专题67 电磁感应现象中的单棒问题(解析版)
2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。
经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?2、双杆所在轨道宽度不同——常用动量定理找速度关系例6、如图所示,abcd 和a /b /c /d /为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。
ab 、a /b /间的宽度是cd 、c /d /间宽度的2倍。
设导轨足够长,导体棒ef 的质量是棒gh 的质量的2倍。
(完整word)高考电磁感应中“单、双棒”问题归类经典例析
电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导Bv 0L adb轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中的单双棒问题(解析版)-2024年高考物理压轴题专项训练
压轴题 电磁感应中的单双棒问题1.电磁感应中的单双棒问题在高考物理中占据着举足轻重的地位,是考查学生对电磁感应现象和力学知识综合运用能力的关键考点。
2.在命题方式上,电磁感应中的单双棒问题通常会以综合性较强的题目形式出现,结合电磁感应定律、安培力、牛顿第二定律等知识点,考查学生对电磁感应现象中导体棒的运动状态、受力情况、能量转化等问题的理解和分析。
题目可能要求考生分析导体棒在磁场中的运动轨迹、速度变化、加速度大小等,也可能要求考生求解导体棒产生的感应电动势、感应电流等物理量。
3.备考时,考生应首先深入理解电磁感应的基本原理和单双棒问题的特点,掌握电磁感应定律、安培力、牛顿第二定律等相关知识点的应用。
同时,考生需要熟悉各种类型题目的解题方法和技巧,例如通过分析导体棒受力情况、运用动量定理和能量守恒定律等方法求解问题。
考向一:不含容单棒问题模型规律阻尼式(导轨光滑)1、力学关系:F A =BIl =B 2l 2v R +r ;a =F A m =B 2l 2vm (R +r )2、能量关系:12mv 20-0=Q3、动量电量关系:-BI l ⋅Δt =0-mv 0;q =n ΔϕR +r =Bl ⋅ΔsR +r电动式(导轨粗糙)1、力学关系:F A =B (E -E 反)R +r l =B (E -Blv )R +rl ;a =F B -μmg m =B (E -Blv )m (R +r )l -μg 2、动量关系:BLq -μmgt =mv m -03、能量关系:qE =Q +μmgS +12mv 2m4、稳定后的能量转化规律:I min E =I min E 反+I 2min (R +r )+μmgv m5、两个极值:(1)最大加速度:v =0时,E 反=0,电流、加速度最大。
I m =ER +r;F m =BI m l ;a m =F m -μmg m (2)最大速度:稳定时,速度最大,电流最小。
电磁感应中的导体棒问题(单棒)
Q习1:AB杆受一冲量作用后以初速度 v0=4m/s,沿 水平面内的固定轨道运动,经一段时间后而停止。 AB的质量为m=5g,导轨宽为L=0.4m,电阻为R=2Ω, 其余的电阻不计,磁感强度B=0.5T,棒和导轨间的 动摩擦因数为μ=0.4,测得杆从运动到停止的过程中 通过导线的电量q=10-2C,求:上述过程中 (g取 10m/s2) (1)AB杆运动的距离; A (2)AB杆运动的时间; (3)当杆速度为2m/s时其 v0 R 加速度为多大?
f
s
导体为电动边,运动 后产生反电动势(等效 于电机)。
E
b
r f
FB B
a
问题3
2.安培力的特点
R
E
c
se
r B
d
安培力为运动动力,并随 b f 速度增大而减小。 ( E E反) ( E Blv ) l =B l FB BIl B Rr Rr 3.加速度特点 加速度随速度增大而减小
问题1
c
e
d
v0 B 1.电路特点。 R FB r 导体棒相当于电源。E=Blv 2.安培力的特点 a b f 安培力为阻力,并随速度减小而减小。 2 2 Bl v FB BIl Rr 3.加速度特点 加速度随速度减小而减小 v 2 2 FB Blv a v0 m m( R r )
O
t
问题2
5.最终特征 匀速运动 6.两个极值
c
R FB b
e
F
d
B a
r f
F (1) v=0时,有最大加速度:am m
(2) a=0时,有最大速度:
2 2
B l vm F FB F a 0 m m m( R r ) F (R r) vm 2 2 Bl
最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析word版本
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cdBv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
2023年高二物理模型重难点易错专练 电磁感应现象中的单棒和双棒模型(解析版)
电磁感应现象中的单棒和双棒模型特训专题特训内容专题1三类常见单棒模型(1T -3T )专题2三类含容单棒模型(4T -6T )专题3等距式双棒模型(7T -9T )专题4不等距式双棒模型(10T -12T )1【典例专练】一、三类常见单棒模型1如图所示,两根电阻不计且足够长的平行光滑金属导轨固定在同一水平面内,其间距d =1m ,左端连接一个R =1.5Ω的定值电阻,整个导轨处在磁感应强度B =0.2T 的匀强磁场中,磁场方向竖直向下。
质量m =0.2kg 、长度L =1m 、电阻r =0.5Ω的导体棒垂直导轨放置并与导轨接触良好。
现使导体棒获得大小6m s 、方向水平向右的初速度,下列说法正确的是( )。
A.回路中感应电流的方向为逆时针方向B.导体棒刚开始运动瞬间,R 两端电压为1.2VC.当导体棒停止运动时,通过R 的电荷量为6CD.整个过程中导体棒向右运动的位移为60m【答案】ACD【详解】A .由右手定则可得回路中感应电流的方向为逆时针方向,故A 正确;B .导体棒刚开始运动瞬间,产生的电动势为E =BLv =1.2V ,R 两端电压为U =RER +r=0.9V C .取水平向右为正方向,由动量定理可得-BIL ×Δt =0-mv 则q =mvBL=6C 故C 正确;D .整个过程中通过导体棒的电荷量为q =I t =Δϕt R +r t =ΔϕR +r =BLxR +r解得位移为x =60m 故D 正确。
故选ACD 。
2水平固定放置的足够长的光滑平行导轨,电阻不计,间距为L ,左端连接的电源电动势为E ,内阻为r ,质量为m 的金属杆垂直静放在导轨上,金属杆处于导轨间部分的电阻为R ,整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中如图所示。
闭合开关,金属杆由静止开始沿导轨做变加速运动直至达到最大速度,则下列说法正确的是()A.金属杆的最大速度等于ER BL R +rB.此过程中通过金属杆的电荷量为mE B 2L 2C.此过程中电源提供的电能为mE 22B 2L 2 D.此过程中金属杆产生的热量为mE 2R2B 2L 2R +r 【答案】BD【详解】A .金属杆向右运动切割磁感应线产生的感应电动势与电源电动势方向相反,随着速度增大,感应电动势增大,回路中的总电动势减小,回路中的电流减小,金属杆受到的安培力减小,金属杆做加速度逐渐减小的加速运动,最后匀速运动;金属杆速度最大时,产生的感应电动势大小为E ,则有E =BLv m解得金属杆的最大速度为v m =EBL故A 错误;B .从开始运动到速度最大的过程中,以向右为正方向,对金属杆根据动量定理,有BI L Δt =mv m -0又q =IΔt联立解得此过程中通过金属杆的电荷量为q =mEB 2L 2故B 正确;C .此过程中电源提供的电能为W =qE =mE 2B 2L2故C 错误;D .金属杆最后的动能为E k =12mv 2m =mE 22B 2L 2根据能量守恒定律,系统产生的焦耳热为Q =W -E k =mE 22B 2L 2此过程中金属杆产生的热量为Q=R R +r Q =mE 2R 2B 2L 2R +r故D 正确。
电磁感应中的单棒、双棒切割问题
开始时,,杆加速,杆运动,产生反电动势,杆运动,电容器充电,杆受安培力,速度减小,电能转化为热能和动做功带来的能量转化为杆杆的动能一部分转化为电势能,一部分转化为内能,一部分耗散.外力和安培力冲17/04/04
F B L =|BLv −E |BLv −Q C 能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本
开始时,两杆做变加速运
两杆做变加速运动,稳定后两杆做对于直线运动,教科书中讲解了由图像求位移的方法.请你借鉴此方法,根据图示的图像,若电容器电容为,两极板间电压为,求电容器所储存的电场能.
