直线与圆的位置关系的数学知识点

合集下载

初中数学直线和圆的位置关系知识点总结

初中数学直线和圆的位置关系知识点总结

初中数学直线和圆的位置关系知识点总结直线和圆的位置关系是初中数学中的一个重要知识点,它涉及到点、线、圆之间的相对位置关系。

我们可以通过以下几个方面来总结这一知识点:1.判定圆和直线的位置关系:a.直线包含于圆内:当直线上的所有点都在圆内时,称直线包含于圆内。

此时,直线与圆的交点为无穷个(无限多个)。

b.直线与圆相交:当直线和圆有一个或两个交点时,称直线与圆相交。

相交的情况还可以细分为相离相交、相切相交和截割相交。

-相离相交:直线和圆相切于两个点,相交与标准的两个正数圆相交;-相切相交:直线和圆相交于一个点,直线切圆;-截割相交:直线和圆相交于两个点,直线截割圆;c.直线与圆相离:当直线上的所有点都不在圆内时,称直线与圆相离。

此时,直线与圆的交点为零个。

d.直线与圆重合:当直线上的所有点都在圆上时,称直线与圆重合。

2.圆心与直线间的距离:a.圆心到直线的距离:圆心到直线的距离等于圆心到直线的垂直距离,垂直距离是圆心到直线的最短距离。

b.两圆心间的距离:两个圆心之间的直线距离等于两个圆相切时的直线距离。

3.判断点与直线的位置关系:a.点在直线上:当一个点恰好在直线上时,称这个点在直线上。

b.点在直线上方:当一个点位于直线的上方时,称这个点在直线上方。

c.点在直线下方:当一个点位于直线的下方时,称这个点在直线下方。

4.判断点与圆的位置关系:a.点在圆内:当一个点位于圆内时,称这个点在圆内。

b.点在圆上:当一个点正好位于圆上时,称这个点在圆上。

c.点在圆外:当一个点位于圆外时,称这个点在圆外。

5.判断直线与圆相交的条件:a.直线与圆有交点的条件:直线和圆有交点当且仅当直线的距离小于圆的半径。

b.直线与圆相切的条件:直线和圆相切当且仅当直线的距离等于圆的半径。

6.判断两圆的位置关系:a.内离:两圆的圆心之间的距离大于两个圆的半径之和,此时两个圆的内部没有共同点。

b.相离:两圆的圆心之间的距离等于两个圆的半径之和,此时两个圆相切于外公切点。

直线与圆的位置关系讲义

直线与圆的位置关系讲义

九年级数学时间: 学生:第讲直线与圆的位置关系【知识点】1直线和圆的位置关系有三种:, 。

2设r为O O的半径,d为圆心O到直线l的距离, d r, 则直线l与O O相交。

d r,则直线l与O O相切d r,则直线l与O O相离。

3圆的切线的性质:圆的切线垂直于_________________ 的半径。

4圆的切线的判定定理:经过直径的一端,并且____________ 这条直径的直线是圆的切线。

5圆的切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

6.三角形的内切圆:(1)定义:与三角形三边都相切的圆称为三角形的内切圆。

(2)_________________________________ 内切圆的作法;______ .(3)_________________________ 内心的性质:内心是 _______ 的交点,内心到的距离相等,内心与三角形顶点的连线________ 这个内角。

【课前自测】1. (2011?成都)已知O O的面积为9n cm2,若点0到直线I的距离为n cm则直线l与。

O的位置关系是()A、相交B、相切 C 、相离D无法确定2.如图,从O O外一点A引圆的切线AB切点为B,连接AO并延长交圆于点C,连接BC若/ A= 26°,则/ ACB的度数为▲.3.已知O O的半径为5,圆心O到直线AB的距离为2,则O O上有且只有_______________ 到直线AB的距离为3.4.如图,已知AB是O O的一条直径,延长AB至C点,使得AC= 3BQ 个占I 八、、CD与O O相切,切点为D.若CD= d,则线段BC的长度等于5.如图23, PA与O O相切,切点为A, PO交O O于点C,点B是优弧CBA上一点,若 / ABC=32,则/ P的度数为【例题讲解】例1.如图,AB是O O的直径,点D在AB的延长线上,DC切O O于点C,若/ A=25°, 则/ D 等于A. 20°B.30°C.40°D.50°例2已知BD是O O的直径,OAL OB,M是劣弧AB上的一点,过M作O O的切线MP交OA的延长线于点P, MD交OA于点N。

九年级数学直线和圆的位置关系

九年级数学直线和圆的位置关系

高档题型解析及思路拓展
例题3
解析
思路拓展
已知直线$l_{1}$和圆$O_{1}$相切于点 $P$,直线$l_{2}$过点$P$且与圆 $O_{1}$相交于另一点$Q$,求直线 $l_{2}$的方程。
由于直线$l_{1}$和圆$O_{1}$相切于点 $P$,因此点$P$是切点,且直线 $l_{1}$在点$P$处的切线斜率与直线 $l_{2}$的斜率相等。我们可以通过求 出点$P$的坐标和切线斜率,再利用点 斜式求出直线$l_{2}$的方程。
若直线与圆相切,则直线到圆心的距 离等于半径,由此可求出切线方程。
直线与圆的交点坐标
联立直线方程和圆方程求解,可得交 点坐标。若有两个交点,则它们关于 圆心对称。
02
直线与圆的位置关系分类
相离关系
定义
直线与圆没有公共点,称为相离。
判定方法
通过比较圆心到直线的距离与圆的 半径大小来判断。若圆心到直线的 距离大于圆的半径,则直线与圆相 离。
直线与圆的交点个数
通过观察图形或计算,确定直线与圆的交点个数。若有两个交点,则直线与圆 相交;若有一个交点,则直线与圆相切;若没有交点,则直线与圆相离。
综合应用举例
解法一
联立直线l和圆C的方程,消去一 个未知数得到一个一元二次方程 。根据判别式的值判断位置关系 。
解法二
计算圆心(a,b)到直线l的距离d,根 据d与半径r的大小关系判断位置关 系。
圆的性质
圆上任意一点到圆心的距 离等于半径;圆的任意弦 所对的圆周角等于弦所对 圆心角的一半。
圆的切线
与圆有且仅有一个交点的 直线称为圆的切线,切线 与半径垂直。
直线与圆的交点问题
直线与圆的位置关系
直线与圆的切线问题

