|a |是实数(正数或0),所以向量的模可以比较大小. 2.几种特殊向量 特殊向量 定义备注零向量 长度为0的向量 零向量记作0,其方向是任意的. 单位向量长度等于1个单位的向量 单位向量记作a 0,a 0=||aa . 平行向量方向相同或相反的非零向量(也叫共线向量)0与任意向量共线 相等向量 长度相等且方向相同的向量 相等向量一定是平行向量,平行向量不一定是相等向量. 相反向量长度相等且方向相反的两个向量若a ,b 为相反向量,则a =–b .说明:(1)要注意0与0的区别,0是一个实数,0是一个向量,且|0|=0;(2)单位向量有无数个,它们大小相等,但方向不一定相同;(3)任一组平行向量都可以平移到同一直线上,因此平行向量也叫作共线向量; (4)与向量a 平行的单位向量有两个,即向量||a a 和–||a a . 3.平面向量运算的坐标表示运算坐标表示和(差) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a –b =(x 1–x 2,y 1–y 2). 数乘 已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数.任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则 AB u u u r=(x 2–x 1,y 2–y 1).说明:(1)相等的向量坐标相同;(2)向量的坐标与表示该向量的有向线段的端点无关,只与其相对位置有关. 4.平面向量共线的坐标表示(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2–x 2y 1=0.(2)A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2–x 1)(y 3–y 1)–(x 3–x 1)(y 2–y 1)=0,或(x 2–x 1)(y 3–y 2)=(x 3–x 2)(y 2–y 1),或(x 3–x 1)(y 3–y 2)=(x 3–x 2)(y 3–y 1). 5.向量的数量积(1)平面向量数量积的定义已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为零. (2)向量数量积的性质设a ,b 为非零向量,它们的夹角为θ,则①设e 是单位向量,且e 与a 的夹角为θ,则e ·a =a ·e =|a |cos θ; ②a ⊥b ⇔a ·b =0;③当a 与b 同向时,a ·b =|a ||b |;当a ,b 反向时,a ·b =–|a ||b |.特别地,a ·a =a 2=|a |2或|a ④|a ·b |≤|a ||b |,当且仅当a 与b 共线,即a ∥b 时等号成立;⑤cos θ=·||||a ba b . (3)向量数量积的运算律 ①交换律:a ·b =b ·a ;②数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); ③分配律:(a +b )·c =a ·c +b ·c . (4)平面向量数量积的几何意义 ①一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫作向量b 在向量a 的方向上的投影,|a |cos θ叫作向量a 在向量b 的方向上的投影. ②a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 注意:投影和两向量的数量积都是数量,不是向量. 设两个非零向量a 与b 的夹角为θ,则 ①θ为锐角⇔a ·b >0且向量a ,b 不共线; ②θ为钝角⇔a ·b <0且向量a ,b 不共线;③当a ·b >0时,cos θ>0,则θ是锐角或θ=0°(此时cos θ=1); ④当a ·b <0时,cos θ<0,则θ是钝角或θ=180°(此时cos θ=–1). 【方法总结】1.只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到1122,.λμλμ=⎧⎨=⎩2.平面向量的线性运算的求解策略:(1)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.(2)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.3.向量的线性运算(1)向量的线性运算集中体现在三角形中,可构造三角形,利用向量加减法的三角形法则表示相关的向量,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,得出含相关向量的关系式. (2)向量线性运算的常用结论:①在△AB C 中,若D 是BC 的中点,则AD u u u r =12(AC u u u r +AB u u u r);②O 为△ABC 的重心的充要条件是OA u u u r +OB uuu r +OC u u u r=0;③四边形ABCD 中,若E 为AD 的中点,F 为BC 的中点,则AB u u u r +DC u u u r =2EF u u u r.4.利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.即A ,B ,C 三点共线⇔,AB AC u u u r u u u r共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)OA u u u r =λOB uuu r +μOC u u u r(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.5.利用平面向量基本定理解题的策略(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.注意:(1)若a ,b 为非零向量,且a ∥b ,则a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错.(2)零向量和共线向量不能作基底,基底通常选取确定整个几何图形的从同一结点出发的两边所对应的向量.6.向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算. (2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.(3)妙用待定系数法求系数:利用坐标运算求向量的基底表示,一般先求出基底和被表示向量的坐标,再用待定系数法求出系数.7.求向量模长利用数量积求模是数量积的重要应用,要掌握此类问题的处理方法:(1)a2=a·a=|a|2或|a(2)|a±b;(3)若a=(x,y),则|a8.求向量模的最值(范围)的方法(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解;(3)利用绝对值三角不等式||a|–|b||≤|a±b|≤|a|+|b|求模的取值范围.9.求向量夹角问题的方法(1)定义法:当a,b是非坐标形式,求a与b的夹角θ时,需求出a·b及|a|,|b|或得出它们之间的关系,由cos θ=·||||a ba b求得;(2)坐标法:若已知a=(x1,y1)与b=(x2,y2),则cos<a,b,<a,b>∈[0,π].10.用向量法解决平面(解析)几何问题的两种方法:(1)几何法:选取适当的基底(基底中的向量尽量已知模或夹角),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.一般地,存在坐标系或易建坐标系的题目适合用坐标法.11.平面向量常与几何问题、三角函数、解三角形等问题综合起来考查,解题关键是把向量关系转化为向量的有关运算,进一步转化为实数运算,进而利用相关知识求解.1.【广西南宁、梧州等八市2019届高三4月联合调研考试数学】若向量()2,3=a ,()1,2=-b ,则·(2)-=a a b A .5 B .6 C .7D .82.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】若向量()2,3=a ,(),2x =b 且·(2)3-=a a b ,则实数x 的值为A .12-B .12C .3-D .33.【广西钦州市2019届高三4月综合能力测试(三模)数学】已知平面向量,AB AC u u u r u u u r的模都为2,,90AB AC =ouu u r uuu r ,若()0BM MC λλ=≠u u u u v u u u u v ,则()AM AB AC +=uuu r uu u r uuu r gA .4B .2C D .04.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知菱形ABCD 的边长为2,E 为AB 的中点,120ABC =o ∠,则DE AC ⋅u u u v u u u v的值为 A .4 B .–3C D .5.【四川省百校2019届高三模拟冲刺卷数学】已知向量()()2,1,1,λ=-=a b ,若()()22+-∥a b a b ,则实数λ= A .2 B .-2 C .12 D .1-26.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】已知向量(2,1),(1,7)=-=a b ,则下列结论正确的是 A .⊥a b B .∥a b C .()⊥-a a bD .()⊥+a a b7.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知ABC △是边长为a 的正三角形,且AM AB λ=u u u u r u u u r ,(1)()AN AC R λλ=-∈u u ur u u u r ,设()f BN CM λ=⋅u u u r u u u u r ,当函数()f λ的最大值为–2时,a =A .3 B .C D .8.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷二》数学】已知向量()1,2=a ,()2,m =b ,且⊥a b ,则m = A .4 B .1 C .1-D .4-9.【贵州省遵义航天高级中学2019届高三第七次模拟考试数学】已知向量=a b ,a b 间的夹角为34π,则2-=a bA BC D 10.【西藏拉萨市2019届高三第三次模拟考试数学】已知向量,a b 的夹角为2π,且()2,1=-a ,2=b ,则2+=a bA .B .3C D11.【云南省2019届高三第一次高中毕业生复习统一检测数学】设向量(1,)x x =-a ,(1,2)=-b ,若∥a b ,则x =A .32- B .–1 C .23 D .3212.【云南省保山市2019年普通高中毕业生市级统一检测数学】已知向量,a b 满足()+=⊥+a a b a a b ,则a 与b 的夹角是A .56π B .23π C .π3D .6π13.【云南省红河州2018届高三复习统一检测数学】在ABC △中,2CM MB =u u u u r u u u r ,AN CN =+0u u u r u u u r,则A .2136MN AB AC =+u u u u r u u u r u u u rB .2376MN AB AC =+u u u u r u u u r u u u rC .1263MN AC AB =-u u u u r u u u r u u u rD .7263MN AC AB =-u u u u r u u u r u u u r14.【四川省高2019届高三第一次诊断性测试数学】已知向量()1,1=-a ,()8,k =b ,若∥a b ,则实数k =__________.15.【广西柳州高级中学2017–2018学年高三5月模拟考试数学】已知向量()2,3=a ,(),6m =-b ,若⊥a b ,则|2|+=a b __________.16.【四川省峨眉山市2019届高三高考适应性考试数学】已知向量=a ,(,6)m =-b ,若⊥a b ,则m =__________.17.【广西桂林市、崇左市2019届高三下学期二模联考数学】已知向量()1,5=a ,()2,1=-b ,(),3m =c .若()⊥+b a c ,则m =__________.18.【四川省内江市2019届高三第三次模拟考试数学】设向量(,1),(4,2)x ==a b ,且∥a b ,则实数x 的值是__________.19.【广西南宁市2019届高三毕业班第一次适应性测试数学】在正方形ABCD 中,E 为线段AD 的中点,若EC AD AB λμ=+u u u v u u u v u u u v,则λμ+=__________.20.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研考试数学】已知1=b ,2⋅=a b ,则向量(2)-⋅=a b b __________.21.【四川省棠湖中学2019届高三高考适应性考试数学】在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,若点P 满足PA PB PC ++=0u u u v u u u v u u u v ,则||OP uuu v =__________.22.【四川省绵阳市2019届高三下学期第三次诊断性考试数学】已知向量a =(sin2α,1),b =(cos α,1),若∥a b ,π02α<<,则=α__________. 23.【四川省宜宾市2019届高三第三次诊断性考试数学】如图,已知AB 为圆C 的一条弦,且2AB AC ⋅=u u u r u u u r,则AB u u u r =______.24.【四川省百校2019年高三模拟冲刺卷数学】已知向量()()2,1,1,λ=-=a b ,若()()22+-∥a b a b ,则实数λ=__________.25.【四川省乐山市高中2019届高三第三次调查研究考试数学】在ABC △中,4AB =,O 为三角形的外接圆的圆心,若AO x AB y AC =+u u u r u u u r u u u r (),x y ∈R ,且21x y +=,则ABC △的面积的最大值为_____.26.【四川省乐山市高中2019届高三第三次调查研究考试数学】已知O 为原点,点()2,3A ,()1,5B ,(),3C m ,若AB OC ⊥u u u r u u u r ,则实数m =__________.27.【贵州省贵阳市2019届高三5月适应性考试(二)数学】直线230x y +-=与圆22220x y x y +--=相交于A ,B 两点,O 为坐标原点,则||OA OB +=u u u r u u u r__________.28.【贵州省遵义市绥阳中学2019届高三模拟卷(二)数学】已知向量()()1,1,,2m =-=a b ,若5-=a b ,则实数m =__________. 29.【云南省昆明市2019届高三1月复习诊断测试数学】已知向量()1,3=-a ,()1,t =b ,若()2-⊥a b a ,则t =__________.30.【云南省昆明市2019届高三高考模拟(第四次统测)数学】在边长为6的等边三角形ABC 中,23BD BC =u u u r u u u r .则AB AD ⋅=u u u r u u u r __________. 31.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】已知向量()(),1,3,2x ==-a b ,a b,则x __________.若∥。

四川省教考联盟2019届高三第三次诊断性考试理科综合试题(含答案)

四川省教考联盟2019届高三第三次诊断性考试理科综合试题(含答案)
向硫酸铜溶 液 中滴 加 稀 氨 水 ,观 察 溶 液 颜 色 变 化 ;再 加 ቤተ መጻሕፍቲ ባይዱ 乙 醇 ,观 察 晶体 析 出情 况
C
H2O结 合难 易
检验 新 制 氯 水 的 氧 化性 和酸性
D
向少量紫色石蕊溶液 中逐滴滴加新制氯水 ,边 加边振荡 ,观 察 溶液颜色变化
M原 子 序 数 依 次 增 大 ,X和 W、 Z和 M同 主族 。其 中 Y元 W、 ″ 短周期 主族元 素 rX、 yY、 zZ、 田 素 的单 质通 常状 况下呈气态 ,W元 素原子半径 是所 在周期 元 素里原 子半 径最 大 的 ,且 J+y=
z=÷ 御。下列有关说 法 正 确 的是
A。 B。 C。 D。
W、 M组 成 的化合 物 中可能含有非极 性键
简单 离子半 径 大小 :Z(Y(W
简单 氢 化物在水 中的溶解 度 大小 :Y(M X、 Y、 M组 成 的化合 物 一 定 是共价化合 物 三诊 ・ 一摸三诊 ・ 理科综合试题 第 2页 (共 12页 ) 教考联盟 ・
:
物质






化 学式
CH犭
C2H4
C3H:
B。
C4H:
C2H60
C2H402
下列与这些有机物有关 的说法不正确的是 A。 甲、 丙均不能使酸性高锰酸钾溶液褪色 C。 等质量 的 乙、 戊完全燃烧时耗氧量相等 10.下 列实验方案不能达到相应实验 目的的是
选项
D。
丁的结构可能有 5种 (不 考虑立体异构 ) 己可 能发生银镜反应而不发生水解反应
电流计 指针偏转 幅度将保 持不 变
B。
D。
溶 液 中 Cu2+穿 过交换 膜发 生迁 移 外 电路 转移 的 电子最 多为 0.02mol

【校级联考】四川省教考联盟2019届高三第三次诊断性考试数学(理)试题-644dff7bd6524d24a853b328fa456385

【校级联考】四川省教考联盟2019届高三第三次诊断性考试数学(理)试题-644dff7bd6524d24a853b328fa456385

○…………外…………○…………内…………绝密★启用前【校级联考】四川省教考联盟2019届高三第三次诊断性考试数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.设全集U =R ,集合A ={x|x 2−1>0},B ={x|0<x ≤2},则集合(C U A)∩B =( ) A .(−1,1)B .[−1,1]C .(0,1]D .[−1,2]2.在复平面内,复数z 对应的点是Z(−1,2),则复数z 的共轭复数z =( ) A .−1+2iB .−1−2iC .1+2iD .1−2i3.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数中偶数的个数为( ) A .7200B .2880C .120D .604.已知向量a ⃑=(√2,−√2),b ⃑⃑=(cosα,sinα),则|a ⃑−b ⃑⃑|的最大值为( ) A .1B .√5C .3D .95.执行如图所示的程序框图,则输出的S 值为( )○…………线…………※○…………线…………A .-1 B .0 C .√22D .16.几何体的三视图如图所示,该几何体的体积为( )A .729B .428C .356D .2437.下列说法中错误的是( )A .先把高二年级的1000多学生编号为1到1000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m +50,m +100,m +150……的学生,这样的抽样方法是系统抽样法B .正态总体N(1,9)在区间(−1,0)和(2,3)上取值的概率相等C .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .若一组数据1、a 、2、3的平均数是2,则该组数据的众数和中位数均是2 8.A ,B 是⊙O :x 2+y 2=1上两个动点,且∠AOB =120°,A ,B 到直线l :3x +4y −10=0的距离分别为d 1,d 2,则d 1+d 2的最大值是( ) A .3B .4C .5D .69.已知四面体ABCD 外接球的球心O 恰好在AD 上,等腰直角三角形ABC 的斜边AC 为2,DC =2√2,则这个球的表面积为( ) A .25π4B .8πC .12πD .16π10.已知函数f(x)=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,其图象向左平移π6个单位后所得图象关于y 轴对称,则f(x)的单调递增区间为( ) A .[−5π12+kπ,π12+kπ],k ∈Z B .[−π3+kπ,π6+kπ],k ∈ZC .[−5π12+2kπ,π12+2kπ],k ∈ZD .[−π12+kπ,5π12+kπ],k ∈Z11.在数列{a n }中,已知a 1=1,且对于任意的m,n ∈N ∗,都有a m+n =a m +a n +mn ,则∑1a i=2019i=1( )201920182019202112.已知定义在R上的函数f(x)关于y轴对称,其导函数为f′(x).当x≥0时,不等式xf′(x)>1−f(x).若对∀x∈R,不等式e x f(e x)−e x+ax−axf(ax)>0恒成立,则正整数a的最大值为()A.1B.2C.3D.4……○…………装※※请※※不※※……○…………装第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.若变量x ,y 满足约束条件{3x −2y ≥03x −y −3≤0y ≥0 ,则yx−4的最小值为_____.14.已知等比数列{a n }中,a 2=2,a 5=14,则a 1a 2+a 2a 3+...+a 5a 6=_______.15.已知定义在R 上的奇函数f(x)满足f(x)+f(x +2)=0,且f(1)=−2,则f(2019)+f(2018)的值为__________.16.中心在原点,对称轴为坐标轴的双曲线C 与圆O :x 2+y 2=5有公共点P(1,−2),且圆O 在点P 处的切线与双曲线C 的一条渐近线平行,则该双曲线的实轴长为________. 三、解答题17.槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解A ,B 两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)从A 班的样本数据中随机抽取一个不超过19的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a ≥b 的概率;(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到B 班同学人数的分布列和数学期望.18.如图,在ΔABC 中,已知点D 在BC 边上,且AD ⊥AC ,sin∠BAC =2√77,AD =1,AB =√7.订…………○……………○……__考号:___________订…………○……………○……(1)求BD 的长; (2)求ΔABC 的面积.19.如图,在棱长为1的正方体PB 1N 1D 1−ABND 中,动点C 在线段BN 上运动,且有BC ⃑⃑⃑⃑⃑⃑=λAD⃑⃑⃑⃑⃑⃑(0<λ≤1).(1)若λ=1,求证:PC ⊥BD ;(2)若二面角B −PC −D 的平面角的余弦值为−5√1122,求实数λ的值. 20.已知点M(x,y)与定点F(1,0)的距离和它到直线l :x =4的距离的比是常数12,点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)若直线l 1:y =kx 交曲线C 于A ,B 两点,当点M 不在A 、B 两点时,直线MA ,MB 的斜率分别为K 1,K 2,求证:K 1,K 2之积为定值. 21.已知函数f(x)=ax 2+(a −2)x −lnx . (1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a 的取值范围. 22.[选修4-4:坐标系与参数方程]在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=4cosθ,过点P(2,−1)的直线l 的参数方程为:{x =2+t y =−1−t(t 为参数),直线l 与曲线C 分别交于M 、N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)求线段|MN |的长和|PM |⋅|PN |的积. 23.[选修4-5:不等式选讲] 已知函数f(x)=|x −2|−|x −1|.(1)若正数a,b满足a+2b=f(−1),求2a +1b的最小值;(2)解不等式f(x)>12.参考答案1.C【解析】【分析】解出集合A,再求出C U A,再利用交集概念求解。

