初中几何专题五:图形变换问题

合集下载

中考数学几何图形的变换历年真题解析

中考数学几何图形的变换历年真题解析

中考数学几何图形的变换历年真题解析几何图形的变换是中考数学中的重要内容,涉及平移、旋转、翻转等多种变换方式。

通过对历年真题的解析,我们可以更好地理解和掌握这些变换的方法和应用。

下面将对数学中考几何图形的变换部分进行详细解析。

一、平移变换平移变换是指将一个图形在平面上沿着一定方向移动一定的距离,保持图形形状和大小不变。

在中考中,常常要求计算平移后的图形坐标或者确定平移向量的特征等。

例题1:已知点A(3,4),将点A沿向量(2,-3)平移,记平移后的点为B。

求点B的坐标。

解析:根据平移的定义和向量的性质,我们知道平移后点的坐标等于原来点的坐标加上平移向量的坐标。

所以,点B的坐标为(3+2, 4-3),即B(5,1)。

例题2:如图,平行四边形ABCD经过平移变换得到新的平行四边形A'B'C'D',其中AB=3cm,CB=4cm,平移向量为v,求平移向量v的坐标。

解析:首先,我们可以利用平行四边形的性质推导出平移向量v的坐标与平行四边形的对应边的向量相等。

由于AB在变换前和变换后分别与A'B'、B'C'平行,所以v的坐标等于AB的坐标,即v=(3, 0)。

二、旋转变换旋转变换是指将一个图形绕着一定的旋转中心按一定的角度旋转。

在中考中,常常要求计算旋转后的图形坐标或者确定旋转角度的特征等。

例题3:如图,A、B、C三点在平面内,点A经过逆时针旋转90°得到点B,点B经过逆时针旋转90°得到点C,求点C的坐标。

解析:根据旋转的性质,我们可以得出旋转90°后,点的坐标分别等于原来点的y坐标、-x坐标。

所以,点C的坐标为(-2, 3)。

例题4:如图,正方形ABCD绕顶点A顺时针旋转90°得到新图形,求旋转后点C的坐标。

解析:根据旋转的性质,我们可以将旋转90°看作将原点逆时针旋转90°。

因此,旋转后点C的坐标为(-1, 1)。

初中数学图形变换知识点整理

初中数学图形变换知识点整理

初中数学图形变换知识点整理初中数学中,图形变换是一个重要的知识点,它包括了平移、旋转、对称和放缩四个部分。

这些变换不仅在初中数学中有着广泛的应用,也是进一步学习几何知识和应用问题的基础。

下面将对这些知识点进行整理和阐述。

一、平移平移是指将一个图形沿着一定的方向和距离移动,平移后的图形与原图形相似,只是位置发生了改变。

在平移中,有以下几个关键概念需要注意:1. 平移的向量:平移是向量的运算,表示为→AB,表示从点A到点B的位移,也可以表示成矢量形式(AB)。

2. 平移的性质:平移具有保持图形大小、形状和方向不变的性质。

即平移后的图形与原图形全等。

3. 平移的规律:平移的规律可以总结为“横坐标加上有向线段的横坐标,纵坐标加上有向线段的纵坐标”。

即新图形的坐标为(x+a,y+b),其中a和b为向量→AB的横纵坐标。

二、旋转旋转是指将一个图形围绕一个中心点旋转一定的角度,旋转后的图形与原图形形状相似,但方向可能有所改变。

在旋转中,要注意以下几个关键概念:1. 旋转中心:旋转中心是图形旋转的轴心点,围绕该点进行旋转。

旋转中心可以是图像的一个顶点、中点或者其他位置。

2. 旋转角度:旋转角度是指图形旋转的角度,可以是正数也可以是负数。

顺时针旋转角度为负,逆时针旋转角度为正。

3. 旋转规律:旋转后的图形的顶点坐标可以通过坐标公式得出。

对于顺时针旋转,坐标公式为:新坐标点的横坐标为原坐标点的纵坐标,新坐标点的纵坐标为原坐标点的横坐标的相反数。

对于逆时针旋转,公式则相反。

三、对称对称是指图形通过某一条直线、点或平面变换后重合,这条直线、点或平面称为对称轴。

对称中需要注意以下几个关键概念:1. 对称轴:对称轴是图形对称的参考线。