初三数学直线和圆的位置关系

初三数学直线和圆的位置关系

初三数学直线和圆的位置关系一.直线和圆的位置关系:①相交:直线和圆有两个公共点,这时说这条直线和圆相交;这条直线叫做圆的割线;②相切:直线和圆有唯一公共点,这时说这条直线和圆相切;这条直线叫做圆的切线,这个点叫做切点.③相离:直线和圆没有公共点,这时说这条直线和圆相离.二.直线和圆的位置关系的判定:(1)定理:若⊙O的半径为R,圆心到直线l 的距离为d. 则直线l与⊙O相交d﹤R;直线l与⊙O相切 d =R;直线l与⊙O相离d﹥R;(2)“圆心到直线的距离d和半径R的数量关系”与“直线和圆的位置关系”之间的对应与等价关系列表如下:例1、1.在Rt△ABC中,∠C=,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为_________cm.2.如图,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移_________cm时与⊙O相切.3.已知⊙O的直径为6cm,如果直线l上的一点C到圆心的距离为3cm,则直线l与⊙O的位置关系是_________.4.⊙O的半径为R,圆心O到直线l的距离d与R是方程x2-6x+9=0的两个实数根,则直线l和⊙O的位置关系是_________.三.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;2.切线的性质:①切线垂直于过切点的半径;②切线和圆心的距离等于半径;③经过圆心且垂直于切线的直线必过切点;④经过切点垂直于切线的直线必过圆心.综上所述,在解决有关圆的切线的问题,连接圆心和切点的线段是最常见的辅助线.四、切线长的定义及切线长定理过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长,如图所示,PA,PB 是⊙O的两条切线,A,B为切点,线段PA,PB的长即为点P到⊙O的切线长.切线长定理:过圆外一点所画的圆的两条切线长相等.例2、如图,AB是⊙O的直径,BC切⊙O于点B,AD∥CO.求证:CD是⊙O的切线.1、⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≤RD.d≥R2、点A为直线l上任一点,过A点与直线l相切的圆有()个.A.1 B.2C.不存在 D.无数个3、在Rt△ABC中,∠A=,BA=12,CA=5,若以A为圆心,5为半径作圆,则斜边BC与⊙A的位置关系是()A.相交 B.相离C.相切 D.不确定4、等边△ABC的边长为6,点O为△ABC的外心,以O为圆心,为半径的圆与△ABC的三边()A.都相交B.都相离C.都相切D.不确定5、两个同心圆的半径分别为3cm和5cm,作大圆的弦MN=8cm,则MN与小圆的位置关系是()A.相交 B.相切C.相离D.无法判断6、如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相交C.相切 D.以上三种情形都有可能7、下列说法正确的是()A.垂直于切线的直线必过切点B.垂直于半径的直线是圆的切线C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过圆心8、已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm的长为半径作圆,则这个圆与斜边所在的直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9、如右上图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为()10、如下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,∠D=__________.11、如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC相切时,OA=__________.12、设⊙O的半径为R,⊙O的圆心到直线的距离为d,若d、R是方程x2-6x+m=0的两根,则直线l 与⊙O相切时,m的值为__________.13、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,2cm为半径作⊙O,则⊙O与BC的位置关系是__________.14、如图,Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.15、如图,以边长为4的正△ABC的BC边为直径作⊙O与AB相交于点D,⊙O的切线DE交AC于E,EF⊥BC,点F是垂足,求EF的长.16、如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.17、如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB 的延长线于点D,求线段BD的长.1.弧长公式:n°的圆心角所对的弧长l公式不要死记硬背,可依比例关系很快地随手推得:2.扇形面积公式:(1)和含n°圆心角的扇形的面积公式同样不要死记硬背,可依比例关系很快地随手推得:.(2)将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:。