2019届四川省高三下三诊考试理科数学试卷【含答案及解析】

2019届四川省高三下三诊考试理科数学试卷【含答案及解析】

2019届四川省高三下三诊考试理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知为虚数单位,复数满足,复数所对应的点在() A.第一象限 _____________________________________ B.第二象限C.第三象限 D.第四象限2. 已知,则()A._________________________________ B.______________________________ C.______________________________D.3. 执行如图所示程序框图,则输出的为()A. B. C.D.4. “,使” 是“ ” 成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件5. 已知实数,则点落在区域,内的概率为()A. B. C.D.6. 甲、乙、丙、丁和戊名同学进行数学应用知识比赛,决出第名至第名(没有重名次). 已知甲、乙均未得到第名,且乙不是最后一名,则人的名次排列情况可能有()A.种___________________________________ B.种C.种___________________________________ D.种7. 若函数同时满足以下三个性质;① 的最小正周期为;②对任意的,都有;③ 在上是减函数,则的解析式可能是()A._____________________________________B.C. D.8. 在长方体中,、分别是棱、上的动点,如图, 当的长度取得最小值时,二面角的余弦值的取值范围为()A._________________________________ B.______________________________ C._________________________________ D.9. 设、是拋物线上分别位于轴两侧的两个动点,且,过点作的垂线与拋物线交于、两点,则四边形的面积的最小值为()A. B. C.D.10. 已知函数,关于的方程有四个相异的实数根,则的取值范围是()A. ________________________ B._________________________________ C.____________________________ D.二、填空题11. 已知向量与共线且方向相同,则 _________ .12. 若展开式各项系数之和为,则展开式的常数项为________ .13. 某桶装水经营部每天的房租、人员工资等固定成本为元,每桶水的进价是元,销售单价与日均销售量的关系如下表所示.请根据以上数据分析,这个经营部定价在 _________ 元/桶才能获得最大利润.14. 在平面直角坐标系中,点若直线上存在点,使得,则实数的取值范围是 _________ .15. 已知函数,其中常数,给出下列结论:① 是上的奇函数;②当时,对任意恒成立;③ 的图象关于和对称;④若对,使得,则.其中正确的结论是 _________ .(请填上你认为所有正确结论的序号)三、解答题16. 体育课上,李老师对初三(1)班名学生进行跳绳测试,现测得他们的成绩(单位:个)全部介于与之间,将这些成绩数据进行分组(第一组:,第二组:,……,第五组:),并绘制成如右图所示的频率分布直方图.(1)求成绩在第四组的人数和这名同学跳绳成绩的中位数;(2)从成绩在第一组和第五组的同学中随机取出名同学进行搭档训练,设取自第一组的人数为,求的分布列及数学期望.17. 已知在中,角所对的边长分别为且满足.(1)求的大小;(2)若,求的长.18. 已知各项均为正数的数列的前项满足.(1)求数列通项公式;(2)设为数列的前项和,若对恒成立,求实数的最小值.19. 如图,图②为图①空间图形的主视图和侧视图,其中侧视图为正方形,在图①中,设平面与平面相关交于直线.(1)求证:面;(2)在图①中,线段上是石存在点,使得直线与平面所成角的正弦值等于?若存在,求出点的位置;若不存在,请说明理由.20. 已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)直线与椭圆交于两点,以为直径的圆与轴正半轴交于点.是否存在实数,使得的内切圆的圆心在轴上?若存在,求出的值;若不存在,请说明理由.21. 设,其中是正常数,且.(1)求函数的最值;(2)对任意的正数,是否存在正数,使不等式成立?并说明理由;(3)设且,证明:对任意正数都有.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】。

2019届四川省教考联盟高三第三次诊断性考试理科综合试题(详细答案)-精品

2019届四川省教考联盟高三第三次诊断性考试理科综合试题(详细答案)-精品

12.按 如 图装 置进行 实验 (a、 b电 极 均 为 Cu单 质 ),实 验 开始 观察 到灵 敏 电流计 的指 针 发 生偏 转 。
下列有关说法正确 的是
灵敏 电流计
100mLO.1mol/L Cus04溶 液
100rnL0.31nol/L Cuso4溶 液
A。 b极 电极 反应 为 Cu-2e~=—=Cu2+
距 月球 表 面 1OO km的 环 月卫 星 。若 已知地 球 质量是 月球 质量 的 81倍 ,地 球 半径 为月球半 径

A。
4倍 ,地 球半 径 R=6。 4× 106m,根 据 以上信
发 动机点火后对 “嫦 娥 四号 ”进 行加速
息下列说法
正确
的是
B。 “嫦 娥 四号 ”在 近 月 轨 道 上 的运 行 速 度 约 为 2。 4km/s
C。 乙酰胆碱 能使 突触后 膜 K+的 通 透性 明显增 大
D。 乙酰胆 碱 能使 突触 后 膜 的膜 外 电位 由正 变 负
4.下 图表示 叶 肉细胞 光合 作用 和细胞 呼 吸过程 中 H元 素 的转移途 径 。下列叙述 正确 的是
H20」⒐卜匚H彐一卫辶(CH20)堕辶EH彐 -卫辶H20
A。 ① ④过 程 能产 生 ATP,② ③过程需 消耗 ATP
B。 7.8宫 N锄 02与 足量 C02充 分反应转 移 电子 数 目为 O.2NA
C。 1.8g重 水 中所 含 中子 、原 子 的数 目分别 为 NA、 0.3NA D。 CaC03、 KHC03混 合 物粉末 10g中 氧原 子数 目为 0.3NA
9.甲 、乙 、丙 、丁 、戊 、己六 种 有 机 物 的化学 式 如 下 表 所 示 :

四川省教考联盟2019届高三第三次诊断性考试理科综合试题 含答案

四川省教考联盟2019届高三第三次诊断性考试理科综合试题 含答案
:
下列有关 说 法不 正 确 的是 A。 碱 浸 的 目的是 溶解 铝 B。 酸溶 时 H202被 还原 C。 H2S04/H202可 改用浓盐 酸 D。 铝 、 钴 产物 可再 利用 8.NA代 表 阿伏 加德 罗常数 的值 。下 列判 断 正确 的是 A。 2.24LH?和 O。 2mol C12光 照反应后 氯分子 数 目为 0.1NA B。 7.8宫 N锄 02与 足量 C02充 分反应转 移 电子 数 目为 O.2NA C。 1.8g重 水 中所 含 中子 、 原 子 的数 目分别 为 NA、 0.3NA D。 CaC03、 KHC03混 合 物粉末 10g中 氧原 子数 目为 0.3NA 9.甲 、 乙、 己六 种有 机物 的化学式 如下 表所示 丙、 丁、 戊、
:
物质






化 学式
CH犭
C2H4
C3H:
B。
C4H:
C2H60
C2H402
下列与这些有机物有关 的说法不正确的是 A。 甲、 丙均不能使酸性高锰酸钾溶液褪色 C。 等质量 的 乙、 戊完全燃烧时耗氧量相等 10.下 列实验方案不能达到相应实验 目的的是
选项
D。
丁的结构可能有 5种 (不 考虑立体异构 ) 己可 能发生银镜反应而不发生水解反应
-、 选 择题 :本 题 共 13小 题 ,每 小题
卫 卜 辶 (CH20)堕辶 H20 H彐 一 H20」 ⒐ EH彐 -卫辶 匚
① ④过 程 能产 生 ATP,② ③过程需 消耗 ATP ① ④过 程在基质 中完成 ,② ③ 过程 在膜 上进 行 C。 ①③过 程产 生 的 EH彐 相 同 ,② ④过程 EH彐 的去 向不 同 D。 ①③ 过程有 H20参 与反应 ,② ④过 程需 要 酶 的催 化 5.‘ 阿糖胞 苷是 一 种 嘧 啶类抗 癌 药 物 ,在 细 胞 中能 有 效 抑 制 DNA聚 合 酶 的合 成 。 当 阿糖 胞 苷 进 人 癌症 患者 体 内后 ,机 体 短期 内可能发 生 的明显 变化是 A。 癌 细胞 的遗传 物质 发生 改变 ,增 殖 速度 变慢 B。 淋 巴 细胞 的生成 减少 ,机 体 的免疫 功 能下 降 C。 糖 蛋 白的合成增 加 ,癌 细胞 的转移 速度 变慢 D。 促进 抑 癌基 因表达 ,癌 细胞 的细胞周期 变 长 一摸三诊 ・ 三诊 ・ 理科综合试题 第 1页 (共 12页 ) 教考联盟 ・

2019届四川省高三联合诊断理科数学试题答案

2019届四川省高三联合诊断理科数学试题答案

∧ ∧ 28 = -0. 56, a = y -bx = 9-( -0 . 56) ×7 = 12 . 92 . 50 ∧
将 x = 6 代入回归方程可预测该店当日营业额 y = -0. 56×6+12 . 92 = 9 . 56( 千元) 高三数学( 理科) 答案 第 1 页( 共 4 页)

19 . 解:(1) 取 EF 的中点 G ,连结 AG.
1 . 2
12 分 1分
3分
因为 y1 >0,所以 y1 =
高三数学( 理科) 答案 第 2 页( 共 4 页)
所以点 P 坐标为(
(2) 由(1) 可知直线 AP 的方程是 x - 3 y +6 = 0, 设点 M( m,0) ,则点 M 到直线 AP 的距离是 由题意
3 5 3 , ) 2 2
→ m ㊃→ n 1 = . → |m| |→ n| 2
故锐二面角 E
DF
A 的余弦值为
20 . 解:(1) 由已知可得 A( -6,0) ,F (4,0) → → 设点 P ( x1 ,y1 ) ,则AP = ( x1 +6,y1 ) ,FP = ( x1 -4,y1 ) . → → 因为 PA⊥PF ,所以AP ㊃FP = ( x1 +6) ( x1 -4) +y2 1 = 0. x2 y2 ì 1 1 ï ï + =1 36 20 则í 化简得 2 x2 1 +9 x 1 -18 = 0 ï 2 î( x1 +6) ( x1 -4) +y1 = 0 解得 x1 = 3 或 x1 = -6( 舍) 2 5 3 2
5分 | m +6 | . 2 7分 9分
设椭圆上的点( x,y) 到点 m(2,0) 的距离为 d, 则 d2 = ( x -2) 2 +y2 = x2 -4 x +4+20当 x=

(理科数学答案) 2019年高三年级第三次诊断性测试

(理科数学答案) 2019年高三年级第三次诊断性测试

2019年高三年级第三次诊断性测试(理科数学答案)一、选择题:每小题5分.1~5 BABBC 6~10 ABDCD 11~12 CC 二、填空题:每小题5分. 13.23π14.3 15.2 16.15,28éö÷ê÷êëø三、解答题:17.(12分)(Ⅰ)由正弦定理得1sin C=Û()sin cos cos sin C B B C C B =+-()()()sin tan B C B C B C Û+=+Û+=∴60B C +=°,∴120A =°; …6分(Ⅱ)1sin 2S bc A ==,∵222222cos 3a b c bc A b c bc bc =+-=++³,即33bc ³∴1bc £,∴1sin 2S bc A ==£…12分 18.(12分)(Ⅰ)如图,取AD 中点G ,联结CG 交BD 于Q ,∴1//CG C E ,联结AF 交BD 于P , ∵,F G 都是中点,∴AFCG 是平行四边形, ∴//PF CG ,∴//PF 平面1DEC , 又∵//AF CG ,∴BP PQ QD ==,∴133BP BD ==; …6分(Ⅱ)建立空间直角坐标系,易得二面角1P EC D --的余弦值为13. …12分19. (12分)(Ⅰ)由已知可得100x =,()922221100671496000i i x ==´+++=å ,∴9221996000900006000i i x x =-=-=å,又()91ln 2522i i i x y =×=å,24.022.679v =»,∴25229 2.67100119ˆ0.0260006000b-´´==», ˆ 2.670.021000.67a =-´=, ∴回归方程为:0.020.67x y e +=; …6分 (Ⅱ)由 3.67ˆ39.25ye =»,而39.25 1.247.147´=>, ∴这一在校男生的体重是正常的. …12分 20.(12分)(Ⅰ)由2b =,e =,得21c =,25a =,∴椭圆的方程为22154x y +=; …5分(Ⅱ)设P 为MN 的中点,由题意得2BF FP =,()0,2B ,()1,0F ,设(),P x y ,则()1,2BF =- ,∴1,12FP æöç÷=-ç÷èø ,即3,12P æöç÷-ç÷èø, 设直线l :312y k x æöç÷+=-ç÷èø,即312y kx k æöç÷=-+ç÷èø,代入2245200x y +-=得 ()()222354532512002k x k k x k æöç÷+-+++-=ç÷èø, ∴()22253231510151254k k k k k k +=Þ+=++,∴65k =, ∴直线l 的方程为65140x y --=,联立2215465140x y x y ì+=ïíï--=ïî得2721120x x -+=, ∴MN =又d ==,∴11223535BMN S d MN D =××==. …12分21. (12分) (Ⅰ)由()()()()'221111xx x e ax e x fx a x xx --æö-ç÷=+-=ç÷èø,∴()22'2244e e a f -==, ∴0a =; …5分(Ⅱ)由()()()()'210xx eaxfx x x--=>设()()0x g x e ax x =->,则()'x g x e a =-,∴()()01g x g >=, ∴①若01a <£时,()'x g x e a =-,∴()()01g x g >=,∴()f x 在()0,1上递增,在()1,+¥上递减,∴()()min 11f x f e a e ==-³-,显然满足()20f x e +³,②若1a e <£时,()'0ln g x x a =Þ=,∴()()()ln ln 1ln 0g x g a a a a a a ³=-=-³, 同①则()()min 10f x f e a ==-³,也满足()20f x e +³, ③若2e a e <£时,()'0x g x e a =Þ=,∴(]ln 1,2x a =Î,∴()()()min ln 1ln 0g x g a a a ==-<, ∴()g x 在()0,+¥上存在两个零点12,x x ,且()10,1x Î,()21,x Î+¥,()f x 在()0,1和()21,x 上是减函数,在()1,1x 和()2,x +¥上是增函数,∴()f x 在1x 和2x 处取得极小值,由()()()1111111ln ln x e f x a x x a a x x x =+-=+-,又11x e ax =,∴11ln ln x a x =+,即11ln ln x x a -=-,∴()()1ln 1ln f x a a a a a =-=-,同理()()21ln f x a a =-,∴()()min 1ln f x a a =-, 记()()()21ln h a a a e a e =-££,则()()''ln 11ln ln 0h a a a a a a =-=--=-<,∴()()()222min 12h a h e e e ==-=-,∴2e a e ££时,()()221ln 0f x e a a e +³-+³, 综上所述 20a e ££时()20f x e +³成立. …12分 22. (10分)(Ⅰ)sin cos 0x αy α-=,()2221x y -+=; …5分 (Ⅱ)直线参数方程代入圆的方程得()()22cos 2sin 1t αt α-+=,化简得24cos 30t t α-+=,当06πα<<cos 1α<<,2316cos 04αæöç÷D =->ç÷èø成立,∴12124cos OA OB t t t t α+=+=+=,∵06πα<<,∴4OA OB <+<. …10分 23. (10分)(Ⅰ)()32f x x >-+,即123x x +++>,由数轴得()(),30,x Î-¥-+¥∪; …5分 (Ⅱ)∵()[]11,1f x x x x -=+-Î-,要证()f x x -£1£∵2a b +=2a b =+³14ab £,1==³. …10分以上各题的其他解法,限于篇幅,从略,请酌情给分.。

