人教版七年级数学下册第七章测试卷含答案

合集下载

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。

人教版数学七年级(下册)第七章测试卷(附参考答案)

人教版数学七年级(下册)第七章测试卷(附参考答案)

人教版数学七年级(下册)第七章测试卷1.下列数据中不能确定具体位置的是()A.某市政府位于解放路12号B.小明住在花园小区3号楼7号C.太阳在我们的正上方D.东经102°,北纬25°的城市2.在平面直角坐标系中,若点P的坐标为(-3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列点中,位于直角坐标系第四象限的点是()A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)4.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3)B.(-5,3)或(5,3)C.(3,5)D.(-3,5)或(3,5)5.已知直角坐标系中,点P(x,y)满足x2=4,y3=-27,则点P坐标为()A.(2,-3)B.(-2,3)C.(2,3)D.(2,-3)或(-2,-3)6.如果点M到x轴和y轴的距离相等,则点M横、纵坐标的关系是()A.相等B.互为相反数C.互为倒数D.相等或互为相反数7.经过两点A(2,3)、B(-4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.无法确定8.如图1所示,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()图1A.(4,3)B.(2,4)C.(3,1)D.(2,5)9.如果用(7,2)表示七年级二班,那么八年级三班可表示成.10.将点A(4,3)向平移个单位长度后,坐标变为(6, 3).11.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.12.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标.13.如果点P(x2-4,y+1)是坐标原点,则2x+y=.14.如图2所示,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A’的坐标是.图215.在平面直角坐标系中,分别作出下列各点,并依次连接起来.(0,0),(0,3),(-2,3),(-2,5),(-3,5), (-3,0),(-2,0),(-2,2), (-1,2),(-1,0).(1)观察连接成的图形,这个图形像什么?(2)画出把这个图形向右平移4个单位的图形.并分别写出与上述各点对应的点的坐标.图316.如图4所示,一个七棱锥,把它的展开图放在平面直角坐标系中,若B(3,3),C(4,0).(1)试画出平面直角坐标系;(2)求出其余六个点的坐标.图417.如图5所示,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标;(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.图518.如图6所示,在方格纸内将每个小正方形的边长为1,△ABC经过平移后得到△A’B’C’,图中标出了点B的对应点B’.(1)补全△A’B’C’;(2)△A’B’C’的面积为.图619.如图7所示,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)画出△OBC关于y轴的对称图形△OB’C’;(2)分别写出B、C两点的对应点B’、C’的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M’的坐标.图7参考答案1.C2.B3.D4.D5.D6.D7.A8.D9.(8,3)10.右 211.(8,2)或(-2,2)12.(2,2)(答案不唯一)13.3或-514.(2,3)15.解:(1)如图所示,图形像字母h或椅子 .(2)如图,对应点坐标分别为(4,0),(4,3),(2,3),(2,5),(1,5),(1,0),(2,0),(2,2),(3,2),(3,0).16.解:(1)略.(2)A(0,4),D(1,-3),E(-3,-3),F(-4,0),G(-3,3).17.解:(1)(2,0).(2)(7,0).18.解:(1)略;(2)A’B’C’的面积为8.19.解:(1)图略.(2)B’(-3,-1),C’(-2,1).(3)M’(-x,y).。

【数学】人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)

【数学】人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)