直线与圆、圆与圆的位置关系知识点及题型归纳

直线与圆、圆与圆的位置关系知识点及题型归纳

直线与圆、圆与圆的位置关系知识点及题型归纳(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直线与圆、圆与圆的位置关系知识点及题型归纳知识点精讲一、 直线与圆的位置关系直线与圆的位置关系有3种,相离,相切和相交二、 直线与圆的位置关系判断1. 几何法(圆心到直线的距离和半径关系)圆心(,)a b 到直线0Ax By C ++=的距离,则d =则d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离2. 代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数)由2220()()Ax By C x a y b r++=⎧⎨-+-=⎩ ,消元得到一元二次方程20px qx t ++=,20px qx t ++=判别式为∆,则:则0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.三、 两圆位置关系的判断是用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则: 则d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r -<<+⇔两圆相离 d R r =-⇔两圆内切;0d R r ≤<-⇔两圆内含(0d =时两圆为同心圆)四、 关于圆的切线的几个重要结论(1) 过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=. (2) 过圆222()()x a y b r -+-=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r --+--=(3) 过圆220x y Dx Ey F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4) 求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解:①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x -=-,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.题型讲解题型1 直线与圆的相交关系 思路提示研究直线与圆的相交问题,应牢牢记住三长关系,即半径长2l、弦心距d 和半径r 之间形成的数量关系222()2l d r +=.例 已知圆O :225x y +=,直线l :cos sin 1(0)2x y πθθθ+=<<,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =___________.分析 先求出圆心到直线的距离,在进行判断解析 因为圆心(0,0)到直线l 的距离为1,又因为圆O 4个点符合条件. 评注 若圆O 上到直线l 的距离等于2的点的个数为k ,则2k =;若3k =,则圆O 上到直线l 的距离等1-变式1已知圆O :224x y +=,直线l :1x ya b+=,设圆O 上到直线l 的距离等于1的点的个数有两个,则2211a b +的取值范围___________. 例 已知圆C :228120x y y +-+=,直线l :20ax y a ++=,(1) 当直线l 与圆C 相交时,求实数a 的取值范围;(2) 当直线l 与圆C 相交于,A B 两点,且AB =l 的方程.分析 根据点到直线距离等于半径来度量直线与圆相切问题;根据三长关系解决直线与圆相交问题. 解析 (1)圆C :22(4)4x y +-=,故圆心为(0,4)C ,因为直线l 与圆C 相交,所以圆心为(0,4)C 到直线l 的距离2d =<,解得34a <-,故实数a 的取值范围是3(,)4-∞-(2)由题意,直线l 与圆C 相交于,A B 两点,且AB =224+=,化简可得2870a a ++=,即1a =-或7a =-,故所求直线的方程为20x y -+=或7140x y -+=.评注 在处理直线与圆的相交问题时经常用到三长关系,即半弦长,弦心距,半径长构成直角三角形的三边.变式1 对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离 B. 相切 C.相交但直线不过圆心 D.相交且直线过圆心变式2 过点(1,2)--的直线l 被圆222210x y x y +--+=,则直线l 的斜率为__________.变式3 已知直线l 经过点(1,3)P -且与圆224x y +=相交,截得弦长为l 的方程.例 过点(1,1)P 的直线l 与圆22:(2)(3)9C x y -+-=相交于,A B 两点,则||AB 的最小值为( )A.解析 设圆心(2,3)C 到直线l 的距离d ,由弦长公式||AB ==可知当距离最大d时,弦长||AB 最小.又||d CP ≤==l CP ⊥时取等号,故max d .所以max ||4AB ===.故选B评注 过圆内一定点的所有弦中,过此点的直径为最长弦,过此点且垂直于该直径的弦为最短弦. 变式1 过点(11,2)A 做圆22241640x y x y ++--=的弦,其中弦长为整数的共有( ) A. 16 条 B. 17条 C. 32条 D. 34条例 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A. C. 解析 22680x y x y +--=可化为22(3)(4)25x y -+-=,故圆心坐标(3,4),半径为5,点(3,5)在圆内,因为AC 最长,所以AC 为直径,即||10AC =,BD 最短,且BD 过点(3,5),所以||BD ==,所以1||||2S AC BD ==B变式1 如图所示,已知AC ,BD 为圆O :224x y +=的两条相互垂直的弦,垂足为M ,则四边形ABCD 的面积的最大值为__________.例 (2012北京海淀高三期末理13改编)已知圆22:(1)2C x y -+=,过点(1,0)M -的直线l 交圆C 于,A B 两点,若0CA CB ⋅=(C 为圆心),则直线l 的方程为__________.解析 设直线:(1)l y k x =+,即:l 0kx y k -+= 则圆心到直线l 的距离为d =又0CA CB ⋅=,故CA CB ⊥,即△ABC 是等腰三角形,2C π∠=.所以sin142d r π====即k =±,故直线l :10x +=或10x += 变式1 已知O 为平面直角坐标系的原点,过点(2,0)M -的直线l 与圆221x y +=交于,P Q 两点.若12OP OQ ⋅=-,求直线l 的方程.变式2 已知圆C :22(1)(6)25x y ++-=上的两点,P Q 关于直线l :8y kx =+对称,且0OP OQ ⋅=(O 为坐标原点),求直线PQ 的方程题型2 直线与圆的相切关系 思路提示若直线与圆相切,则圆心到直线的距离等于半径,切线的几何性质为:圆心和切点的连线垂直于切线.例 求经过点(1,7)-与圆2225x y +=相切的直线方程.分析 将点(1,7)-代入圆方程得221(7)5025+-=>,知点(1,7)-是圆外一点,故只需求切线的斜率或再求切线上另一点坐标.解析 解法一:依题意,直线的斜率存在,设所求切线斜率为k ,则所求直线方程为7(1)y k x +=-,整理成一般式为70kx y k ---=.5=,化简得3127120k k --=,解得43k =或34k =-. 故所求切线方程为:43250x y --=或34250x y ++=.解法二:依题意,直线的斜率存在,设所求切线方程为0025x x y y +=(00(,)x y 是切点),将坐标(1,7)-代入后得00725x y -=,由00002272525x y x y -=⎧⎪⎨+=⎪⎩,解得0043x y =⎧⎨=-⎩或0034x y =-⎧⎨=-⎩. 故所求切线方程为:43250x y --=或34250x y ++=.评注 已知圆外一点,求圆的切线方程一般有三种方法:①设切点,用切线公式法;②设切线斜率,用判别式法:③设切线斜率,用圆心到切线距离等于圆半径.一般地,过圆外一点可向圆作两条切线,在后两种方法中,应注意斜率不存在的情况.变式1 已知圆22:(1)(2)4C x y -+-=,求过点(1,5)P -的圆的切线方程.变式2 直线l (2)2y k x =-+与圆22:220C x y x y +--=相切,则的一个方向向量为( ) A. (2,2)- B. (1,1) C. (3,2)- D. 1(1,)2例 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,求入射光线l 所在直线的方程.分析 利用对称性解决此类反射问题.根据光学特征,对称性的使用既可以使用点的对称,也可以使用圆的对称.解析 已知圆22(2)(2)1x y -+-=关于x 轴的对称圆'C 的方程为22(2)(2)1x y -++=,可设光线所在直线方程为3(3)y k x -=+,所以直线l 与圆'C 相切,圆心'(2,2)C -到直线l的距离1d ==,解得43k =-或34k =-.所以光线所在的直线l 方程为4330x y ++=或3430x y +-=.变式1 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线'l 所在直线与圆224470x y x y +--+=相切,求反射光线'l 所在直线的方程.题型3 直线与圆的相离关系思路提示关于直线与圆的相离问题的题目大多是最值问题,即直线上的点与圆上的点的最近或最远距离问题,这样的题目往往要转化为直线上的点与圆心距离的最近和最远距离再加减半径长的问题. 例 (1)直线:1l y x =-的点到圆22:4240C x y x y ++-+=上的点的距离最小值是____________. (2)由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为( )分析 过直线1y x =+上任意一点向圆22(3)(2)1x y -++=引切线PQ ,即可得到1||PQ O Q PQ ⊥==,那么,当切线长PQ 取最小值时,即1O P 取最小值.解析 (1)圆C 可化为22(2)(1)1x y ++-=,故圆心(2,1)C -到直线1y x =-的距离d ==1d r -=(3) 过1O 作1O H 垂直于直线1y x =+于点H ,过H 作HR 相切圆1O 与R ,连接1O R ,则切线长的最小值为||HR ,圆心(3,2)-到直线10x y -+=的距离d ==||HR =,故选A.变式1 已知点P 是直线40(0)kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两切线,,A B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )C. D. 2 变式2 已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数,a b 间满足的等量关系; (2)求线段PQ 长的最小值.题型4 圆与圆的位置关系 思路提示已知两圆半径分别为12,r r ,两圆的圆心距为d ,则:(1) 两圆外离12r r d ⇔+<;(2)两圆外切12r r d ⇔+=; (3)两圆相交1212||r r d r r ⇔-<<+; (4)两圆内切12||r r d ⇔-=;(5)两圆内含12||r r d ⇔->;两圆外切和内切较为重要,这两种位置关系常与椭圆和双曲线的定义综合考查.例 圆221:20O x y +-=和圆222:40O x y y +-=的位置关系是( )A. 外离B. 相交C. 外切D. 内切 分析 判断圆心距与两圆半径的关系解析 由圆221:20O x y +-=得1(0,0)O ,1r =圆222:40O x y y +-=得2(0,2)O ,22r =,121212||||2r r O O r r -<=<+,两圆相交,故选B.变式1 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.变式2 在平面直角坐标系xOy 中,点(0,3)A ,直线l :24y x =-,设圆C 的半径为1,圆心在l 上,(1) 若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程; (2) 使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.例 已知两圆222610x y x y +---=和2210120x y x y m ++-+= (1)m 取何值时两圆外切.(2)m 取何值时两圆外切,此时公切线方程是什么(3)求45m =时两圆的公共弦所在直线的方程和公共弦的长度.分析 把两圆的一般方程化为标准方程,求两圆的圆心距d ,判断d 与R r +,R r -的关系,再用圆的几何性质分别解决(2)(3)问.解析 两圆的标准方程分别为22(1)(3)11x y -+-=,22(5)(6)61,(61)x y m m -+-=-<,圆心分别为(1,3),(5,6)M N(1) =25m =+(2) 小于两圆圆心距55=,解得,两圆方程222610x y x y +---=与2210120x y x y m ++-+=,相减得861250x y +--+=代入,得43130x y +-+=.(3) 两圆的公共弦所在直线方程为2222(261)(101245)0x y x y x y x y +----+--+=,即43230x y +-=,所以公共弦长为=评注 应注意两圆位置关系由圆心距和两圆半径的和与差的大小关系来确定.变式1 若圆224x y +=与圆22260(0)x y ay a ++-=>,公共弦的长为a =___________.变式2 设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆的圆心距离12||C C =( )A. 4B. 有效训练题1. 已知点(,)P a b 在圆C :224x y +=内(异于圆心),则直线10ax by ++=与圆C 的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定 2.已知a b ≠,且2sin cos 04a a πθθ+-=,2sin cos 04b b πθθ+-=,则连接2(,)a a ,2(,)b b 两点的直线与单位圆的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定3.设,m n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A. 1⎡⎣B. (),11⎡-∞⋃++∞⎣C. 2⎡-+⎣D. (),22⎡-∞-⋃++∞⎣4.若直线1x ya b+=经过点(cos ,sin )M αα,则( ) A. 221a b +≤ B. 221a b +≥ C.22111a b +≤ D. 22111a b +≥5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分两部分,使得这两部分的面积之差最大,该直线的方程为( )A. 20x y +-=B. 10y -=C. 0x y -=D. 340x y +-=6.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A. []3,1--B. []1,3-C. []3,1-D. (][),31,-∞-⋃+∞7. 设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则△ABC 面积的最小值为___________8.过点(4,0)-作直线l 与圆2224200x y x y ++--=交于,A B 两点,如果||8AB =,则l 的方程为__________.9.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则的最大值是_______. 10.已知点(3,1)M ,直线40ax y -+=及圆22(1)(2)4x y -+-=. (1)求过点M 的圆的切线方程;(2)若直线40ax y -+=与圆相切,求a 的值(3)若直线40ax y -+=与圆相交于,A B 两点,且AB 弦的长为a 的值11.已知圆M 的方程为22(2)1x y +-=(M 为圆心),直线的方程为20x y -=,点P 在直线l 上,,过点P 作圆M 的切线,PA PB ,切点为,A B . (1)若060APB ∠=,试求点的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于,C D 两点,当CD =CD 的方程;(3)求证:经过,,A P M 三点的圆必过定点,并求出所有定点的坐标.1112. 已知圆C 过点(1,1)P ,且与圆222:(2)(2)(0)M x y r r +++=>关于直线20x y ++=对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值.(M 为圆M 的圆心);(3)过点P 作两条相异直线分别与圆C 相交于,A B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行请说明理由.。