四川省宜宾市2019届高三第三次诊断性考试数学(文)试题附答案

四川省宜宾市2019届高三第三次诊断性考试数学(文)试题附答案

四川省宜宾市2019届高三第三次诊断性考试数学(文)试题一、选择题(本大题共12小题,共60.0分)1. 设全集是实数集R ,M ={x |x >1},N ={x |x <2},则M ∩N =( )A. {x|1≤x ≤2}B. {x|x >2,或x <1}C. {x|1<x <2}D. {x|x ≥2,或x ≤1} 2. 复数z =1+2i 3(i 为虚数单位),则|z |=( )A. 1+2iB. 1−2iC. √5D. 5 3. 设命题p :∀x ∈[0,π4),sinx <cosx ,则¬p 为( )A. ∃x 0∈[0,π4), sinx 0≥cosx 0 B. ∃x 0∈[0,π4), sinx 0<cosx 0 C. ∀x ∈[0,π4), sinx ≥cosxD. ∀x ∈[0,π4), sinx >cosx4. 执行如图所示的程序框图,输出的结果为( )A. 64B. 32C. 16D. 55. 已知实数x ,y 满足{x +y ≤2,2x +y ≥2,y ≥0,则z =x +2y 的最小值为( )A. 4B. 3C. 2D. 16. 已知函数y =sin3x ,则下列说法正确的是( )A. 函数图象关于y 轴对称B. 函数图象关于原点对称C. 函数在(−π6,π3)上是减函数D. 函数在(−π6,π3)上是增函数7. 已知函数f (x )满足f (0)=2,且对任意x ∈R 都满足f (x +3)=-f (x ),则f (2019)的值为( ) A. 2019 B. 2 C. 0 D. −28. 一个四棱柱的底面是正方形,且侧棱与底面垂直,其正(主)视图如图所示,则其表面积等于( ) A. 16 B. 8 C. 4√2 D. 4+4√2 9. 在△ABC 中,A ,B ,C 的对边分别是a ,b ,c ,且b =2,B =60°,△ABC 的面积为√3,则a +c =( ) A. 4 B. √14 C. 2 D. 4+2√3 10. 如图,已知AB 是圆心为C 的圆的一条弦,且AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =92,则|AB ⃗⃗⃗⃗⃗ |=( )A. 3B. 9C. √3D. 2√311. 如图,矩形ABCD 中,|AB |=8,|BC |=6,O 为坐标原点,E ,F ,G ,H 分别是矩形四条边的中点,R ,T 在线段OF ,CF 上,OR =kOF ,CT =kCF ,直线ER 与直线GT 相交于点M ,则点M 与椭圆C 1:x 216+y 29=1的位置关系是( )A. 点M 在椭圆C 1内B. 点M 在椭圆C 1上C. 点M 在椭圆C 1外D. 不确定12. 若a ∈R ,且a >1,函数f(x)=2a xa x +1+log a 1+x1−x,则不等式f (x 2-2x )<1的解集是( ) A. (0,2)B. (0,1)∪(1,2)C. (−∞,0)∪(2,+∞)D. (−∞,1−√2)∪(1+√2,+∞)二、填空题(本大题共4小题,共20.0分)13. 若函数f (x )=x 3-2x +3,则曲线l 在点x =1处的切线的斜率为______.14. 已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,点P (1,√3),在角α的终边上,则sin(α+π3)=______.15. 已知直线x +ay +3=0与圆O :x 2+y 2=4相交于A ,B 两点(O 为坐标原点),且△AOB 为等边三角形,则实数a 的值为______.16. 如图所示,球O 半径为R ,圆柱O 1O 2内接于球O ,当圆柱体积最大值时,圆柱的体积V =4√39π,则R =______.三、解答题(本大题共7小题,共82.0分)17. 已知数列{a n }的前n 项的和为S n ,且S n =2a n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 2a n +1,求数列{1bn b n+1}的前n 项和T n .18. 某手机商家为了更好地制定手机销售策略,随机对顾客进行了一次更换手机时间间隔的调查.从更换手机的时间间隔不少于3个月且不超过24个月的顾客中选取350名作为调查对象,其中男性顾客和女性顾客的比为32.商家认为一年以内(含一年)更换手机为频繁更换手机,否则视为未频繁更换手机.现按照性别采用分层抽样的方法从中抽取105人,并按性别分为两组,得到如下表所示的频数分布表: 时间间隔(月) [3,6] (6,9] (9,12] (12,15] (15,18] (18,21] (21,24] 男性x 8 9 1812 8 4女性y25131172(1)计算表格中x、y的值;(2)若以频率作为概率,从已抽取的105名且更换手机时间间隔为3至6个月(含3个月和6个月)的顾客中,随机抽取2人,求这2人均为男性的概率;(3)请根据频率分布表填写2×2列联表,并判断是否有90%以上的把握认为“频繁更换手机与性别有关”.频繁更换手机未频繁更换手机合计男性顾客女性顾客合计附表及公式:P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19.在五面体ABCDEF中,四边形ABCD是矩形,∠FAD=90°,EF∥AD,平面ADEF⊥平面ABCD,AF=AB=2,BC=4,EF=1.(1)求证:CD⊥DE;(2)求五面体ABCDEF的体积.20.已知点M(1,-2)在抛物线E:y2=2px(p>0)上.(1)求抛物线E的方程;(2)直线l1,l2都过点(2,0),l1,l2的斜率之积为-1,且l1,l2分别与抛物线E相交于点A,C和点B,D,设M是AC的中点,N是BD的中点,求证:直线MN恒过定点.21.已知函数f(x)=ln x.(1)求函数y=f(x)-x的单调区间;(2)求证:函数g(x)=e x-e2f(x)的图象在x轴上方.22.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的参数方程为{x=3+2cosα,y=2√3+2sinα(α为参数).(1)写出C的普通方程,求C的极坐标方程;(2)若过原点的直线l与C相交于A,B两点,AB中点D的极坐标为(ρ0,π3),求D的直角坐标.23.设函数f(x)=x+|2x-4|+1,g(x)=|x+m|+|x−2m|,其中m≠0.(1)解不等式f(x)≤4;(2)设f(x),g(x)的值域分别为A,B,若A⊆B,求实数m的取值范围.答案和解析1.【答案】C【解析】解:∵M={x|x>1},N={x|x<2};∴M∩N={x|1<x<2}.故选:C.进行交集的运算即可.考查描述法的定义,以及交集的运算.2.【答案】C【解析】解:复数z=1+2i3=1-2i,则|z|==.故选:C.化简复数z,根据模长的定义计算|z|的值.本题考查了复数的定义与运算问题,是基础题.3.【答案】A【解析】解:命题是全称命题,则命题的否定是特称命题,即¬p:∃x0∈[0,),sinx0≥cosx0,故选:A.根据全称命题的否定是特称命题进行判断即可.本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键.比较基础.4.【答案】C【解析】解:n=2,A=2,n≥5否,n=3,A=4,n≥5否,n=4,A=8,n≥5否,n=5,A=16,n≥5是,输出A=16,故选:C.根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.5.【答案】D【解析】解:作出实数x,y满足对应的平面区域如图:由z=x+2y得y=-x+z,平移直线y=-x+z,由图象可知当直线y=-x+z经过点A(1,0)时,直线的截距最小,此时z最小.即z=1+2×0=1,故选:D.求出不等式组对应的平面区域,利用z的几何意义,件即可求出z的最小值.本题主要考查线性规划的应用,利用z的几何意义,结合数形结合是解决本题的关键.6.【答案】B【解析】解:函数为奇函数,图象关于原点对称,则B正确,A错误,当-<x<时,-<3x<π,此时函数y=sin3x,不是单调函数,则C,D错误,故选:B.根据三角函数的奇偶性和单调性进行判断即可.本题主要考查三角函数的图象和性质,结合三角函数的奇偶性和单调性是解决本题的关键.比较基础.7.【答案】D【解析】解:∵f(x+3)=-f(x),∴f(x+6)=-f(x+3)=f(x),∴f(x)的周期为6,∴f(2019)=f(3),又f(3)=-f(0)=-2,∴f(2019)=-2.故选:D.先判断f(x)的周期,得出f(2019)=f(3),再根据条件计算f(3)即可.本题考查了函数周期的判断与应用,属于中档题.8.【答案】D【解析】解:根据几何体的三视图,该几何体的为底面边长为,高为1的正四棱柱.故:S==4+4.故选:D.首先把三视图转换为几何体,进一步利用体积公式求出结果.本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考察学生的运算能力和转换能力,属于基础题.9.【答案】A【解析】解:△ABC中,b=2,B=60°,所以△ABC的面积为S=acsinB=ac•=,解得ac=4;又b2=a2+c2-2accosB,即4=a2+c2-ac=(a+c)2-3ac=(a+c)2-12,所以(a+c)2=16,解得a+c=4.故选:A.利用三角形的面积公式和余弦定理,即可求出a+c的值.本题考查了余弦定理和三角形面积公式的应用问题,也考查了特殊角的三角函数值应用问题,是基础题.10.【答案】A【解析】解:过点C作CD⊥AB于D,则D为AB的中点.Rt△ACD中,AD=AB,=,====.所以=3.故选:A.过点C作CD⊥AB于D,可得AD=AB,Rt△ACD中利用三角函数的定义算出=,再由向量数量积的公式加以计算,结合,求解即可.本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.11.【答案】B【解析】解:∵OR=kOF,CT=kCF,∴R(4k,0),T(4,3-3k)直线GT的方程为y=-x+3 ①又E(0,-3)则直线ER的方程为y=x-3 ②由①②消去k,得到直线ER与直线GS的交点M的轨迹方程:+=1.∴点M在椭圆C1:+=1上.故选:B.OR=kOF,CT=kCF,可得R(4k,0),T(4,3-3k),可得直线GT、ER的方程,联立解得直线ER与直线GS的交点M的轨迹方程,即可判断出结论.本题考查了椭圆的标准方程、直线的交点,考查了推理能力与计算能力,属于中档题.12.【答案】B【解析】解:由>0,解得-1<x<1.可得函数f(x)的定义域为:(-1,1).y==2-在(-1,1)上单调递增.y==-1在(-1,1)上单调递增,a>1,∴y=在(-1,1)上单调递增.∴f(x)在(-1,1)上单调递增.又f(0)=1.∴不等式f(x2-2x)<1即不等式f(x2-2x)<f(0),∴-1<x2-2x<0,解得0<x<2,且x≠1.∴不等式f(x2-2x)<1的解集为(0,1)∪(1,2).故选:B.由>0,解得-1<x<1.可得函数f(x)的定义域为:(-1,1).分别判定函数y=,y=,y=在(-1,1)上单调性质,可得f(x)在(-1,1)上单调性,利用单调性即可解出不等式f (x2-2x)<1即不等式f(x2-2x)<f(0)的解集.本题考查了函数的单调性、方程与不等式的解法、转化方法,考查了推理能力与计算能力,属于中档题.13.【答案】1【解析】解:函数f(x)=x3-2x+3,导函数f′(x)=3x2-2,则曲线l在点x=1处的切线的斜率为:f′(1)=1.故答案为:1.求出函数的导数,代入x=1即可得到切线的斜率.本题考查函数的导数的应用,切线的斜率的求法,考查计算能力.14.【答案】√32【解析】解:∵角α的顶点在坐标原点,始边与x轴的非负半轴重合,点P(1,),在角α的终边上,∴tanα=,∴α=+2kπ,k∈Z,则=sin(+2kπ)=sin=,故答案为:.由题意利用任意角的三角函数的定义,求得α的值,可得要求式子的值.本题主要考查任意角的三角函数的定义,属于基础题.15.【答案】±√2【解析】解:圆心(0,0)到直线x+ay+3=0的距离d=,依题意cos30°=,即=,解得a=.故答案为:±.先求圆心到直线的距离d,再根据△AOB为等边三角形意cos30°=,可解得.本题考查了直线与圆的位置关系,属中档题.16.【答案】√23⋅√63【解析】解:设小圆O1,O2的半径为r,如图,作出球O及其内接圆柱的轴截面得到四边形ABCD,由题意得到AB=CD=2r,当BC=AD=2r时,圆柱的体积最大,此时R2+R2=4r2,即R=,圆柱体积V=,解得r=,∴R==.故答案为:.设小圆O1,O2的半径为r,作出球O及其内接圆柱的轴截面得到四边形ABCD,当BC=AD=2r时,圆柱的体积最大,由此能求出结果.本题考查球半径的求法,考查球、内接圆柱的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.17.【答案】解:(1)∵S n=2a n−1(n∈N∗),∴n=1时,a1=2a1-1,解得a1=1.n≥2时,a n=S n-S n-1=2a n-1-(2a n-1-1),可得a n=2a n-1.∴数列{a n}是以首项为1,公比为2的等比数列,∴a n=2n-1.(2)b n=log2a n+1=n.∴1 b n b n+1=1n(n+1)=1n−1n+1.∴T n=(1−12)+(12−13)+…+(1n−1n+1)=1-1n+1=nn+1.【解析】(1)由,可得n=1时,a 1=2a 1-1,解得a 1.n≥2时,a n =S n -S n-1,可得a n =2a n-1.再利用等比数列的通项公式即可得出.(2)b n =log 2a n+1=n .可得==.利用“裂项求和”方法即可得出.本题考查了“裂项求和”方法、等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.18.【答案】解:(1)由题知男性顾客共有350×35=210人,女性顾客共有350×25=140人,按分层抽样抽取105人,则应该抽取男性顾客105×210350=63人,女性顾客105×140350=42人;所以x =63-(8+9+18+12+8+4)=4,y =42-(2+5+13+11+7+2)=2;………………………………(3分)(2)记“随机从已抽取的105名且更换手机时间间隔为3至6个月(含3个月和6个月)的顾客中, 抽取2人”为事件A ,设男性分别为a ,b ,c ,d ,女性分别为e ,f ,则事件A 共包含(a ,b )(a ,c )(a ,d )(a ,e )(a ,f )(b ,c )(b ,d )(b ,e )(b ,f )(c ,d )(c ,e )(c ,f )(d ,e )(d ,f )(e ,f )15个可能结果,其中2人均男性有(a ,b )(a ,c )(a ,d )(b ,c )(b ,d )(c ,d )6种可能结果,所以2人均男性的概率为P (A )=615=25;………………………………(7分)(3)由频率分布表可知,在抽取的105人中,男性顾客中频繁更换手机的有21人,女性顾客中频繁更换手机的有9人,据此可得2×2列联表: 频繁更换手机 未频繁更换手机 合计男性顾客 21 4263 女性顾客 9 3342 合计 30 75105 所以K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=1.75;……………………(11分)因为1.75<2.706,所以没有90%以上的把握认为“频繁更换手机与性别有关”.……………………(12分)【解析】(1)由题意利用分层抽样原理计算应该抽取的男性、女性顾客人数,从而求得x 、y 的值;(2)用列举法求出基本事件数,计算所求的概率值;(3)由题意填写列联表,计算观测值,对照临界值得出结论.本题考查了频率分布表与独立性检验的应用问题,也考查了古典概型的概率计算问题,是中档题.19.【答案】证明:(1)∵四边形ABCD是矩形,∴AD⊥DC,∵平面ADEF⊥平面ABCD且平面ADEF∩平面ABCD=AD,∠FAD=90°,∴FA⊥平面ABCD,∴FA⊥CD,∵FA∩AD=A,FA、AD⊂面ADEF,∴CD⊥面ADEF,∴CD⊥DE………………………………………………………(6分)(2)作EH⊥AD于点H,连接BH,∵平面ADEF⊥平面ABCD且平面ADEF∩平面ABCD=AD,∴EH⊥平面ABCD,∵∠FAD=90°,∴FA∥EH,∵EF∥AD,∴四边形AHEF是矩形,∵EF=1∴AH=1∵AB=2,BC=4,V多面体ABCDEF =V B−AFEH+V E−BCDH=13×S四边形AFEH×AB+13×S四边形BCDH×EH=1 3×1×2×2+13×(3+4)×22×2=43+143=6………………………………………………(12分)【解析】(1)说明AD⊥DC,推出FA⊥平面ABCD,得到FA⊥CD,即可证明CD⊥面ADEF,即可得到CD⊥DE.(2)作EH⊥AD于点H,连接BH,证明四边形AHEF是矩形,,求解即可.本题考查直线与平面垂直的判断定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.20.【答案】(12分)解:(1)∵点M(1,-2)在抛物线E:y2=2px上,∴(-2)2=2p,∴解得p=2,∴抛物线E的方程为:y2=4x………………………………………(4分)(2)由l1,l2分别与E相交于点A,C和点B,D,且由条件知:两直线的斜率存在且不为零.∴设l1:x=m1y+2,l2:x=m2y+2由{x=m1y+2y2=4x,得:y2-4m1y-8=0……………………………………(7分)设A(x1,y1),C(x2,y2),则y1+y2=4m1∴y M=2m1,又x M=2+2m12,即M(2+2m12,2m1)同理可得:N(2+2m22,2m2)………………………………………………………………………(9分)∴k MN=2m2−2m1(2+2m22)−(2+2m12)=1m1+m2,∴MN:y−2m1=1m1+m2(x−2m12−2)即MN:y=1m1+m2[x−2(1−m1m2)],∵l1,l2的斜率之积为-1,∴1 m11m2=−1即m1m2=-1,∴MN:y=1m1+m2(x−4),即直线MN过定点(4,0).………………………………………(12分)【解析】(1)求出p即可求解抛物线方程.(2)设l1:x=m1y+2,l2:x=m2y+2,由得:y2-4m1y-8=0,设A(x1,y1),C(x2,y2),利用韦达定理求出M,同理可得:N,求出斜率,推出直线方程,利用直线系求解直线MN过定点(4,0).本题考查直线与抛物线的位置关系的综合应用,抛物线的简单性质的应用,考查计算能力.21.【答案】解:(1)由题意得:y′=1x −1=1−xx(x>0)……………………………………………………………(2分)令y'=0则x=1…….………………………………………………………………………………(3分)当0<x<1时,y'>0,∴函数在(0,1)上单调递增;……………………………………………(4分)当1<x时,y'<0∴函数在(1,+∞)上单调递减;………………………………………………(5分)(2)记函数g(x)=e x-e2ln x(x>0)∴g′(x)=e x−e2x,易知g′(x)单调递增………………………………………………………(7分)又g′(1)=e-e2<0,g′(2)=e2−e22=e22>0,∴在(0,+∞)上存在一个x0∈(1,2),使得:g′(x0)=e x0−e2x0=0,即:e x0=e2x0,且ln x0=-x0+2………………………………………………………………(9分)当x∈(0,x0),有g′(x)<0,g(x)单调递减;当x∈(x0,+∞),有g′(x)>0,g(x)单调递增.∴g(x)≥g(x0)=e x0−e2lnx0=e2x0−e2lnx0=e2x0+e2x0−2e2=x02−2x0+1x0e2>0,∴e x-e2ln x>0,∴函数g(x)=e x-e2f(x)的图象在x轴上方………………………………………………(12分)【解析】(1)求出导函数,利用导函数的符号,判断函数的单调性即可.(2)记函数g(x)=e x-e2lnx(x>0)∴,易知g′(x)单调递增,又g′(1)=e-e2<0,,说明在(0,+∞)上存在一个x0∈(1,2),使得:,然后利用单调性,推出函数的最值与0的关系,说明结果即可.本题考查函数的导数的应用,考查转化思想以及计算能力,难度比较大.22.【答案】解:(1)C 的普通方程(x −3)2+(y −2√3)2=4∴x 2+y 2−6x −4√3y +17=0……..………………..………………………..……………(3分)C 的极坐标方程ρ2−6ρcosθ−4√3ρsinθ+17=0…………………………….……………(5分)(2)由已知得直线l 的极坐标方程为θ=π3,代入ρ2−6ρcosθ−4√3ρsinθ+17=0,得ρ2-9ρ+17=0∴△=92-4×17>0,设A(ρ1,π3),B(ρ2,π3),则ρ1+ρ2=9……..……………..………(7分) ∵D 是AB 中点∴ρ0=ρ1+ρ22=92,∴x D =92cos π3=94,y D =92sin π3=9√34………..…………..………(9分) ∴D 的直角坐标为(94,9√34).…….……..……….………(10分) 【解析】(1)利用sin 2α+cos 2α=1消去参数α可得曲线C 的普通方程,再根据x=ρcosθ,y=ρsinθ可得曲线C 的极坐标方程‘(2)联立直线l 和曲线C 的极坐标方程,根据韦达定理和中点公式可得D 的极坐标,再化成直角坐标.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)f(x)={−x +5,x <23x−3,x≥2由f (x )≤4得,{3x −3≤4x≥2或{−x +5≤4x<2,解得1≤x ≤73∴f (x )≤4的解集为[1,73]……..………………..………………………………………(5分)(2)f(x)={−x +5,x <23x−3,x≥2,由分段函数的单调性得A =[3,+∞),g(x)=|x +m|+|x −2m |≥|(x +m)−(x −2m )|=|m +2m |,当x =-m 时取等号,∴B =[|m +2m |,+∞)时A ⊆B ∴|m +2m |≤3,|m|+|2m |≤3,|m|2−3|m|+2≤0,1≤|m|≤2∴m 的取值范围[-2,-1]∪[1,2]………………..………………………………………(10分)【解析】(1)分2段去绝对值解不等式再相并可得;(2)利用分段函数的单调性得A,利用绝对值不等式的性质得B,再根据子集关系列不等式可解得.本题考查了绝对值不等式的解法,属中档题.。