人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)一、选择题(每小题3分,共30分)1. 若有序数对(3a-1,2b+5)与(8,9)表示的位置相同,则a+b的值为( )A. 2B. 3C. 4D. 52. 如图,小手盖住的点的坐标可能为( )A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)第2题第3题3. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标B的位置表示为B(4,150°).用这种方法表示目标C的位置,正确的是( )A. (-3,300°)B. (3,60°)C. (3,300°)D. (-3,60°)4. 把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B 的坐标是( )A. (-5,3)B. (1,3)C. (1,-3)D. (-5,-1)5. 在平面直角坐标系中,点P(2,x2)在( )A. 第一象限B. 第四象限C. 第一或者第四象限D. 以上说法都不对6. 如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )A. 炎陵位于株洲市区南偏东约35°的方向上B. 醴陵位于攸县的北偏东约16°的方向上C. 株洲县位于茶陵的南偏东约40°的方向上D. 株洲市区位于攸县的北偏西约21°的方向上第6题第7题7. 象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是( )A. (-2,1)B. (2,-2)C. (-2,2)D. (2,2)8. 点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是( )A. (-5,3)B. (-5,-3)C. (5,3)或(-5,3)D. (-5,3)或(-5,-3)9. 已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A. 3B. 4C. 5D. 610. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是( )A. (2019,0)B. (2019,1)C. (2019,2)D.(2018,0)二、填空题(每小题3分,共24分)11. 若将7门6楼简记为(7,6),则6门7楼可简记为,(8,5)表示的意义是.12. 平面直角坐标系内有一点P(x,y),若点P在横轴上,则y ;若点P在纵轴上,则x ;若点P为坐标原点,则x 且y .13. 已知A(-1,4),B(-4,4),则线段AB的长为.14. 若点(m-4,1-2m)在第三象限内,则m的取值范围是.15. 如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB.若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为.第15题第16题16. 如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN.若点A(-1,3)的对应点为M(2,5),则点B(-3,-1)的对应点N的坐标是.17. 已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是,点B坐标是,点C坐标是.第17题第18题18. 如图,在平面直角坐标系中,A,B的坐标分别为(3,0),(0,2),将线段AB平移至A1B1,则a+b的值为.三、解答题(共66分)19. (8分)如图是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?20. (8分)如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.21. (9分)某次海战中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?22. (9分)在平面直角坐标系中,描出点A(-1,3),B(-3,1),C(-1,-1),D(3,1),E(7,3),F(7,-1),并连接AB,BC,CD,DA,DE,DF,形成一个图案.(1)每个点的横坐标保持不变,纵坐标变为原来的一半,再按原来的要求连接各点,观察所得图案与原来的图案,发现有什么变化?(2)纵坐标保持不变,横坐标分别增加3呢?23. (10分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大5;(3)点P到x轴的距离为2,且在第四象限.24. (10分)如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一实数a,将得到的点先向右平移m个单位长度,再向上平移n个单位长度(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.25. (10分)如图,A (-1,0),C (1,4),点B 在x 轴上,且AB =3.(1)求点B 的坐标;(2)求三角形ABC 的面积;(3)在y 轴上是否存在点P ,使以A ,人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)2. 如图,、、这三个点中,在第二象限内的有( )A .、、B .、C .、D .3.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)4.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与小华小军小刚1P 2P 3P 1P 2P 3P 1P 2P 1P 3P 1P原图形相比是( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位5.点C 在轴上方,轴左侧,距离轴2个单位长度,距离轴3个单位长度,则点C的坐标为( )A.()B.()C.()D.()6.点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半轴上7.如图所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到P'(4,3)位置,则飞机Q ,R 的位置Q',R'分别为( )A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)9.如图,在方格纸中每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形的面积为1个平方单位,则点C 的个数为( )A.3个B.4个C.5个D.6个10. 如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图 中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据 这个规律,则第 2016 个x y x y 3,23,2--2,3-2,3-点的横坐标为( )A. 44B. 45C. 46D. 47二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.12.在平面直角坐标系中,点(3,-5)在第___象限.13.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为___.14.把面积为10cm 2的三角形向右平移5cm 后其面积为 .15.如图所示,如果点A 的位置为(-1,0),那么点B 的位置为___,点C 的位置为___,点D 和点E 的位置分别为___、___.16.如图,象棋盘中的小方格均为1个长度单位的正方形,如果“炮”的坐标为(-2,1)(x 轴与边AB 平行,y 轴与边BC 平行),则“卒”的坐标为 .17.如图,矩形ABCD 的边AB=6,BC=8,则图中五个小矩形的周长之和为 .18. 如图,正方形的边长为4,点的坐标为(-1,1),平行于轴,则点 的坐标为 __________.(3)ABCD A AB x C三、认真答一答:(本大题共6小题,共66分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19.(10分)如图是某校的平面示意图,已知图书馆、校门口的坐标分别为(-2,2),(2,0).(1)请根据题意在图中建立平面直角坐标系;(2)写出图中其他地点的坐标;(3)在图中标出体育馆(-5,4)的位置.20.(10分)如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B,C,D处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→A(-3,-4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E点.21. (10分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到家里,写出路上他经过的地方.22.(10分)某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?23. (12分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.24.(14分)在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个?(3)探究点(-4,3)在第几个正方形的边上?(-2n,2n)在第几个正方形边上(n 为正整数).参考答案1.D;2.D;3.D;4.D;5.C;6.A;7.A;8.B;9.D;10.B;11.(0,0);12.四;13.(-3,2);14.10cm215.(-2,3)、(0,2)、(2,1)、(-2,1).16.(3,2)17. 2818.(3,5)19.(1)略.(2)行政楼(3,3),实验楼(-3,0),综合楼(-4,-3),信息楼(2,-2).(3)略.20.(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m.(3)略.21.(1)汽车站(1,1),消防站(2,-2)(2)家→游乐场→公园→姥姥家→宠物店→邮局→家22.(1)北偏东40°的方向上有两个目标:敌方战舰B和小岛.要想确定敌方战舰B的位置,还需要知道敌方战舰B距我方潜艇的距离.(2)敌方战舰A和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.23.解:如答图所示,过A,B分别作y轴,x轴的垂线,垂足为C,E,两线交于点D,则C(0,3),D(3,3),E(3,0).又因为O(0,0),A(1,3),B(3,1),所以OC=3,AC=1,OE=3,BE=1.AD=DC-AC=3-1=2,BD=DE-BE=3-1=2.则四边形OCDE 的面积为3×3=9, △ACO 和△BEO 的面积都为×3×1=, △ABD 的面积为×2×2=2, 所以△ABO 的面积为9-2×-2=4. 24.(1)图略,由内到外规律,第1个正方形边上整点个数为4个,第2个正方形边上整点个数为8个,第3个正方形边上整点个数为12,第4个正方形边上整点个数为16个. (2)第n 个正方形边上的整点个数为4n 个,所以第20•个正方形的边上整点个数为4×20=80(个).(3)第7个正方形边上,第4n 个正方形边上.(│-2n│+│2n│=4n ).人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3) 2. 如图,、、这三个点中,在第二象限内的有( )12321232小华小军小刚1P 2P 3PA .、、B .、C .、D .3.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)4.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位5.点C 在轴上方,轴左侧,距离轴2个单位长度,距离轴3个单位长度,则点C的坐标为( )A.()B.()C.()D.() 6.点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上7.如图所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到P'(4,3)位置,则飞机Q ,R 的位置Q',R'分别为( )A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)1P 2P 3P 1P 2P 1P 3P 1P x y x y 3,23,2--2,3-2,3-8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)9.如图,在方格纸中每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,点C也在小方格的顶点上,且以A、B、C为顶点的三角形的面积为1个平方单位,则点C 的个数为()A.3个B.4个C.5个D.6个10. 如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A. 44B. 45C. 46D. 47二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.12.在平面直角坐标系中,点(3,-5)在第___象限.13.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为___.14.把面积为10cm2的三角形向右平移5cm后其面积为.15.如图所示,如果点A的位置为(-1,0),那么点B的位置为___,点C 的位置为___,点D和点E的位置分别为___、___.(3)16.如图,象棋盘中的小方格均为1个长度单位的正方形,如果“炮”的坐标为(-2,1)(x 轴与边AB 平行,y 轴与边BC 平行),则“卒”的坐标为 .17.如图,矩形ABCD 的边AB=6,BC=8,则图中五个小矩形的周长之和为 .18. 如图,正方形的边长为4,点的坐标为(-1,1),平行于轴,则点 的坐标为 __________.三、认真答一答:(本大题共6小题,共66分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19. (10分)如图是某校的平面示意图,已知图书馆、校门口的坐标分别为(-2,2),(2,0). (1)请根据题意在图中建立平面直角坐标系; (2)写出图中其他地点的坐标;(3)在图中标出体育馆(-5,4)的位置.20. (10分)如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4).请根据图中所给信息解决下列问题: (1)A →C ( +3 , +4 );B →C ( +2 , 0 );C → A (-3,-4); (2)如果贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程;(3)如果贝贝从A 处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E 点.ABCD A AB xC21. (10分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到家里,写出路上他经过的地方.22.(10分)某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?23. (12分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.24.(14分)在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个?(3)探究点(-4,3)在第几个正方形的边上?(-2n,2n)在第几个正方形边上(n 为正整数).参考答案1.D;2.D;3.D;4.D;5.C;6.A;7.A;8.B;9.D;10.B;11.(0,0);12.四;13.(-3,2);14.10cm215.(-2,3)、(0,2)、(2,1)、(-2,1).16.(3,2)17. 2818.(3,5) 19.(1)略.(2)行政楼(3,3),实验楼(-3,0),综合楼(-4,-3),信息楼(2,-2). (3)略.20.(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m . (3)略.21.(1)汽车站(1,1),消防站(2,-2)(2)家→游乐场→公园→姥姥家→宠物店→邮局→家22.(1)北偏东40°的方向上有两个目标:敌方战舰B 和小岛.要想确定敌方战舰B 的位置,还需要知道敌方战舰B 距我方潜艇的距离. (2)敌方战舰A 和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.23.解:如答图所示,过A ,B 分别作y 轴,x 轴的垂线,垂足为C ,E ,两线交于点D , 则C (0,3),D (3,3),E (3,0).又因为O (0,0),A (1,3),B (3,1), 所以OC=3,AC=1,OE=3,BE=1. AD=DC-AC=3-1=2, BD=DE-BE=3-1=2.则四边形OCDE 的面积为3×3=9, △ACO 和△BEO 的面积都为×3×1=, △ABD 的面积为×2×2=2, 所以△ABO 的面积为9-2×-2=4. 24.(1)图略,由内到外规律,第1个正方形边上整点个数为4个,第2个正方形边上整点个数为8个,第3个正方形边上整点个数为12,第4个正方形边上整点个数为16个. (2)第n 个正方形边上的整点个数为4n 个,所以第20•个正方形的边上整点个数为123212324×20=80(个).(3)第7个正方形边上,第4n 个正方形边上.(│-2n│+│2n│=4n ).人教版初中数学七年级下册第八章《二元一次方程组》检测卷一、选择题(每小题3分,共30分)1. 若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则m 的取值范围是( ) A. m ≠0 B. m ≠3 C. m ≠-3 D. m ≠22. 方程5x +2y =-9与下列方程构成的方程组的解为⎪⎩⎪⎨⎧=-=212y x 的是( )A. x +2y =1B. 5x +4y =-3C. 3x -4y =-8D. 3x +2y =-83. 用代入法解方程组238,355x y x y ì+=ïïíï-=ïî①②有以下过程,其中错误的一步是( ) (1)由①,得x =8-3y2③;(2)把③代入②,得3×832y--5y =5; (3)去分母,得24-9y -10y =5; (4)解得y =1,再由③,得x =2.5.A. (1)B. (2)C. (3)D. (4)4. 方程组⎪⎩⎪⎨⎧=++=+=+71342z y x z x y x 的解是( )A. 2,2,1x y z ì=ïïï=íïï=ïïî B.2,1,1x y z ì=ïïï=íïï=ïïî C. 2,8,1x y z ì=-ïïï=íïï=ïïî D. 2,2,2x y z ì=ïïï=íïï=ïïî 5. 已知a ,b 满足方程组512,34,a b a b ì+=ïïíï-=ïî则a +b 的值为( )A. -4B. 4C.-2D. 26. 若|m -n -3|+(m +n +1)2=0,则m +2n 的值为( )A. -1B. -3C. 0D. 37. 关于x ,y 的方程组0,3x py x y ì+=ïïíï+=ïî的解是1,,x y ì=ïïíï=ïîV 其中y 的值被“△”盖住了,不过仍能求出p ,则p 的值是( )A. -12B. 12C. -14D. 148. A ,B 两地相距6 km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A. 6,336x y x y ì+=ïïíï+=ïîB. 6,36x y x y ì+=ïïíï-=ïîC. 6,336x y x y ì-=ïïíï+=ïîD. 6,336x y x y ì+=ïïíï-=ïî9. 某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A. 50人,40人B. 30人,60人C. 40人,50人D. 60人,30人10. 已知方程组53,54x y ax y ì+=ïïíï+=ïî和25,51x y x by ì-=ïïíï+=ïî有相同的解,则a ,b 的值为( ) A. 14,2a b ì=ïïíï=ïî B. 4,6a b ì=ïïíï=-ïî C. 6,2a b ì=-ïïíï=ïîD. 1,2a b ì=ïïíï=ïî二、填空题(每小题3分,共24分)11. 解二元一次方程组的基本思想方法是“消元”,那么解方程组422,325x y x y ì-=ïïíï+=ïî宜用法;解方程组2,23x yx yì=ïïíï-=ïî宜用法.12. 已知-a x+y-z b5c x+z-y与a11b y+z-x c是同类项,则x=,y=,z=.13. 已知1,2xyì=ïïíï=-ïî是方程2x-ay=3的一个解,则a的值是.14. 如图是一正方体的展开图,若正方体相对面所表示的数相等,则x=,y =.15. 小刚解出了方程组33,2,x yx yì-=ïïíï+=ïîV解为4,,xyì=ïïíï=ïîW因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则V=,W=.16. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.17. 一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为.18. 某公园“6·1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣,张凯和李利都随他们的家人参加了本次活动,王斌也想去,就去打听张凯、李利买门票花了多少钱,张凯说他家3个大人4个小孩,共花了38元钱,李利说他家4个大人2个小孩,共花了44元钱,王斌计划去3个大人和2个小孩.请你帮他计算一下,需准备元钱买门票.三、解答题(共66分)19. (8分)解方程组:(1)325, 257;x yx yì+=ïïíï+=ïî①②(2)()() 41312,2.23x y yx yìï--=--ïïíï+=ïïïî20. (8分)3月24日上午8时,2019徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.21. (9分)已知关于x,y的二元一次方程组1,2 4. x yx yì+=ïïíï+=ïî(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b-4a的值.22. (9分)已知方程组4,6ax byax byì-=ïïíï+=ïî与方程组35,471x yx yì-=ïïíï-=ïî的解相同,求a,b的值.23. (10分)甲、乙两人共同解方程组515,42,ax yx byì+=ïïíï-=-ïî①②由于甲看错了方程①中的a,得到方程组的解为3,1;xyì=-ïïíï=-ïî乙看错了方程②中的b,得到方程组的解为5,4.xyì=ïïíï=ïî试计算a2 019+(-110b)2 018的值.24. (10分)某景点的门票价格如下表:。