知识点五、直线和圆的位置关系:相交、相切、相离

知识点五、直线和圆的位置关系:相交、相切、相离

知识点五、直线和圆的位置关系:相交、相切、相离重点:,直线和圆的位置关系的性质和判定难点:直线和圆三种位置关系的性质及判定。

当直线和圆相交时,d<r;反过来,当d<r时,直线和圆相交。

当直线和圆相切时,d=r;反过来,当d=r时,直线和圆相切。

当直线和圆相离时,d>r;反过来,当d>r时,直线和圆相离。

切线的性质定理:圆的切线垂直于过切点的直径切线的判定定理:经过直径的一端,并且垂直于这条直径的直线是圆的切线。

切线长:在经过圆外一点的圆的切线上,这点到切点之间的线段的长叫做这点到圆的切线长。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和圆外这点的连线平分两条切线的夹角。

例1、在中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?解题思路:作AD⊥BC于D在中,∠B=30°∴在中,∠C=45°∴ CD=AD∵ BC=6cm ∴∴∴当时,⊙A与BC相切;当时,⊙A与BC相交;当时,⊙A与BC相离。

例2.如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=•∠A.(1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相切,请说明理由.(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.解题思路:(1)要说明CD是否是⊙O的切线,只要说明OC是否垂直于CD,垂足为C,•因为C点已在圆上.AD由已知易得:∠A=30°,又由∠DCB=∠A=30°得:BC=BD=10 解:(1)CD 与⊙O 相切 理由:①C 点在⊙O 上(已知) ②∵AB 是直径∴∠ACB=90°,即∠ACO+∠OCB=90° ∵∠A=∠OCA 且∠DCB=∠A ∴∠OCA=∠DCB ∴∠OCD=90°综上:CD 是⊙O 的切线. (2)在Rt △OCD 中,∠D=30° ∴∠COD=60° ∴∠A=30° ∴∠BCD=30° ∴BC=BD=10 ∴AB=20,∴r=10答:(1)CD 是⊙O 的切线,(2)⊙O 的半径是10.练习:1.如图,AB 为⊙O 直径,BD 切⊙O 于B 点,弦AC 的延长线与BD 交于D•点,•若AB=10,AC=8,则DC 长为________.D2.如图,P 为⊙O 外一点,PA 、PB 为⊙O 的切线,A 、B 为切点,弦AB 与PO 交于C ,⊙O 半径为1,PO=2,则PA_______,PB=________,PC=_______AC=______,BC=______∠AOB=________.3.如图,P 为⊙O 外一点,PA 切⊙O 于点A ,过点P 的任一直线交⊙O 于B 、C ,•连结AB 、AC ,连PO 交⊙O 于D 、E .(1)求证:∠PAB=∠C .(2)如果PA 2=PD ·PE ,那么当PA=2,PD=1时,求⊙O 的半径._A_P答案: 1.A 2.B 3. (1)提示:作直径AF,连BF,如右图所示.(2)由已知PA2=PD·PE,可得⊙O的半径为32.。

直线与圆的位置关系-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)

直线与圆的位置关系-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)