对称轴可以是一条直线、一个点或平面。

2. 对称性质:对称是指图形经过对称变换后,与原图形完全重合,即图形左右对称、上下对称或中心对称。

3. 对称变换规律:对称变换后的图形的坐标可以通过规律得出。

几何图形的变换练习题

几何图形的变换练习题

几何图形的变换练习题
1. 平移:
(1) 将正方形ABCD顺时针平移4个单位,得到新的正方形EFGH。

若A(-3,2),求新的正方形的顶点坐标。

2. 旋转:
(1) 将三角形ABC顺时针旋转90°,得到新的三角形DEF。

已知
A(-1,2),B(3,4),C(2,1),求新的三角形的顶点坐标。

3. 对称:
(1) 将矩形EFGH关于y轴进行对称,得到新的矩形IJKL。

已知
E(2,3),F(5,3),G(5,1),H(2,1),求新的矩形的顶点坐标。

(2) 将点P(3,4)关于x轴进行对称,得到新的点Q。

求点Q的坐标。

4. 缩放:
(1) 将正方形MNPQ按照原点为中心,缩小一半,得到新的正方形RSTU。

若M(2,2),求新的正方形的顶点坐标。

5. 组合变换:
(1) 将三角形VWX顺时针旋转60°,然后再将旋转后的三角形关于
y轴进行对称,得到新的三角形YZT。

已知V(1,1),W(4,3),X(2,5),
求新的三角形的顶点坐标。

以上为几何图形的变换练习题,通过练习可以加深对平移、旋转、
对称和缩放等变换操作的理解和掌握。

通过计算坐标,可以推算出新
图形的顶点坐标,从而绘制出变换后的图形。

练习题的难度逐步增加,建议先从简单的开始,逐步挑战更复杂的变换操作,提高对几何变换
的熟练度。

初中数学专题:几何图形的变换经典题型(平移、旋转、翻折)初中数学几何图形题型

初中数学专题:几何图形的变换经典题型(平移、旋转、翻折)初中数学几何图形题型

初中数学专题:几何图形的变换经典题型(平移、旋转、翻折)初中数学几何图形题型解题思路:几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形之间的关系(平行、全等、相似等).基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样,和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形,大多数都有一定的位置关系(或成轴对称关系,或成平移的关系,或成旋转的关系(包括中心对称).这样,在解决具体的几何图形问题时,如果我们有意识地从图形的性质或关系中所显示或暗示的“变换特征”出发,来识别、构造基本图形或图形关系。

经典题型:一、平移经典问题如图,抛物线C1:Y=X的平方减4X,将抛物线C1向上平移5个单位长度得到抛物线C2,则抛物线C2的顶点坐标为;图中的两条抛物线、直线X=A(A二、折叠经典问题矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积是多少?三、平移旋转经典问题二次函数Y=二分之一乘以X的平方减2X减2,二分的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式是多少?四、压轴题在如图的方格纸中有一个Rt△ABC(A、B、C三点均为格点),∠C=90°.现将Rt△ABC绕点B顺时针旋转90°后所得到的Rt△A'BC'.(1)画出Rt△A'BC',其中A、C的对应点分别是A'、C'(2)试求出线段AC所经过区域的面积S.指导机构:家家乐教育立家学校2018小学奥数专题六:经济问题的经典题型以及解题方法2017-2018上学期六年级小升初数学出错率最高的47题2018小学奥数专题五:循环小数的经典题型以及解题方法2018初中数学专题:特殊图形中的动点问题归纳及解题方法特别声明:以上文章内容仅代表作者本人观点,不代表新浪看点观点或立场。