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。

人教版七年级数学下册第七章达标测试卷含答案

人教版七年级数学下册第七章达标测试卷含答案

人教版七年级数学下册第七章达标测试卷一、选择题(每小题3分,共30分)1.电影院中5排6号记为(5,6),则6排5号记为()A.(6,5) B.(6,-5)C.(-6,-5) D.(-6,5)2.点A(-3,5)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图是象棋盘的一部分,若在该象棋盘上建立直角坐标系,使“炮”的坐标为(-1,1),“象”的坐标为(3,-2),则“将”的坐标为()A.(1,-1) B.(1,-2)C.(-1,2) D.(-1,-2)4.已知在平面直角坐标系中,点Q的坐标为(m,n),且mn=0,则点Q在() A.坐标原点B.x轴上C.y轴上D.坐标轴上5.在下列各点中,与点A(-2,-4)的连线平行于y轴的是() A.(2,-4) B.(-2,4)C.(-4,2) D.(4,-2)6.已知平面直角坐标系内不同的两点A(a+2,4)和B(3,2a+2)到y轴的距离相等,则a的值为()A.-3 B.-5C.1或-3 D.1或-57.如图,广州动物园(记作A)在小明家(记作B)南偏西25°的方向上,且与小明家的距离是4 km,若∠ABC=90°,且AB=BC,则超市(记作C)在小明家(记作B)的()A.南偏东65°的方向上,相距4 kmB.南偏东55°的方向上,相距4 kmC.北偏东55°的方向上,相距4 kmD.北偏东65°的方向上,相距4 km8.已知N(a,b)是平面直角坐标系中第四象限内的一点,则化简b2+|b-a|的结果是()A.-a+2b B.aC.a-2b D.-a9.平面直角坐标系中,点A(-3,2),B(1,4),经过点A的直线l∥x轴,点C 是直线l上的一个动点,则当线段BC的长度最小时,点C的坐标为() A.(-1,4) B.(1,0)C.(1,2) D.(4,2)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到点P3(3,-2),…,按这样的运动规律,第2 023次运动到点P2 023,则点P2 023的坐标是()A.(2 023,1) B.(2 023,0)C.(2 023,-2) D.(2 023,2)二、填空题(每题3分,共15分)11.点(-3,5)到x轴的距离是________,到y轴的距离是________.12.若点P(a+1,2a-6)在x轴上,则点P的坐标为__________.13.已知点P(x,x+1),当x变化时,点P不可能在第______象限.14.对有序数对(m ,n )定义“f 运算”:f (m ,n )=(12m +a ,12n -b ),其中a ,b 为常数.当a =0,b =0时,f (-2,4)=________.15.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB平移到A 1B 1,点A 1,B 1的坐标分别为(2,a ),(b ,3),则a 2-2b 的值为________. 三、解答题(一)(每小题8分,共24分)16.已知在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (-3,-1),B (-2,-4),C (1,-3).(1)请在如图所示的平面直角坐标系中画出△ABC ;(2)若将△ABC 向上平移3个单位长度,再向右平移2个单位长度得到△A 1B 1C 1,请在如图所示的平面直角坐标系中画出△A 1B 1C 1.17.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 的面积分别为64和16.请写出点A ,E ,F 的坐标.18.已知点M 在第一象限,其横坐标是a 2-5的算术平方根,纵坐标是1,且点M 到y 轴的距离是到x 轴的距离的2倍. (1)求点M 的坐标; (2)求a 的值.四、解答题(二)(每小题9分,共27分)19.张超设计的广告牌草图如图所示(单位:m),张超想通过电话征求李强的意见.假如你是张超,你如何把这个草图告诉李强呢?(提示:建立平面直角坐标系)20.如图是汕头某学校的部分平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示食堂和图书馆;(3)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置.21.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直于点C,求C点的坐标.五、解答题(三)(每小题12分,共24分)22.如图,四边形ABCO在平面直角坐标系中,且A(1,2),B(5,4),C(6,0),O(0,0).(1)求四边形ABCO的面积;(2)将四边形ABCO四个顶点的横坐标都减去3,同时纵坐标都减去2,在图中画出得到的四边形A′B′C′O′,你能从中得到什么结论?(3)直接写出四边形A′B′C′O′的面积.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4 cm,OA=5 cm,DE=2 cm,动点P从点A出发,以每秒1 cm的速度,沿ABC路线向点C运动;动点Q从点O出发,以每秒2 cm的速度,沿OED 路线向点D运动.若P,Q两点同时出发,其中一点到达终点时,运动均停止.(1)直接写出B,C,D三点的坐标;(2)设P,Q两点运动的时间为t s,当0<t<4时,用含t的式子表示运动过程中△OPQ的面积;(3)当P,Q两点运动3 s时,求△PQC的面积.答案一、1.A 2.B 3.B 4.D 5.B 6.B7.A8.C9.C10.A二、11.5;312.(4,0)13.四14.(-1,2)15.-1三、16.解:(1)如图.(2)如图.17.解:∵正方形ABCD和正方形EFGC的面积分别为64和16,∴正方形ABCD 和正方形EFGC的边长分别为8和4.∴OG=8+4=12.∴A(0,8),E(8,4),F(12,4).18.解:(1)∵点M的纵坐标为1,且点M到y轴的距离是到x轴的距离的2倍,∴点M到y轴的距离为2,∴点M的横坐标为2或-2,又∵点M在第一象限,∴点M的坐标为(2,1).(2)根据题意,得a2-5=4,解得a=3或a=-3.四、19.解:建立平面直角坐标系,标出点(0,0),(0,5),(3,5),(3,3),(7,3),(7,0),再把各点依次连接,所得图案即为草图.(答案不唯一) 20.解:(1)建立的平面直角坐标系如图所示.(2)食堂(-5,5),图书馆(2,5).(3)如图所示.21.解:(1)根据题意,得m +1=-4.解得m =-5.∴m +3=-2,∴点A 的坐标是(2,-4),点B 的坐标是(-2,-4).∵2-(-2)=4,∴A ,B 两点间的距离为4.(2)∵l ∥x 轴,PC ⊥l ,∴PC ⊥x 轴.∴点C 的横坐标为-1. 又∵点C 在l 上,∴点C 的纵坐标为-4.∴C (-1,-4). 五、22.解:(1)S 四边形ABCO =12×2×1+12×(2+4)×4+12×4×1=1+12+2=15.(2)如图.四边形的形状和大小不变,只是将四边形ABCO 向左平移了3个单位长度,向下平移了2个单位长度.(3)S 四边形A ′B ′C ′O ′=15.23.解:(1)B (4,5),C (4,2),D (8,2).(2)根据题意,得S △OPQ =12OQ ·OA =12×2t ×5=5t (cm 2)(0<t <4).(3)当P ,Q 两点运动3 s 时,点P 坐标为(3,5),点Q 坐标为(6,0).过点P 作PM ⊥x 轴,垂足为点M ,延长BC 交x 轴于点N ,延长DC 交PM 于点K ,则有M (3,0),N (4,0),K (3,2).∴QM =3,CK =1,PK =3,KM =2,∴S △PQC =12×3×5-12×1×3-12×(1+3)×2=2.。

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。

A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。

人教版七年级数学下册第七章综合检测卷含答案

人教版七年级数学下册第七章综合检测卷含答案

人教版七年级数学下册第七章综合检测卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于电影票,如果将“8排4座”记作(8,4),那么“2排5座”记作() A.(5,2) B.(2,5) C.(-2,5) D.(-2,-5)2.在平面直角坐标系中,点P(-2,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.某镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,则如图所示的表示法正确的是()4.【教材P75探究变式】如图,在平面直角坐标系xOy中,点P的坐标为(1,1).则将点P向上平移2个单位长度得到的点的坐标是()A.(1,3)B.(-1,1)C.(3,1)D.(1,2)5.如果点P(m+3,m+1)在直角坐标系的x轴上,那么点P的坐标为() A.(0,2) B.(2,0)C.(4,0) D.(0,-4)6.【教材P79习题T4变式】如图,将三角形ABC先向上平移1个单位长度,再向左平移3个单位长度,则点A的对应点的坐标是()A.(1,1)B.(1,3)C.(7,1)D.(7,3)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,若AB∥y轴,点D(6,3),则A点的坐标为()A.(5,3) B.(4,3) C.(4,2) D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15 B.7.5 C.6 D.39.在平面直角坐标系中,点A的坐标是(3a-5,a+1),若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1 B.2 C.3 D.1或310.在平面直角坐标系中,一个智能机器人接到的指令如下:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2 023的坐标是()A.(1 010,0) B.(1 010,1)C.(1 011,0) D.(1 011,1)二、填空题:本大题共5小题,每小题3分,共15分.11.在平面直角坐标系中,第四象限内一点P到x轴的距离为3,到y轴的距离为6,那么点P的坐标是________.12.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点________.13.若(a-2)2+|b+3|=0,则点P(a,b)在第________象限.14.【教材P71习题T14变式】如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为__________.15.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,三角形ABC是直角三角形,且∠C不是直角,则满足条件的点C有________个.三、解答题(一):本大题共3小题,每小题8分,共24分.16.如图是某学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示位置:食堂________,图书馆________.(3)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置.17.【教材P70习题T7变式】在如图所示的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.①(4,5),(0,3),(1,3),(7,3),(8,3),(4,5);②(1,3),(1,0),(7,0),(7,3),(1,3).(1)观察所得的图形,你觉得它像什么?(2)求出这个图形的面积.18.【教材P69习题T4改编】已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到y轴的距离是2.四、解答题(二):本大题共3小题,每小题9分,共27分.19.【教材P 86复习题T 9改编】如图,A ,B ,C 为一个平行四边形的三个顶点,且A ,B ,C 三点的坐标分别为(3,3),(6,4),(4,6). (1)请直接写出这个平行四边形第四个顶点的坐标; (2)求这个平行四边形的面积.20.如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a ,b ,c 满足关系式a -2+(b -3)2=0,(c -4)2≤0. (1)求a ,b ,c 的值.(2)如果在第二象限内有一点P ⎝ ⎛⎭⎪⎫-m ,12,请用含m 的式子表示四边形ABOP 的面积.(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.21.对于平面直角坐标系xOy 中的点P (a ,b ),若点P ′的坐标为⎝ ⎛⎭⎪⎫a +kb ,b +a k (其中k 为常数,且k ≠0),则称点P ′为点P 的“k 系好友点”.例如:P (3,2)的“3系好友点”为P ′⎝ ⎛⎭⎪⎫3+3×2,2+33,即P ′(9,3). 请完成下列各题:(1)点P (2,-1)的“2系好友点”P ′的坐标为________;(2)若点P 在y 轴的正半轴上,点P 的“k 系好友点”为点P ′,在三角形OPP ′中,PP ′=2OP ,求k 的值;(3)已知点A (x ,y )在第四象限,且满足xy =-12,点A 是点B (m ,n )的“-3系好友点”,求m -3n 的值.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如图,在平面直角坐标系中,AB ∥CD ∥x 轴,BC ∥DE ∥y 轴,且AB =CD =4,OA =5,DE =2,动点P 从点A 出发,沿A →B →C 的路线运动到点C 停止;动点Q 从点O 出发,沿O →E →D 的路线运动到点D 停止.若P ,Q 两点同时出发,且P ,Q 运动的速度均为每秒钟一个单位长度. (1)直接写出B ,C ,D 三点的坐标;(2)当P ,Q 两点出发6 s 时,试求三角形POQ 的面积.23.如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),其中a ,b 满足|a +1|+(b-3)2=0.(1)填空:a=________,b=________;(2)如果在第三象限内有一点M(-2,m),请用含m的式子表示三角形ABM的面积;(3)在(2)的条件下,当m=-32时,在y轴上有一点P,使得三角形BMP的面积与三角形ABM的面积相等,请求出点P的坐标.答案一、1.B2.C3.A4.A5.B6.B7.D8.D点拨:此题首先运用数形结合思想,在平面直角坐标系xOy中描点、连线画出三角形ABO,然后运用转化思想,将点的坐标转化为线段的长度,即底BO=2,高为3,所以三角形ABO的面积=12×2×3=3.9.C10.C二、11.(6,-3)12.(-1,1)13.四14.(3,0)或(9,0)点拨:设点P的坐标为(x,0),根据题意,得12×4×|6-x|=6,解得x=3或9,所以点P的坐标为(3,0)或(9,0).15.4三、16.解:(1)如图,以大门为坐标原点建立平面直角坐标系.(2)(-5,5);(2,5)(3)办公楼和教学楼的位置如图所示.17.解:如图所示.(1)它像一座房子.(2)这个图形的面积为6×3+12×8×2=26.18.解:(1)由题意知2m+4=0,解得m=-2,∴m-1=-3.∴P(0,-3).(2)由题意知m -1=2m +4+3,解得m =-8, ∴2m +4=-12,m -1=-9.∴P (-12,-9). (3)由题意知|2m +4|=2,∴2m +4=2或2m +4=-2, 解得m =-1或m =-3.当m =-1时,m -1=-2;当m =-3时,m -1=-4, ∴点P 的坐标是(2,-2)或(-2,-4). 四、19.解:(1)(7,7)或(1,5)或(5,1).(2)以A ,B ,C 为顶点的三角形的面积为 3×3-12×3×1-12×2×2-12×1×3=4. 所以这个平行四边形的面积为4×2=8. 20.解:(1)由已知a -2+(b -3)2=0,(c -4)2≤0,可得a -2=0,b -3=0,c -4=0,∴a =2,b =3,c =4. (2)由(1)知a =2,b =3,∴A (0,2),B (3,0), ∴OA =2,OB =3.∴S 三角形ABO =12×2×3=3. ∵P ⎝ ⎛⎭⎪⎫-m ,12,点P 在第二象限内,∴S 三角形APO =12×2×m =m , ∴S 四边形ABOP =S 三角形ABO +S 三角形APO =3+m . (3)存在.由(1)知b =3,c =4,∴C (3,4). ∵B (3,0),∴BC =4,BC ⊥OB . ∵OB =3,∴S 三角形ABC =12×4×3=6.∵四边形ABOP 的面积与三角形ABC 的面积相等, ∴S 四边形ABOP =6.由(2)知S 四边形ABOP =m +3,∴m +3=6, ∴m =3,∴存在点P ,点P 的坐标为⎝ ⎛⎭⎪⎫-3,12.21.解:(1)(0,0)(2)设P (0,t ),其中t >0,∴OP =t . 由题意可得P ′(kt ,t ),∴PP ′=|kt |.又∵PP ′=2OP , ∴|kt |=2t ,∴k =±2.(3)∵B (m ,n )的“-3系好友点”A 为⎝ ⎛⎭⎪⎫m -3n ,n -m 3.∴x =m -3n ,y =3n -m3.又∵xy =-12,∴(m -3n )·3n -m3=-12, ∴m -3n =±6.∵点A 在第四象限,∴x >0,∴m -3n =6. 五、22.解:(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,易得P 点的坐标为(4,3),Q 点的坐标为(6,0),∴S 三角形POQ =12×6×3=9. 23.解:(1)-1;3(2)如图①,过点M 作MN ⊥x 轴于点N . ∵A (-1,0),B (3,0),∴AB =1+3=4. ∵点M (-2,m )在第三象限,∴MN =|m |=-m , ∴S 三角形ABM =12AB ·MN =12×4×(-m )=-2m .(3)当m =-32时,点M 的坐标为(-2,-32),S 三角形ABM =-2×⎝ ⎛⎭⎪⎫-32=3. 点P 的位置有两种情况:(ⅰ)如图②,当点P 在y 轴的正半轴上时,设点P 的坐标为(0,k ), 易得S 三角形BMP =5⎝ ⎛⎭⎪⎫32+k -12×2⎝ ⎛⎭⎪⎫32+k -12×5×32-12×3 k =52k +94. ∵S 三角形BMP =S 三角形ABM ,∴52k +94=3,解得k =310,∴点P 的坐标为⎝ ⎛⎭⎪⎫0,310;(ⅱ)如图③,当点P 在y 轴的负半轴上时,设点P 的坐标为(0,n ),易得S 三角形BMP =-5n -12×2⎝ ⎛⎭⎪⎫-n -32-12×5×32-12×3×(-n )=-52n -94.∵S 三角形BMP =S 三角形ABM ,∴-52n -94=3,解得n =-2110,∴点P 的坐标为⎝ ⎛⎭⎪⎫0,-2110.11 综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫0,310或⎝ ⎛⎭⎪⎫0,-2110.。