直线与圆的位置关系知识点一、直线与圆的位置关系直线与圆有三种位置关系,如下所示:判定直线与圆的位置关系通常有以下两种方法:(1)根据直线与圆的公共点的个数判断;(2)根据圆心到直线的距离与半径的大小关系判断. 知识点二、切线的判定定理与切线的性质定理1. 切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.如图所示,OA 的一条半径,直线l 经过点A 且OA ⊥l ,则l 的切线.判定一条直线是否是圆的切线共有以下三种方法:(1)定义法:当直线与圆有且只有一个公共点时,直线与圆相切;(2)数量关系法:当圆心到直线的距离等于半径时,直线与圆相切;(3)判定定理法:经过半径的外端,并且垂直于这条半径的直线是圆的切线.2.切线的性质定理:圆的切线垂直于经过切点的半径.如图所示:直线l的切线,切点为点A,则OA⊥l.例:如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是的切线.(2)若PB=6,DB=8,求⊙O的半径.【解答】(1)见解析;(2)3【解析】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)在Rt△PBD中,PB=6,DB=8,根据勾股定理得,∵PD与PB都为圆的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4,在Rt△CDO中,设OC=r,则有DO=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.知识点三、三角形的内切圆1.定义:与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2.性质:三角形的内心就是三角形三条内角平分性的交点,内心到三角形各边的距离相等,任意三角形的内心都在三角形的内部.3.三角形的内切圆的作法:作三角形任意两个内角平分线,它们的交点就是内切圆的圆心,过圆心向任意一条边作垂线,垂线段的长度就是内切圆的半径.补充:三角形外心与内心对比:例:直角三角形的两条直角边分别为8和15,那么这个直角三角形最大能容纳一个直径为几的圆?【解答】6【解析】如图所示:由勾股定理可求出三角形斜边AB=17,设三角形的内切圆的半径为r即,解得半径,则直径为6.知识点四、切线长及切线长定理1.切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长;2.切线长定理:过圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.外一点P引两条切线PA、PB,切点分别为A、B,连接OA、OB、AB,延长PO并延长交圆于点E,则:①垂直:OA⊥PA,OB⊥PB,OD⊥AB;②全等:△OAP≌△OBP,△OCA≌△OCB,△ACP≌△BCP;③弧相等:.巩固练习一.选择题1.如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠C=65°,则∠P的度数为()A.50°B.65°C.70°D.80°【解答】A【解析】连接OA 、OB ,∵PA 、PB 是⊙O 切线, ∴PA ⊥OA ,PB ⊥OB , ∴∠PAO =∠PBO =90°,∵∠P +∠PAO +∠AOB +∠PBO =360°, ∴∠P =180°﹣∠AOB , ∵∠ACB =65°,∴∠AOB =2∠ACB =130°, ∴∠P =180°﹣130°=50°, 故选A .2.平面直角坐标系中,⊙P 的圆心坐标为(﹣4,﹣5),半径为5,那么⊙P 与y 轴的位置关系是( ) A .相交 B .相离 C .相切 D .以上都不是【解答】A【解析】∵⊙P 的圆心坐标为(﹣4,﹣5), ∴⊙P 到y 轴的距离d 为4 ∵d =4<r =5 ∴y 轴与⊙P 相交 故选A .3.三角形的三边长分别为6,8,10,则它的边与半径为2的圆的公共点个数最多为( ) A .3 B .4 C .5 D .6【解答】B【解析】∵62+82=100,102=100, ∴三角形为直角三角形,设内切圆半径为r ,则12(6+8+10)r =12×6×8, 解得r =2,所以应分为五种情况:当一条边与圆相离时,有0个交点,当一条边与圆相切时,有1个交点,当一条边与圆相交时,有2个交点,当圆为三角形内切圆时,有3个交点,当两条边与圆同时相交时,有4个交点,故公共点个数可能为0、1、2、3、4个.∴则它的边与半径为2的圆的公共点个数最多为4个,故选B.4.如图,AB是圆O的直径.点P是BA延长线上一点,PC与圆O相切,切点为C,连接OC,BC,如果∠P =40°,那么∠B的度数为()A.40°B.25°C.35°D.45°【解答】B【解析】∵PC与圆O相切,切点为C,∴OC⊥PC,∴∠OCP=90°,∵∠P=40°,∴∠POC=90°﹣∠P=90°﹣40°=50°,∵OB=OC,∴∠B=∠OCB,∵∠POC=∠B+∠C,∠POC=25°.∴∠B=12故选B.5.如图,已知PA,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1 B.2 C.3 D.4【解答】C【解析】∵PA,PB是⊙O的两条切线,A,B为切点,∴PA=PB,所以①正确;∵OA=OB,PA=PB,∴OP垂直平分AB,所以②正确;∵PA,PB是⊙O的两条切线,A,B为切点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴点A、B在以OP为直径的圆上,∴四边形OAPB有外接圆,所以③正确;∵只有当∠APO=30°时,OP=2OA,此时PM=OM,∴M不一定为△AOP外接圆的圆心,所以④错误.故选C.6.如图,点D是△ABC中BC边的中点,DE⊥AC于E,以AB为直径的⊙O经过D,连接AD,有下列结论:AC;④DE是⊙O的切线.其中正确的结论是()①AD⊥BC;②∠EDA=∠B;③OA=12A.①②B.①②③C.②③D.①②③④【解答】D【解析】∵AB是⊙O直径,∴∠ADB=90°,∴AD⊥BC,选项①正确;连接OD,如图,∵D为BC中点,O为AB中点,∴DO为△ABC的中位线,∴OD∥AC,又DE⊥AC,∴∠DEA=90°,∴∠ODE=90°,∴DE为圆O的切线,选项④正确;又OB=OD,∴∠ODB=∠B,∵AB为圆O的直径,∴∠ADB=90°,∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,∴∠EDA=∠BDO,∴∠EDA=∠B,选项②正确;由D为BC中点,且AD⊥BC,∴AD垂直平分BC,AB,∴AC=AB,又OA=12AC,选项③正确;∴OA=12则正确的结论为①②③④.故选D.7.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A'B'C'D'的边A'B'与⊙O相切,切点为E,边CD'与⊙O相交于点F,则CF的长为()A.2.5 B.1.5 C.3 D.4【解答】D【解析】如图,连接OE并延长交CF于点H,∵矩形ABCD 绕点C 旋转得矩形A 'B 'C 'D ', ∴∠B ′=∠B ′CD ′=90°,A ′B ′∥CD ′,BC =B ′C =4,∵边A 'B '与⊙O 相切,切点为E , ∴OE ⊥A ′B ′,∴四边形EB ′CH 是矩形, ∴EH =B ′C =4,OH ⊥CF ,∵AB =5,∴OE =OC =12AB =52, ∴OH =EH ﹣OE =32,在Rt △OCH 中,根据勾股定理,得CH =√OC 2−OH 2=√(52)2−(32)2=2,∴CF =2CH =4. 故选D .8.如图,△ABC 内接于⊙O ,BD 切⊙O 于点B ,AB =AC ,若∠CBD =40°,则∠ABC 等于( )A .40°B .50°C .60°D .70°【解答】D【解析】∵BD 切⊙O 于点B , ∴∠DBC =∠A =40°, ∵AB =AC , ∴∠ABC =∠C ,∴∠ABC =(180°﹣40°)÷2=70°.故选D.9.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD的周长等于3,则PA 的值是()A.32B.23C.12D.34【解答】A【解析】∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于3,∴PA+PB=3,∴PA=32.故选A.10.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.9【解答】D【解析】∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选D.11.如图,这条花边中有4个圆和4个正三角形,且这条花边的总长度AB为4,则花边上正三角形的内切圆半径为()A.√33B.23√3C.1 D.√3【解答】A【解析】如图,选择一个等边三角形和其内切圆,圆O是等边三角形ACE的内切圆,圆O切三角形的边CE于点D,∵这条花边的总长度AB为4,∴CE=2,连接OC,AD,则AD过点O,∴CD=DE=12CE=1,∵△ACE是等边三角形,∴∠ACE=60°,∵圆O是等边三角形ACE的内切圆,∴∠OCD=30°,∴OD=CD•tan30°=√33.∴花边上正三角形的内切圆半径为√33.故选A.二.填空题12.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是.【解答】103<AO<203【解析】在矩形ABCD中,∵∠D=90°,AB=6,BC=8,∴AC=10,如图1,设⊙O与AD边相切于E,连接OE,则OE⊥AD,∴OE∥CD,∴△AOE∽△ACD,∴OECD =AOAC,∴AO10=26,∴AO=103,如图2,设⊙O与BC边相切于F,连接OF,则OF⊥BC,∴OF∥AB,∴△COF∽△CAB,∴OCAC =OFAB,∴OC10=26,∴OC=103,∴AO=203,∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是103<AO<203,故答案为103<AO<203.13.如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s 的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为时,BP与⊙O相切.【解答】2秒或10秒【解析】连接OP∵当OP⊥PB时,BP与⊙O相切,∵AB=OA,OA=OP,∴OB=2OP,∠OPB=90°;∴∠B=30°;∴∠O=60°;∵OA=6cm,=2π,弧AP=60π×6180∵圆的周长为:12π,∴点P运动的距离为2π或12π﹣2π=10π;∴当t=2秒或10秒时,有BP与⊙O相切.故答案为2秒或10秒.14.在Rt△ABC中,∠C=90°,AC=BC,若以点C为圆心,以2cm长为半径的圆与斜边AB相切,那么BC的长等于.【解答】2√2cm【解析】过C点作CD⊥AB于D,如图,∵⊙C与AB相切,∴CD为⊙C的半径,即CD=2,∵∠C=90°,AC=BC,∴∠B=45°,∴△CDB为等腰直角三角形,∴BC=√2CD=2√2(cm).故答案为2√2cm.15.如图,在矩形ABCD中,已知AB=6,BC=4,以CD为直径作⊙O,将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为M,边CD′与⊙O相交于点N,则CN的长为.【解答】4√2【解析】连接OM,延长MO交CD于点G,作OH⊥B′C于点H,则∠OMB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=6,BC=B′C=4,∴四边形OMB′H和四边形MB′CG都是矩形,OE=OD=OC=3,∴B′H=OM=3,∴CH=B′C﹣B′H=1,∴CG=B′M=OH=√OC2−CH2=2√2,∵四边形MB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CN=2CG=4√2,故答案为4√2.16.如图,正方形ABCD的边长为8,E为AB中点,F为BC边上的动点,连接EF,以点F为圆心,EF长为半径作⊙F.当⊙F与AD边相切时,CF的长为.【解答】8﹣4√3【解析】当⊙F与直线AD相切时.设切点为K,连接FK,如图:则FK⊥AD,四边形FKDC是矩形.∴FE=FK=CD=2BE,∴BE=4,FE=8,在Rt△FBE中,FB=√FE2−BE2=√82−42=4√3,∴CF=BC﹣FB=8﹣4√3.故答案为8﹣4√3.17.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.【解答】125【解析】如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=12.5.故答案为12518.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为.【解答】14【解析】设AE的长为x,正方形ABCD的边长为a,∵CE与半圆O相切于点F,∴AE=EF,BC=CF,∵EF+FC+CD+ED=12,∴AE+ED+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4;在Rt△CDE中,ED2+CD2=CE2,即(4﹣x)2+42=(4+x)2,解得:x=1,∵AE+EF+FC+BC+AB=14,∴直角梯形ABCE周长为14.故答案为14.19.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=.【解答】1【解析】在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,∵∠C=90°,∴四边形EOFC是矩形,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC﹣FC=3﹣r,BE=BD=BC﹣CE=4﹣r,∵AD+BD=AB,∴3﹣r+4﹣r=5,解得r=1.则△ABC的内切圆半径r=1.故答案为1.20.已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4√b−1−19,则△ABC的内切圆半径=.【解答】1【解析】∵b+|c﹣3|+a2﹣8a=4√b−1−19,∴|c﹣3|+(a﹣4)2+(√b−1−2)2=0,∴c=3,a=4,b=5,∵32+42=25=52,∴c2+a2=b2,∴△ABC是直角三角形,∠ABC=90°,设内切圆的半径为r,根据题意,得S△ABC=12×3×4=12×3×r+12×4×r+12×r×5,∴r=1,故答案为1.21.如图,在Rt△AOB中,OB=2√3,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O 的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为.【解答】2√2【解析】连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ=√OP2−OQ2=√OP2−1,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,=6,∴OA=OBtanA在Rt△AOP′中,∠A=30°,OA=3,∴OP′=12∴线段PQ长度的最小值=√32−1=2√2,故答案为2√2.三.解答题22.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【解答】(1)BC与⊙O相切,理由见解析;(2)BD=1207【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AEAD =ADAC,10 8=8AC,∴AC =325,∴CD =√AD 2−AC 2=√82−(325)2=245, ∵OD ⊥BC ,AC ⊥BC ,∴OD ∥AC ,∴△OBD ∽△ABC ,∴OD AC=BD BC , ∴5325=BD BD+245, ∴BD =1207.23.如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为H ,P 是CD 延长线上一点,DE ⊥AP ,垂足为E ,∠EAD =∠HAD .(1)求证:AE 为⊙O 的切线;(2)已知PA =2,PD =1,求⊙O 的半轻和DE 的长.【解答】(1)见解析;(2)DE 的长为35,⊙O 的半径为32 【解析】(1)证明:连接AO 并延长交⊙O 于点M ,连接MD ,如图,∵AB ⊥CD ,∴AD̂=BD ̂, ∴∠M =∠BAD ,∵∠EAD =∠HAD .∴∠M =∠EAD ,∵AM 为直径,∴∠ADM =90°,∴∠M +∠MAD =90°,∴∠EAD +∠MAD =90°,即∠MAE =90°,∴AM ⊥AE ,∴AE 为⊙O 的切线;(2)∵∠EAD =∠HAD ,DH ⊥AH ,DE ⊥AE ,AD =AD ,∴△AHD ≌△AED (AAS )∴DE =DH ,AH =AE ,设DE =x ,AH =y ,则DH =x ,AE =y ,∵∠EPD =∠HPA ,∠PED =∠PHA =90°,∴Rt △PED ∽Rt △PHA ,∴DE AH =PE PH =PD PA ,即x y =2−y 1+x =12, ∴解得x =35,y =65,即DE 的长为35,AH =65,设圆的半径为r ,则OH =r −35, 在Rt △OAH 中,(r −35)2+(65)2=r 2,解得r =32, 即⊙O 的半径为32.答:⊙O 的半轻和DE 的长分别为:32,35.24.如图,AB 是⊙O 的直径,AB =6,OC ⊥AB ,OC =5,BC 与⊙O 交于点D ,点E 是BD ̂的中点,EF ∥BC ,交OC 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)CG∥OD,交AB于点G,求CG的长.【解答】(1)见解析;(2)CG=173【解析】证明:(1)连接OE,交BD于H,∵点E是BD̂的中点,OE是半径,∴OE⊥BD,BH=DH,∵EF∥BC,∴OE⊥EF,又∵OE是半径,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,AB=6,OC⊥AB,∴OB=3,∴BC=√OB2+OC2=√9+25=√34,∵S△OBC=12×OB×OC=12×BC×OH,∴OH=√34=15√3434,∵cos∠OBC=OBBC =BHOB,∴√34=BH3,∴BH=9√3434,∴BD=2BH=9√3417,∵CG∥OD,∴ODCG =BDBC,∴3CG =9√3417√34,∴CG=173.25.如图,△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC,AB,AC切于点D,E,F,求AE,BD 和CF的长.【解答】AE=4,BD=9,CF=5【解析】设AE=x,∵△ABC的内切圆分别和BC,AB,AC切于点D,E,F,∴AF=AE=x,BE=BD,CD=CF,而BE=BA﹣AE=13﹣x,CF=CA﹣AF=9﹣x,∴BD=13﹣x,CD=9﹣x,而BD+CD=BC,∴13﹣x+9﹣x=14,解得x=4,∴AE=4,BD=9,CF=5.26.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【解答】(1)△PCD的周长=12;(2)∠COD=65°【解析】(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC中,{OA=OEOC=OC,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∠AOB=65°.∴∠COD=1227.已知PA、PB、DE是⊙O的切线,切点分别为A、B、F,PO=13cm,⊙O的半径为5cm,求△PDE的周长.【解答】24cm【解析】连接OA,则OA⊥PA.在直角三角形APO中,PO=13cm,OA=5cm,根据勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切线,切点分别为A、B、F,∴PA=PB,DA=DF,EF=EB,∴△PDE的周长=2PA=24cm.28.如图,⊙O是梯形ABCD的内切圆,AB∥DC,E、M、F、N分别是边AB、BC、CD、DA上的切点.(1)求证:AB+CD=AD+BC;(2)求∠AOD的度数.【解答】(1)见解析;(2)∠AOD=90°【解析】(1)证明:∵⊙O切梯形ABCD于E、M、F、N,由切线长定理:AE=AN,BE=BM,DF=DN,CF=CM,∴AE+BE+DF+CF=AN+BM+DN+CM,∴AB+DC=AD+BC;(2)连OE、ON、OM、OF,∵OE=ON,AE=AN,OA=OA,∴△OAE≌△OAN,∴∠OAE=∠OAN.同理,∠ODN=∠ODF.∴∠OAN+∠ODN=∠OAE+∠ODE.又∵AB∥DC,∠EAN+∠CDN=180°,×180°=90°,∴∠OAN+∠ODN=12∴∠AOD=180°﹣90°=90°.。