1v −t Q −U
C U 如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为的电容器.框架上一
质量为、长为的金属棒平行于地面放置,离地面的高度为.磁感应强度为的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.求:
.金属棒落地时的速度大小;
.金属棒从静止释放到落到地面的时间.
2C m L h B a b 如图,与水平地面成.和是置于导轨上
,其余电阻可忽略不计.整个装置处在CD EF
金属棒所能达到的最大速度;
1EF v m 在整个过程中,金属棒产生的热量.
2EF Q 光滑的平行金属导轨如图所示,轨道的水平部分位于竖直向上的匀强磁场中,部分的宽度为部分
宽度的倍,、部分轨道足够长,将质量都为的金属棒和分别置于轨道上的段和段,棒位于距水平轨道高为的地方,放开棒,使其自由下滑,求棒和棒的最终速度及回路中所产生的电能.4bcd bc cd 2bc cd m P Q ab cd P h P P Q。
电磁感应现象中的单双棒问题(解析版)-2023年高考物理压轴题专项训练(全国通用)
压轴题08电磁感应现象中的单双棒问题考向一/选择题:电磁感应现象中的单棒问题考向二/选择题:电磁感应现象中的含容单棒问题考向三/选择题:电磁感应现象中的双棒棒问题考向一:电磁感应现象中的单棒问题模型规律阻尼式(导轨光滑)1、力学关系:22A B l vF BIl R r==+;22()A FB l va m m R r ==+2、能量关系:20102mv Q-=3、动量电量关系:00BIl t mv -⋅∆=-;Bl sq n R r R rφ∆⋅∆==++电动式(导轨粗糙)1、力学关系:((B A E E E lv F B l B lR r R r--=++反))=;(B ()B F mg E lv a B l g m m R r μμ--=-+)=2、动量关系:0m BLq mgt mv μ-=-3、能量关系:212m qE Q mgS mv μ=++4、稳定后的能量转化规律:min min ()2min mI E I E I R r mgv μ=+++反5、两个极值:(1)最大加速度:v=0时,E 反=0,电流、加速度最大。
m E I R r =+;m m F BI l =;mm F mg a mμ-=(2)最大速度:稳定时,速度最大,电流最小。
min ,m E Blv I R r -=+min min mE Blv mgF BI l B l R rμ-===+发电式(导轨粗糙)1、力学关系:22--==--+()B F F mg F B l va gm m m R r μμ2、动量关系:0m Ft BLq mgt mv μ--=-3、能量关系:212mFs Q mgS mv μ=++4、稳定后的能量转化规律:2()m m mBLv Fv mgv R rμ=++5、两个极值:(1)最大加速度:当v=0时,m F mg a mμ-=。
(2)最大速度:当a=0时,220--==--=+()m B B l v F F mg Fa g m m m R r μμ考向二:电磁感应现象中的含容单棒问题模型规律放电式(先接1,后接2。
高中物理 电磁感应-单棒问题解析
电磁感应---单棒问题(一)★如图所示,水平面上有电阻不计的光滑金属导轨平行固定放置,间距d 为0.5m ,左端通过导线与阻值为2Ω的电阻R 连接,右端通过导线与阻值为4Ω的小灯泡L 连接,在CDEF 矩形区域内有竖直向上的匀强磁场, CE 长为2m ,区域内的磁场的磁感应强度B 随时间变化如图所示,在0t =时,一阻值为2Ω的金属棒在恒力F 作用下由静止开始从AB 位置沿导轨向右运动,当金属棒从AB 位置运动到EF 位置过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流强度;(2)恒力F 的大小 (3)金属棒的质量解:(1)金属棒未进入磁场时,R 总=R L +R /2=5 Ω,E 1=∆ϕ∆t =S ∆B∆t=0.5 V , I L =E 1/R 总=0.1 A ,(2)因灯泡亮度不变,故4 s 末金属棒进入磁场时刚好匀速运动, I =I L +I R =I L +I L R LR=0.3 A ,F =F A =BId =0.3 N , (3)E 2=I (R +RR L R +R L )=1 V ,v =E 2Bd =1 m/s ,,a =v t =0.25 m/s 2,m =Fa =1.2 kg 。
★两根金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R =10Ω,导轨自身电阻忽略不计。
匀强磁场垂直于斜面向上,磁感强度B =0.5T 。
质量为m =0.1kg ,电阻可不计的金属棒ab 静止释放,沿导轨下滑。
如图所示,设导轨足够长,导轨宽度L =2m ,金属棒ab 下滑过程中始终与导轨接触良好,当金属棒下滑h =3m 时,速度恰好达到最大值v =2m/s 。
求此过程中电阻中产生的热量。
解法1:当金属棒速度恰好达到最大速度时,受力分析, 则mg sin θ=F 安+f据法拉第电磁感应定律:E =BLv ;据闭合电路欧姆定律:I=ER∴F 安=ILB =B 2L 2vR =0.2N ;∴f=mg sin θ-F 安=0.3N下滑过程据动能定理得:mgh -fh sin θ-W = 12mv 2解得W =1J ,∴此过程中电阻中产生的热量Q =W =1J解法2:当金属棒速度恰好达到最大速度时,受力分析,则sin 0.5mg N θ=据法拉第电磁感应定律:E =BLv ;据闭合电路欧姆定律:I =ER ∴F 安=BIL由以上各式解得F 安=0.2N ;所以导体受到的摩擦力为0.3f N =下滑过程据动能定理得:220mgh Q f h mv θ--=-; 解得1Q J =★(1999年上海)如图17-123所示,长为L 、电阻r =0.3Ω、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F 使金属棒右移.当金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由: (2)拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量.解析:(1)若电流表满偏,则I =3A ,U =IR =1.5V ,大于电压表量程.可知:电压表满偏. (2)由功能关系:2()Fv I R r =+ 而I U R =,22()F U R r R v ∴=+代入数据得221(0.50.3)2 1.6F N N =⨯+⨯= (3)由动量定理:BIL t m v ⋅∆=⋅∆两边求和121122............m v m v BI l t BI l t ⋅∆+⋅∆+=⋅∆+⋅∆+即BLq mv = 由电磁感应定律E BLv =,()E I R r =+解得2()q mv I R r =+代入数据得20.122(0.50.3)0.25q C =⨯⨯+=★如图所示,固定于水平桌面上足够长的两平行导轨PO 、MN ,PQ 、MN 的电阻不计,间距为d =0.5m .P 、M 两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B =0.2T 的匀强磁场中.