四川省教考联盟2019届高三第三次诊断性考试理科综合试题(含答案)

四川省教考联盟2019届高三第三次诊断性考试理科综合试题(含答案)
:
物质






化 学式
CH犭
C2H4
C3H:
B。
C4H:
C2H60
C2H402
下列与这些有机物有关 的说法不正确的是 A。 甲、 丙均不能使酸性高锰酸钾溶液褪色 C。 等质量 的 乙、 戊完全燃烧时耗氧量相等 10.下 列实验方案不能达到相应实验 目的的是
选项
D。
丁的结构可能有 5种 (不 考虑立体异构 ) 己可 能发生银镜反应而不发生水解反应
z=÷ 御。下列有关说 法 正 确 的是
A。 B。 C。 D。
简单 离子半 径 大小 :Z(Y(W W、 M组 成 的化合 物 中可能含有非极 性键 简单 氢 化物在水 中的溶解 度 大小 :Y(M X、 Y、 M组 成 的化合 物 一 定 是共价化合 物 三诊 ・ 一摸三诊 ・ 理科综合试题 第 2页 (共 12页 ) 教考联盟 ・
:
6分 ,共 78分 。在 每 小题 给 出的 四个 选 项 中 ,只 有 一 项 是 符 合题 目要 求 的 。 1.下 列 有关 遗传 与变异 的叙 述 ,正 确 的是 A。 环境 因素 引起 的变异都 不 能遗传 给后代 B。 21三 体综 合 征 的患者 可 以产 生正 常 的子代 C。 遗 传病 患者 一 定 携 带有 显性 或 隐性 致病基 因 D。 杂合 子 自交后代 发 生性 状 分 离是 因为基 因重组 2.下 列有关 生物体 内有 机 物 的叙 述 ,错 误 的是 A。 纤 维 素是植 物 细胞 的结 构 成 分 ,还 是 其供 能物质 B。 脂 肪是 良好 的储 能物质 ,还 是动物体 内的绝 热体 C。 蛋 白质是 细胞 的结 构成 分 ,还 参 与调控 细胞代谢 D。 核 酸是 遗传 信息 的携 带 者 ,还 可 以催 化 酶促 反应 3.神 经 — 肌 肉接点 的结 构类 似 于突触 ,神 经末 梢释放 的 乙 酰胆碱 可 引发肌 细胞膜 发 生 电位 变化 。 下列叙 述 正确 的是 A。 受 到刺激后 的突触后 膜 能够 释放 乙 酰胆碱 B。 乙 酰胆碱 通过胞 吞进 人 突触后膜 发挥作 用 C。 乙 酰胆碱 能使 突触后 膜 K+的 通 透性 明显增 大 D。 乙酰胆 碱 能使 突触后 膜 的膜外 电位 由正变 负 4.下 图表示 叶 肉细胞 光合 作用 和细胞 呼 吸过程 中 H元 素 的转移途 径 。下列 叙述 正 确 的是

2019届高三数学第三次联考试题理(含解析)

2019届高三数学第三次联考试题理(含解析)

2019届高三数学第三次联考试题理(含解析)考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填写在答题卡上.3.本试卷主要考试内容:高考全部内容.第I卷一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用复数代数形式的运算化简,再由几何意义确定象限即可【详解】故选B【点睛】本题考查复数代数形式运算及几何意义,熟记复数的代数表示法及其几何意义,是基础题.2.设集合,,则集合可以为()A. B.C. D.【答案】D【解析】【分析】先求得集合A,再依次验证选项即可.【详解】因为,可以依次验证选项,得到当时,.故答案为D.【点睛】这个题目考查了集合的交集运算,属于基础题目. 3.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如表:由此表估计这100名小学生身高的中位数为()(结果保留4位有效数字)A. B. C. D.【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.4.将函数f(x)=cos(4x-)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,则g (x)的最小正周期是()A. B. C. D.【答案】B【解析】【分析】先由伸缩变换确定g(x),再求周期公式计算即可【详解】由题,∴T==故选B【点睛】本题考查三角函数伸缩变换,准确记忆变换原则是关键,是基础题.5.如图所示,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】分析图知2a,2b,则e可求.【详解】由题2b=16.4,2a=20.5,则则离心率e=.故选B.【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题.6.若函数f(x)=有最大值,则a取值范围为()A. B. C. D.【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a的不等式即可求解.【详解】由题,单调递增,故单调递减,故,因为函数存在最大值,所以解.故选B.【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.7.汉朝时,张衡得出圆周率的平方除以16等于,如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A. 32B. 40C.D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题8.设x,y满足约束条件则的最大值与最小值的比值为()A. B. C. D.【答案】A【解析】分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案.【详解】如图,作出约束条件表示的可行域.由图可知,当直线经过点时.z取得最大值;当直线经过点时,z取得最小值.故,故选A.【点睛】本题考查简单的线性规划问题,一般利用平移直线利用直线在坐标轴上的截距得出最优解,考查计算能力,属于中等题.9.若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【解析】【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为故选D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.10.在正方体ABCD-A1B1C1D1中,,则异面直线AC1与BE所成角的余弦值为()A. B. C. D.【答案】D【解析】【分析】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,在A中利用余弦定理即可求解.【详解】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,设正方体的边长为4,则∠A故选D【点睛】本题考查异面直线所成的角,作平行线找角是基本思路,准确计算是关键,是基础题.11.设Sn为等差数列{an}的前n项和,若a7=5,S5=-55,则nSn的最小值为()A. B. C. D.【答案】A【解析】【分析】将用表示,解方程组求得,再设函数求导求得的最小值即可.【详解】∵解得∴设当0<x<7时,当x>7时,,故最小值为f(7)=-343.故选A.【点睛】本题考查等差数列通项及求和,考查函数的思想,准确记忆公式,熟练转化为导数求最值是关键,是中档题.12.已知A,B分别是双曲线C:的左、右顶点,P为C 上一点,且P在第一象限.记直线PA,PB的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的重心坐标为()A. B. C. D.【答案】B【解析】【分析】设A(,0),B(,0),P(x,y),得到=2,利用基本不等式求解最值,得到P的坐标,进而得到△PAB重心坐标.【详解】解:设A(,0),B(,0),P(x,y)由题意,,,∴2,2+≥24,当且仅当2k1=时取等号,此时=1,PA的方程为y=x+1,,PB的方程为y=2联立方程:,解得P∴重心坐标为故选B【点睛】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,属于中档题.第II卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.的展开式的第项为_______.【答案】【解析】【分析】由二项式定理的通项公式求解即可【详解】由题展开式的第2项为故答案为【点睛】本题考查二项式定理,熟记公式,准确计算是关键,是基础题.14.在平行四边形ABCD中,A(1,2),B(-2,0),,则点D的坐标为______.【答案】【解析】先求再求进而求D即可【详解】由题,故D(6,1)故答案为【点睛】本题考查向量的坐标运算,准确计算是关键,是基础题15.若函数则_____.【答案】6【解析】【分析】确定,再由对数的运算性质代入求值即可【详解】由题-故答案为6【点睛】本题考查对数运算,函数的综合应用,考察抽象概括能力与计算能力,是中档题.16.过点引曲线:的两条切线,这两条切线与轴分别交于两点,若,则__________.【答案】【解析】由两切线的斜率互为相反数,设切点,求导列关于t 的方程求出t值即可求解【详解】设切点坐标为即,解得t=0或t=两切线的斜率互为相反数,即2a+6,解得故答案为【点睛】本题考查导数的几何意义,转化两切线的斜率互为相反数是突破点,熟练掌握切线的求法,准确计算是关键,是中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在中,.(1)求;(2)若,求的周长.【答案】(1);(2).【解析】【分析】(1)先求,由二倍角公式即可求(2)由题得,解得a,b值,再由余弦定理求c边即可求解.【详解】(1)∵,∴,∴.(2)设的内角的对边分别为.∵,∴,∵,∴,.由余弦定理可得,则,的周长为.【点睛】本题考查正余弦定理解三角形,熟记三角的基本关系式,准确运用余弦定理计算c边是关键,是基础题.18.某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,求购买总价X的数学期望.【答案】(1)0.76;(2)120640元.【解析】【分析】(1)先求甲单位优惠比例低于乙单位优惠比例的概率,再由对立事件得概率即可求解;(2)先写出在折扣优惠中每箱零件的价格为的取值,再列分布列求解即可【详解】(1)因为甲单位优惠比例低于乙单位优惠比例的概率为,所以甲单位优惠比例不低于乙单位优惠比例的概率.(2)设在折扣优惠中每箱零件的价格为元,则或188.的分布列为1840.6则.从而购买总价的数学期望为元.【点睛】本题考查离散型随机变量的分布列,对立事件的概率,是基础题.19.已知是抛物线上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)若直线与交于,两点,且,求线段垂直平分线在轴上的截距.【答案】(1)见解析;(2)【解析】【分析】(1)由在抛物线上,求出抛物线方程;根据抛物线焦半径公式可得,,的长度,从而证得依次成等比数列;(2)将直线代入抛物线方程,消去,根据韦达定理求解出,从而可得中点坐标和垂直平分线斜率,从而求得垂直平分线所在直线方程,代入求得结果.【详解】(1)是抛物线上一点根据题意可得:,,,,依次成等比数列(2)由,消可得,设的中点,线段的垂直平分线的斜率为故其直线方程为当时,【点睛】本题考查抛物线的几何性质、直线与抛物线综合问题,关键在于能够通过直线与抛物线方程联立,得到韦达定理的形式,从而准确求解出斜率.20.如图所示,在多面体ABCDEF中,四边形ADEF为正方形,AD∥BC,AD⊥AB,AD=2BC=1.(1)证明:平面ADEF⊥平面ABF.(2)若AF⊥平面ABCD,二面角A-BC-E为30°,三棱锥A-BDF的外接球的球心为O,求二面角A-CD-O的余弦值.【答案】(1)详见解析;(2).【解析】【分析】证明平面即可证明平面平面(2)由题确定二面角的平面角为,进而推出为线段的中点,以为坐标原点建立空间直角坐标系由空间向量的线面角公式求解即可【详解】(1)证明:因为四边形为正方形,所以,又,,所以平面.因为平面,所以平面平面.(2)解:由(1)知平面,又,则平面,从而,又,所以二面角的平面角为.以为坐标原点建立空间直角坐标系,如图所示,则,,.因为三棱锥的外接球的球心为,所以为线段的中点,则的坐标为,.设平面的法向量为,则,即令,得.易知平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本题考查面面垂直的判定,空间向量计算线面角,第二问确定球心O的位置是关键,是中档题.21.已知函数f(x)的导函数f(x)满足(x+xlnx)f(x)>f (x)对x∈(1,+∞)恒成立.(1)判断函数g(x)=在(1,+∞)上的单调性,并说明理由;(2)若f(x)=ex+mx,求m的取值范围.【答案】(1)在上单调递增;(2).【解析】【分析】(1)对求导利用已知条件即可判断单调性;(2)将代入条件,转化为恒陈立,求,讨论的正负求解即可【详解】(1)由,,得.,则,故在上单调递增.(2)∵,∴,即.设函数,,∵,∴,为增函数,则.当,即时,,则在上单调递增,从而.当,即时,则,,若,;若,.从而,这与对恒成立矛盾,故不合题意.综上,的取值范围为.【点睛】本题考查导数与函数的单调性问题,不等式恒成立问题,明确第二问分类讨论的标准是关键,是中档题.(二)选考题:共10分请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)若与相交于两点,,求;(2)圆的圆心在极轴上,且圆经过极点,若被圆截得的弦长为,求圆的半径.【答案】(1)6;(2)13.【解析】【分析】(1)将直线参数方程代入圆的直角坐标方程,利用求解得到结果;(2)写出的普通方程并假设圆的直角坐标方程,利用弦长为建立与的关系,再结合圆心到直线距离公式得到方程,解方程求得,即为圆的半径.【详解】(1)由,得将代入,得设两点对应的参数分别为,则故(2)直线的普通方程为设圆的方程为圆心到直线的距离为因为,所以解得:或(舍)则圆的半径为【点睛】本题考查直线参数方程中参数的几何意义、极坐标与直角坐标的互化、参数方程化普通方程.解决直线参数方程问题中距离之和或积的关键,是明确直线参数方程标准形式中的参数的几何意义,将距离问题转化为韦达定理的形式.23.设函数.(1)求不等式的解集;(2)证明:.【答案】(1);(2)详见解析.【解析】【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明再由绝对值不等式证明即可【详解】(1)∵,∴,即,当时,显然不合;当时,,解得;当时,,解得.综上,不等式的解集为.(2)证明:当时,;当时,,则;当时,,则.∵,∴.∵,∴.故.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题2019届高三数学第三次联考试题理(含解析)考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填写在答题卡上.3.本试卷主要考试内容:高考全部内容.第I卷一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用复数代数形式的运算化简,再由几何意义确定象限即可【详解】故选B【点睛】本题考查复数代数形式运算及几何意义,熟记复数的代数表示法及其几何意义,是基础题.2.设集合,,则集合可以为()A. B.C. D.【答案】D【解析】【分析】先求得集合A,再依次验证选项即可.【详解】因为,可以依次验证选项,得到当时,.故答案为D.【点睛】这个题目考查了集合的交集运算,属于基础题目.3.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如表:由此表估计这100名小学生身高的中位数为()(结果保留4位有效数字)A. B. C. D.【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.4.将函数f(x)=cos(4x-)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,则g(x)的最小正周期是()A. B. C. D.【答案】B【解析】【分析】先由伸缩变换确定g(x),再求周期公式计算即可【详解】由题,∴T==故选B【点睛】本题考查三角函数伸缩变换,准确记忆变换原则是关键,是基础题.5.如图所示,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】分析图知2a,2b,则e可求.【详解】由题2b=16.4,2a=20.5,则则离心率e=.故选B.【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题.6.若函数f(x)=有最大值,则a取值范围为()A. B. C. D.【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a的不等式即可求解.【详解】由题,单调递增,故单调递减,故,因为函数存在最大值,所以解.故选B.【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.7.汉朝时,张衡得出圆周率的平方除以16等于,如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A. 32B. 40C.D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题8.设x,y满足约束条件则的最大值与最小值的比值为()A. B. C. D.【答案】A【解析】分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案.【详解】如图,作出约束条件表示的可行域.由图可知,当直线经过点时.z取得最大值;当直线经过点时,z取得最小值.故,故选A.【点睛】本题考查简单的线性规划问题,一般利用平移直线利用直线在坐标轴上的截距得出最优解,考查计算能力,属于中等题.9.若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【解析】【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为故选D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.10.在正方体ABCD-A1B1C1D1中,,则异面直线AC1与BE所成角的余弦值为()A. B. C. D.【答案】D【解析】【分析】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,在A 中利用余弦定理即可求解.【详解】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,设正方体的边长为4,则∠A故选D【点睛】本题考查异面直线所成的角,作平行线找角是基本思路,准确计算是关键,是基础题.11.设Sn为等差数列{an}的前n项和,若a7=5,S5=-55,则nSn的最小值为()A. B. C. D.【答案】A【解析】【分析】将用表示,解方程组求得,再设函数求导求得的最小值即可.【详解】∵解得∴设当0<x<7时,当x>7时,,故最小值为f(7)=-343.故选A.【点睛】本题考查等差数列通项及求和,考查函数的思想,准确记忆公式,熟练转化为导数求最值是关键,是中档题.12.已知A,B分别是双曲线C:的左、右顶点,P为C上一点,且P在第一象限.记直线PA,PB的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的重心坐标为()A. B. C. D.【答案】B【解析】【分析】设A(,0),B(,0),P(x,y),得到=2,利用基本不等式求解最值,得到P 的坐标,进而得到△PAB重心坐标.【详解】解:设A(,0),B(,0),P(x,y)由题意,,,∴2,2+≥24,当且仅当2k1=时取等号,此时=1,PA的方程为y=x+1,,PB的方程为y=2联立方程:,解得P∴重心坐标为故选B【点睛】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,属于中档题.第II卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.的展开式的第项为_______.【答案】【解析】【分析】由二项式定理的通项公式求解即可【详解】由题展开式的第2项为故答案为【点睛】本题考查二项式定理,熟记公式,准确计算是关键,是基础题.14.在平行四边形ABCD中,A(1,2),B(-2,0),,则点D的坐标为______.【答案】【解析】【分析】先求再求进而求D即可【详解】由题,故D(6,1)故答案为【点睛】本题考查向量的坐标运算,准确计算是关键,是基础题15.若函数则_____.【答案】6【解析】【分析】确定,再由对数的运算性质代入求值即可【详解】由题-故答案为6【点睛】本题考查对数运算,函数的综合应用,考察抽象概括能力与计算能力,是中档题.16.过点引曲线:的两条切线,这两条切线与轴分别交于两点,若,则__________.【答案】【解析】【分析】由两切线的斜率互为相反数,设切点,求导列关于t的方程求出t值即可求解【详解】设切点坐标为即,解得t=0或t=两切线的斜率互为相反数,即2a+6,解得故答案为【点睛】本题考查导数的几何意义,转化两切线的斜率互为相反数是突破点,熟练掌握切线的求法,准确计算是关键,是中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在中,.(1)求;(2)若,求的周长.【答案】(1);(2).【解析】【分析】(1)先求,由二倍角公式即可求(2)由题得,解得a,b值,再由余弦定理求c边即可求解.【详解】(1)∵,∴,∴.(2)设的内角的对边分别为.∵,∴,∵,∴,.由余弦定理可得,则,的周长为.【点睛】本题考查正余弦定理解三角形,熟记三角的基本关系式,准确运用余弦定理计算c边是关键,是基础题.18.某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,求购买总价X的数学期望.【答案】(1)0.76;(2)120640元.【解析】【分析】(1)先求甲单位优惠比例低于乙单位优惠比例的概率,再由对立事件得概率即可求解;(2)先写出在折扣优惠中每箱零件的价格为的取值,再列分布列求解即可【详解】(1)因为甲单位优惠比例低于乙单位优惠比例的概率为,所以甲单位优惠比例不低于乙单位优惠比例的概率.(2)设在折扣优惠中每箱零件的价格为元,则或188.的分布列为1840.6则.从而购买总价的数学期望为元.【点睛】本题考查离散型随机变量的分布列,对立事件的概率,是基础题.19.已知是抛物线上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)若直线与交于,两点,且,求线段垂直平分线在轴上的截距.【答案】(1)见解析;(2)【解析】【分析】(1)由在抛物线上,求出抛物线方程;根据抛物线焦半径公式可得,,的长度,从而证得依次成等比数列;(2)将直线代入抛物线方程,消去,根据韦达定理求解出,从而可得中点坐标和垂直平分线斜率,从而求得垂直平分线所在直线方程,代入求得结果.【详解】(1)是抛物线上一点根据题意可得:,,,,依次成等比数列(2)由,消可得,设的中点,线段的垂直平分线的斜率为故其直线方程为当时,【点睛】本题考查抛物线的几何性质、直线与抛物线综合问题,关键在于能够通过直线与抛物线方程联立,得到韦达定理的形式,从而准确求解出斜率.20.如图所示,在多面体ABCDEF中,四边形ADEF为正方形,AD∥BC,AD⊥AB,AD=2BC=1.(1)证明:平面ADEF⊥平面ABF.(2)若AF⊥平面ABCD,二面角A-BC-E为30°,三棱锥A-BDF的外接球的球心为O,求二面角A-CD-O的余弦值.【答案】(1)详见解析;(2).【解析】【分析】证明平面即可证明平面平面(2)由题确定二面角的平面角为,进而推出为线段的中点,以为坐标原点建立空间直角坐标系由空间向量的线面角公式求解即可【详解】(1)证明:因为四边形为正方形,所以,又,,所以平面.因为平面,所以平面平面.(2)解:由(1)知平面,又,则平面,从而,又,所以二面角的平面角为.以为坐标原点建立空间直角坐标系,如图所示,则,,.因为三棱锥的外接球的球心为,所以为线段的中点,则的坐标为,.设平面的法向量为,则,即令,得.易知平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本题考查面面垂直的判定,空间向量计算线面角,第二问确定球心O的位置是关键,是中档题.21.已知函数f(x)的导函数f(x)满足(x+xlnx)f(x)>f(x)对x∈(1,+∞)恒成立.(1)判断函数g(x)=在(1,+∞)上的单调性,并说明理由;(2)若f(x)=ex+mx,求m的取值范围.【答案】(1)在上单调递增;(2).【解析】【分析】(1)对求导利用已知条件即可判断单调性;(2)将代入条件,转化为恒陈立,求,讨论的正负求解即可【详解】(1)由,,得.,则,故在上单调递增.(2)∵,∴,即.设函数,,∵,∴,为增函数,则.当,即时,,则在上单调递增,从而.当,即时,则,,若,;若,.从而,这与对恒成立矛盾,故不合题意.综上,的取值范围为.【点睛】本题考查导数与函数的单调性问题,不等式恒成立问题,明确第二问分类讨论的标准是关键,是中档题.(二)选考题:共10分请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.。