直线和圆的位置关系知识点归纳整理

直线和圆的位置关系知识点归纳整理

直线和圆的位置关系知识点归纳整理直线和圆的位置知识点直线和圆有三种位置关系1.交点:当一条直线和一个圆有两个公共点时,称为直线和圆的交点。

此时直线称为圆的割线,公共点称为交点。

2.相切:当直线与圆有唯一的公共点时,称为直线与圆相切,然后直线称为圆相切。

3.分离:当一条直线和一个圆没有共同点时,称为直线和圆分离。

直线与圆的三种位置关系的判定与性质(1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定。

如果⊙O的半径为r,圆心O到直线l的距离为d,则有:直线l与⊙O相交d<r;直线l与⊙O相切d=r;直线l与⊙O相离d>r;(2)共点法:通过确定一条直线和一个圆的共点数来确定。

直线l与⊙O相交d<r2个公共点;直线l与⊙O相切d=r有唯一公共点;直线l与⊙O相离d>r无公共点。

切线知识点切线的定义:在平面中,与圆只有一个公共交点的直线称为圆的切线。

切线的判定定理:通过半径外端并垂直于该半径的直线为圆的切线。

切线的性质定理:圆的切线垂直于通过切点的半径。

切线长度:圆的切线上的点与切点之间的线段通过圆外一点的长度,称为该点到圆的切线长度。

切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.如图,PA,PB是⊙O的两条切线,B切点分别为A,B,则PA=PB,∠OPA=∠OPB.判断直线与圆位置关系的方法1、代数法:联立线性方程和圆方程,解方程,方程无解,直线与圆分离,方程有一组解,直线与圆相切,方程有两组解,直线与圆相交。