初中数学图形变换知识点整理

初中数学图形变换知识点整理

初中数学图形变换知识点整理图形变换是初中数学中的重要内容,它涵盖了平移、旋转、翻折和放缩等多个知识点。

了解图形变换的概念和基本原理,对于学好初中数学和几何学有着重要的意义。

本文将对初中数学图形变换的知识点进行整理和总结。

首先,我们来讨论平移。

平移是指在平面内保持大小和形状不变,只改变位置的变换。

通过平移变换,图形在平面内沿着某一方向移动,可以描述为向上、向下、向左或向右平移。

平移的关键是平移向量,它由水平方向和垂直方向的平移量组成。

平移变换可以用向量法来表示,即将平移向量的水平位移和垂直位移分别应用到图形的每一个点上。

接下来是旋转变换。

旋转是指围绕某一点旋转图形的变换。

在旋转变换中,旋转中心是关键点,它决定了旋转的中心和方向。

通过角度来确定旋转的大小,顺时针旋转和逆时针旋转分别由正负角度表示。

旋转变换可以用正弦和余弦函数来表示,通过坐标变换的方式来实现。

对于一个图形中的点,通过将其坐标按照旋转公式进行计算,可以得到旋转后的新坐标。

第三个知识点是翻折变换。

翻折是指关于某条直线对称的变换。

在翻折变换中,直线称为对称轴,它决定了翻折的位置和方向。

通过关于对称轴两侧的点对应,可以得到翻折后的新图形。

对称轴可以是水平线、垂直线或斜线,只要两侧的点位置对应即可。

翻折变换也可以通过坐标变换的方式来实现,通过确定翻折的对称轴和对称中心,将图形上的点按照对称关系进行计算。

最后是放缩变换。

放缩是指改变图形的尺寸大小的变换。

放缩变换可以分为放大和缩小两种情况。

放大是指增加图形的尺寸,缩小是指减小图形的尺寸。

放缩变换可以通过改变图形的横坐标和纵坐标的比例因子来实现。

比例因子大于1时图形放大,小于1时图形缩小。

放缩变换还可以通过矩阵变换的方式来实现,通过对图形的顶点坐标进行矩阵运算,可以得到放缩后的新坐标。

在实际问题中,图形变换常常与应用问题相结合。

例如,在地图上标记某一城市的位置时,可以通过平移变换将城市的位置标记到地图上的正确位置;在建筑设计中,可以使用旋转变换来调整建筑物的朝向;在布艺设计中,可以使用翻折变换来设计出各种不同的花纹;在制作模型时,可以使用放缩变换来控制模型的尺寸大小。

几何(网格、尺规)作图+第五章 图形的变换与作图+课件+2025年中考数学一轮总复习第五章

几何(网格、尺规)作图+第五章 图形的变换与作图+课件+2025年中考数学一轮总复习第五章
径画弧,分别交BA,BC于点D,E;
1
②分别以点D,E为圆心,大于 DE长
2
为半径画弧,两弧在∠ABC的内部相
交于点F,作射线BF交AC于点G.则
∠ABG的大小为 35
度.
6.如图,在平面直角坐标系中,若将△ABC绕点C顺
时针旋转90°得到△A1B1C,则点B的对应点B1的坐标

(2,-1).
7.如图,在菱形ABCD中,按如下步骤作图:
交线段BO于点D,交BC于点E;
②以点O为圆心,BD长为半径画弧,交
线段OA于点F;
③以点F为圆心,DE长为半径画弧,交前一条弧于点
G,点G与点C在直线AB同侧;
④作直线OG,交AC于点M.
下列结论不一定成立的是(
D )
A.∠AOM=∠B
B.∠OMC+∠C=180°
C.AM=CM
1
D.OM= AB
1
①分别以点C,D为圆心,大于 CD长为半径作弧,两弧交于
2
点M,N;
②作直线MN,且MN恰好经过点A,
与CD交于点E,连接BE.
若AD=4,则BE的长为 2 7
.
8.(2024·龙东)如图,在正方形网格中,每个小正方
形的边长都是1个单位长度,在平面直角坐标系中,
△ABC的三个顶点坐标分别为A(-1,1),B(-2,
若射线AP恰好经过点E,则下列四个结
论:①∠C=30°;②AP垂直平分线段
1
BF;③CE=2BE;④S△BEF= S△ABC.其中
6
正确结论的个数有( D
A.1个 B.2个 C.3个

D.4个
5.(2024·甘孜州)如图,在△ABC
中,AB=AC,∠A=40°,按如下步

专题5 旋转(初中数学)

专题5 旋转(初中数学)

元调复习专题5—图形的旋转,平移和轴对称★核心知识梳理1、 图形的平移(经过平移所得的图形与原来的图形的对应线段_________,对应角_________,连接各组对应点的线段_________.2、轴对称图形,轴对称(1)轴对称与轴对称图形(2)轴对称的性质:连接任意一对对应点的线段被对称轴______________.3、图形的旋转(1)旋转定义:(2)旋转性质:(3)中心对称定义:(4)中心对称性质:★典型例题讲解一、几何变换与角度问题例1.如图,矩形ABCD ,∠DAC=650,点E 是CD 上一点,BE 交AC 于点F,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C’处,求∠AFC’的度数。