电阻均为r =0.1Ω,质量分别为m 1=300g 和m 2=500g 的两金属棒L 1、L 2平行的搁在光滑导轨上,现固定棒L 1,L 2在水平恒力F =0.8N 的作用下,由静止开始做加速运动,试求:(1)当电压表的读数为U =0.2V 时,棒L 2的加速度多大? (2)棒L 2能达到的最大速度v m .(3)若在棒L 2达到最大速度v m 时撤去外力F ,并同时释放棒L 1,求棒L 2达到稳定时的速度值.(4)若固定棒L 1,当棒L 2的速度为v ,且离开棒L 1距离为S的同时,撤去恒力F ,为保持棒L 2做匀速运动,可以采用将B 从原值(B 0=0.2T )逐渐减小的方法,则磁感应强度B 应怎样随时间变化(写出B 与时间t 的关系式)? 解:(1)∵L 1与L 2串联∴流过L 2的电流为:A A r U I 21.02.0===① (2分) L 2所受安培力为:F ′=BdI=0.2N ② (2分) ∴222/2.1/5.02.08.0s m s m m F F a =-='-=③ (2分) (2)当L 2所受安培力F 安=F 时,棒有最大速度v m ,此时电路中电流为I m .则:F 安=BdI m ④ (1分) rBdv I mm 2=⑤ (1分) F 安=F ⑥ (1分) 由④⑤⑥得:s m dB Frv m /16222==⑦ (2分) (3)撤去F 后,棒L 2做减速运动,L 1做加速运动,当两棒达到共同速度v 共时,L 2有稳定速度,对此过程有:共v m m v m m )(212+= ⑧ (2分) ∴s m m m v m v m/10212=+=共 ⑨ (2分)(4)要使L 2保持匀速运动,回路中磁通量必须保持不变,设撤去恒力F 时磁感应强度为B 0,t 时刻磁感应强度为B t ,则:B 0dS =B t d (S +vt ) ⑩ (3分) ∴vtS SB B t +=0 (2分)★如图所示,两根相距为d 足够长的平行金属导轨位于水平的xOy 平面内,导轨与x 轴平行,一端接有阻值为R 的电阻.在x >0的一侧存在竖直向下的匀强磁场,一电阻为r 的金属直杆与金属导轨垂直放置,且接触良好,并可在导轨上滑动.开始时,金属直杆位于x =0处,现给金属杆一大小为v 0、方向沿x 轴正方向的初速度.在运动过程中有一大小可调节的平行于x 轴的外力F 作用在金属杆上,使金属杆保持Qx大小为a ,方向沿x 轴负方向的恒定加速度运动.金属导轨电阻可忽略不计.求:⑴金属杆减速过程中到达x 0的位置时,金属杆的感应电动势E ; ⑵回路中感应电流方向发生改变时,金属杆在轨道上的位置;⑶若金属杆质量为m ,请推导出外力F 随金属杆在x 轴上的位置(x )变化关系的表达式.答案:⑴E=Bd 0202ax v - ⑵x m =v 02/2a ⑶ rR axv d B ma F +-±=22022★如图所示,固定在水平桌面上的光滑金属框架cdef 处于竖直向下磁感应强度为B 0的匀强磁场中.金属杆ab 与金属框架接触良好.此时abed 构成一个边长为l 的正方形,金属杆的电阻为r ,其余部分电阻不计.⑴若从t =0时刻起,磁场的磁感应强度均匀增加,每秒钟增量为k ,施加一水平拉力保持金属杆静止不动,求金属杆中的感应电流.⑵在情况⑴中金属杆始终保持不动,当t = t 1秒末时,求水平拉力的大小.⑶若从t =0时刻起,磁感应强度逐渐减小,当金属杆在框架上以恒定速度v 向右做匀速运动时,可使回路中不产生感应电流.写出磁感应强度B 与时间t 的函数关系式.答案:⑴r kl I 2= ⑵()rkl kt B F 310+= ⑶vt l l B B +=0-------提示:产生感应电动势的原因。
最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd Bv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中“单,双棒”问答归类例析
专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导Bv 0L adb体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中的单杆双杆问题(附答案)
电磁感应中的单杆双杆问题(附答案)一、单选题1.如图1,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心.轨道的电阻忽略不计.OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,QM与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B.现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则B'B等于()图1A. 54B. 32C. 74D. 22.如图所示,两根光滑的平行金属导轨位于水平面内,匀强磁场与导轨所在平面垂直,两根金属杆甲和乙可在导轨上无摩擦地滑动,滑动过程中与导轨接触良好且保持垂直.起初两根杆都静止.现突然给甲一个冲量使其获得速度v而开始运动,回路中的电阻不可忽略,那么在以后的运动中,下列说法正确的是()A.甲克服安培力做的功等于系统产生的焦耳热B.甲动能的减少量等于系统产生的焦耳热C.甲机械能的减少量等于乙获得的动能与系统产生的焦耳热之和D.最终两根金属杆都会停止运动3.如图所示,π形光滑金属导轨与水平地面倾斜固定,空间有垂直于导轨平面的磁场,将一根质量为m的金属杆ab垂直于导轨放置.金属杆ab从高度h2处静止释放后,到达高度为h1的位置(图中虚线所示)时,其速度为v,在此过程中,设重力G和磁场力F对杆ab做的功分别为W G和WF,那么()A.=mgh1-mgh2B.=W G+WFC.>W G+WFD.<W G+WF4.如图所示,足够长的光滑U型导轨宽度为L,其所在平面与水平面的夹角为α,上端连接一个阻值为R的电阻,置于磁感应强度大小为B,方向垂直于导轨平面向上的匀强磁场中,今有一质量为m、有效电阻为r的金属杆沿框架由静止下滑,设磁场区域无限大,当金属杆下滑达到最大速度时,运动的位移为x,则()A.金属杆下滑的最大速度v m=B.在此过程中电阻R产生的焦耳热为(mgx sinα-mv m2)C.在此过程中电阻R产生的焦耳热为mgx sinα-mv m2D.在此过程中流过电阻R的电量为5.如图甲所示,水平面上两根足够长的金属导轨平行固定放置,间距为L,一端通过导线与阻值为R的电阻连接.导轨上放一质量为m的金属杆,金属杆、导轨的电阻均忽略不计,匀强磁场垂直导轨平面向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v也会变化,v和F的关系如图乙所示.下列说法正确的是()A.金属杆在匀速运动之前做匀加速直线运动B.a点电势高于b点电势C.由图象可以得出B、L、R三者的关系式为=D.当恒力F=4 N时,电阻R上消耗的最大电功率为24 W6.