2019届高三第三次全国大联考(新课标Ⅱ卷)数学(理)学试题(解析版)

2019届高三第三次全国大联考(新课标Ⅱ卷)数学(理)学试题(解析版)

2019届2019年5月高三第三次全国大联考(新课标Ⅱ卷)数学(理)学试题一、单选题1.已知集合{|20}A x x =-≤,2{|log 2}B x x =<,则A B ⋂= A .]2,0( B .(,2]-∞C .)2,0(D .)4,(-∞【答案】A【解析】解一元一次不等式以及对数不等式得到集合A 和B ,结合交集的定义计算即可. 【详解】由题可得集合(,2]A =-∞,(0,4)B =,所以]2,0(=B A ,故选A . 【点睛】本题主要考查了不等式的解法以及交集的运算,需注意对数函数的定义域,属于基础题. 2.已知i 为虚数单位,若复数z 在复平面内对应的点的坐标为)1,2(-,则复数(13i)z -的虚部为 A .7 B .7i -C .1-D .7-【答案】D【解析】根据复数的几何意义得到2z i =-,计算出(13i)z -结合虚部的概念即可得结果. 【详解】由题可得复数2z i =-,所以(13i)(2i)(13i)17i z -=--=--, 所以复数(13i)z -的虚部为7-,故选D . 【点睛】本题主要考查了复数的几何意义,复数乘法的运算以及复数的分类,属于基础题. 3.某几何体的三视图如图所示,则该几何体的体积为A .12B .3C .π5D .3【答案】B【解析】由三视图可知该几何体是底面半径为2的圆锥的14,由椎体体积公式即可得结果. 【详解】由三视图可知该几何体是底面半径为214,故该几何体的体积14V =⨯21233π⨯=,故选B . 【点睛】本题考查了由三视图求几何体的体积,根据三视图判断几何体的结构特征及相关几何量的数据是解题的关键,属于中档题.4.已知324ππα<<,若sin()4πα+=,则sin(2)4πα-=A .B .C .102 D 【答案】C【解析】将sin()45πα+=展开,两边同时平方可得sin2α,根据α的范围cos2α,最后利用两角差的正弦公式即可得结果. 【详解】因为sin()4πα+=,所以sin cos αα+=,两边同时平方可得212sin cos 5αα+=,所以3sin 25α=-,因为324ππα<<,所以322αππ<<,所以4cos 25α=-,所以sin 24πα⎛⎫-=⎪⎝⎭2cos 2)210αα-=,故选C . 【点睛】本题主要考查了两角和与差公式、三角恒等式在求值中的应用,首先得到sin2α的值是解题的关键,属于中档题.5.已知x ,y 满足约束条件1010240x y x y x y ++≥⎧⎪-+≤⎨⎪-+≥⎩,若使z ax y =-取得最小值的最优解有无穷多个,则实数=a A .1- B .12C .1D .2【答案】B【解析】作出不等式组表示的平面区域,z ax y =-可化为y ax z =-,由z ax y =-取得最小值的最优解有无穷多个可得y ax z =-的斜率与直线AB 的斜率相等,即可得a 的值. 【详解】作出不等式组表示的平面区域如下图中阴影部分所示,z ax y =-可化为y ax z =-,要使z ax y =-取得最小值,只需直线y ax z =-在y 轴上的截距最大,又z ax y =-取得最小值的最优解有无穷多个,所以直线y ax z =-的斜率与直线AB 的斜率相等,因为直线AB 的斜率为12,所以21=a ,故选B .【点睛】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z 的几何意义是解决本题的关键,属于中档题.6.在边长为2的正方形OABC 中,点D 为线段BC 的中点,点M 在线段OD 上,则MA MB ⋅的最大值为A1 BC .4D .5【答案】C【解析】设线段AB 的中点为N ,连接MN ,根据221[()()]4MA MB MA MB MA MB ⋅=+--=2221[(2)]14MN BA MN -=-即可得结果. 【详解】设线段AB 的中点为N , 连接MN ,则221[()()]4MA MB MA MB MA MB ⋅=+--=2221[(2)]14MN BA MN -=-,易得22max ()5MN ON ==,所以MA MB ⋅的最大值为4,故选C . 【点睛】本题主要考查了向量数量积最值的求法,得到21MA MB MN ⋅=-是解题的关键,属于中档题.7.执行如图所示的程序框图,则输出的T 的值为A .12020B .12019C .20182019D .20192020【答案】B【解析】模拟程序的运行过程,寻找其规律第2018次循环:20182019N =,12019T =,2019i =,此时2019i <不成立,结束循环,可得结果.【详解】初始值:1T =,1i =,第1次循环:12N =,12T =,i 2=; 第2次循环:23N =,13T =,3i =;…; 第2017次循环:20172018N =,12018T =,2018i =;第2018次循环:20182019N =,12019T =,2019i =,此时2019i <不成立,结束循环,输出12019T =,故选B .【点睛】本题主要考查了程序框图的应用问题,模拟程序的运行过程是解题的常用方法,属于基础题.8.已知点P 位于第一象限,双曲线22:14x C y -=的左、右顶点分别为1A ,2A ,记直线1PA ,2PA 的斜率分别为1k ,2k ,若点P 在双曲线C 上,则1211k k +的取值范围为 A .[1,)+∞ B .[1,4]C .[4,)+∞D .(4,)+∞【答案】D【解析】设),(00y x P 且2214x y =-,根据两点间斜率计算公式得1214k k =,结合基本不等式得121k k +>,根据12121211k k k k k k ++=即可得结果.【详解】由题可得1(2,0)A -,2(2,0)A ,设),(00y x P ,因为点P 在双曲线C 上,所以22014x y =-,且02x >,00y >,则01002y k x =>+,2k =0002y x >-, 所以01202y k k x =⋅+2002001244y y x x ==--,所以1221k k +≥==,当且仅当1212k k ==时取等号,因为12k k ≠,所以121k k +>,所以12121212114()4k k k k k k k k ++==+>, 故1211k k +的取值范围为(4,)+∞,故选D . 【点睛】本题主要考查了双曲线上点的特征,整体代换思想的应用,基本不等式在求最值中的应用,属于中档题.9.已知定义在R 上的函数()f x 满足(1)(1)0f x f x ++--=,(2)(2)0f x f x +--=.当(0,2]x ∈时,()3x f x =,则(2018)(2019)f f -+=A .6-B .3-C .3D .12【答案】A【解析】由(1)(1)0f x f x ++--=得()f x 是定义在R 上的奇函数,所以(0)0f =,由(2)(2)0f x f x +--=得函数()f x 的周期为8,结合(0,2]x ∈时,()3x f x =即可得结果. 【详解】令1t x =+,由(1)(1)0f x f x ++--=可得()()f t f t =--, 所以函数()f x 是定义在R 上的奇函数,所以(0)0f =. 由(2)(2)0f x f x +--=可得)2()2(x f x f -=+, 所以(4)f x +=()()f x f x -=-,所以(8)()f x f x +=,故函数()f x 的周期为8,所以(2018)(25282)f f -=-⨯-=(2)(2)9f f -=-=-,(2019)(25283)(3)(1)3f f f f =⨯+===,所以(2018)(2019)6f f -+=-,故选A . 【点睛】本题主要考查了函数的奇偶性与周期性在求值中的应用,得到周期性与奇偶性是解题的关键,属于中档题.10.已知函数()sin()(0,0,0)2f x A x A πωϕωϕ=+>><<满足下列两个条件:①函数()12y f x π=-是奇函数;②12max |()()|2f x f x -=,且12min (||)3x x π-=.若函数()f x 在(,]4t π-上存在最小值,则实数t 的最小值为 A .4π B .3πC .512πD .712π【答案】C【解析】由②可得1A =,周期23T π=,从而3ω=,根据函数()12y f x π=-是奇函数结合ϕ的范围可得4πϕ=,进而()sin(3)4f x x π=+,由x 的范围求出34x π+的范围,根据()f x 存在最小值列出不等式3342t ππ+≥,解出即可.【详解】由12max |()()|2f x f x -=可得1A =, 由12min (||)3x x π-=可得23T π=(其中T 为函数()f x 的最小正周期), 所以223T ππω==,解得3ω=,所以()sin(3)f x x ϕ=+,所以()12y f x π=-=sin(3)4x ϕπ+-,因为函数()12y f x π=-是奇函数,所以()4k k ϕπ-=π∈Z ,即()4k k ϕπ=π+∈Z , 因为02πϕ<<,所以4πϕ=,所以()sin(3)4f x x π=+,当4x t π-<≤时,33244x t πππ-<+≤+,因为函数()f x 在(,]4t π-上存在最小值,所以3342t ππ+≥,即512t π≥,故实数t 的最小值为512π.故选C .【点睛】本题主要考查了三角函数解析式的求法,通过三角函数的图象研究其性质,熟练掌握图象是解题的关键,属于中档题.11.如图,在矩形ABCD 中,22AD AB ==,E 是AD 的中点,将ABE △,CDE △分别沿BE ,CE 折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABC DE 的外接球的表面积为A .332πB .8πC .4πD .π34【答案】C【解析】设BE ,EC ,BC 的中点分别为M ,N ,O ,通过平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,易得⊥OM 平面ABE ,⊥ON 平面DEC ,从而1OA OB OC OD OE =====,即外接球的球心为O ,可得半径,进而可得表面积.【详解】由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图,设BE ,EC ,BC 的中点分别为M ,N ,O ,连接AM ,OM ,AO ,DN ,NO ,DO ,OE ,则OM BE ⊥,ON CE ⊥. 因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,所以⊥OM 平面ABE ,⊥ON 平面DEC ,易得1OA OB OC OD OE =====, 则几何体ABCDE 的外接球的球心为O ,半径1=R ,所以几何体ABCDE 的外接球的表面积为ππ442==R S .故选C .【点睛】本题主要考查了求几何体外接球的表面积,找到球心的位置是解题的关键,属于中档题.12.已知函数2(2),1()(1),1x x f x f x x ⎧+<-=⎨-≥-⎩,若函数()()log ||(0a g x f x x a =->且1)a ≠有6个零点,则a 的取值范围为 A .(3,4] B .[3,4)C .(4,5]D .[4,5)【答案】A【解析】令||log )(x x h a =,由题意可得函数()f x 的图象与函数()h x 的图象有6个交点,作出函数图象,易知1a >,当0x <时,由3个交点,当0x >时,根据临界位置列出不等式组(3)1(4)1h h <⎧⎨≥⎩,解出即可.【详解】令||log )(x x h a =,因为函数()()log ||(0a g x f x x a =->且1)a ≠有6个零点, 所以函数()f x 的图象与函数()h x 的图象有6个交点,作出函数()f x 与函数()h x 的大致图象,如下图所示:易知1a >,显然当0x <时,函数()f x 与函数()h x 的图象有3个交点,所以当0x >时,函数()f x 与函数()h x 的图象有3个交点,所以(3)1(4)1h h <⎧⎨≥⎩,即log 31log 41a a<⎧⎨≥⎩,解得43≤<a ,故a 的取值范围为(3,4],故选A .【点睛】本题主要考查了根据函数零点的个数求参数,转化为函数图象交点的个数,作出函数的图象是解题的关键,属于中档题.二、填空题13.已知91(2)x ax -的展开式中x 项的系数为634,则实数a =________________. 【答案】4.【解析】根据二项式定理写出通项99291C 2(1)r r r rr rT x a--+⨯⨯-=,令921r -=,列方程求解即可. 【详解】91(2)x ax -的展开式的通项为9992919C 2(1)1C (2)()rr r r rr r r rT x x ax a ---+⨯⨯-=-=,921r -=,解出r ,结合常数项的值即可得a 的值.令921r -=,可得4r =,所以494494C 2(1)634a -⨯⨯-=,解得4a =,故答案为4. 【点睛】本题主要考查了二项式定理的应用,写出通项是解题的关键,属于中档题.14.在V ABC 中,已知3AB =,2=BC ,若1cos()2C A -=,则sin B =________________.【答案】1435. 【解析】在线段AB 上取点D ,使得AD CD =,设AD x =,则3BD x =-,易得1cos 2BCD ∠=,由余弦定理可得54x =,在BCD △中,由正弦定理即可得结果.【详解】在线段AB 上取点D ,使得AD CD =,设AD x =,则3BD x =-, 因为cos()C A -=12,即1cos 2BCD ∠=,所以在BCD △中,由余弦定理可得221(3)442x x x -=+-⨯,解得54x =,在BCD △中,由正弦定理可得sin sin CD BDB BCD=∠,因为54CD =,734BD x =-=,sin BCD ∠=,所以sin B =故答案为1435 【点睛】本题主要考查了正弦定理、余弦定理在解三角形中的应用,通过辅助线将1cos()2C A -=转化是解题的关键,属于中档题.15.已知曲线ln(23)()3x f x x-=+在点(2,(2))f 处的切线为l ,抛物线2:)0(C ax a y ≠=的焦点为F ,若切线l 经过点F ,且与抛物线C 交于M ,N 两点,则||MN =________________. 【答案】8.【解析】对函数进行求导求出曲线的切线方程为1y x =+,进而可得焦点坐标,所以抛物线C 的方程为24x y =,将抛物线与直线方程联立结合韦达定理可得12||2MN y y =++的值.【详解】 由题可得22(23)ln(23)()(23)x x x f x x x ---'=-,所以(2)1f '=,又(2)3f =,所以切线l 的方程为32y x -=-,即1y x =+,则(0,1)F .将2(0)y ax a =≠化为标准方程即21x y a =,所以114a =,解得14a =, 所以抛物线C 的方程为24x y =.由214y x x y =+⎧⎨=⎩,消去x 可得2610y y -+=,设11(,)M x y ,22(,)N x y ,则126y y +=, 所以12||2628MN y y =++=+=,故答案为8. 【点睛】本题主要考查了导数的几何意义即函数在某点处的导数即为在该点处切线的斜率,直线与抛物线相交时弦长问题,属于中档题.16.已知P 在圆22:()(4)1C x a y a -+-+=上,点P 关于y 轴的对称点为A ,点P 关于y x =的对称点为B ,则||AB 的最小值为________________. 【答案】33-=-.【解析】设出P 的坐标为(,)x y ,根据对称性得,A B 坐标,根据两点间距离公式可得||AB OP =,判断点O 在圆C 外,由||||1OP OC r ≥-≥即可得结果.【详解】因为圆C 的方程为22()(4)1x a y a -+-+=,所以(,4)C a a -,半径1=r . 设点P 的坐标为(,)x y ,则由题可得(,)A x y -,(,)B y x ,所以||AB===|OP(O为坐标原点),又||OC==≥2a=时取等号),所以点O在圆C外,所以||||1OP OC r≥-≥(当且仅当2a=,O,P,C三点共线时取等号),所以||4AB≥-||AB的最小值为33-=-,故答案为33-=-.【点睛】本题主要考查了对称关系以及两点间的距离,圆上一动点到圆外一点距离的最值问题,属于中档题.三、解答题17.已知数列{}n a的前n项和为n S,11a=,11(2)n na S n-=+≥.(Ⅰ)求数列{}n a的通项公式;(Ⅱ)设221logn nb a+=,求数列11{}nn nab b++的前n项和nT.【答案】(Ⅰ)12nna-=;(Ⅱ)34244nnnTn+=-+.