练习.1.如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是 .二、几何变换中线段计算与证明例2:如图,P 是等边三角形ABC 内一点,PA=2,PB=2√3,PC=4,求△ABC 的边长练习:1.如上图 在Rt △ABC 中,∠C=90°,AC=1,BC=,点O 为Rt △ABC 内一点,连接A0、BO 、CO ,且∠AOC=∠COB=BOA=120°,(1)求∠ABC 和∠A′BC 的度数;(2)求OA+OB+OC 的值.2.如图1,在△ABC 中,AB=AC=13,BC=10,把△ABC 绕点A 旋转到△ADE 的位置,DE 交BC 于点M ,连接AM .(1)求证:∠AMB=∠AME ;(2)如图2,AD 交BC 于H ,在边AE 上取一点G ,使DH=EG,连接GC ,求点A 到直线CG 的距离3.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014= .三、几何变换与点的坐标例3.在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF 绕点O顺时针旋转,得正方形OE’D’F’,记旋转角为α.(Ⅰ)如图①,当α=90°,求AE’,BF’ 的长;(Ⅱ)如图②,当α=135°,求证AE’ =BF’,且AE’ ⊥BF’;(Ⅲ)若直线AE’与直线BF’相交于点P,求点P的纵坐标的最大值(直接写出结果即可)练习:1.点A的坐标为(2,0),把点A绕着坐标原点旋转135º到点B,那么点B的坐标是_________ .2.如图,直线443y x=-+与x轴、y轴分别交于A、B两点,把AOB△绕点A顺时针旋转90°后得到AO B''△,则直线A B'的解析式是.3.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.四、综合题例4. (2015•连云港)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD 面积之和的最大值,并简要说明理由.练习:(2015北京东城)已知:Rt△A′BC′和Rt△ABC重合,∠A′C′B=∠ACB=90°,∠BA′C′=∠BAC=30°,现将Rt△A′BC′绕点B按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C和线段AA′相交于点D,连接BD.(1)当α=60°时,A’B 过点C,如图1所示,判断BD和A′A之间的位置关系,不必证明;BA C (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.【典型练习基础篇】一、选择题:( ) 1.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是A .60ºB .90ºC .72ºD .120º()2.如图,△ABC 绕A 按逆时针方向旋转一定的角度后成为△AB′C′.则下列等式中:①BC=B′C′;②∠BAB′=∠CAC′;③∠ABC=∠AB′C′; ④△ABB′≌△ACC′.其中正确的结论有( )A .1个B .2个C .3个D .4个( )3.在“线段、等腰三角形、等边三角形、矩形、菱形、圆”这几个图形中,既是中心对称图形,又是轴对称图形的个数是 A .6个 B .5个 C .4个 D .3个( )4.在图形旋转中,下列说法错误的是A.图形上各对应点的旋转角度相同;B.对应点到旋转中心距离相等;C.由旋转得到的图形也一定可以由平移得到;D.旋转不改变图形的大小、形状( )5.在平面直角坐标系中,已知点C (0,3),D (1,7),将线段CD 绕点M (3,3)旋转180°后,得到线段AB ,则线段AB 所在直线的函数解析式是A .y=3x+15B .y=3x-15C .y=15x-3D .y=-15x+3( )6. 在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4.则下列结论错误的是A .AE ∥BC ;B .∠ADE=∠BDC ; C .△BDE 是等边三角形;D . △ADE 的周长是9二、填空题7.如图,将Rt △ABC 绕直角顶点C 点逆时针旋转得到△A'CB',若∠A'CB=160º,则此图形旋转角是 度.第7题 第8题 第9题8.如图,在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,△A′B′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为9.如图,P 是正三角形ABC 内的一点,且PA=6,PB=•8,•PC=10,若将△PAC 绕点A 逆时针旋转后,•得到△P •′AB ,•则点P •与点P •′之间的距离为_____,∠APB=_______°.10.若点(a +l ,3)与点(-2,b -2)关于x 轴对称,则点P(-a ,b)关于原点的对称点坐标是 .三、解答题第1题图 第2题图第5题图 第6题图11.(1)点(1,2)绕原点O 逆时针旋转90°得到的点的坐标是 ;(2)直线y=2x 绕原点O 逆时针旋转90°得到的直线解析式是 ;(3)求直线y=2x+3绕原点O 逆时针旋转90°得到的直线解析式.12.(2015•武汉)如图,已知点A (﹣4,2),B (﹣1,﹣2),平行四边形ABCD 的对角线交于坐标原点O .(1)请直接写出点C 、D 的坐标;(2)写出从线段AB 到线段CD 的变换过程;(3)直接写出平行四边形ABCD 的面积.13.如图,正方形ABCD 和平行四边形CPEF ,点P 在射线AB 上,点E 在边AD 上,作FG ⊥AD 于G 。