2、几何法:求出圆心到直线的距离d,半径为r。

d>r,则直线与圆相离,d=r,则直线与圆相切,d<r,则直线与圆相交。

如何判断直线和圆的位置关系平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

直线和圆的位置关系知识梳理大全

直线和圆的位置关系知识梳理大全

圆的有关性质与直线和圆的位置关系知识梳理一、重点内容梳理.1、点与圆,直线与圆的位置关系.①设点P到⊙o的圆心的距离为OP,圆半径为R点P在圆内⇔OP﹤R;点P在圆上⇔' P=R;点P在圆外⇔OP﹥R②设圆心到直线的距离为d,圆半径为R.d﹥R⇔直线与圆相离;d=R⇔直线与圆相切;d﹤R⇔直线与圆相交2、与圆有关的角圆心角:顶点在圆心,两边和圆相交的角;圆周角:顶点在圆上,两边和圆相交的角;弦切角:顶点在圆上,一边和圆相切,另一边和圆相交的角.3、体现圆中相等关系的定理.①垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧推论1:平分弦(不是直径)的直线垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.②圆心角、弧、弦心距的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么其余各组量都分别相等.③圆周角的定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角等于90°(直角);90°的圆周角所对的弦为直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形为直角三角形.④弦切角定理:弦切角等于它所夹的弧所对的圆周角.推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等.⑤切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.⑥圆内接四边形性质:圆内接四边形对角互补,一个外角等于它的内对角.注意:<1>证明圆中的等量常用“等对等”的方法,即“等角(圆心角、圆周角或弦切角)⇔等弧⇔等弦⇔等弦心距.”<2>圆周角的推论3是判定一个三角形为直角三角形的又一种方法.4、和圆有关的比例线段.①相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.推论:如果弦和直径垂直相交,那么弦的一半是它分直径所成的两条经段的比例中项.②切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.注意:利用相交弦定理的推论可求作已知两线段比例中项.PA CB ⌒ 5、三角形的外接圆与内切圆①经过三角形三个顶点的圆叫做三角形的外接圆.外接圆的圆心叫三角形的外心,外心是三角形三边的垂直平分线的交点.②和三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心叫三角形的内心,内心是三角形各个内角的平分线的交点.6、圆的切线.①判定:经过半径的外端并且垂直于这条半径的直线是圆的切线.②性质:切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.7、一种间接证明几何命题的方法——反证法.步骤为:①反设(假设命题的结论不成立)②反推(从这个假设出发,经过推理论证,得出矛盾).③由矛盾判定假设不正确,从而肯定命题的结论正确.8、点的五种基本轨迹.二、思维方法小结.1、在圆中,解有关弦的问题时,常常需要作垂直于弦的直径作为辅助线;在解决与直径有关的问题时,常常添作辅助线,构成直径上的圆周角.以便利用直径上的圆周角是直角的性质;而在解有关圆的切线问题时,常常需要作出过切点的半径,以便利用切线垂直于过切点的半径这一性质.2、相交弦定理和推论,切割线定理和推论是解决与圆有关比例线段问题的四个主要定理.解题时,要准确找出线段,结合图形来理解.当直接应用定理不能证明出结论时,通常用“三点定形”法来寻找和构造相似三角形,其思路一般是“等积式→比例式→中间比→相似三角形”.3、与圆有关的开放探索问题主要有探索条件、探索结论,探索问题的存在性三类.解题的基本思路是:探索条件类的解法类似分析法,先假设结论成立,逐步探索其成立的条件;探索结论类的解法是根据条件,运用数学思想,结合已有知识,合理推理,大胆猜想,分析归纳得出结论;探索问题的存在性,常采用“假设检验法”.先假设存在,再检验是否矛盾,从而确定问题的存在性.三、中考试题特点及命题趋势.1、各省市试题主要考查的知识点有:圆的概念,点与圆、直线与圆的位置关系,正确区别和应用圆心角,圆周角、弦切角的定义和性质,去论证或计算角,线段相等的几何问题,运用垂径定理、切线长定理、相交弦定理、切割线定理及推论证明几何题,应用圆内接四边形的性质进行计算,判定圆的切线或运用切线性质来解决与切线有关的问题.2、本章试题形式多种多样,有考查基本知识的填空,选择题,也有考查计算、论证的中档题,还有考查数学能力的应用、创新、开放、探究型题目.本章是初中数学的核心内容,试题分值占18%~22%左右.四、典型中考试题介绍.例1(2005年天津)如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于 . 解:在优弧AB 上任取一点P (与A 、B 不重合). 则∠APB=21∠AOB=50° 在圆内接四边形ACBP 中∠P+∠ACB=180°∴∠ACB=180°-50°=130°OC A BD ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ 例2(2005年重庆)在⊙o 中,P 是弦AB 的中点,C 、D 是过点P 的直径,则下列结论中不正确的是( )(A )AB ⊥CD (B )∠AOB=4∠ACD (C )AD=BD (D )PO=PD解:CD 为直径,P 是AB 的中点,由垂径定理的推论可得AB ⊥CD ∴AD=BD ∴∠AOD=∠BOD由圆周的定理可得∠ACD=21∠AOD ∴∠ACD=41∠AOB ∴不正确的是(D ).评注:垂径定理是圆的重要性质,各省市试题几乎都有,同学们务必掌握. 例3(2005年四川绵阳)已知BC 是⊙o 的直径,AH ⊥BC ,垂足为D ,点A 为BF 的中点,BF 交AD 于点E ,且BE ·EF=32,AD=6.(1)求证:AE=BE (2)求DE 的长(3)求BD 的长(1)证明:连结AB ∵BC 为直径,AH ⊥BC ∴AB=BH ∵A 为BF 的中点 ∴AB =AF ∴BH=AF∴∠EAB=EBA ∴AE=BE(2)由相交弦定理得AE ·EH=BE ·EF∴(AD-DE )(DH+DE )=32∴(6-DE )(6+DE )=32∴DE=2(3)∵BE=AE=AD-DE=6-2=4在RT △BDE 中,由勾股定理可得BD=32416242222=-=-=-DE BE评析:相交弦定理经常和垂径定理交织在一起,使题中有较多的相等关系,解题时要注意寻找到相等关系.例4(2005年四川自贡)如图,P 是⊙o 的弦CB 延长线上一点,点A 在⊙o 上,且∠PCA=∠BAP(1)求证:PA 是⊙o 的切线,(2)若PB :BC=2:3,且PC=10,求PA 的长(1)证明:连结AO ,并延长交⊙o 于点D ,连结CD ,则∠ACD 为直径AD 所对的圆周角. ∠ACD=90°∴∠PCA+∠BCD=90°∵∠PCA =∠BAP∠BCD=∠BAD∴∠BAP+∠BAD=∠PCA+∠BCD=90°即∠PAD=90°∴PA 为⊙o 的切线H P O AC ED B O FAA (2)∵PB:BC=2:3 ∴PB=52PC=52×10=4 由切割线定理得PA 2=PB ·PC∴PA 2=4×10=40 ∴PA=210 评析:连结过切点的半径或直径构造直径所对圆周的是解本题的关键.例5(2005年辽宁十一市)如左图,AB 是⊙o 的直径,AC 是弦,直线EF 和⊙o 相切于点C ,AD ⊥EF ,垂足为D.(1)求证:∠DAC=∠BAC(2)若将直线EF 向上平行移动,如右图,EF 与⊙o 交于G ,C 两点,若题中心的其他条件不变,这时与∠DAC 相等的角是哪一个?为什么?(1) 证明:连结BC∵EF 切⊙o 于C∴∠B=∠ACD∵AB 为直径∴∠B +∠BAC=90°∵△ACD 为Rt △∴∠ACD +∠DAC=90°∴BAC=∠DAC(2)∠BAG 与∠DAC 相等证明: 连结BG ,则四边形ABGC 为⊙o 的内接四边形.∴∠ACD=∠B∵AB 为直径∴∠B +∠BAG=90°∵△ACD 为Rt △∴∠ACD +∠DAC=90°∴∠BAG=∠DAC评析:本题考查切线的性质、弦切角定理、直径所对圆周角为直角、圆内接四边形一个外角等于它的内对角等与圆有关的内容;覆盖面较广,综合性较强,这要求同学们要全面掌握圆的有关性质。