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。

人教版七年级下册第7章平面直角坐标系单元测试题(含答案解析)

人教版七年级下册第7章平面直角坐标系单元测试题(含答案解析)

人教版七年级数学下册第7章平面直角坐标系单元测试题学校:姓名:班级:考号:一、单选题1.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定2.下列四个点中,在第二象限的点是( ).A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)3.若),轴上的点尸到x轴的距离为3,则点夕的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.点M(根+1,〃2+3)在y轴上,则点M的坐标为()A.(0,-4)B.(4,0)C.(-2,0)D.(0,2)5.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)6.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y大于或等于0D.y小于或等于()7.如图:正方形ABCD中点A和点C的坐标分别为(・2,3)和(3,-2),则点B和点D的坐标分别为( ).A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3) D.(2,2)和(-3,-3)8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)9.线段A8两端点坐标分别为A(-1,4),8(-4,1),现将它向左平移4个单位长度,得到线段4囱,则4、S的坐标分别为()A.Ai(-5,0),Bi(-8,-3)B.4(3,7),B\(0,5)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11 .七年级(2)班教室里的座位共有7排8歹U,其中小明的座位在第3排第7歹U,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作.12 .若点P(a,-b)在第二象限,则点Q(-ab,a+b)在第象限.13 .若点P 到x 轴的距离是12JIJy 轴的距离是15,那么P 点坐标可以是 __________________ (写出一个即可).14 .小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为 (-4,3)、(-2,3),则移动后猫眼的坐标为o15 .已知点P(x,y)在第四象限,且|x|二3,|y|=5,则点P 的坐标是 ___________________ . 16 .如图,中国象棋中的“象”,在图中的坐标为(1,0),•若"象''再走一步,试写出下一步它可能走到的位置的坐标.17 .如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标.三、解答题18 .已知点N 的坐标为(2-a,3a+6),且点N 到两坐标轴的距离相等,求点N 的坐标.C.Ai (-5, 4), Bi (-8, 1)D.Ai (3, 4), Bi (0, 1)19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.⑴看图案像什么?⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.23.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)24.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,参考答案1. D【分析】1、分析题意,回忆用坐标确定位置的方法;2、观察发现题中没有规定排和列的前后顺序;3、接下来根据有序实数对的知识,解答本题.【详解】解:题中没有规定排在前,列在后;还是列在前,排在后,因此无法确定该同学的所坐位置.故选D.【点睛】在使用有序数对前,一定要先对有序数进行定义,否则很可能导致前后数表示的意义不明确, 从而确定不出位置.例如本题没有规定有序数对的列和排谁在前,所以无法得知其所表示的含义.2. C【分析】根据第二象限内点的横坐标为负,纵坐标为正进行判断即可.【详解】解:A.(2,-3)在第四象限内;B.(2,3)在第一象限内;C.(-2,3)在第二象限内;D.(-2,-3)在第三象限内.故选C.【点睛】本题主要考查平面直角坐标系,熟练掌握各个象限的坐标特点是解此题的关键.3. D【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【详解】・・万轴上的点P,・・・尸点的横坐标为0,又丁点P到x轴的距离为3,・・・P点的纵坐标为±3,所以点。

人教版数学七年级下册第7章平面直角坐标系单元测试(Word版含答案)

人教版数学七年级下册第7章平面直角坐标系单元测试(Word版含答案)

人教版初中七年级数学下册第7章平面直角坐标系班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为()A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是()A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是()A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为()A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为()A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是()A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是()A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为()A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为()A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为.14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是.15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为.16.(东湖区期末)如果点P(x,y)的坐标满足x+y=xy,那么称点P 为“和谐点”,若某个“和谐点”到x轴的距离为3,则该点的坐标为.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A,B,C,D,E的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.25.(本题满分12分) 如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为;线段BC与线段AD的位置关系是;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D停止.若点P的速度为每秒1个单位长度,运动时间为t s,回答下列问题.①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,四边形ABCP的面积为4,求点P的坐标.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为(B)A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是(C)A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是(C)A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为(B)A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为(D)A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为(B)A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是(A)A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是(D)A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为(D)A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为(A)A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为(北偏东40°,47海里).14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是(5,-4).15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为(-2,0).16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x 轴的距离为3,则该点的坐标为⎝ ⎛⎭⎪⎫32,3或⎝ ⎛⎭⎪⎫34,-3. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A ,B ,C ,D ,E 的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.解:(1)A(3,3),B(-5,2),C(-4,-3),D(4,-3),E(5,0).(2)如图所示.点P 在第三象限,点Q 在第四象限,点S 在第一象限, 点T 在第二象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.解:(1)画坐标轴如图所示,火车站(0,0),体育场(-4,3),医院(-2,-2).(2)如图所示.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.解:(1)四边形ABCD的面积为(5-2)×(22-2)=3 2.(2)A′(2,-2),B′(5,-2),C′(5,0),D′(2,0).20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?解:(1)北偏东40°方向上有两个目标:敌方舰艇B和小岛,要想确定敌方舰艇B的位置,还需知道敌方舰艇B距我方舰艇3号的距离.(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有两艘:敌方舰艇A和敌方舰艇C.(3)要确定每艘敌方舰艇的位置,各需要两个数据:距离和方位角.(如对我方舰艇3号来说,敌方舰艇A在正南方向,图上距离为0.6 cm 处;敌方舰艇B在北偏东40°方向,图上距离为1 cm处;敌方舰艇C在正东方向,图上距离为0.6 cm处)21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.解:(1)如图所示,△A1B1C1为所求.(2)如图所示.(3)点A1的坐标为(2,6).22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?解:(1)过点B 作BF ⊥x 轴于点F ,过点A 作AG ⊥x 轴于点G ,如图所示.∴S 四边形ABCO =S 三角形BCF +S 梯形ABFG +S 三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102 =2 500(m 2).(2)把四边形ABCO 的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,故所得到的四边形的面积与原四边形的面积相等,为2 500 m 2.23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.解:由点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4), 得D(-2,2),E(2,2).∵点D ,E 的纵坐标相等,且都不为0,∴DE ∥x 轴,又∵AB 在x 轴上,∴DE ∥AB.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.解:(1)∵MN∥y轴,∴点M的横坐标和点N的横坐标相同,∴m-6=5,得m=11,故点M的坐标为(5,25).(2)∵MN∥x轴,∴点M的纵坐标和点N的纵坐标相同,∴b=2,∵MN=3,∴|a-5|=3,解得a=8或a=2,故点M的坐标为(8,2)或(2,2).(3)∵点M到两坐标轴距离相等,点M的横坐标和纵坐标不能同时为0,∴点M不在原点上,分别在第一、三象限或第二、四象限,当在第一、三象限时,可知m-6=2m+3,得m=-9,点M的坐标为(-15,-15),当在第二、四象限时,可知m-6=-(2m+3),得m=1,点M的坐标为(-5,5),故点M的坐标为(-15,-15)或(-5,5).25.(本题满分12分)(官渡区月考)如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为(-4,2);线段BC与线段AD的位置关系是平行;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D 停止.若点P 的速度为每秒1个单位长度,运动时间为t s ,回答下列问题.①直接写出点P 在运动过程中的坐标(用含t 的式子表示); ②当5<t <7时,四边形ABCP 的面积为4,求点P 的坐标.解:(2)①当0≤t <2时,p(-1,t);当2≤t ≤5时,p(-t +1,2);当5<t ≤7时,p(-4,7-t).②由题意知AB =2,AD =3,PD =7-t ,∴S 四边形ABCP =S 四边形ABCD -S △ADP =4,∴2×3-12×3×(7-t)=4,解得t =173,∴7-t =7-173=43, ∴点P ⎝⎛⎭⎪⎫-4,43.。

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。

人教版七年级下册数学第7章测试题(附答案)

人教版七年级下册数学第7章测试题(附答案)