初三中考总复习——图形变换

初三中考总复习——图形变换

BF⊥ AC 于点 F,AE,BF 相交于点 M ,连接 DE ,DF . 则 DE ,DF 的数量关系为
.
【拓展】如图 2,在△ AB C中 ,C B= CA ,点 D 是 AB边的 中点 ,点 M 在 △ A B C的内部 ,且 ∠
C' B'
性 (1) 平 移 前 后 的 图 形 全 (1) 关于某条直 (1) 旋转前后的图 ⑴关于中心对称的两
质 等;
线对称的两个图 形全等;
个图形, 对称点所连线
(2) 对应线段平行 ( 或共 形全等;
(2) 对应点到旋转 段都经过对称中心, 并
线 ) 且相等;
(2) 对称点所连 中心的距离相等; 且被对称中心平分 .
同时对于抛物线的连续性理解不到位 .
例 9( 2013.1 海淀期末).抛物线 y mx2 ( m 3) x 3(m 0) 与 x 轴交于 A、B 两点,且 点 A 在点 B 的左侧,与 y 轴交于点 C,OB=OC .
( 1)求这条抛物线的解析式;
( 2)若点 P (x1,b ) 与点 Q ( x2 ,b ) 在( 1)中的抛物线上,且 x1 x2 ,PQ=n .
中心对称 .
西总 P88 例 1
例 6( 2014 顺义二模)如图,正方形 ABCD 的边长为 3,点 E, F 分别在边 AB, BC 上, AE
= BF= 1,小球 P 从点 E 出发沿直线向点 F 运动,每当碰到正方形的 D
C
边时反弹,反弹时反射角等于入射角.当小球
P 第一次碰到 BC 边时,
西城区教育研修学院·初三数学研修活动
初三中考总复习 —— 图形变换
西城外国语学校 袁慎鹏
2015.3.26