【解析】(Ⅰ)由已知等式可得11n na S+=+,两式相减可得12(2)n na a n+=≥,再验证1n=时的情形即可得结果;(Ⅱ)结合(Ⅰ)可得2nb n=,利用裂项相消法即可得结果.【详解】(Ⅰ)由11(2)n na S n-=+≥可得11n na S+=+,上述两式相减可得1n n na a a+-=,即12(2)n na a n+=≥,因为11a=,所以2112a S=+=,所以21221aa==,所以*12()nna a n N+=∈,所以数列{}n a是首项为1,公比为2的等比数列,所以12nna-=.(Ⅱ)由(Ⅰ)可得12nna-=,221log2n nb a n+==,所以111111()2(22)41n nb b n n n n+==-++,所以12111111134()21241223144n n n n T n n n -+=+⨯-+-++-=--++. 【点睛】本题主要考查了等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于n n n b a c +=,其中{}n a 和{}n b 分别为特殊数列,裂项相消法类似于()11+=n n a n ,错位相减法类似于n n n b a c ⋅=,其中{}n a 为等差数列,{}n b 为等比数列等.18.某种工程车随着使用年限的增加,每年的维修费用也相应增加.根据相关资料可知该种工程车自购入使用之日起,前5年中每年的维修费用如下表所示:(Ⅰ)从这5年中随机抽取2年,求至少有1年维修费用高于2万元的概率; (Ⅱ)求y 关于x 的线性回归方程;(Ⅲ)由于成本因素,若年维修费用高于6万元,则该种工程车需强制报废,根据(Ⅱ)中求得的线性回归方程,预测该种工程车最多可以使用多少年?参考公式:1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx ====---==--∑∑∑∑,x b y aˆˆ-=. 【答案】(Ⅰ)CF BC ⊥;(Ⅱ)ˆ0.430.71y x =+;(Ⅲ)12年.【解析】(Ⅰ)根据古典概型概率计算公式可得11232225C C C C P +=;(Ⅱ)将表中数据与公式相结合可得ˆ0.430.71y x =+;(Ⅲ)令0.430.716x +≤,可得结果.【详解】(Ⅰ)由题可得第4年与第5年的维修费用高于2万元,则至少有1年维修费用高于2万元的概率11232225C C C 7C 10P +==. (Ⅱ)由题可得1(12345)35x =⨯++++=,1(1.1 1.62 2.5 2.8)25y =⨯++++=,511 1.12 1.6324 2.55 2.834.3i ii x y==⨯+⨯+⨯+⨯+⨯=∑,521149162555ii x==++++=∑,所以5152221534.3532ˆ0.4355535i ii ii x y x ybxx ==--⨯⨯===-⨯-∑∑,ˆˆ20.4330.71a b y x =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ0.430.71yx =+. (Ⅲ)令0.430.716x +≤,可得131243x ≤,又*N x ∈,所以12≤x , 故该种工程车最多可以使用12年. 【点睛】本题主要考查了古典概型概率计算公式的应用以及线性回归方程的求法及应用,属于中档题.19.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AB CD ∥,AD AB ⊥, 2PA AD CD AB ===,F 为CD 的中点,点E 在线段PC 上,且(01)PEk k PC=<<.(Ⅰ)若12k =,求证:平面BEF ⊥平面CDP ; (Ⅱ)若二面角E BD P --的余弦值为}{n a ,求k 的值. 【答案】(Ⅰ)见解析; (Ⅱ)31=k . 【解析】(Ⅰ)通过证明四边形ABFD 是平行四边形可得BF CD ⊥,通过CD ⊥平面PAD 可得PD CD ⊥即CD EF ⊥,再得线面垂直最后得面面垂直;(Ⅱ)建立如图所示的空间直角坐标系A xyz -,设1AB =,分别求出面PBD 的法向量(2,1,1)m =,平面BDE 的一个法向量为31(2,1,)1k n k -=-,根据余弦值为}{n a 即可得结果. 【详解】(Ⅰ)因为AD AB ⊥,AB CD ∥,所以AD CD ⊥. 因为2CD AB =,F 为CD 的中点,所以AB DF =, 又AB CD ∥,所以四边形ABFD 是平行四边形,所以BFAD ,所以BF CD ⊥.因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,因为A PA AD = ,所以CD ⊥平面PAD ,因为PD ⊂平面PAD ,所以PD CD ⊥, 因为12PE PC =,所以E 为PC 的中点, 又F 为CD 的中点,所以EF PD ∥,所以CD EF ⊥, 又BF EF F =I ,所以CD ⊥平面BEF , 因为CD ⊂平面CDP ,所以平面BEF⊥平面CDP .(Ⅱ)由题可知AB ,AD ,AP 互相垂直,分别以AB ,AD ,AP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A xyz -,设1AB =,则2PA AD CD ===,则(1,0,0)B ,(0,2,0)D ,(0,0,2)P ,(2,2,0)C ,所以(2,2,2)PC =-, 因为(01)PEk k PC=<<,所以(2,2,2)PE k PC k k k ==-,所以(2,2,22)E k k k -, 设平面PBD 的法向量为(,,)m x y z =,因为(1,0,2)PB =-,(0,2,2)PD =-,所以20220m PB x z m PD y z ⎧⋅=-=⎨⋅=-=⎩,令2x =,可得1y z ==,所以平面PBD 的一个法向量为(2,1,1)m =. 设平面BDE 的法向量为(,,)n a b c =,因为(1,2,0)BD =-,(21,2,22)BE k k k =--,所以20(21)2(22)0n BD a b n BE k a kb k c ⎧⋅=-+=⎨⋅=-++-=⎩, 令2a =,可得1b =,311k c k -=-,所以平面BDE 的一个法向量为31(2,1,)1k n k -=-.因为二面角E BD P --的余弦值为}{n a,所以31|41||cos ,|6k m n -++〈〉== 化简可得23830k k +-=,解得3k =-或31=k , 又01k <<,所以31=k . 【点睛】本题主要考查了面面垂直的判定,已知二面角的余弦值求参数的值,解题的关键是求出面的法向量,属于中档题.20.已知椭圆:C 22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,右顶点为A ,离心率为12,过点2F 且不与x 轴重合的直线l 交椭圆C 于M ,N 两点,当直线l x ⊥轴时,1F MN △的面积为3. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线'l 的方程为4x =,直线AM 交直线'l 于点P ,直线AN 交直线'l 于点Q ,线段PQ 的中点为H ,试判定2F H MN ⋅是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(Ⅰ)13422=+y x ;(Ⅱ)见解析.【解析】(Ⅰ)根据离心率可得12c a =,求出点M 纵坐标,得1F MN △的面积为212232b c a⨯⨯⨯=,解出,,a b c 即可得椭圆方程;(Ⅱ)当直线l x ⊥轴时,易知20F H MN ⋅=,当斜率存在时,设直线l 的方程为(1)(0)y k x k =-≠,设11(,)M x y ,22(,)N x y ,(4,)P P y ,(4,)Q Q y ,利用三点共线可得1122P y y x =-,2222Q y y x =-,联立直线与椭圆方程结合韦达定理可得32P Qy y k+=-,得H 点坐标,代入即可得结论.【详解】(Ⅰ)设1(,0)F c -,2(,0)F c , 因为椭圆C 的离心率为12,所以12c a =,即2a c =,又222a b c =+,所以b =,当直线l x ⊥轴时,假设点0(,)M c y位于第一象限,则20y ba==,因为1F MN △的面积为3,所以212232b c a ⨯⨯⨯=,即23232c c c ⨯=,解得1c =,所以2a =,b =C 的标准方程为13422=+y x .(Ⅱ)当直线l x ⊥轴时,根据对称性易知20F H MN ⋅=. 由(Ⅰ)可得(2,0)A ,)0,1(2F ,当直线l 的斜率存在且不为0时,设直线l 的方程为(1)(0)y k x k =-≠.设11(,)M x y ,22(,)N x y ,(4,)P P y ,(4,)Q Q y ,则11=(2,)AM x y -,(2,)P AP y =, 因为M ,A ,P 三点共线,所以AM AP ,所以112(2)0P y y x --=,即1122P y y x =-.同理可得2222Q y y x =-,因为线段PQ 的中点为H ,所以(4,)2P Qy y H +. 将(1)=-y k x 代入13422=+yx ,消去y 可得01248)43(2222=-+-+k x k x k ,所以2122834k x x k +=+,212241234k x x k -=+, 所以121221122112121212(2)(2)(1)(2)(1)(2)222(2)(2)2()4P Qy y y y y x y x k x x k x x x x x x x x x x +-+---+--=+===-----++2222121222121222824244[23()4]33434412162()443434k k k x x x x k k k k k x x x x kk k --+-++++=⋅=---++-+++,所以3(4,)H k-,故23(3,)F H k =-, 又21212121(,)(,)MN x x y y x x kx kx =--=--, 所以2212133()()0F H MN x x kx kx k⋅=---=.综上所述,20F H MN ⋅=,故2F H MN ⋅是定值,该定值为0. 【点睛】本题主要考查了通过,,a b c 求椭圆的方程,直线与椭圆相交时交点的坐标,计算量较大,属于难题.21.已知函数()(32)e 2x f x x ax =---,其中e 为自然对数的底数. (Ⅰ)若函数()f x 在]1,2[-上是单调函数,求实数a 的取值范围;(Ⅱ)若对于任意的[0,)x ∈+∞,不等式()1f x ax ≤+恒成立,求实数a 的取值范围. 【答案】(Ⅰ)(,e][,)e-∞-+∞; (Ⅱ)),21[+∞.【解析】(Ⅰ)函数单调等价于()0f x '≤恒成立或()0f x '≥恒成立,利用分离参数的思想,令()(12)e xg x x =-,对()g x 进行求导,求出其最值即可;(Ⅱ)原题等价于(32)e 230x x ax ---≤,令()(32)e 23x t x x ax =---,对其二次求导求出最值即可.【详解】(Ⅰ)由题可得()2e (32)e (12)e x x xf x x a x a '=-+--=--,因为函数()f x 在]1,2[-上是单调函数,所以当[2,1]x ∈-时,()0f x '≤恒成立或()0f x '≥恒成立,即当[2,1]x ∈-时,(12)e 0x x a --≤恒成立或(12)e 0xx a --≥恒成立,所以当[2,1]x ∈-时,max [(12)e ]x a x ≥-或min [(12)e ]xa x ≤-.令()(12)e xg x x =-,21x -≤≤,则()(12)e x g x x '=--,令()0g x '>,可得122x -≤<-;令()0g x '<,可得112x -<≤, 所以函数()g x 在1[2,)2--上单调递增,在1[,1]2-上单调递减,所以max 1()()2g x g =-=. 又25(2)eg -=,(1)e g =-,所以(2)(1)g g ->,所以min ()(1)e g x g ==-,所以a ≥a e ≤-,故实数a 的取值范围为(,e][,)e-∞-+∞. (Ⅱ)()1f x ax ≤+可化为(32)e 230x x ax ---≤,令()(32)e 23xt x x ax =---,0≥x ,因为对于任意的[0,)x ∈+∞,不等式()1f x ax ≤+恒成立,所以max ()0t x ≤, 易得()(12)e 2xt x x a '=--,令()(12)e 2xh x x a =--,0≥x ,则()(12)e 0xh x x '=--<, 所以函数()t x '在[0,)+∞上单调递减,(0)12t a '=-, ①当21≥a 时,021≤-a ,所以()(0)0t'x t'≤≤,所以函数)(x t 在[0,)+∞上单调递减,所以()(0)330t x t ≤=-=,即max ()0t x ≤,符合题意; ②当12a <时,120a ->,所以存在00x >,使得0()0t'x =, 当),0[0x x ∈时,()0t x '>,所以函数)(x t 在0[0,)x 上单调递增, 因为(0)0t =,所以当),0(0x x ∈时,()0t x >,不符合题意. 综上所述,21≥a ,故实数a 的取值范围为),21[+∞. 【点睛】本题主要考查了导数与函数单调性的关系,已知单调性求参数,利用导数证明不等式,综合性较强,有一定难度. 22.选修4-4:坐标系与参数方程已知直线l 的参数方程为315(45x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin4cos 0ρθθ-=.(Ⅰ)求直线l 的普通方程及曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于A ,B 两点,求线段AB 的长. 【答案】(Ⅰ)4340x y --=,24y x =.(Ⅱ)254. 【解析】(Ⅰ)消去参数t 可得直线l 的普通方程,将cos x ρθ=,sin y ρθ=代入极坐标方程可得曲线C 的直角坐标方程;(Ⅱ)将直线的参数方程代入抛物线方程,根据参数的几何意义将12|||t t |AB =-和韦达定理相结合即可得结果. 【详解】(Ⅰ)将315(45x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数)消去参数t 可得4(1)3x y -=,即4340x y --=, 故直线l 的普通方程为4340x y --=. 由2sin4cos 0ρθθ-=可得0cos 4sin 22=-θρθρ,把cos x ρθ=,sin y ρθ=代入上式,可得042=-x y ,即24y x =, 故曲线C 的直角坐标方程为24y x =.(Ⅱ)将31545x t y t ⎧=+⎪⎪⎨⎪=⎪⎩代入24y x =,可得2415250t t --=,设点A ,B 对应的参数分别为1t ,2t ,则12154t t +=,12254t t =-,所以1225||||4AB t t =-===, 故线段AB 的长为254. 【点睛】本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题23.选修4-5:不等式选讲 已知函数()|2|f x x =+.(Ⅰ)求不等式()2|1|f x x ≤+-的解集;(Ⅱ)若关于x 的不等式()|2|1f x x a ++≤有解,求实数a 的取值范围.【答案】(Ⅰ)1(,]2-∞; (Ⅱ)13[,]22.【解析】(Ⅰ)分2x -≤,21x -<<,1x ≥三段去绝对值解不等式,再取并集即可;(Ⅱ)不等式()|2|1f x x a ++≤有解⇔min (|2||2|)1x x a +++≤,再根据绝对值三角不等式求得最小值代入可解得. 【详解】(Ⅰ)()2|1|f x x ≤+-可化为|2||1|2x x +--≤,当2x -≤时,|2||1|2x x +--≤可化为212x x --+-≤,解得2x -≤; 当21x -<<时,|2||1|2x x +--≤可化为212x x ++-≤,解得122x -<≤; 当1x ≥时,|2||1|2x x +--≤可化为212x x +-+≤,无解. 综上,12x ≤,故不等式()2|1|f x x ≤+-的解集为1(,]2-∞.(Ⅱ)()|2|1f x x a ++≤即|2||2|1x x a +++≤,因为关于x 的不等式()|2|1f x x a ++≤有解,所以min (|2||2|)1x x a +++≤. 因为|2||2||(2)(2)||22|x x a x x a a +++≥+-+=-, 所以|22|1a -≤,即1221a -≤-≤,解得1322a ≤≤. 故实数a 的取值范围为13[,]22. 【点睛】本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