七下数学第七章《平面直角坐标系》单元测试一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>03.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.210.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.311.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.014.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.17.已知点P(m+2,2m﹣1)在y轴上,则m的值是.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第象限.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为.21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.参考答案一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边【分析】根据坐标确定位置的方法逐一判断即可得.【解答】解:能较为准确描述合肥市大蜀山位置的是北纬32°,东经116°,故选:C.2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>0【分析】第三象限内横纵坐标均为负数,从而可得答案.【解答】解:∵点A(﹣3,b)在第三象限,∴b<0,故选:A.3.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)【分析】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【解答】解:将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标为(﹣2+3,3﹣4),即(1,﹣1).故选:C.4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)【分析】根据点P的位置确定P点坐标即可.【解答】解:∵点P在x轴的下方,到x轴的距离是3,∴P点纵坐标为﹣3,∵P在y轴的左方,到y轴的距离是2,∴P点横坐标为﹣2,∴P(﹣2,﹣3),故选:D.5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)【分析】将点B的横坐标减去2,纵坐标加上1即可得到点B'的坐标.【解答】解:∵将△ABC先向左平移2个单位,再向上平移1个单位得到△A′B′C′,B(﹣1,1),∴点B的对应点B'的坐标是(﹣1﹣2,1+1),即(﹣3,2),故选:C.6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【解答】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用平面直角坐标内点的坐标特点得出a,b的取值范围进而得出答案.【解答】解:∵点A(2a+1,b﹣2)在第三象限,∴2a+1<0,b﹣2<0,解得:a<﹣,b<2,∴﹣a>0,3﹣b>0,则点B(﹣a,3﹣b)在第一象限.故选:A.8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)【分析】由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019(673,0)则点P2019的坐标是(673,0).故选:D.9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.2【分析】由平面内点的坐标特点可知,点到x轴的距离是该点纵坐标的绝对值.【解答】解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.10.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.3【分析】AB∥x轴,可得A和B的纵坐标相同,即可求出m的值.【解答】解:∵点A(m+1,﹣2)和点B(3,m﹣1),且直线AB∥x轴,∴﹣2=m﹣1∴m=﹣1故选:A.11.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:把点(﹣3,4)向右平移3个单位,再向下平移2个单位后所得的点的坐标为:(﹣3+3,4﹣2),即(0,2),故选:D.12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限【分析】根据a2b>0>0可得b>0,可得a>0或a<0,再根据平面直角坐标系中各象限内点的坐标特征可判断出P点所在象限.【解答】解:∵a2b>0,∴b>0,a>0或a<0,当a>0,b>0时,点P所在的象限为第一象限;当a<0,b>0时,点P所在的象限为第二象限;故选:A.13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.0【分析】先利用点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【解答】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.14.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【分析】根据点的坐标特点来确定点所在位置.【解答】解:因为点A(m,n)在平面直角坐标系的第三象限,所以m<0,n<0,所以mn>0,所以点B(mn,0)横坐标是正数,纵坐标是0,符合点在x轴的正半轴上的条件.故选:A.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,根据该规律即可得出结论.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作(3,5).【分析】由于将“7排4号”记作(7,4),根据这个规定即可确定3排5表示的点坐标.【解答】解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).17.已知点P(m+2,2m﹣1)在y轴上,则m的值是﹣2.【分析】直接利用y轴上点的坐标特点得出m+2=0,进而得出答案.【解答】解:∵点P(m+2,2m﹣1)在y轴上,∴m+2=0,解得:m=﹣2.故答案为:﹣2.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第三象限.【分析】直接利用第二象限内点的坐标特点得出m,n的符号,进而得出答案.【解答】解:∵P(m,n)在第二象限,∴m<0,n>0,∴﹣n<0,∴Q(﹣n,m)在第三象限.故答案为:三.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是(2,3).【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【解答】解:由题意可得,如右图所示的平面直角坐标系,故点C的坐标为(2,3),故答案为:(2,3).20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为(3,3)或(3,﹣7).【分析】先根据平行于y轴的直线上任意两点横坐标相同得出点M的横坐标是3,再根据MP=5求出点M的纵坐标.【解答】解:∵点P(3,﹣2),MP∥y轴,∴点M的横坐标与点P的横坐标相同,是3,又∵MP=5,∴点M的纵坐标为为﹣2+5=3,或﹣2﹣5=﹣7,∴点M的坐标为(3,3)或(3,﹣7).故答案为(3,3)或(3,﹣7).21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为2.【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b 的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【解答】解:由题意可知:a=0+(3﹣2)=1;b=0+(2﹣1)=1;∴a+b=2.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.【分析】坐标平面内的点到两轴的距离实际上就是该点两坐标的绝对值.【解答】解:根据题意得,m﹣1=3m+5或m﹣1=﹣(3m+5),解得:m﹣1=3m+5,得m=﹣3,∴m﹣1=﹣4,点B的坐标为(﹣4,﹣4),解得:m﹣1=﹣(3m+5),得m=﹣1,∴m﹣1=﹣2,点B的坐标为(﹣2,2),∴点B的坐标为(﹣4,﹣4)或(﹣2,2).23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.【分析】根据直线平行于x轴的特点解答.【解答】解:∵直线AB平行于x轴,∴点A的纵坐标与点B的纵坐标相等相等,∴m2﹣3=6,m=3或m=﹣3,∵A.B是两个点.∴m≠3,即m=﹣3.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.【分析】(1)利用与x轴平行的直线上点的坐标特征得到a+2=4,求出a得到A、B点的坐标,然后计算它们的横坐标之差得到A、B两点间的距离;(2)利用与x轴垂直的直线上点的坐标特征得|b|=3,解得b=3或b=﹣3,从而得到C点坐标.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.【分析】(1)根据三角形面积求法得出即可;(2)根据已知将△ABC各顶点向下平移2个单位,向右平移5个单位得到各对应点,即可作图;进而得出点C′的坐标.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.【分析】(1)根据平移规律即可得到结论,(2)根据三角形的面积公式即可得到结论.【解答】解:(1)因为△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得所以,△A1B1C1是由△ABC向左平移3个单位,再向上平移1个单位所得A1(﹣1,2),B1(2,4),C1(0,5);(2)如图,△ABC的面积=3×3﹣×1×3﹣×1×2﹣×2×3=3.5.。

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、单选题(每题3分,共30分)1.若点P(a,b)在第二象限,则点Q(b+5,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限2.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)3.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,0)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣1,0)5. 如图,△PQR是△ABC向左平移2个单位长度,再向上平移3个单位长度得到的,若P、Q、R分别对应A、B、C,则点C的坐标是()A. (-1,4) B.(-3,1) C. (2,-3) D. (3,-2)6.如图1,在5×4的方格纸中,每个小正方形的边长均为1,点O,A,B在方格线的交点(格点)上.在第四象限内的格点上找一点C,使三角形ABC 的面积为3,则这样的点C 共有( )图1A.2个B.3个C.4个D.5个 7.到x 轴的距离等于2的点组成的图形是 ( )A.过点(0,2)且与x 轴平行的直线B.过点(2,0)且与y 轴平行的直线C.过点(0,-2)且与x 轴平行的直线D.分别过点(0,2)和点(0,-2)且与x 轴平行的两条直线8.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( ) A .114m -<<- B .74m -<<-C .7m <-D .4m >-9.点P()在平面直角坐标系的轴上,则点P 的坐标为( ) A .(0,2)B .(2,0)C .(0,-2)D .(0,-4)10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2020的面积是( )A .5052mB .504.52mC .505.52mD .10102m二、填空题(每题3分,共30分)11.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.12.如图,长方形ABCD 中AB=3,BC=4,且点A 在坐标原点,(4,0)表示D 点,那么C 点的坐标为______.13.将点(2,3)P -先向右平移2个单位,再向下平移3个单位,得到点P ',则点P '的坐标为__________.14.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果“士”所在位置的坐标为()1,2--,“相”所在位置的坐标为()2,2-,那么棋子“炮”的位置的坐标为________________________。

人教版七年级数学下册第七章测试题(附答案)

人教版七年级数学下册第七章测试题(附答案)

人教版七年级数学下册第七章测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题 1.点M (1,2)关于x 轴对称的点的坐标为( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1)2.已知点A (m-1,3)与点B (2,n+1)关于x 轴对称,则m+n 的值为A 、1-B 、7-C 、1D 、73.点P ( 2,-3)关于x 轴对称的点是( )A .(-2, 3)B .(2,3)C .(-2, -3)D .(2,-3)4.在平面直角坐标系中,点P (1,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知点P 坐标为(2﹣a ,3a+6),且点P 到两坐标轴的距离相等,则a 的值是( )A .﹣1或4B .1或4C .1或﹣4D .﹣1或﹣46.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是( )A .(2,﹣3)B .(2,3)C .(3,2)D .(3,﹣2)7.图示为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( )A .△ACD 的外心B .△ABC 的外心C .△ACD 的内心D .△ABC 的内心8.在平面直角坐标系中,已知点A (﹣4,0)和B (0,2),现将线段AB 沿着直线AB 平移,使点A 与点B 重合,则平移后点B 坐标是( )A .(0,﹣2)B .(4,6)C .(4,4)D .(2,4)9.点(﹣2,3)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 10.平面直角坐标系中的点P (2﹣m ,m )在第一象限,则m 的取值范围在数轴上可表示为( )A .B .C .D .11.有理数a ,b ,c 在数轴上的位置如图所示,则a c +-2c b -+3b a +=( )A .-2bB .0C .-4a -b -3cD .-4a -2b -2c12.平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)评卷人得分二、填空题13.下面是某医院各部门的示意图,横向表示的是楼层,纵向表示的是门号,例如:院长室在4楼3门,我们用(4,3)来表示其位置,试根据上面方法,结合图形,完成下面问题:(1)儿科诊室可以表示为;(2)口腔科诊室在楼门;(3)图形中显示,与院长室同楼层的有;(4)与神经科诊室同楼层的有;(5)表示为(1,2)的诊室是;(6)表示为(3,5)的诊室是;(7)3楼7门的是.14.点P(﹣2,1)向上平移2个单位后的点的坐标为.15.已知点O(0,0),B(1,2),点A在坐标轴上,且S△OAB=2,则满足条件的点A的坐标为.16.在如图所示的方格中,每个小方格都是边长为1的正方形,△ABC的三个顶点都在格点上.(1)建立平面的直角坐标系,使A(﹣2,﹣1),C(1,﹣1),则B点坐标为.(2)如果△ABC平移后B点的对应点B′的坐标变为(4,2),画出平移后的图△A′B′C′.17.若点P(﹣a,b)在第三象限,则点Q(b,a)在第象限.18.点(﹣3,7)到x轴上的距离是,到y轴上的距离是.19.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(4,2),C(6,0),解答下列问题:(1)请在图中确定该圆弧所在圆心D点的位置,并写出D点坐标为;(2)连结AD,CD,求⊙D的半径(结果保留根号);20.已知点P (2a -6,a +1)在y 轴上,则点P 的坐标为________评卷人得分 三、解答题21.如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 平移至A′的位置,使点A 与A'对应,得到△A′B′C′;(2)线段AA′与BB′的关系是: ;(3)求△ABC 的面积.22.如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C (3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k )个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E .(1)点D 的坐标为 ,若a=2,b=-3,k=2,则点'D 的坐标为 ;(2)若'A (1,4),'C (6,-4),求点'E 的坐标.23.多多和爸爸、妈妈周末到公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x 轴、y 轴.只知道牡丹园的坐标为(3,3),请你帮他建立平面直角坐标系(画在图中)并求出其它各景点的坐标?答案1.C .2.A3.B4.D .5.D6.C.7.B.8.B9.B10.B11.C12.D13.(1)儿科诊室可以表示为(2,4).(2)口腔科诊室在1楼、7门.(3)图形中显示,与院长室同楼层的有外科.(4)与神经科诊室同楼层的有儿科、妇科.(5)表示为(1,2)的诊室内科.(6)表示为(3,5)的诊室是骨科.(7)3楼7门的是皮肤科.14.(﹣2,3).15.(2,0)或(﹣2,0)或(0,4)或(0,﹣4).16.解:(1)如图,B 点坐标为(0,1),(2)如图,△A′B′C′为所作.17.解:由点P (﹣a ,b )在第三象限,得﹣a <0,b <0.得a >0,b <0,点P (﹣a ,b )在第三象限,18.7,319.(1)、图形见解析;D(2,-2);(2)、25(2)、如图2,过点D 作DE ⊥y 轴,交y 轴于点E ,在Rt △ADE 中,AE=4,DE=2,则524222=+=r ,所以⊙D 的半径为52.考点:(1)、圆的确定;(2)、垂径定理20.(0,4)21.(1)见解析;(2)平行且相等.(3)3.5.解:(1)△A′B′C′如图所示;22.(1)(3,2),(8,-6);(2)E ′(5,2).23.A (0,4);B (﹣3,2);C (﹣2,﹣1);D (2,﹣2).。