人教版九年级数学上册《直线和圆的位置关系》圆PPT精品课件

人教版九年级数学上册《直线和圆的位置关系》圆PPT精品课件
出去的?
情景2:用砂轮磨刀时擦出的火花,:是沿着什么方向飞出的?
知识回顾
推进新课
回顾直线与圆相切:
切线
切点
判断直线和圆相切
有哪两种办法?
.
.O
直线与圆
相切
新知探究
切线具有的性质
1. 定义法:
和圆有且只有一个公共点
的直线是圆的切线.
2. 数量关系法(d=r ):
圆心到直线的距离等于
半径的直线是圆的切线.
一不可: (1)直线经过半径的外端; (2)直线与这半径垂直.
归纳
切线的判定方法
判断一条直线是圆的切线的 三种方法
O
1.定义法:与圆有唯一公共点的直线是圆的切线;
l
A
2.数量关系法:圆心到这条直线的距离等于半径,
即d=r;
3.判定定理:经过半径的外端且垂直于这条半径
O r
d
l
A
O
的直线是圆的切线.
又AP=AC,所以∠P=∠ACP=30°,
所以∠OAP=∠AOC-∠P=90°.
所以OA⊥PA,所以PA是⊙O的切线.
人教版 数学 九年级上册
直线和圆的位置关系
第3课时
学习目标
1.掌握切线长的定义及切线长定理.
2. 运用切线长定理进行计算与证明.
复习引入
问题1
在同一个平面内,有一点 和⊙,过点 能否作
1
• ∴MN= 2 OM=2.5cm.
• 所以(1)⊙M与直线OA相离,因为r<MN.
• (2)⊙M与直线OA相交,因为r>MN.
• (3)⊙M与直线OA相切,因为r=MN.
综合应用
• 6.已知⊙O的半径为 2 ,直线l与点O的距离为d,

直线与圆的位置关系

直线与圆的位置关系

直线与圆的位置关系直线与圆的位置关系是数学中一个重要的概念。

在二维平面上,直线和圆可以相交、相切或者不相交。

本文将详细介绍直线与圆的不同位置关系,并探讨相关的性质和定理。

1.直线与圆的相交关系当一条直线与一个圆相交时,可能存在三种不同的情况:相交于两个点、相交于一个点或者不相交。

1.1 直线与圆相交于两个点当一条直线与一个圆相交于两个不同的点时,这条直线称为圆的切线。

切线与圆的切点处存在着垂直关系。

此时,根据位置的不同,切线可以被分为以下三种情况:1.1.1 直线在圆的外部相交于两个点当一条直线与一个圆相交于两个不同的点,且这两个切点均在圆的外部时,这条直线与圆的位置关系如图1所示。

(插图:直线与圆相交于两个点,但直线在圆的外部)1.1.2 直线与圆相切于两个点当一条直线与一个圆相交于两个不同的点,且这两个切点均位于圆上时,这条直线与圆的位置关系如图2所示。

(插图:直线与圆相切于两个点)1.1.3 直线在圆的内部相交于两个点当一条直线与一个圆相交于两个不同的点,且这两个切点均在圆的内部时,这条直线与圆的位置关系如图3所示。

(插图:直线与圆相交于两个点,且直线在圆的内部)1.2 直线与圆相交于一个点当一条直线与一个圆相交于一个点时,我们称该直线与圆相切。

这种情况下,直线与圆的位置关系如图4所示。

(插图:直线与圆相切于一个点)1.3 直线与圆不相交当一条直线与一个圆没有交点时,这条直线与圆不相交。

这种情况下,直线与圆的位置关系如图5所示。

(插图:直线与圆不相交)2.直线与圆的性质和定理2.1 切线定理在一个圆中,通过一点可以作出两条切线,且这两条切线的切点处与该点连线垂直。

2.2 弦切角定理当一条弦与切线相交时,所形成的切角和弦所对的弧相等。

2.3 弦长定理一条弦所对的弧长度等于该弦所分割的圆内部两部分的长度之和。

2.4 垂直弦定理当一条直径与一条弦相交时,所形成的两个切角是互补角。

2.5 正交切线定理如果两条切线相交,那么从相交点到各个切点所作的弦互相垂直。

高考数学考点归纳之 直线与圆、圆与圆的位置关系

高考数学考点归纳之  直线与圆、圆与圆的位置关系

高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

圆与直线的位置关系

圆与直线的位置关系

圆与直线的位置关系圆与直线是几何中常见的两种图形,它们之间的位置关系有着独特的性质和规律。

本文将详细探讨圆与直线之间的几种常见位置关系,并分析它们的数学特征。

一、切线当直线与圆相切时,我们称这条直线为圆的切线。

切线与圆相交于切点,切点在圆上。

切线的存在条件是直线与圆只有一个交点,且该交点在圆上。

对于给定的圆,与之切线的直线有无数条,它们可以从不同的位置与角度与圆相切。

二、相离当直线和圆没有任何交点时,我们称它们是相离的。

也就是说直线和圆的图形不相交,它们之间存在一定的距离。

三、相交当直线与圆相交于两个不重合的交点时,我们称它们是相交的。

直线与圆相交有三种可能的情况。

1. 直线穿过圆内部的两个交点当直线穿过圆的内部时,直线与圆相交于两个不重合的交点。

这种情况下,直线与圆的位置关系可以用以下公式表达:(x-a)^2 + (y-b)^2 < r^2其中(x, y)是直线上的一点,(a, b)是圆心坐标,r是圆的半径。

2. 直线与圆相切于两个交点当直线与圆相切时,直线与圆只有一个交点。

这种情况下,直线与圆的位置关系可以用以下公式表达:(x-a)^2 + (y-b)^2 = r^23. 直线穿过圆外部的两个交点当直线穿过圆的外部时,直线与圆相交于两个不重合的交点。

这种情况下,直线与圆的位置关系可以用以下公式表达:(x-a)^2 + (y-b)^2 > r^2四、相切当直线与圆相切时,直线与圆只有一个交点。

这个交点在圆上,直线与圆的位置关系可以用以下公式表达:(x-a)^2 + (y-b)^2 = r^2这种情况下,切点的坐标可通过求解直线方程和圆方程得到。

综上所述,圆与直线之间的位置关系有四种情况,分别是切线、相离、相交和相切。

在解决相关几何问题时,根据具体问题的要求,可以利用相关的数学公式来求解。

掌握圆与直线的位置关系,有助于我们更好地理解几何形状的性质和规律,并能够应用到实际问题的解决中。

直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结直线与圆的位置关系是几何学中一个重要的概念,涉及到直线和圆的交点、相切等不同情况。

本文将对直线与圆的位置关系进行总结,包括直线与圆的相交、相切以及不相交三种情况。

一、直线与圆的相交关系1. 直线与圆相交于两个交点:当直线与圆的位置关系是相交时,直线将穿过圆的两个交点。

这种情况通常出现在直线与圆的直径、弦或切线相交的情况下。

2. 直线与圆相交于一个交点:当直线与圆的位置关系是相切时,直线与圆仅有一个交点。

这种情况通常出现在直线是圆的切线的情况下。

二、直线与圆的相切关系1. 切线:当直线与圆的位置关系是相切时,直线与圆仅有一个交点,并且直线与圆的切点处的切线垂直于半径。

切线是圆上某一点的切线,它与半径的长度相等。

2. 外切线:当一条直线与圆的位置关系为外切时,直线与圆仅有一个交点,并且切点处的切线垂直于半径。

外切线的一个特点是切点处的切线与直线的延长线垂直。

3. 内切线:当一条直线与圆的位置关系为内切时,直线与圆仅有一个交点,并且切点处的切线垂直于半径。

内切线的一个特点是切点处的切线与直线的延长线垂直。

三、直线与圆的不相交关系当直线与圆的位置关系不相交时,即直线与圆没有交点。

总结:直线与圆的位置关系可以分为相交、相切以及不相交三种情况。

在相交的情况下,直线与圆相交于两个交点或一个交点。

在相切的情况下,直线与圆仅有一个交点,并且切点处的切线垂直于半径。

而不相交的情况下,直线与圆没有交点。

以上是对直线与圆的位置关系知识点的总结。

了解并掌握这些知识点对于解决相关几何问题非常重要。

希望本文能够帮助您更好地理解和应用直线与圆的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆的位置关系的数学知识点
直线与圆的位置关系的数学知识点
①直线和圆无公共点,称相离。

AB与圆O相离,dr。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。

AB 与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

AB与⊙O相切,d=r。

(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;。

相关文档
最新文档