2019届四川省教考联盟高三第三次诊断性考试理科综合试题(详细答案)【精编】

2019届四川省教考联盟高三第三次诊断性考试理科综合试题(详细答案)【精编】
电流计 指针偏转 幅度将保 持不 变
B。
D。
溶 液 中 Cu2+穿 过交换 膜发 生迁 移 外 电路 转移 的 电子最 多为 0.02mol
⒔ 已舡
p[锷 g[瞿 室 温 ⒎ 向 凵 O耐 L ]=丬 ]。 HX溶 液 中 滴 加 10mol/L NaOH溶 液 ,溶 液 pH随
O。
p[:畏
A。
掣?]变 化关 系如 图
。下歹 刂 说法 不 正 确 的是
溶 液 中水 的 电离程度 :a(b(c 图 中 b点 坐 标 为 (O,4,75) C。 c点 溶 液 中 :c(N扩 )=1Oc(HX) l 75 D。 室温 下 HX的 电离 常数 为 10⒋ 二、 选择题 :本 题 共 8小 题 ,每 小题 6分 ,共 48分 。在 每小题 给 出的 四个选项 中 ,第 14~18题 只有 一项 符合题 目要 求 ,第 19~21题 有 多项 符 合题 目要 求 。全 部选 对 的得 6分 ,选 对 但 不 全 的得 3分 ,有 选错 的得 0分 。 14.某 自行 车爱好 者 在水平 面上 以 如 图姿势长 时 间保持静 止 ,在 保 持静止状 态 中 ,下 列说 法 正 确 的是 A。 地 面对 自行 车有 向右 的摩擦 力 B。 地 面对 自行 车有 向左 的摩擦 力 C。 地 面对 自行 车 的支持力 小 于人 和 自行 车重力 之 和 D。 人对 自行 车 的作 用力 竖 直 向下 15.某 种 高速 带 电粒子 流 ,具 有较 强 的穿 透 能力 。如 图虚 线 为 该 粒 子 流 在 气 泡 室 中穿透 一 张黑纸 的粒 子 径 迹 照 片 ,气 泡 室 里 有 垂 直 纸 面 的匀 强 磁 场 ,不 计 粒 子重力 及粒 子 间相 互 作 用 ,下 列说法 正 确 的是 A。 磁场 方 向一 定垂 直纸 面 向里 B。 磁场方 向 一 定垂 直 纸 面 向外 C。 粒子 一 定从 左 向右穿越 黑 纸 黑纸 D。 粒 子 一 定从 右 向左 穿越 黑纸 16.⒛ 18年 12月 12日 16:45,“ 嫦 娥 四号 ” 以 2,4O km/s速 度 在 地 月 转 移 轨 道 上 飞 临 距 月 面 129km处 ,此 时发动机 点火 ,约 5min后 发 动 机 正 常关 机 ,“ 嫦 娥 四号 ” 顺 利 被 月 球 捕 获 ,成 为 距 月球 表 面 1OO km的 环 月卫 星 。若 已知地 球 质量是 月球 质量 的 81倍 ,地 球 半径 为月球半 径 的 4倍 ,地 球半 径 R=6。 4× 106m,根 据 以上 信 息下列说法 正 确 的是 “ ” A。 发 动机点火后对 嫦 娥 四号 进 行加速 “ ” B。 嫦娥 四号 在近月轨道 上 的运行速 度 约为 2。 4km/s “ ” C。 嫦 娥 四号 在开 动发动机被 月球捕 获过程 中的加速度 大小 约 为 2。 4m/s2 “ ” D。 嫦 娥 四号 在开动 发动机 被月球捕 获过程 中的加速度 大小 约为 6m/s2 一摸三诊 ・ 三诊 ・ 教考联盟 ・ 理科综合试题 第 3页 (共 12页 )

2019届四川省教考联盟高三第三次诊断性考试理科综合试题(详细答案)

2019届四川省教考联盟高三第三次诊断性考试理科综合试题(详细答案)

一项 符合题 目要 求 ,第 19~21题 有 多项 符 合题 目要 求 。全 部选 对 的得 6分 ,选 对 但 不 全 的得
3分 ,有 选错 的得 0分 。
14.某 自行 车爱好 者 在水平 面上 以如 图姿势长 时 间保持静 止 ,在 保 持静止状 态
中 ,下 列 说 法 正 确 的是
A。 地 面对 自行 车有 向右 的摩 擦 力
两种 电压状态 0和 2V,触 发 器 的转换规 则是 :交 流 电压数值 小 于古 时输 出为 0,交 流 电压 数
值 大 于舌 时输 出为 2V。 以下说 法 正确 的是

A。 丙 图中的电压有效值为 2.0V C。 丙 图中的电压有效值约为 1.4V
B。 丙 图 中的 电压有效值约为 1.6V D。 丙 图 中的 电压有效值约为 1.3V
可能用到 的相 对原子质量 :H— 1 C— 12 0-16 Na-23 ⒏—28 K— 39 Ca— 40
-、 选 择题 :本 题 共 13小 题 ,每 小题 6分 ,共 78分 。在 每 小题 给 出的 四个 选 项 中 ,只 有 一项 是 符
合题 目要 求 的 。 1.下 列 有 关 遗 传 与 变 异 的叙 述 ,正 确 的是
秘 密 ★ 启 用前 【考试 时 间 :2019年 4月 9日 9:00~11:30】
高中 zO19届 毕业班第三次诊断性考试
理科综合能力测试
本试 卷共 12页 ,满 分 300分 。考试 用 时 15O分 钟 。
注意事项 : 1.答 卷 前 ,考 生务 必将 自己的姓 名 、准考证 号填 写在 答题 卡 上 。
C
比较 Cu2+与 NH3、 向硫酸铜溶 液 中滴 加 稀 氨 水 ,观 察 溶 液 颜 色 变 化 ;再 加 人 乙

四川省宜宾市高三第三次诊断性考试数学(理)试题(解析版)

四川省宜宾市高三第三次诊断性考试数学(理)试题(解析版)

四川省宜宾市高三第三次诊断性考试数学(理)试题一、单选题1.已知集合,则()A.B.C.D.【答案】A【解析】解不等式,可得集合A和集合B,根据交集运算即可求得。

【详解】解一元一次不等式得,即A集合为,解一元二次不等式得,即B集合为,即故选:A.【点睛】本题考查了集合交集的简单运算,属基础题.2.如图,在边长为的正方形内随机地撒一把豆子,落在正方形内的豆子粒数为,落在阴影内的豆子粒数为,据此估计阴影的面积为()A.B.C.D.【答案】A【解析】由已知求出正方形面积,根据几何概型的概率公式,即可得到结论.【详解】正方形面积为,设阴影部分面积为S,则 ,得故选:A . 【点睛】本题主要考查几何概型概率公式的简单应用,属于基础题. 3.设是空间两条直线,则“不平行”是“是异面直线”( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】直线不平行,也可能相交;根据异面直线的定义可知直线异面则一定不平行,即可判断出结论. 【详解】 由是异面直线⇒不平行.反之若直线不平行,也可能相交.所以“不平行”是“是异面直线”的必要不充分条件.故选:B . 【点睛】本题考查了异面直线的性质、充分必要条件的判定方法,属于基础题. 4.已知函数,若函数是的反函数,则( ) A .1 B .2C .3D .4【答案】B【解析】根据反函数定义求出的反函数,然后依次求函数值得答案.【详解】 由函数,得,把x 与y 互换,可得,即,∴ ,则.故选:B 【点睛】本题考查函数的反函数的求法,函数值的求解,属于基础题。

5.欧拉公式:cos sin (ixe x i x i =+为虚数单位),由瑞士数学家欧拉发明,它建立了三角函数与指数函数的关系,根据欧拉公式,22()i e π=( ) A .1 B .1-C .iD .i -【答案】B【解析】由题意将复数的指数形式化为三角函数式,再由复数的运算化简即可得答案。

2020届高考数学(理)一轮必刷题 专题45 立体几何中的向量方法(解析版)

2020届高考数学(理)一轮必刷题 专题45 立体几何中的向量方法(解析版)