人教版七年级下册数学第七章测试题(附答案)

人教版七年级下册数学第七章测试题(附答案)

人教版七年级下册数学第七章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.已知点P(x,y)在第四象限,且,,则P点的坐标是( )A. (-3,-5) B. (5,-3) C. (3,-5) D. (-3,5)2.如图所示,点A的坐标是 ( )A. (3,2)B. (3,3)C. (3,-3)­D. (-3,-3)3.在如图所示的平面直角坐标系中,一只蚂蚁从A点出发,沿着A﹣B﹣C﹣D﹣A…循环爬行,其中A点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C的坐标为(﹣1,3),D的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为()A. (1,1)B. (1,0)C. (0,1)D. (1,﹣1)4.A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()A. 先向上平移5个单位长度,再向右平移7个单位长度B. 先向上平移5个单位长度,再向左平移7个单位长度C. 先向左平移7个单位长度,再向上平移5个单位长度D. 先向右平移7个单位长度,再向下平移5个单位长度5.已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A. ( 4 , 3 )B. (-5,4)C. (-1,-2)D. (-2,-1)7.在平面直角坐标系中,下列各点在第四象限的是()A. (2,1)B. (2,﹣1)C. (﹣2,1)D. (﹣2,﹣1)8.已知点P的坐标为((2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标为()A. (3,3)B. (3,-3)C. (6,-6)D. (3,3)或(6,-6)9.如图如果规定行写在前面,列写在后面,则A点表示为( )A. (1,2)B. (2 ,1)C. (1 ,2)或(2 ,1)D. 以上都不对10.位于坐标平面上第四象限的点是( ).A. (0,-4)B. (3,0)C. (4,-3)D. (-5,-2)11.在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为1万米。

人教版数学七年级下册 第7章《平面直角坐标系》章节综合测试(含答案)

 人教版数学七年级下册  第7章《平面直角坐标系》章节综合测试(含答案)

人教版数学七年级下册第7章《平面直角坐标系》章节综合测试(含答案)一.选择题(共8小题,满分24分)1.在平面直角坐标系中,点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)3.在平面直角坐标系中,将点(﹣2,﹣3)向左平移2个单位长度得到的点的坐标是()A.(﹣2,﹣5)B.(﹣4,﹣3)C.(0,﹣3)D.(﹣2,1)4.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.25.在平面直角坐标系中,点P(3,﹣2)到y轴的距离为()A.3B.﹣3C.2D.﹣26.平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.如图,A、B的坐标分别为(2,0)、(0,1).若将线段AB平移至A1B1,A1、B1的坐标分別(3,b)、(a,2),则a+b的值为()A.2B.3C.4D.58.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)二.填空题(共6小题,满分24分)9.点(2,﹣1)所在的象限是第象限.10.已知点P的坐标为(4,5),则点P到x轴的距离是.11.已知点P(m+2,2m﹣4)在x轴上,则m的值是.12.若线段AB=4,AB∥x轴,点A的坐标是(2,3),则点B的坐标为.13.已知A(0,﹣9),B(0,2),则AB=.14.在平面直角坐标系中,将线段AB平移到A′B′,若点A、B、A′的坐标(﹣2,0)、(0,3)、(2,2),则点B′的坐标是.三.解答题(共7小题,满分52分)15.(7分)△ABC在直角坐标系中如图所示,请写出点A、B、C的坐标.16.(7分)在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.17.(7分)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(1,﹣3);C(3,﹣5);D(﹣3,﹣5);E(3,5);F(5,7).①B点到x轴的距离是,到y轴的距离是.②将点C向x轴的负方向平移个单位,它就与点D重合.③连接CE,则直线CE与y轴是关系.18.(7分)在平面直角坐标系中画出以A(4,2),B(2,0),C(﹣3,0)为顶点的三角形.19.(8分)中国棋盘中蕴含着平面直角坐标系,如图所示是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形对角线走.例如:图中“马”所在位置可以直接走到点A、B处.(1)如果“相”位于点(4,2),“帅”位于点(0,0),则“马”所在点的坐标为,点D的坐标为.(2)若“马”的位置在C点,为了到达“D”点,请按“马”走的规则,写出一种你认为合理的行走路线,(在答题纸图中标出行走路线即可).20.(8分)已知点M(3a﹣2,a+6),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.21.(8分)国庆假期期间,笑笑所在的学习小组组织了到方特梦幻王国的游园活动,笑笑和乐乐对着景区示意图(如图所示)讨论景点位置:(图中小正方形边长代表100m)笑笑说:“西游传说坐标(300,300).”乐乐说:“华夏五千年坐标(﹣100,﹣400).”若他们二人所说的位置都正确(1)在图中建立适当的平面直角坐标系xOy;(2)用坐标描述其他地点的位置.参考答案一.选择题(共8小题)1.【解答】解:由题可得,点(2,﹣2)所在的象限是第四象限,故选:D.2.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.3.【解答】解:将点P(﹣2,﹣3)向左平移2个单位长度得到的点坐标为(﹣2﹣2,﹣3),即(﹣4,﹣3),故选:B.4.【解答】解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.5.【解答】解:在平面直角坐标系中,点P(3,﹣2)到y轴的距离为3.故选:A.6.【解答】解:平行于x轴的直线上的任意两点的坐标之间的关系是纵坐标相等.故选:B.7.【解答】解:观察图形可知将线段向右平移一个单位,再向上平移一个单位得到线段A1B1,∴a=1,b=1,∴a+b=2,故选:A.8.【解答】解:∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=﹣2,∴3a=﹣6,∴点P的坐标为(﹣6,0).故选:C.二.填空题(共6小题)9.【解答】解:点(2,﹣1)所在的象限是第四象限.10.【解答】解:∵点P的坐标为(4,5),∴点P到x轴的距离是:5.故答案为:5.11.【解答】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得m=2.故答案为:2.12.【解答】解:∵线段AB=4,AB∥x轴,若点A的坐标为(2,3),∴点B在点A的左侧或者在点A的右侧.当点B在点A的左侧时,点B的横坐标为:2﹣4=﹣2,纵坐标为:3,故点B的坐标为(﹣2,3).当点B在点A的右侧时,点B的横坐标为:2+4=6,纵坐标为:3,故点B的坐标为(6,3).故答案为:(﹣2,3),(6,3).13.【解答】解:∵A(0,﹣9),B(0,2),∴AB=2﹣(﹣9)=11,故答案为:1114.【解答】解:∵点A(﹣2,0)向右平移4个单位,向上平移2个单位得到A′(2,2),∴点B(0,3)向右平移4个单位,向上平移2个单位得到B′(4,5),故答案为(4,5).三.解答题(共7小题)15.【解答】解:如图所示:A(2,2),B(﹣1,﹣1),C(﹣2,﹣2).16.【解答】解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.17.【解答】解:①B点到x轴的距离是3,到y轴的距离是1,故答案为:3、1;②将点C向x轴的负方向平移6个单位,它就与点D重合.③连接CE,则直线CE与y轴是平行的关系,故答案为:平行.18.【解答】解:建立直角坐标系,描点如下:19.【解答】解:(1)由“相”位于点(4,2),“帅”位于点(0,0),∴“马”的坐标为(﹣3,0),D的坐标(3,1),故答案为(﹣3,0),(3,1);(2)如图所示:20.【解答】解:(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5)21.【解答】解:(1)如图所示:(2)太空飞梭(0,0),秦岭历险(0,400),魔幻城堡(400,﹣200),南门(0,﹣500),丛林飞龙(﹣200,﹣100).。