如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,轨道足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B.一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则()A.如果B增大,v m将变小B.如果α变大,v m将变小C.如果R变大,v m将变小D.如果m变大,v m将变小7.如图所示,磁感应强度的方向垂直于轨道平面斜向下,当磁场从零均匀增大时,金属杆ab始终处于静止状态,则金属杆受到的静摩擦力将()A.逐渐增大B.逐渐减小C.先逐渐增大,后逐渐减小D.先逐渐减小,后逐渐增大8.如图所示,光滑金属导轨由倾斜和水平两部分组成,水平部分足够长且处在竖直向下的匀强磁场中,右端接一电源(电动势为E,内阻为r). 一电阻为R的金属杆PQ水平横跨在导轨的倾斜部分,从某一高度由静止释放,金属杆PQ进入磁场后的运动过程中,速度—时间图象不可能是下图中的哪一个(导轨电阻不计)()A.B.C.D.9.如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab 与导轨接触良好可沿导轨滑动,开始时开关S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象不可能是()A.B.C.D.10.如图所示,在匀强磁场中放一电阻不计的平行光滑金属导轨,导轨跟大线圈M相接,小闭合线圈N在大线圈M包围中,导轨上放一根光滑的金属杆ab,磁感线垂直于导轨所在平面.小闭合线圈N通有顺时针方向的电流,该电流按下列图中哪一种图线方式变化时,最初一小段时间t0内,金属杆ab将向右做加速度减小的变加速直线运动()A.B.C.D.11.如图所示,金属杆ab静止放在水平固定的“U”形光滑金属框上,且整个装置处于竖直向上的匀强磁场中.现使ab获得一个向右的初速度v开始运动,下列表述正确的是()A.安培力对ab做正功B.杆中感应电流的方向由b→aC.杆中感应电流逐渐减小D.杆中感应电流保持不变12.如图所示,abcd为水平放置的平行“l”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计.已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的发热功率为13.如图所示,竖直平面内有足够长、不计电阻的两组平行光滑金属导轨,宽度均为L,上方连接一个阻值为R的定值电阻,虚线下方的区域内存在磁感应强度为B的匀强磁场.两根完全相同的金属杆1和2靠在导轨上,金属杆长度与导轨宽度相等且与导轨接触良好、电阻均为r、质量均为m;将金属杆l固定在磁场的上边缘,且仍在磁场内,金属杆2从磁场边界上方h0处由静止释放,进入磁场后恰好做匀速运动.现将金属杆2从离开磁场边界h(h<ho)处由静止释放,在金属杆2进入磁场的同时,由静止释放金属杆1,下列说法正确的是()A.两金属杆向下运动时,流过电阻R的电流方向为a→bB.回路中感应电动势的最大值为C.磁场中金属杆l与金属杆2所受的安培力大小、方向均不相同D.金属杆l与2的速度之差为214.MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,匀强磁场垂直穿过MN、GH所在的平面,如图所示,则()A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向由a到b到d到cB.若ab、cd以相同的速度一起向右滑动,则abdc回路有电流,电流方向由c到d到b到a C.若ab向左、cd向右同时运动,则abdc回路电流为0D.若ab、cd都向右运动,且两棒速度v cd>v ab,则abdc回路有电流,电流方向由c到d到b到a 15.如图所示,光滑的金属轨道分为水平段和圆弧段两部分,O点为圆弧的圆心,N为轨道交点.两轨道之间宽度为0.5 m,匀强磁场方向竖直向上,大小为0.5 T.质量为0.05 kg的金属细杆置于轨道上的M点.当在金属细杆内通以电流强度为2 A的恒定电流时,其可以沿轨道由静止开始向右运动.已知MN=OP=1.0 m,金属杆始终垂直轨道,OP沿水平方向,则( )A.金属细杆在水平段运动的加速度大小为5 m/s2B.金属细杆运动至P点时的向心加速度大小为10 m/s2C.金属细杆运动至P点时的速度大小为0D.金属细杆运动至P点时对每条轨道的作用力大小为0.75 N二、多选题16.如图1所示,竖直放置的“”形光滑导轨宽为L,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d,磁感应强度为B.质量为m的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g.金属杆()图1A.刚进入磁场Ⅰ时加速度方向竖直向下B.穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C.穿过两磁场产生的总热量为4mgdD.释放时距磁场Ⅰ上边界的高度h可能小于m2gR22B4L417.(多选)如图所示,ab、cd是固定在竖直平面内的足够长的金属框架,bc段接有一阻值为R的电阻,其余电阻不计,ef是一条不计电阻的金属杆,杆两端与ab和cd接触良好且能无摩擦下滑(不计空气阻力),下滑时ef始终处于水平位置,整个装置处于方向垂直框面向里的匀强磁场中,ef从静止下滑,经过一段时间后闭合开关S,则在闭合开关S后()A.ef的加速度大小不可能大于gB.无论何时闭合开关S,ef最终匀速运动时速度都相同C.无论何时闭合开关S,ef最终匀速运动时电流的功率都相同D.ef匀速下滑时,减少的机械能大于电路消耗的电能18.(多选)如图所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R相连,该装置处于匀强磁场中,磁场方向垂直于轨道平面向上.质量为m的金属杆ab以初速度v0从轨道底端向上滑行,滑行到某高度h后又返回到底端.若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.则下列说法正确的是()A.金属杆ab上滑过程与下滑过程通过电阻R的电量一样多B.金属杆ab上滑过程中克服重力、安培力与摩擦力所做功之和大于mv02C.金属杆ab上滑过程与下滑过程因摩擦而产生的内能一定相等D.金属杆ab在整个过程中损失的机械能等于装置产生的焦耳热19.(多选) 如图所示平行的金属双轨与电路处在竖直向下的匀强磁场B中,一金属杆放在金属双轨上在恒定外力F作用下做匀速运动,则在开关S()A.闭合瞬间通过金属杆的电流增大B.闭合瞬间通过金属杆的电流减小C.闭合后金属杆先减速后匀速D.闭合后金属杆先加速后匀速20.(多选)如图所示,间距l=0.4 m的光滑平行金属导轨与水平面夹角θ=30°,正方形区域abcd内匀强磁场的磁感应强度B=0.2 T,方向垂直于斜面.甲、乙两金属杆电阻R相同、质量均为m=0.02 kg,垂直于导轨放置.起初,甲金属杆处在磁场的上边界ab上,乙在甲上方距甲也为l 处.现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F,使甲金属杆始终以a=5 m/s2的加速度沿导轨匀加速运动,已知乙金属杆刚进入磁场时做匀速运动,取g=10 m/s2,则()A.