考点45 立体几何中的向量方法1.(辽宁省沈阳市2019届高三教学质量监测三数学理)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,侧面PAB ⊥底面ABCD ,E 为PC 上的点,且BE ⊥平面APC(1)求证:平面PAD ⊥平面PBC ;(2)当三棱锥ABC P -体积最大时,求二面角B AC P --的余弦值.【答案】(1)见证明;(2)3. 【解析】(1)证明:∵侧面PAB ⊥底面ABCD ,侧面PAB底面ABCD AB =,四边形ABCD 为正方形,∴BC AB ⊥,面ABCD ,∴BC ⊥面PAB , 又AP ⊂面PAB , ∴AP BC ⊥,BE ⊥平面APC ,AP ⊂面PAC ,∴BE AP ⊥,B BE BC = ,,BC BE ⊂平面PBC ,∴AP ⊥面PBC ,AP ⊂面PAD ,∴平面PAD ⊥平面PBC . (2)111323P ABC C APB V V PA PB BC PA PB --==⨯⨯⨯⨯=⨯⨯, 求三棱锥ABC P -体积的最大值,只需求PA PB ⨯的最大值.令,PA x PB y ==,由(1)知,PA PB ⊥, ∴224x y +=,而221123323P ABCx y V xy -+=≤⨯=,当且仅当x y ==PA PB ==ABC P V -的最大值为23. 如图所示,分别取线段AB ,CD 中点O ,F ,连接OP ,OF ,以点O 为坐标原点,以OP ,OB 和OF 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系xyz O -. 由已知(0,1,0),(0,1,2),(1,0,0)A C P -,所以(1,1,0),(0,2,2)AP AC ==, 令(,,)n x y z =为面PAC 的一个法向量,则有0220x y y z +=⎧⎨+=⎩,∴(1,1,1)n =-易知(1,0,0)m =为面ABC 的一个法向量, 二面角B AC P --的平面角为θ,θ为锐角则1cos 3n m n m θ⋅===⋅.2.(湖南省长沙市第一中学2019届高三下学期高考模拟卷一数学理)如图所示,圆O 的直径AB =6,C 为圆周上一点,BC =3,平面PAC 垂直圆O 所在平面,直线PC 与圆O 所在平面所成角为60°,PA ⊥PC .(1)证明:AP ⊥平面PBC(2)求二面角P —AB 一C 的余弦值 【答案】(1)见解析.(2) 721. 【解析】(1)由已知可知AC BC ⊥,又平面PAC ⊥平面圆O ,平面PAC 平面圆O AC =,∴BC ⊥平面PAC ,∴BC PA ⊥, 又PA PC ⊥,PC BC C =,PC ⊂平面PBC ,D 平面PBC ,∴PA ⊥平面PBC .(2)法一:过P 作PH AC ⊥于H ,由于平面PAC ⊥平面O ,则PH ⊥平面O ,则PCH ∠为直线PC 与圆O 所在平面所成角,所以60PCH =︒. 过H 作HF AB ⊥于F ,连结PF ,则AB PF ⊥, 故PFH ∠为二面角P AB C --的平面角.由已知60ACP ABC ∠=∠=︒,30CAP CAB ∠=∠=︒,在Rt APC ∆中,sin30cos30sin30PH AP AC =⋅︒=⋅︒⋅︒19224==,由2AP AH AC =⋅得2AP AH AC ==Rt AFH ∆中,sin 30FH AH =︒=,故9tan3PHPFHHF∠===,故cos7PFH∠=,即二面角P AB C--的余弦值为721.法二:过P作PH AC⊥于H,则PH⊥平面O,过H作//HF CB交AB于F,以H为原点,HA、HF、HP分别为x轴、y轴、z轴建立空间直角坐标系.则(0,0,0)H,4A⎛⎫⎪⎪⎝⎭,4B⎛⎫-⎪⎪⎝⎭,90,0,4P⎛⎫⎪⎝⎭,从而94AP⎛⎫= ⎪⎪⎝⎭,(AB=-,设平面PAB的法向量(,,)n x y z=,则9394333AP n x zABn x y⎧⋅=-+=⎪⎨⎪⋅=-+=⎩得zy⎧=⎪⎨=⎪⎩,令1x=,从而(1,3,n=,而平面ABC的法向量为(0,0,1)m=,故3cos,7n mn mn m⋅<>===即二面角P AB C--的余弦值为721.3.(四川省绵阳市2019届高三下学期第三次诊断性考试数学理)如图,在四棱锥P ABCD -中,底面ABCD是菱形,且2PA AD ==,120PAD BAD ∠=∠=︒,E ,F 分别为PD ,BD 的中点,且2EF =.(1)求证:平面PAD ⊥平面ABCD ; (2)求锐二面角E AC D --的余弦值.【答案】(1)见解析;(2)5【解析】(1)过P 作PO ⊥AD ,垂足为O ,连结AO ,BO , 由∠PAD=120°,得∠PAO=60°,∴在Rt △PAO 中,PO=PAsin ∠PAO=2sin60°=2×2∵∠BAO=120°,∴∠BAO=60°,AO=AO ,∴△PAO ≌△BAO ,∴∵E ,F 分别是PA ,BD 的中点,EF=2EF 是△PBD 的中位线,∴,∴PB 2=PO 2+BO 2,∴PO ⊥BO ,∵AD∩BO=O ,∴PO ⊥平面ABCD ,又PO ⊂平面PAD ,∴平面PAD ⊥平面ABCD .(2)以O 为原点,OB 为x 轴,OD 为y 轴,OP 为z 轴,建立空间直角坐标系, A (0,1,0),P (0,0,B0,0),D (0,3,0),∴E (0,32,F302,),AE =(0,12,AF =12,0),易得平面ABCD 的一个法向量m =(0,0,1),设平面ACE 的法向量n =(x ,y ,z ),则1AE y z 02231AF x y 022n n ⎧⋅=+=⎪⎪⎨⎪⋅=+=⎪⎩,取x=1,得n =(1,1),设锐二面角的平面角的大小为θ,则cosθ=|cos <,m n >|=m nm n⋅⋅=,∴锐二面角E-AC-D.4.(四川省宜宾市2019届高三第三次诊断性考试数学理)如图,在四棱锥中,,平面,二面角为为中点.(1)求证:;(2)求与平面所成角的余弦值.【答案】(1)证明见解析;(2). 【解析】(1)证明:作SA中点F,连接EF∵E为SD中点∴∵∴∴得平行四边形∴∵平面∴为二面角的平面角∴∵∴∴∴(2)作AB中点O,由(1)知∵∴平面如图建立空间直角坐标系设,则∴设平面SCD 的法向量,得令 ,则∵∴∴∴AB 与平面所成角的余弦值为.5.(安徽省黄山市2019届高三毕业班第三次质量检测数学理)如图,在以,,,,,A B C D E F 为顶点的五面体中,面ABEF 为正方形,AF =,90AFD ︒∠=,且二面角E AF D --与二面角C BE F --都是30.(1)证明:⊥AF 平面EFDC ;(2)求直线BF 与平面BCE 所成角的正弦值. 【答案】(1)证明见解析;(2)42. 【解析】 (1)面ABEF 为正方形∴ΑF FE ⊥又90AFD ∠=∴ΑF DF ⊥,而DF FE F ⋂=,DF ⊂面EFDC ,⊂EF 面EFDC∴ΑF ⊥面EFDC(2)⊂AF ABEF ,则由(1)知面EFDC ⊥平面ΑΒΕF ,过D 作DG ΕF ⊥,垂足为G ,∴DG ⊥平面ΑΒΕF .以G 为坐标原点,GF uu u r的方向为x 轴正方向,GD 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(1)知DFE ∠为二面角E AF D --的平面角,故DFE 30∠=,又AF =,则2DF =,GF =AF =()B -,()E -,)F.由已知,//AB EF ,∴//AB 平面EFDC .又平面ABCD平面EFDC DC =,故//AB CD ,//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,∴C F ∠E 为二面角C BE F --的平面角,30C ΕF ∠=.∴()C -. ∴()3,0,1ΕC=,()ΕΒ=,()BF =-.设(),,n x y z =是平面ΒC Ε的法向量,则C 00n n ⎧⋅E =⎨⋅EB =⎩,即00z +==⎪⎩,∴可取(1,0,n = .则43sin cos ,446BF n BF n BF nθ⋅=<>===⨯. ∴直线BF 与平面BCE 所成角的正弦值为42 .6.(湖南省师范大学附属中学2019届高三考前演练(五)数学(理)在五边形AEBCD 中,BC CD ⊥,C //D AB ,22AB CD BC ==,AE BE ⊥,AE BE =(如图).将△ABE 沿AB 折起,使平面ABE ⊥平面ABCD ,线段AB 的中点为O(如图).(1)求证:平面ABE ⊥平面DOE ;(2)求平面EAB 与平面ECD 所成的锐二面角的大小. 【答案】(1)见解析(2)45° 【解析】(1)由题意2AB CD =,O 是线段AB 的中点,则OB CD =.又//CD AB ,则四边形OBCD 为平行四边形,又BC CD ⊥,则AB OD ⊥, 因AE BE =,OB OA =,则EO AB ⊥.EO DO O =,则AB ⊥平面EOD.又AB Ì平面ABE ,故平面ABE ⊥平面EOD.(2)由(1)易知OB ,OD ,OE 两两垂直,以O 为坐标原点,以OB ,OD ,OE 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系O xyz -, △EAB 为等腰直角三角形,且AB=2CD=2BC , 则OA OB OD OE ===,取1CD BC ==,则O (0,0,0),A (-1,0,0),B (1,0,0),C (1,1,0),D (0,1,0), E (0,0,1),则1CD =-(,0,0),011DE =-(,,), 设平面ECD 的法向量为n x y z =(,,), 则有取0,0,n CD n DE ⎧⋅=⎨⋅=⎩0,0,x y z -=⎧⎨-+=⎩1z =,得平面ECD 的一个法向量011n =(,,), 因OD ⊥平面ABE.则平面ABE 的一个法向量为010OD =(,,), 设平面ECD 与平面ABE 所成的锐二面角为θ,则,cos cos OD n θ===因为0(0,90)θ∈,所以045θ=,故平面ECD 与平面ABE 所成的镜二面角为45°.7.(河北省保定市2019年高三第二次模拟考试理)如图,已知四棱锥中,四边形ABCD 为矩形,AB =2BC SC SD ===,BC SD ⊥.(1)求证:SC ⊥平面SAD ; (2)设12AE EB =,求平面SEC 与平面SBC 所成的二面角的正弦值.【答案】(1)见证明;(2【解析】(1)证明: BC ⊥SD ,BC ⊥CD 则BC ⊥平面SDC, 又//BC AD 则AD ⊥平面SDC ,SC ⊂平面SDC SC ⊥AD又在△SDC 中,SC=SD=2, DC=AB SC 2+SD 2=DC 2则SC ⊥SD ,又SD AD D =所以 SC ⊥平面SAD(2)解:作SO⊥CD于O,因为BC⊥平面SDC, 所以平面ABCD⊥平面SDC,故SO⊥平面ABCD 以点O为原点,建立坐标系如图.则),C(0,0), A(2,,0),B(2,0)设E(2,y,0),因为12 AE EB=所以1),23y y y+=∴=-即E((2,3-,0)42=(0,2,-2),(2,-,0),=(2,0,0)SC CE CB==(,,),=(,b,c)SEC n x y z SBC m a设平面的法向量为平面的法向量为22=0·=0,·=02=03zSC nCE n x y⎧⎧⎪∴⇒⎨⎨-⎩⎪⎩令3z=,则3y=,23x==(22,3,3)n∴·=0·=0SC mCB m⎧∴⇒⎨⎩20a==⎪⎩,令1b=,则1c=,0a=8.(陕西省西安市2019届高三第三次质量检测理)如图,在三棱柱111ABC A B C-中,AB⊥平面11BB C C,E是1CC的中点,1BC=,12BB=,160BCC∠=°.=(0,1,1)∴vmcos<,>=13||||∴u r ru r r gu r rm nm nm n(1)证明:1B E AE ⊥;(2)若AB =11A B E A --的余弦值.【答案】(1)证明见解析;(2【解析】解:(1)证明:连接1BC ,BE , 因为在中,1BC =,112CC BB ==,160BCC ∠=°.所以1BC BC ⊥. 所以1112BE CC ==,因为1B E ==所以1B E BE ⊥,又AB ⊥平面11BB C C ,且1B E ⊂平面11BB C C , 所以1B E AB ⊥,AB BE B ⋂=, 所以1B E ⊥平面ABE , 因为AE ⊂平面ABE , 所以1B E AE ⊥.(2)以B 为原点建立如图所示空间直角坐标系,则(A,()1B -,12E ⎛⎫⎪ ⎪⎝⎭,(1A -,所以13,2B E ⎛⎫= ⎪ ⎪⎝⎭,(1AB =-,13,2A E ⎛= ⎝,设平面1AB E 的法向量为(),,n x y z =r,设平面11A B E 的法向量为(),,m a b c =,则1100{{y B E n AB n x -=⋅=⇒⋅=+=,取(1,3,n =,则1100{{30y B E m A m a E -=⋅=⇒⋅=-=,取()1,3,0m =.所以cos ,26m n n m m n ⋅〈〉===⋅⨯,即二面角11A B E A --. 9.(河南省重点高中2019届高三4月联合质量检测数学理)在四棱锥中,底面为平行四边形,平面平面,是边长为4的等边三角形,,是的中点.(1)求证:; (2)若直线与平面所成角的正弦值为,求平面与平面所成的锐二面角的余弦值.【答案】(1)见证明;(2)【解析】(1)因为是等边三角形,是的中点,所以.又平面平面,平面平面,平面,所以平面.所以,又因为,,所以平面.所以.又因为,所以.又且,平面,所以平面.所以.(2)由(1)得平面.所以就是直线与平面所成角.因为直线与平面所成角的正弦值为,即,所以.所以,解得.则.由(1)得,,两两垂直,所以以为原点,,,所在的直线分别为,,轴,建立如图所示的空间直角坐标系,则点,,,,所以,.令平面的法向量为,则由得解得令,可得平面的一个法向量为;易知平面的一个法向量为,设平面与平面所成的锐二面角的大小为,则.所以平面与平面所成的锐二面角的余弦值为.10.(天津市北辰区2019届高考模拟考试数学理)如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点(I )求证:平面; (II )求二面角的正弦值;(III )设为棱上的点,若直线和平面所成角的正弦值为,求的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宜宾市普通高中2016级高考模拟考试题
数学(理工类)参考答案
一、选择题: ACADB ,DDACB ,CA 二、填空题:13.
;14. 8;15. 3;
16.
三、解答题:
17. ⑴①1n =时,1113
1,22a a a =-∴= ………………………………………………2分
②2n ≥时,1133
1,1,22
n n n n S a S a --=-∴=-Q …………………………………………4分
1133
,322n n n n n a a a a a --∴=-∴= …………………………………………6分
0,n a ∴≠ …………………………………………7分 1
3,{}n
n n a a a -∴
=∴是等比数列 ……………………………8分 ⑵ 由(1)知1{}2,3,n a a q ==是等比数列,公比
123n n a -∴=⨯ ………………………………………………10分
2
(,)33
x n n a y ∴=⨯点都在曲线上,
2
33
x y =⨯Q 曲线上任意两点确定的线段,除端点外都在该曲线上方,
即无三点共线. ∴不存在三项成等差数列 .…………………………………12分
10.0320.0230.0240.0350.0460.0570.08x =⨯+⨯+⨯+⨯+⨯+⨯+⨯80.1590.21+⨯+⨯
100.368+⨯=(分); ………………………………3分
⑵①设A 表示事件:“1位观众评分不小于8分”,B 表示事件:“1位观众评分是10分”, ()()()
0.361
/0.150.210.362
P AB P B A P A ∴=
=
=++, …………………………………6分
19.(1) 证明:作SA F 中点,连接EF
E Q 为SD 中点,1//,2
EF AD ∴= ………1分 1////,2
B C A D E F B C ∴==Q //BCEF CE BF ∴∴Y 得, ………3分
AD ⊥Q 平面ABS ,
SAB ∴∠为二面角B AD S --的平面角,
SAB ∴∠=60︒, ………4分
AB AS BA BS BF SA =∴=∴⊥Q ,,
CE SA ∴⊥ ………6分
(2) 作AB O 中点,由(1)知,SO AB SO AD ⊥
⊥,
AB AD D SO ABCD =∴⊥Q I ,平面 ………7分 如图建立空间直角坐标系O xyz -,设1BC =,则
(1,1,0),(1,2,0),S C D - (2,1,0),(1,1CD CS ∴=-=--u u u r u u r
1122 由214,
2
y x x m y ⎧=⎪⎨=+⎪⎩得: 21480y m y --=
设11,)A
x y (,22,)C x y (,则1214y y m += ……………………………………6分 ∴12M y m =,又2122M x m =+,即211(22,2)M m m +
同理可得: 222(22,2)N m m +…………………………………………………8分
∴211222
2112
221
022(22)MN m m k m m m m m m -==+≠+-++()() ∴21112
1
:2(22)MN y m x m m m -=
--+,
即1212
1
(22)y x m m m m =
-++ ……………………………………10分
12,l l Q 的斜率之积为2-,∴
12112m m ⋅=- 即1212
m m =- ∴12
1
:(3)MN y x m m =
-+ 即直线MN 过定点(3,0).…………………11分
当12121200,0,(3,0)m m m m m m MN +=><=
=时,不妨设则也过点 综上,即直线MN 过定点(3,0).…………………12分
21.解:⑴()e (e 1),()00ax ax f x a a a f x x ''=-=-==由,得…………………………1分 ①010e 1,()0ax a x f x ︒'>>>∴>时,时,
20e 1,()0ax x f x ︒'<<∴<时, …………………………2分
②010e 1,()0ax a x f x ︒'<><∴>时,时,
20e 1,()0ax x f x ︒'<>∴<时, …………………………3分
综上,()f x 的增区间是[0,)+∞,减区间是(,0)-∞ ……………………4分 ⑵由⑴知,()f x 有两个零点时,
0121
0,(0)e (02)0,2
x x f a a <<=-+<∴>
……………………5分 令1
212112212e
,e ,ln ,ln ,ln 20,ax ax t t ax t ax t t t t t a ====--=则,为方程的两根
令1212()ln 2,,()01g t t t a t t g t t t =--<<<则为的两个零点,
………………6分 12111111(2)()(2)()2ln(2)2(ln 2)g t g t g t g t t t a t t a ∴--=--=-------
11122ln(2)ln t t t =---+……………………8分
令11111()22ln(2)ln ,(0,1),h t t t t t =---+∈则
2
111111111111
2(2)(2)2(1)11()202(2)(2)t t t t t h t t t t t t t --++--'=-++==>---
11()(0,1)()(1)0h t h t h ∴∴<=在上单调递增, ……………………10分
1212(2)()0,(2)()g t g t g t
g t ∴--<-<即 11
()1,(1,)t g t t t t -'=-=∴∈+∞Q 当时,g(t)单调递增
121212(2)1+2+2t t t t t t -∈∞∴-<∴>Q ,(,),,
∴12e +e 2ax ax > ……………………12分 22.解:⑴C
的普通方程22(3)(4x y -+-=
226170x y x ∴+--+= ……..…………3分 C
的极坐标方程26cos sin 170ρρθθ--+= ..…………5分
⑵ 由已知得l 的极坐标方程为3
π
θ=
,
代入26cos sin 170ρρθθ--+=,
得2
9170ρρ-+=2
94170,∴∆=-⨯>
1212ππ
(,),(,),933
A B ρρρρ+=设则 ……..…………7分
D Q 是AB 中点
12099π9
,cos ,22234D D x y ρρρ+∴==∴===D ∴的直角坐标为9(4. 23.⑴解:33,2
()5,2x x f x x x -≥⎧=⎨-+<⎩
⑴由()f x ≤4得,22
,3345x x x x ≥<⎧⎧⎨
⎨-≤-+⎩⎩
或7
,123
x x ≤≤≤<即2或 ()f x ∴≤4的解集为7
[1,]3
⑵ 33,2
()5,2x x f x x x -≥⎧=⎨-+<⎩
,由图象得[3,)A =+∞ ………………………………6分
222
()|||||()()|||g x x m x x m x m m m m
=++-
≥+--=+,
当x m =-时取等号 B ∴2
[||+m m
=+
∞,)
……………8分
A B ⊆Q 222||3||||3,||3||20,1||2m m m m m m m
∴+
≤+≤-+≤≤≤,..…………9分 m ∴的取值范围是[2,1][1,2]--U ………………………………10分。

相关文档
最新文档