新人教版七年级下册数学第七章平面直角坐标系检测试题及答案

新人教版七年级下册数学第七章平面直角坐标系检测试题及答案

人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10 小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点 B 的坐标为()A. .(-2,2)B. .(-2,-3)C. .(-3,-2)D. (-2,-2)3.已知点 A(-3,0),则 A 点在()A. x 轴的正半轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点 M 到 x 轴的距离为3,到 y 轴的距离为4,则点 M 的坐标是()A. (3,-4)B.(-4,3)C. (4,-3)D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移 2 个单位长度,再向下平移 2 个单位长度所获得的点坐标为()A. (1,0)B. (1,2)C. (5,4)D. (5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.123° ~124° 34′C.福建的正方向D. 123° ~124° 34′ ,北 25° 40′~26° 8.已知点 M(a,1),N(3,1), 且 MN=2 , a 的(A.1 B. 5)C.1 或5D.不可以确立9.如所示是一个棋棋(局部)①的坐是 (-2,-1),白棋③的坐是A. (0,-2) B. (1,-2),把个棋棋搁置在一个平面直角坐系中,白棋(-1,-3),黑棋②的坐是()C. (2,-1)D. (1,2)10.如,在直角坐系中,已知点 A(-3,0)、B(0,4),△ OAB作旋,挨次获得△1、△2、△3、△4、⋯ ,△16的直角点的坐()19 1 9 A. (60,0)B. (72,0)C. 675,5D. 79 5,5二.填空(共 6 小)11.若 4 排3 列用有序数(4,3)表示,那么表示 2 排5 列的有序数.12.在平面直角坐系中,已知点A(2,3),点 B 与点A 对于x 称,点 B 坐是.13.若点P(m+5,m-2)在x 上,m=;若点P(m+5,m-2) 在y 上,m=.14A(-2,3)和B(2,1),那么炸机 C 的平面坐是.15.将点P(x,4)向右平移 3 个单位获得点(5,4),则P 点的坐标是.16.把自然数按如图的序次在直角坐标系中,每个点坐标就对应着一个自然数,比如点(0,0)对应的自然数是1,点 (1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n) 对应的自然数是三.解答题(共 6 小题)17.在平面直角坐标系中,点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,试求m+n 的值.18.已知点P(2m+4,m-1), 请分别依据以下条件,求出点P 的坐标.(1)点 P 在 x 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过点 A(2,-4)且与 y 轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如下图,但是她忘掉了在图中标出原点和x 轴、 y 轴,只知道游玩园 D 的坐标为 (2,-2),且一格表示一个单位长度.(1)在原图中成立直角坐标系,求出其余各景点的坐标;(2)在( 1)的基础上,记原点为 0,分别表示出线段 AO 和线段 DO 上随意一点的坐标.20.已知 A(1,0)、 B(4,1)、 C(2,4),△ABC经过平移获得△A′ B′ C′ ,若 A′的坐标为 (-5,-2).(1)求 B′、 C′的坐标;(2)求△ A′B′ C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB 变换成△ OA B,第二次将△ OA B 变换成1111△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0) .( 1 )察看每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则 A4的坐标为 ,B4的坐标为.(2)按以上规律将△ OAB 进行 n 次变换获得△ OA n B n,则 A n的坐标为 ,B n的坐标为 ;(3)△ OA n B n的面积为.22.( 1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1), 并将各点用线段按序连结起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)假如将原图形上各点的横坐标加2、纵坐标减 5,猜一猜,图形会发生如何的变化?(4)假如想让变化后的图形与原图形对于原点对称,原图形各点的坐标应当如何变化?答案:1-10 BDBCD DDCAA11.(2,5)12.(2,-3)13.-514.( -2, -1)15.(2,4)16.604n2 -2n+117.解:∵点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,∴2m-7=1,n-6=-3 ,解得 m=4, n=3,因此 ,m+n=4+3=7.18.解:( 1)∵点 P(2m+4,m-1) 在 x 轴上,∴m-1=0 ,解得 m=1,∴2m+4=2×1+4=6,m-1=0,因此,点P 的坐标为 (6,0);(2)∵点 P(2m+4,m-1)的纵坐标比横坐标大 3,∴m-1-(2m+4)=3 ,解得 m=-8,∴人教版七年级数学下册第七章平面直角坐标系培优稳固检测一.选择题(共10 小题)1.平面直角坐标系内有一点P(-2019,-2019),则点 P 在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点 A(a,b)在第四象限,则点 B(0,a)在()A. x 轴的正平轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上3.已知点 P 的坐标为 (1,-2),则点 P 到 x 轴的距离是()A.1B. 2C. -1D.-24.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)5.已知点 P 位于第二象限,则点P 的坐标可能是()A. (-3,0)B. (0,3)C. (-3,2)D. (-3,-3)6.在直角坐标系中,点 M(-3,-4) 先右移 3 个单位,再下移 2 个单位,则点 M 的坐标变成()A. (-6,-6)B. (0,-6)C. (0,-2,)D.(-6,-2)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.东经 123° ~124° 34′C.福建的正东方向D.东经 123° ~124° 34′ ,北纬 25° 40′~26°8.如图,已知在△AOB 中 A(0,4),B(-2,0),点 M 从点(4,1)出发向左平移,当点M 平移到AB 边上时,平移距离为()A.4.5B. 5C.5.5D. 5.759.已知点M(a,1),N(3,1), 且MN=2 ,则a 的值为()A.1B. 5C.1 或5D.不可以确立10.在平面直角坐标系中,给出三点A,B,C,记此中随意两点的横坐标的差的最大值为a,任意两点的纵坐标差的最大值为h,定义“矩面积”S=ah,比如:给出A(1,2),B(-3,1),C(2,-2),则a=5, h=4, S=ah=20.若 D(1,2),E(-2,1). F(0,t)三点的“矩面积”为18,则 t=()A.-3 或 7B.-4 或 6C.-4 或 7D.-3 或 6二.填空(共 6 小)11.若影票上座位是“ 4 排 5号” 作 (4,5), (8,13)的座位是12.若 P(a-2,a+1)在 x 上, a 的是.13.若 4 排 3 列用有序数(4,3)表示,那么表示 2 排 5列的有序数.14.在平面直角坐系中,将点A(-1,3)向左平移 a 个位后,获得点A′ (-3,3), a 的是15.在平面直角坐系中,点M 在 x 的上方, y 的左面,且点 M 到 x 的距离 4,到y 的距离 7,点 M 的坐是.16.如,在平面直角坐系中,每个最小方格的均1,P2 ,P3,⋯1 个位度, P均在格点上,其序按中“→”方向摆列,如:P1(0, 0), P2 (0, 1), P3(1, 1), P4(1,- 1),P5(- 1,- 1), P6(- 1,2),⋯,依据个律,点P2019的坐三.解答(共 5 小)17.已知平面直角坐系中有一点M(2m-3,m+1) .(1)点 M 到 y 的距离 l , M 的坐?(2)点 N(5,-1)且 MN ∥x , M 的坐?18.六形六个点的坐A(-4,0),B(-2,-2),C(1,-2),D(4,1),E(1,4),F(-2,4).(1)在所坐系中画出个六形;(2)写出各拥有的平行或垂直关系.(不原因.)19.如图,三架飞机 P、 Q、 R 保持编队飞翔, 30 秒后飞机 P 飞到P1的地点,飞机Q、R飞到了新地点 Q1、 R1.在直角坐标系中标出 Q1、 R1,并写出坐标.20.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如下图.但是她忘掉了在图中标出原点和x 轴、y 轴.知道马场的坐标为(-3,-3)、南门的坐标为 (0,0), 你能帮她成立平面直角坐标系并求出其余各景点的坐标?21.如图是由边长为 1 个单位长度的小正方形构成的网格,线段AB 的端点在格点上.(1)请成立适合的平面直角坐标系xOy,使得 A 点的坐标为(-3,-1),在此坐标系下,写出 B 点的坐标;(2)在( 1)的坐标系下将线段B A 向右平移 3 个单位,再向上平移 2 个单位得线段CD,使得 C 点与点 B 对应,点 D 与点 A 对应.写出点C, D 的坐标,并直接判断线段AB 与 CD 之间关系?答案:1-5CCBDC6-10BDCCC11.8排13号12.-113.(2,5)14.215.( -7, 4)16.(505, 505)17.解:( 1)∵点 M ( 2m-3, m+1),点 M 到 y 轴的距离为 1,∴|2m-3|=1 ,解得 m=1 或 m=2,当 m=1 时,点 M 的坐标为( -1, 2),当m=2 时,点 M 的坐标为( 1, 3);综上所述,点 M 的坐标为( -1, 2)或( 1, 3);(2)∵点 M ( 2m-3, m+1 ),点 N ( 5, -1)且 MN ∥ x 轴,∴m+1=-1 ,解得 m=-2,故点 M 的坐标为( -7, -1).18.解:( 1)如下图:(2)由图可得, AB ∥DE, CD ⊥ DE , BC∥EF, CD⊥ AB .19.解:由题意可知:P 的坐标( -1, 1), Q( -3, 1), R(-1, -1)经过 30 秒后 P1的坐标为( 4, 3),∴Q1的坐标( 2,3), R1的坐标为( 4, 1)20.人教版七年级数学下册第7 章平面直角坐标系能力提高卷一.选择题(共10 小题)1.如图,小手遮住的点的坐标可能为()A. (5,2)B.(-7,9)C. (-6,-8)D. (7,-1)2.若线段 AB∥ x 轴且 AB=3,点 A 的坐标为 (2,1), 则点 B 的坐标为()A. (5,1)B.(-1,1)C. (5,1)或 (-1,1)D. (2,4)或 (2,-2)3.若点 A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到 x 轴的距离为()A.5B. -5C. 4D.-45.已知点 A(2x-4,x+2)在座标轴上,则x 的值等于()A.2 或 -2B. -2C. 2D.非上述答案6.依据以下表述,能确立一个点地点的是()A.北偏东 40°B.某地江滨路C.光明电影院 6 排D.东经 116 °,北纬 42°7.如图是某动物园的平面表示图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为 y 轴正方向成立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点 A 的坐标为(2,1),现将线段AB 先向左平移 1 个单位,再向下平移两个单位,则平移后 B 点的坐标为()A. (1,2)B.(1,-4)C. (-1,-1)或 (5,-1)D. (1,2)或 (1,-4)9.课间操时,小明、小丽、小亮的地点如下图,小明对小亮说:假如我的地点用(0,0) 表示,小丽的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5) C. (3,4) D. (4,3)10.已知点A(-1,2)和点 B(3,m-1),假如直线AB∥ x 轴,那么m 的值为()A.1B. -4C. -1D.3二.填空题(共 6 小题)11.若P(a-2,a+1)在x 轴上,则 a 的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移 4 个单位,获得点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点 Q 的坐标为 (ax+y,x+ay),此中 a 为常数,则称点Q 是点 P 的“ a 级关系点”,比如,点P(1,4)的 3 级关系点”为 Q(3 × 1+4,1+3×即4)Q(7,13),若点 B 的“ 2 级关系点”是 B'(3,3),则点 B 的坐标为;已知点 M(m-1,2m) 的“ -3 级关系点” M′位于 y 轴上,则 M ′的坐标为.14.已知点 A(m-1,-5) 和点 B(2,m+1),若直线 AB∥ x 轴,则线段 AB 的长为.15.小刚家位于某住所楼 A 座 16 层,记为:A16,按这类方法,小红家住 B 座 10层,可记为.16.如图,矩形 BCDE的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作围绕运动,物体甲按逆时针方向以乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第是.1 个单位2012/ 秒匀速运动,物体次相遇地址的坐标三.解答题(共7 小题)17.如图,在平面直角坐标系中,三角形ABC 的极点 A、 B、 C 的坐标分别为(0,3)、 (-2,1)、(-1,1),假如将三角形ABC先向右平移 2 个单位长度,再向下平移 2 个单位长度,会获得三角形 A′ B′C′ ,点 A'、 B′、 C′分别为点 A、 B、 C 挪动后的对应点.(1)请直接写出点 A′、 B'、 C′的坐标;(2)请在图中画出三角形 A′ B′ C′ ,并直接写出三角形 A′ B′ C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当 m 为什么值时,点 M 到 x 轴的距离为 1?(2)当 m 为什么值时,点 M 到 y 轴的距离为 2 ?19.如图是某个海岛的平面表示图,假如哨所 1 的坐标是 (1,3),哨所 2 的坐标是 (-2,0),请你先成立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的地点.20.已知:点P(2m+4,m-1) .试分别依据以下条件,求出P 点的坐标.(1)点 P 在 y 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过 A(2,-4)点且与 x 轴平行的直线上.21.阅读资料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点 A 位于点 (-4,4),点 B 位于点 (3,1),则“帅”所在点的坐标为;" 马”所在点的坐标为 ;" 兵”所在点的坐标为.(2)若“马”的地点在点 A,为了抵达点 B,请按“马”走的规则,在图上画出一种你以为合理的行走路线,并用坐标表示出来.1m a,1, 此中a、b为常数.f运算22.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =n b22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)= ;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a=,b =.答案:1-5CCBCA6-10DDDCD11.-112.(-10, 5)13.( 1, 1)( 0, -16)14.915.B1016.( -1, -1)17.解:( 1)依据题意知,点 A′的坐标为( 2,1)、 B' 的坐标为( 0,-1 )、 C′的坐标为(1, -1 );(2)如下图,△A′ B′ C′即为所求,S= × 1×2=1.△A ′B′C′18.解:( 1)∵ |2m+3|=12m+3=1 或 2m+3=-1∴m=-1 或 m=-2;(2)∵ |m-1|=2m-1=2 或 m-1=-2∴m=3 或 m=-1.19.解:成立如下图的平面直角坐标系:小广场( 0, 0)、雷达( 4,0)、营房( 2, -3 )、码头( -1 , -2 ).20.解:( 1)∵点 P( 2m+4, m-1),点 P 在 y 轴上,∴2m+4=0 ,解得: m=-2,则 m-1=-3,故 P( 0, -3);21. 解:( 1)由点 A 位于点( -4 , 4。