每根金属杆的电阻R=0.016 ΩB.甲金属杆在磁场中运动的时间是0.4 sC.甲金属杆在磁场中运动过程中F的功率逐渐增大D.乙金属杆在磁场中运动过程中安培力的功率是0.1 W21.(多选)某位移传感器的工作原理如图甲所示,物体M在导轨上平移时,带动滑动变阻器的金属杆P,通过理想电压表显示的数据来反映物体的位移x.设定电源电动势为E,内阻不计,滑动变阻器的长度为L,物体经过O点时P恰好位于滑动变阻器的中点,此时电压表示数显示为0,若电压表的示数UPQ随时间t的变化关系如图乙(余弦图象)所示,则下列说法正确的是()A.在t1时刻M恰好运动到O位置B.物体M以O点为中心做往复运动C.在t1到t2时间段内,M的速度先增大后减小D.在t2时刻物体M在最右端且速度为022.(多选)如图所示为不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H, P固定在框上.H、P的间距很小,质量为0.2 kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m的正方形,其有效电阻为0.1 Ω.此时在整个空间加与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4-0.2t) T .图示磁场方向为正方向.框、挡板和杆不计形变,则()A.t=1 s时,金属杆中感应电流方向从C到DB.t=3 s时,金属杆中感应电流方向从D到CC.t=1 s时,金属杆对挡板P的压力大小为0.1 ND.t=3 s时,金属杆对挡板H的压力大小为0.2 N23.(多选)两金属杆ab和cd长度,电阻均相同,质量分别为M和m,已知M>m.两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧.两金属杆都处在水平位置,如图所示.从t=0时刻起,ab和cd开始运动,当运动到t1时刻,在与回路平面相垂直的方向加上一匀强磁场,磁场区域足够大,若以竖直向下为速度的正方向,则ab运动的速度随时间变化的图象可能是下图中的()A.B.C.D.24.(多选)如图所示,两根相距为L的平行直导轨水平放置,R为固定电阻,导轨电阻不计.电阻阻值也为R的金属杆MN垂直于导轨放置,杆与导轨之间有摩擦,整个装置处在竖直向下的匀强磁场中,磁感应强度大小为B.t=0时刻对金属杆施加一水平外力F作用,使金属杆从静止开始做匀加速直线运动.下列关于外力F、通过R的电流I、摩擦生热Q(图C为抛物线)、外力F的功率P随时间t变化的图象中正确的是()A.B.C.D.25.(多选)如图所示,以平面框架宽L=0.3 m,与水平面成37°角,上、下两端各有一个电阻R0=2 Ω,框架其他部分的电阻不计.垂直于框架平面的方向上存在向上的匀强磁场,磁感应强度B=1 T.金属杆ab长为0.3 m,质量为m=1 kg,电阻r=2 Ω,与框架的动摩擦因数为μ=0.5,以初速度v0=10 m/s向上滑行,直至上升到最高点的过程中,上端电阻R0产生的热量Q0=5 J.下列说法正确的是()A.上升过程中,金属杆两端点ab间最大电势差为3 VB.ab杆沿斜面上升的最大距离为2 mC.上升过程中,通过ab杆的总电荷量为0.2 CD.上升过程中,电路中产生的总热量为30 J26.(多选)如图所示,水平放置的平行金属导轨间距为l,左端与一电阻R相连.导轨间有竖直向下的匀强磁场,磁场的磁感应强度为B.金属杆ab垂直于两导轨放置,电阻为r,与导轨间无摩擦.现对杆ab施加向右的拉力,使杆ab向右以速度v匀速运动,则()A.金属杆中的电流由a到bB.金属杆a端的电势高于b端的电势C.拉力F=D.R上消耗的功率P=()2R27.(多选)在磁感应强度为B的匀强磁场中,有一与磁场方向垂直长度为L的金属杆aO,已知ab=bc=cO=,a、c与磁场中以O为圆心的同心圆(都为部分圆弧)金属轨道始终接触良好.一电容为C的电容器接在轨道上,如图所示,当金属杆在与磁场垂直的平面内以O为轴,以角速度ω顺时针匀速转动时()A.Uac=2UbOB.Uac=2UabC.电容器带电量Q=BL2ωCD.若在eO间连接一个电压表,则电压表示数为零28.(多选)如图所示,金属杆ab以恒定的速率v在光滑的平行导轨上向右滑行,设整个电路中总电阻为R(恒定不变),整个装置置于垂直于纸面向里的匀强磁场中,则下列说法正确的是()A.ab杆中的电流与速率v成正比B.电阻R上产生的电热功率与速率v成正比C.磁场作用于ab杆的安培力与速率v成正比D.外力对ab杆做功的功率与速率v成正比29.(多选)如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.质量为m、长为L的金属杆ab垂直导轨放置,整个装置处于垂直ab方向的匀强磁场中.当金属杆ab中通有从a到b的恒定电流I时,金属杆ab保持静止.则磁感应强度方向和大小可能为()A.竖直向上,B.平行导轨向上,C.水平向右,D.水平向左,30.(多选)下图是小丽自制的电流表原理图,质量为m的均匀细金属杆MN与一竖直悬挂的绝缘轻弹簧相连,弹簧劲度系数为k,在边长为ab=L1,bc=L2的矩形区域abcd内均有匀强磁场,磁感应强度大小为B,方向垂直纸面向外.MN的右端连接一绝缘轻指针,可指示出标尺上的刻度,MN的长度大于ab,当MN中没有电流通过且处于静止时,MN与ab边重合,且指针指在标尺的零刻度;当MN中有电流时,指针示数可表示电流大小.MN始终在纸面内且保持水平,重力加速度为g,则()A.要使电流表正常工作,金属杆中电流方向应从M至NB.当该电流表的示数为零时,弹簧的伸长量为零C.该电流表的量程是I m=D.该电流表的刻度在0~I m范围内是不均匀的31.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y=2.5 cos (kx+π)(m),式中k=1 m-1.将一质量为1 kg的光滑小环套在该金属杆上,在P(-m,0)点给小环以平行于杆、大小为10 m/s的初速度,让小环沿杆向x轴正方向运动,取g=10 m/s2,关于小环的运动,下列说法正确的是 ()A.金属杆对小环不做功B.小环沿x轴方向的分运动为匀速运动C.小环到达金属杆的最高点时的速度为5m/sD.小环到达Q(m,-2.5 m)点时的速度为10m/s分卷II四、计算题(共10小题,每小题18.0分,共180分)32.如图所示,电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,轨道所在平面的正方形区域内存在一有界匀强磁场,磁感应强度大小为B,方向垂直于导轨平面向上.电阻相同、质量均为m的两根相同金属杆甲和乙放置在导轨上,甲金属杆恰好处在磁场的上边界处,甲、乙相距也为l.在静止释放两金属杆的同时,对甲施加一沿导轨平面且垂直于甲金属杆的外力,使甲在沿导轨向下的运动过程中始终以加速度a=g sinθ做匀加速直线运动,金属杆乙进入磁场时即做匀速运动.(1)求金属杆的电阻R;(2)若从开始释放两金属杆到金属杆乙刚离开磁场的过程中,金属杆乙中所产生的焦耳热为Q,求外力F在此过程中所做的功.33.如图甲所示,平行金属导轨竖直放置,导轨间距为L=1 m,上端接有电阻R1=3 Ω,下端接有电阻R2=6 Ω,虚线OO′下方是垂直于导轨平面的匀强磁场.现将质量m=0.1 kg、电阻不计的金属杆ab,从OO′上方某处垂直导轨由静止释放,杆下落0.2 m过程中始终与导轨保持良好接触,加速度a与下落距离h的关系图象如图乙所示. 求:(1)磁感应强度大小B;(2)杆下落0.2 m过程中通过金属杆的电荷量q.34.如图所示,两根竖直固定的足够长的金属导轨ab和cd相距L=0.2 m,另外两根水平金属杆MN 和PQ的质量均为m=10 g,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2 Ω(竖直金属导轨电阻不计),PQ杆放置在水平绝缘平台上,整个装置处于垂直导轨平面向里的磁场中,g取10 m/s2.(1)若将PQ杆固定,让MN杆在竖直向上的恒定拉力F=0.18 N的作用下由静止开始向上运动,磁感应强度B0=1.0 T,当杆MN的速度v1=0.4 m/s时的加速度a为多少?杆MN的最大速度v m为多少?(2)若将MN杆固定,MN和PQ的间距为d=0.4 m,现使磁感应强度从零开始以=0.5 T/s的变化率均匀地增大,经过多长时间,杆PQ对地面的压力为零?35.如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,且接触良好,整套装置处于匀强磁场中.金属杆ab中通有大小为I的电流.已知重力加速度为g.(1)若匀强磁场方向垂直斜面向下,且不计金属杆ab和导轨之间的摩擦,金属杆ab静止在轨道上,求磁感应强度的大小;(2)若金属杆ab静止在轨道上面,且对轨道的压力恰好为零.试说明磁感应强度大小和方向应满足什么条件;(3)若匀强磁场方向垂直斜面向下,金属杆ab与导轨之间的动摩擦因数为μ,且最大静摩擦力等于滑动摩擦力.欲使金属杆ab静止,则磁感应强度的最大值是多大.36.如图甲所示,光滑且足够长的金属导轨MN、PQ平行地固定在同一水平面上,两导轨间距L=0.2 m,两导轨的左端之间所接的电阻R=0.40 Ω,导轨上静止放置一质量m=0.10 kg的金属杆ab,位于两导轨之间的金属杆的电阻r=0.10 Ω,导轨的电阻可忽略不计.整个装置处于磁感应强度B =0.50 T的匀强磁场中,磁场方向竖直向下.现用一水平外力F水平向右拉金属杆,使之由静止开始运动,在整个运动过程中金属杆始终与导轨垂直并接触良好,若理想电压表的示数U随时间t 变化的关系如图乙所示,求从金属杆开始运动经t=5.0 s时:(1)通过金属杆的感应电流的大小和方向;(2)金属杆的速度大小;(3)外力F的瞬时功率.37.图中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40 m,电阻不计.导轨所在平面与磁感应强度B为0.50 T的匀强磁场垂直.质量m为6.0×10-3kg、电阻为1.0 Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0 Ω的电阻R1.当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27 W,重力加速度取10 m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2.38.如图所示,在xOy平面内有一扇形金属框abc,其半径为r,ac边与y轴重合,bc边与x轴重合,且c为坐标原点,ac边与bc边的电阻不计,圆弧ab上单位长度的电阻为R.金属杆MN长度为L,放在金属框abc上,MN与ac边紧邻,金属杆ac长度的电阻为R0.磁感应强度为B的匀强磁场与框架平面垂直并充满平面.现对MN杆施加一个外力(图中未画出),使之以C点为轴顺时针匀速转动,角速度为ω.求:(1)在MN杆运动过程中,通过杆的电流I与转过的角度θ间的关系;(2)整个电路消耗电功率的最小值是多少?39.如图所示,质量为1 kg的金属杆放在相距1 m的两水平轨道上,金属杆与轨道间的动摩擦因数为0.6,两轨道间存在着竖直方向的匀强磁场,当杆中通有方向如图所示大小为5 A的恒定电流时,可使金属杆向右匀速运动(g=10 m/s2).(1)判断两轨道间磁场方向;(2)求磁感应强度B的大小.40.如图所示,两根平行放置的导电轨道,间距为L,倾角为θ,轨道间接有电动势为E(内阻不计)的电源,现将一根质量为m、电阻为R的金属杆ab水平且与轨道垂直放置在轨道上,金属杆与轨道接触摩擦和电阻均不计,整个装置处在匀强磁场(磁场垂直于金属棒)中且ab杆静止在轨道上,求:(1)若磁场竖直向上,则磁感应强度B1是多少?(2)如果通电直导线对轨道无压力,则匀强磁场的磁感应强度B2是多少?方向如何?41.间距为l的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图19所示.倾角为θ的导轨处于大小为B1、方向垂直导轨平面向上的匀强磁场区间Ⅰ中.水平导轨上的无磁场区间静止放置一质量为3m的“联动双杆”(由两根长为l的金属杆cd和ef,用长度为L的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为B2、方向垂直导轨平面向上的匀强磁场区间Ⅱ,其长度大于L.质量为m、长为l的金属杆ab从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab与“联动双杆”发生碰撞,碰后杆ab和cd合在一起形成“联动三杆”.“联动三杆”继续沿水平导轨进入磁场区间Ⅱ并从中滑出.运动过程中,杆ab、cd和ef与导轨始终接触良好,且保持与导轨垂直.已知杆ab、cd和ef电阻均为R=0.02 Ω,m=0.1 kg,l=0.5 m,L=0.3 m,θ=30°,B1=0.1 T,B2=0.2 T.不计摩擦阻力和导轨电阻,忽略磁场边界效应.求:图19(1)杆ab在倾斜导轨上匀速运动时的速度大小v0;(2)“联动三杆”进入磁场区间Ⅱ前的速度大小v;(3)“联动三杆”滑过磁场区间Ⅱ产生的焦耳热Q.五、填空题(共1小题,每小题5.0分,共5分)42.在弹性限度内,弹簧弹力的大小与弹簧伸长(或缩短)的长度的比值,叫做弹簧的劲度系数.为了测量一轻弹簧的劲度系数,某同学进行了如下实验设计:如图所示,将两平行金属导轨水平固定在竖直向下的匀强磁场中,金属杆ab与导轨接触良好,水平放置的轻弹簧一端固定于O点,另一端与金属杆连接并保持绝缘.在金属杆滑动的过程中,弹簧与金属杆、金属杆与导轨均保持垂直,弹簧的形变始终在弹性限度内,通过减小金属杆与导轨之间的摩擦和在弹簧形变较大时读数等方。
高考的物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cdBv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中的单导体棒模型(解析版)--2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法电磁感应中的单导体棒模型目录一.阻尼式单导体棒模型二.发电式单导体棒模型三.无外力充电式单导体棒模型四.无外力放电式单导体棒模型五.有外力充电式单导体棒模型六.含“源”电动式模型一.阻尼式单导体棒模型【模型如图】1.电路特点:导体棒相当于电源。