人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)

人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)

第七章平面直角坐标系单元测试一、单项选择题(共7 题;共 28 分)1.以下是甲、乙、丙三人看地图时对四个坐标的描绘:甲:从学校向北直走500 米,再向东直走100 米可到图书室.乙:从学校向西直走300 米,再向北直走200 米可到邮局.丙:邮局在火车站西200 米处.依据三人的描绘,若从图书室出发,判断以下哪一种走法,其终点是火车站()A. 向南直走300 米,再向西直走200 米B. 向南直走300 米,再向西直走100 米C. 向南直走700 米,再向西直走200 米D. 向南直走700 米,再向西直走600 米2.平面直角坐标系中,以下各点中,在y 轴上的点是 ()A.(2,0)B. ( -2,3 )C.(0,3)D.(1,-3)3.若 y 轴上的点P 到 x 轴的距离为 3,则点 P 的坐标是()A. (3, 0)B. ( 0,3)C. ( 3, 0)或(﹣ 3, 0)D. (0, 3)或( 0,﹣ 3)4.已知 M(1,﹣ 2), N(﹣ 3,﹣2),则直线 MN 与 x 轴, y 轴的地点关系分别为()A. 订交,订交B. 平行,平行C. 垂直订交,平行D. 平行,垂直订交5.点 P(a,b)在第四象限 ,则点 P 到 x 轴的距离是 ()A. a-B. b-C. -aD. -b6.如图是某校的平面表示图的一部分,若用“(0,0)”表示校门的地点,“(0,3)”表示图书室的地点,则教课楼的地点可表示为()A. (0, 5)B(.5, 3)C(. 3, 5)D(.﹣ 5, 3)7.已知点 P 的坐标( 2a, 6﹣ a),且点 P 到两坐标轴的距离相等,则点P 的坐标是()A. (12,﹣ 12)或( 4,﹣ 4)B. (﹣ 12, 12)或( 4, 4)C.(﹣ 12, 12)D.(4,4)二、填空题(共 6 题;共 30 分)8.假如“2街 5 号”用坐标( 2,5)表示,那么(3 ,1)表示 ________9.将点 A( 1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移 5 个单位长度后获得的点A′的坐标为 ________.10.以下图的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是________.111.电影院里 5 排 2 号能够用( 5, 2)表示,则( 7, 4)表示 ________12.( 2015?广安)假如点 M ( 3, x)在第一象限,则 x 的取值范围是 ________ .13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A( 0,4),点 B 是 x 轴正半轴上的整点,记△ AOB 内部(不包含界限)的整点个数为m.如当点 B 的横坐标为 4 时, m=3;那么当点的横坐标为 4n( n 为正整数)时, m= ________ .(用含 n 的代数式表示)三、解答题(共 4 题;共 42 分)14.在平面直角坐标系中,点 A 在 y 轴正半轴上,点 B 与点 C 都在 x轴上,且点 B在点 C的左边,知足BC=OA.若﹣ 3a m﹣1b2与 a n b2n﹣2是同类项且 OA=m, OB=n,求出 m 和 n 的值以及点 C的坐标.15.某水库的景区表示图以下图(网格中每个小正方形的边长为1).若景点 A 的坐标为( 3 ,3),请在图中画出相应的平面直角坐标系,并写出景点B、 C、 D 的坐标.16.在平面直角坐标系中,已知 A(0, 0)、 B( 4, 0),点 C 在 y 轴上,且△ ABC的面积是 12.求点 C 的坐标.17.在雷达探测地区,能够成立平面直角坐标系表示地点.在某次行动中,当我两架飞机在A(- 1, 2)与B( 3, 2)地点时,可疑飞机在(-1,- 3)地点,你能找到这个直角坐标系的横、纵坐标的地点吗?把它们表示出来并确立可疑飞机的地点,谈谈你的做法.2答案一、单项选择题1-7.ACDDDBB二、填空题8.3街1号9.(﹣ 2, 2)10.(﹣ 3, 0)11.7排 4号12.x> 013.6n﹣ 3三、解答题14.解:∵﹣3a m﹣1b2与 a n b2n﹣2是同类项,∴,m = 3解得:{,∵OA=m=3, OB=n=2,∴B( 2,0)或(﹣ 2, 0),∵点 B 在点 C 的左边, BC=OA,∴C( 5,0)或( 1, 0)15.解:以下图:B(﹣ 2,﹣ 2), C( 0, 4), D( 6,5).16.解:∵ A( 0,0)、 B( 4, 0),∴AB=4,且 AB 在 x 轴上,设点 C 坐标是( 0, y),则依据题意得,112AB× AC=12,即2× 4× |y|=12,解得 y=±6.3∴点 C 坐标是:( 0, 6)或( 0, -6)17.解:能.以以下图,先把 AB 四平分,而后过凑近 A 点的分点 M 作 AB 的垂线即为 y 轴,以 AM 为单位长度沿 y 轴向下 2 个单位即为 O 点,过点 O 作 x 轴垂直于 y 轴,而后描出敌机地点为点 N.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章综合训练
(满分120分)
一、选择题.(每小题4分,共32分)
1.在平面直角坐标系中,点P(2,-x2+1)所在的象限是()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.如图所示,某班教室有9排5列座位.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”根据上面4位同学的描述,可知“5号”小明的位置在()
A.4排3列
B.4排5列
C.5排4列
D.5排5列
3.下列命题中正确的有()
①点P(0,-5)在坐标平面内的位置在第三象限或第四象限内;②点(-x,-y)在第三象限内;③坐标平面内的所有点与有序数对是一一对应的;④在直角坐标系中,点A(a,b)与点A′(b,a)有可能表示同一个点.
A.1个
B.2个
C.3个
D.4个
4.若点P(2,-3)与点Q(2,x)之间的距离是4,那么x的值是()
A.1
B.-7
C.1或-7
D.无法确定
5.点P(a+2,a-2)在x轴上,则点P的坐标为()
A.(0,-2)
B.(2,0)
C.(4,0)
D.(0,-4)
6.一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5km处,乙车位于雕像北方7km处.若甲、乙两车以相同的速度向雕像的方向同时出发,当甲车到雕像西方1km处时,乙车在()
A.雕像北方1km处
B.雕像北方3km处
C.雕像南方1km处
D.雕像南方3km处
7.以平行四边形ABCD的顶点A为原点,直线AD为x轴建立平面直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是()
A.(3,3)
B.(5,3)
C.(3,5)
D.(5,5)
8.如图所示,方格纸中的每个小方格边长为1的正方形,AB两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格顶点上确定一点C,连接AB、AC、BC,使三角形ABC的面积为2个平方单位,则点C的位置可能为()
A.(4,4)
B.(4,2)
C.(2,4)
D.(3,2)
二、填空题.(每小题4分,共32分)
9.若点M(4,a)与点N(b,-3)的连线平行于x轴,并且点M与点N到y轴的距离相等,那么a、b的值分别是________、________.
10.若x2-4+|y+2|=0,则点(x,y)在第________象限.
11.已知点N的坐标为(a,a-1),则点N一定不在第________象限.
12.将点A(3,-1)向左平移m个单位长度,再向上平移n个单位长度,得到点B(-5,3),则m=________,n=________.
13.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.
14.如图所示,围棋棋子放置在某个平面直角坐标系内,白棋②的坐标为(-3,-1),白棋④的坐标为(-2,-5),则黑棋①的坐标为________.
15.根据指令[s,A](s≥0,0°≤A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s.现机器人在直角坐标系的坐标原点,且面对x轴正方向,若下指令[4,90°],则机器人应移动到点________.
16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…根据这个规律,第100个点的坐标为________.
三、解答题.(共56分)
17.(8分)在平面直角坐标系中,描出以下各点:A(4,3),B(-2,3),C(-3,-1),D(2,-2),E(0,-1),F(-1,0),G(0,0).
(1)指出各点所在的象限或坐标轴.
(2)求四边形ABFG的面积.
18.(10分)已知点A(a-1,-2),B(-3,b+1),根据以下要求确定a,b的值;(1)直线AB∥x轴;
(2)直线AB∥y轴;
(3)A,B两点在第二、四象限的角平分线上.
19.(9分)王红是某中学的七年级学生,放学后从学校骑自行车回家.学校在她现在的位置的北偏东30°方向,距离此处1.5km的地方;她的家在她现在的位置的南偏西45°方向,距离此处2km的地方;邮局在她现在的位置的北偏西60°方向,距离此处3km的地方.根据这些信息画一张表示各处位置的简图.
20.(9分)如图所示的是某运动会体操比赛场地的示意图,请你建立适当的直角坐标系,写出各运动场地位置的坐标.
21.(10分)如图所示,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形
OA
3B
3
,…已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,
0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将三角形
OA
4B
4
变换成三角形OA5B5,求A5和B5的坐标.
(2)直接写出点A n与B n的坐标.
22.(10分)(福建晋江中考)如图所示,在方格纸中(小正方形的边长为1),三角形ABC的三个顶点均为格点,将三角形ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:
(1)画出平移后的三角形A′B′C′,并直接写出点A′,B′,C′的坐标;(2)求出在整个平移过程中,三角形ABC扫过的面积.
(注:可编辑下载,若有不当之处,请指正,谢谢!)
请预览后下载!。

相关文档
最新文档