当速度为v 时,电动势E =BLv2.安培力的特点:安培力为阻力,并随速度减小而减小:F 安=BIL =B 2L 2v R +r∝v3.加速度特点:加速度随速度减小而减小,a =B 2L 2vm (R +r )+μg4.运动特点:速度如图所示。
a 减小的减速运动5.最终状态:静止6.四个规律(1)全过程能量关系:−μmgx −Q =0−12mv 20 , 速度为v 时的能量关系−μmgx −Q =12mv 2-12mv 20电阻产生的焦耳热Q R Q=RR +r (2)瞬时加速度:a =B 2L 2vm (R +r )+μg ,(3)电荷量q =I Δt =ER +r Δt =ΔφΔt (R +r )Δt =ΔφR +r (4)动量关系:μmg Δt −BIL Δt =μmg Δt -BqL =0−mv 0(安培力的冲量F Δt =BIL Δt =BqL )安培力的冲量公式是μmg Δt −BIL Δt =0−mv 0①闭合电路欧姆定律I =ER +r ②平均感应电动势:E =BLv③位移:x =vt ④①②③④得μmg Δt +B 2L 2xR +r=mv 01(2023春·山西晋城·高三校联考期末)舰载机利用电磁阻尼减速的原理可看作如图所示的过程,在磁感应强度大小为B 、方向竖直向下的匀强磁场中,有间距为L 的水平平行金属导轨ab 、cd ,ac 间连接一电阻R ,质量为m 、电阻为r 的粗细均匀的金属杆MN 垂直于金属导轨放置,现给金属杆MN 一水平向右的初速度v 0,滑行时间t 后停下,已知金属杆MN 与平行金属导轨间的动摩擦因数为μ,MN 长为2L ,重力加速度为g ,下列说法中正确的是()A.当MN 速度为v 1时,MN 两端的电势差为U MN =2BLv 1B.当MN 速度为v 1时,MN 的加速度大小为a =μg +2B 2L 2v 1m 2R +r C.当MN 速度为v 1时,MN 的加速度大小为a =2μg +2B 2L 2v 1m R +rD.MN 在平行金属导轨上滑动的最大距离为s =mv 0-μmgt 2R +r2B 2L 2【答案】BD【详解】A .根据题意可知,MN 速度为v 1时,MN 单独切割产生的电势差2BLv 1,但由于MN 中间当电源,所以MN 两端的电势差小于感应电动势,故A 错误;BC .MN 速度为v 1时,水平方向受摩擦力、安培力,由牛顿第二定律有μmg +B 2L 2v 1R +r 2=ma解得a =μg +2B 2L 2v 1m 2R +r故B 正确,C 错误;D .MN 在平行金属导轨上滑动时,由动量定理有-μmgt -∑BIL Δt =0-mv 0又有∑I Δt =q =ΔΦR +r 2=2BLs2R +r 联立解得s =mv 0-μmgt 2R +r2B 2L 2故D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023届高三物理一轮复习重点热点难点专题特训专题67 电磁感应现象中的单棒问题特训目标 特训内容目标1 阻尼式单棒问题(1T —5T ) 目标2 电动式单棒问题(6T —10T ) 目标3发电式单棒问题(11T —15T )一、阻尼式单棒问题1.如图所示,左端接有阻值为R 的定值电阻且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度为B 、竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置且静止,导轨的电阻不计。
某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中( )A .导体棒做匀减速直线运动直至停止运动B .电阻R 上产生的焦耳热为22I mC .通过导体棒ab 横截面的电荷量为I BLD .导体棒ab 运动的位移为22IRB L 【答案】C【详解】A .导体棒获得向右的瞬时初速度后切割磁感线,回路中出现感应电流,导体棒ab受到向左的安培力,向右减速运动,由22B L vma R r =+可知,由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度越来越小的减速运动直至停止运动,A 错误;B .导体棒减少的动能22211()222k I I E mv m m m ===根据能量守恒定律可得k E Q =总又根据串并联电路知识可得22()R R I R Q Q R r m R r ==++总,B 错误; C .根据动量定理可得0BIL t mv -=-;I mv =;q I t =可得Iq BL=,C 正确; D .由于E BLxq I t t R r R r R rΦ====+++将I q BL =代入可得,导体棒ab 运动的位移22()I R r x B L +=,D 错误。
故选C 。
2.如图所示,一根直导体棒质量为m 、长为L ,其两端放在位于水平面内、间距也为L 的光滑平行金属导轨上,并与之接触良好,导体棒左侧两导轨之间连接一可控电阻,导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。
t =0时刻,给导体棒一个平行于导轨的水平初速度v 0,此时可控电阻的阻值为R 0,在导体棒运动过程中,通过可控电阻的变化使导体棒中的电流保持恒定,不计导轨和导体棒的电阻,导体棒一直在磁场中,下列说法不正确的是( )A .导体棒的加速度大小始终为a =2200B L v mRB .导体棒从开始运动到停止的时间为t=22mR B L C .导体棒从开始运动到停止的时间内,回路产生的焦耳热为2012mvD .导体棒从开始运动到停止的时间内,回路产生的焦耳热为20mv【详解】A .由右手定则和左手定则可得,导体棒受到安培力水平向左,导体棒向右做减速运动,在导体棒运动过程中,通过可控电阻的变化使导体棒中的电流I 保持恒定,对导体棒由牛顿第二定律可得BIL =ma导体棒向右做匀减速运动,结合E =BLv ;EI R=可得2200B L v ma R =可知导体棒的加速度大小始终为2200B L v a mR =故A 不符合题意;B .由导体棒做匀减速运动可得v =v 0-at 导体棒从开始运动到停止的时间为022mR t B L =故B 不符合题意;CD .根据能量守恒定律可知,导体棒从开始运动到停止运动的过程中,回路产生的焦耳热为2012Q mv =故C 不符合题意,D 符合题意。
故选D 。
3.如图所示,在磁感应强度为B 、方向竖直向下的匀强磁场中,间距为L 的光滑水平U 型导体框左端连接一阻值为R 的电阻,质量为m 、电阻为r 的导体棒PQ 置于导体框上。
不计导体框的电阻。
0=t 时PQ 棒以水平向右的初速度0v 开始运动,到达位置c 时棒刚好静止,其中a 、b 与b 、c 的间距相等。
下列分析正确的是( )A .0=t 时PQ 棒两端电压0PQ U BLv =B .PQ 棒运动过程中的平均速度02v v <C .PQ 棒运动过程中克服安培力做的总功等于2012mvD .PQ 棒在由a b →与b c→的两个过程中回路中产生的热能3ab bc Q Q =【详解】A .0=t 时回路中感应电动势大小为0E BLv =根据闭合电路欧姆定律可知此时PQ 棒两端电压为 0PQ RE RBLv U R r R r==++故A 错误; B .PQ 棒运动过程中电流方向为Q →P ,所受安培力方向与速度方向相反,所以PQ 棒做减速运动,随着速度减小,回路中感应电动势减小,通过PQ 棒的电流减小,PQ 棒所受安培力减小,所以加速度减小,定性作出其v -t 图像如图所示,根据v -t 图像与坐标轴所围面积表示位移可知整过过程PQ 棒的位移大小为 012x v t <所以平均速度为0012x v v t =<故B 正确;C .PQ 棒初动能为2012mv ,末动能为零,根据动能定理可知PQ 棒运动过程中克服安培力做的总功等于2012mv ,故C 正确;D .设a 、b 和b 、c 的间距均为x ,PQ 棒从a 到b 的过程,通过PQ 的平均电流为()E BLxI R r t R r ==++设PQ 棒经过a 、b 时的速度大小分别为va 、vb ,对PQ 棒从a 到b 的过程,根据动量定理22b a B L xmv mv BILt R r-=-=-+对PQ 棒从b 到c 的过程,同理可得220b B L xmv R r -=-+根据以上两式可得2a b v v =根据能量守恒定律有 221122ab a b Q mv mv =-;212bc b Q mv =所以3ab bcQ Q =故D 正确。
故选BCD 。
4.如图所示,两条相距d 的足够长的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻,质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下,将该磁场区域以速度0v 匀速地向右扫过金属杆,金属棒与导轨间滑动摩擦力大小为f ,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触,不计导轨与金属杆的电阻,求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)设磁场足够宽,杆可能达到的最大速度m v 。
【答案】(1)0Bdv I R =;(2)220B d v fa mR m=-;(3)m 022fR v v B d =- 【详解】(1)MN 向右刚扫过金属杆时,金属杆以速度0v 相对磁场向左切割磁感线,产生的感应电动势为0E Bdv =感应电流E I R=解得0Bdv I R = (2)由题意和左手定则知金属杆受向右安培力而向右运动,MN 刚扫过金属杆时,安培力大小为220=B d v F BId R =由牛顿第二定律F f ma -=解得220B d v fa mR m=- (3)运动过程中,设金属杆向右运动的速度为v ,则金属杆切割磁感线的速度0=v v v '-感应电流为0()=Bd v v E I R R -=安培力为220()=B d v v F BId R-=随着金属杆速度v 增大,金属杆切割磁感线的速度v '逐渐减小,安培力减小,当安培力减小到等于摩擦力f 时,金属杆速度达到最大值,有220m ()B d v v f R-=解得m 022fRv v B d =-5.如图,水平面上有两根足够长的光滑平行金属导轨,导轨间距为l ,电阻不计。
左侧接有定值电阻阻值为R 。
质量为m 、电阻为r 的金属杆,t =0时金属杆以初速度v 0沿导轨向右运动,在滑行过程中保持与轨道垂直且接触良好。
整个装置处于方向竖直向上,磁感应强度为B 的匀强磁场中。
(1)定性分析说明金属杆的运动情况(速度和加速度的变化情况);(2)宏观规律与微观规律有很多相似之处,金属杆速度随时间的变化规律和放射性元素的衰变规律相同,已知金属杆速度由v 0变化到02v 所需时间为t 0,则0~3t 0时间内电阻R 上产生的热量为多少?(3)已知金属杆速度v 和位移s 的变化规律为:220B L v v s m R r =-+(),即v -s 图像如图所示,请利用该...v -.s 图像..证明(1)中你的结论。
【答案】(1)见解析;(2)()263128Rmv R r +;(3)见解析【详解】(1)根据右手定则可知通过金属杆的感应电流在图中的方向为由下至上,再由左手定则可知金属杆受到的安培力F 方向水平向左,所以金属杆做减速运动。
金属杆受到的合外力即安培力大小为22B l v F BIl R r ==+由牛顿第二定律可得金属杆的加速度大小为()22F B l v a m m R r ==+由于v 减小,所以金属杆的加速度减小。
(2)由题意,结合放射性元素的衰变规律可知3t 0时金属杆的速度为08t v v =根据能量守恒定律可知,在0~3t 0时间内,回路产生的总热量为22200116322128t Q mv mv mv =-=而通过金属杆和电阻R 的电流时刻相等,则根据焦耳定律可推知电阻R 上产生的热量为()2063128R Rmv RQ Q R r R r ==++(3)解法1:由v -s 图像可知,随着s 的增大,金属杆速度v 减小,即金属杆做减速运动。
如下图所示,选取一系列连续的极小位移间隔Δs 1=Δs 2=…=Δsn =Δs 则每个Δs 内对应的速度变化量Δv 1=Δv 2=…=Δvn 因为金属杆做减速运动,所以每个Δs 内对应的平均速度12n v v v >>>…由平均速度定义式sv t∆=∆可知每个Δs 所对应的时间 Δt 1<Δt 2<…<Δtn 由加速度定义式∆=∆va t可得12n a a a >>>… 所以金属杆的加速度减小。
解法2:由v -s 图像可知,随着s 的增大,金属杆速度v 减小,即金属杆做减速运动。
v -s 图像的斜率为k =ΔΔv s根据速度的定义有s v t ∆=∆联立以上两式可得a k v=因为k 为定值,所以当v 减小时,a 减小,即金属杆的加速度减小。
二、电动式单棒问题6.电磁炮是利用电磁力对弹体加速的新型武器。
某小组用图示装置模拟研究电磁炮的原理。
间距为0.1m 的水平长导轨间有竖直向上的匀强磁场,磁感应强度大小为0.5T ,左端所接电池电动势为1.5V 、内阻为0.5Ω。
长0.1m 、电阻为0.1Ω的金属杆ab 静置在导轨上。
闭合开关S 后,杆ab 在运动过程中受到的阻力恒为0.05N ,且始终与导轨垂直且接触良好。
导轨电阻不计,则杆ab ( )A .运动方向向左B .先做匀加速直线运动,后做匀速直线运动C .能达到的最大速度为18 m/sD .两端的电压始终不变 【答案】C【详解】AB .杆ab 中电流方向从b 到a ,根据左手定则可知安培力向右,通电瞬间杆所受安培力0.125N EF BIL B L R r==⨯⨯=+大于阻力,向右做加速运动,随着速度增大,产生的感应电动势'E BLv =增大,产生的感应电流方向与通电电流方向相反,所以电流强度逐渐减小,安培力逐渐减小,加速度逐渐减小,当安培力和阻力相等时加速度为零,速度最大,因此杆先做加速度逐渐减小的变加速直线运动,后做匀速直线运动,故AB 错误; C .杆达到最大速度m v 时,受力平衡,即BIL f =解得1A I =又mE BLv I R r解得m 18m/sv =故C 正确;D .由闭合电路欧姆定律知,杆两端的电压E BLvUE Ir Er R r由于杆先做变加速运动,速度v 变化、感应电动势BLv 变化,则杆两端的电压U 发生变化,故D 错误。