初二数学几何图形变换练习题

初二数学几何图形变换练习题

初二数学几何图形变换练习题在初中数学学习中,几何图形变换是一个重要的内容。

通过对图形进行平移、旋转、反射和放缩等操作,可以帮助我们加深对几何图形性质的理解。

下面将给出一些初二数学几何图形变换的练习题,希望能够帮助同学们巩固与拓展相关知识。

题目一:平移1. ABCD为一个平行四边形,EF是平行四边形的一条对角线。

(1)将平行四边形ABCD沿向量→→→→e向右平移3个单位得到平行四边形A1B1C1D1,连接DD1,证明A1D1∥EF。

(2)将平行四边形ABCD沿向量→→−→−→a向左平移4个单位得到平行四边形A2B2C2D2。

若A1A2的向量表示为→→−→−→b,则求向量→→−→−→b。

题目二:旋转2. 将正方形ABCD顺时针旋转90°得到正方形A1B1C1D1,连接CC1并延长,证明A1C1⊥CC1。

3. 将正方形ABCD顺时针旋转45°得到正方形A2B2C2D2,连接A2C2,若AC的长度为a,则求A2C2的长度。

题目三:反射4. 已知顶点是A(1,-3)的三角形ABC关于x轴反射得到三角形A1B1C1,连接AA1并延长,若直线AA1与x轴交于点D,求点D的坐标。

5. 直线y=x与直线y=2x关于直线y=-x反射,分别得到直线L1和L2。

若L1与L2的交点为P,则求P的坐标。

题目四:放缩6. 图中三角形ABC经过放缩得到三角形A1B1C1,若放缩比例为k,求A1B1 : BC的比值。

解答:题目一:平移1.(1)设向量→→→→AD=a,向量→→→→AC=b,由平移的性质知AA1=a+3,DD1=b+3。

根据平行四边形的性质,有AD=BC,AC=BD。

故A1D1∥EF得证。

(2)设向量→→−→−→a=〈x,y〉,则向量→→−→−→b=〈x-4,y〉。

根据平行四边形的性质,有AB=A1B1,AD=A1D1。

故向量→→−→−→a=AB-AD=〈x,y〉=A1B1-A1D1=向量→→−→−→b=〈-√2,0〉。

九年级图形的变换知识点

九年级图形的变换知识点

九年级图形的变换知识点图形的变换是数学课程中的一个重要内容,也是九年级学生需要掌握的知识点之一。

通过图形的变换,我们可以改变图形的位置、大小和方向,从而帮助我们更好地理解和解决问题。

本文将介绍九年级图形的变换知识点,包括平移、旋转、镜像和缩放。

1. 平移平移是指将图形在平面上沿着某个方向移动一定的距离,而形状和大小保持不变。

平移的基本步骤是:确定平移的方向和距离,然后保持图形的形状不变,将每个点按照相同的方向和距离移动。

平移有一些重要的性质:- 平移不改变图形的面积和形状。

- 平移前后,图形上的对应点之间的距离保持不变。

- 平移可以用于解决有关位置关系和对称性质的问题。

2. 旋转旋转是指将图形沿着一个中心点旋转一定的角度,而不改变其大小和形状。

旋转的基本步骤是:确定旋转的中心和角度,然后按顺时针或逆时针方向旋转每个点。

旋转有一些重要的性质:- 旋转不改变图形的面积和形状。

- 旋转前后,图形上的对应点之间的距离保持不变。

- 旋转可以用于解决有关对称性质和角度关系的问题。

3. 镜像镜像是指将图形通过一个镜面对称地映射到另一侧,使得图形的每一个点与其镜像点关于镜面对称。

镜像的基本步骤是:选择镜面的位置和方向,然后将原图形上的每个点与镜面上的对应点连接,得到镜像图形。

镜像有一些重要的性质:- 镜像不改变图形的面积和形状。

- 镜像前后,图形上的对应点之间的距离保持不变。

- 镜像可以用于解决有关对称性质和位置关系的问题。

4. 缩放缩放是指按照比例因子改变图形的大小,而形状保持不变。

缩放的基本步骤是:确定缩放的中心和比例因子,然后将图形上的每个点相对于中心按照比例因子进行放缩。

缩放有一些重要的性质:- 缩放改变图形的大小,但不改变其形状。

- 缩放前后,图形上的对应点之间的距离保持按比例变化。

- 缩放可以用于解决有关比例关系和相关性质的问题。

综上所述,九年级图形的变换知识点主要包括平移、旋转、镜像和缩放。

这些变换可以帮助我们更好地理解和解决与图形相关的问题,提高空间想象能力和数学推理能力。

初中数学 图形的变换(知识点总结及练习)

初中数学 图形的变换(知识点总结及练习)

图形的变换一、平移1.定义:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

2.性质:(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动。

(2)连接各组对应点的线段平行(或在同一直线上)且相等。

二、轴对称1.定义:把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2.性质:(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3.判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

三、旋转1.定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2.性质:(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

四、中心对称1.定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2.性质:(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3.判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

五、坐标系中对称点的特征1.两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2.关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3.两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)一、选择题1.在图形的平移中,下列说法中错误的是()A.图形上任意点移动的方向相同;B.图形上任意点移动的距离相同C.图形上可能存在不动点;D.图形上任意对应点的连线长相等2.如图所示图形中,是由一个矩形沿顺时针方向旋转90°后所形成的图形的是()A.(1)(4)B.(2)(3)C.(1)(2)D.(2)(4)第4题图3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④B.①②③C.②③④D.①③④4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF5.下列说法正确的是()A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则△ADE是△ABC放大后的图形;B.两个位似图形的面积比等于位似比;C.位似多边形中对应对角线之比等于位似比;D.位似图形的周长之比等于位似比的平方6.下面选项中既是中心对称图形又是轴对称图形的是()A.等边三角形B.等腰梯形C.五角星D.菱形7.下列图形中对称轴的条数多于两条的是()A.等腰三角形B.矩形C.菱形D.等边三角形8.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()9.钟表上2时15分,时针与分针的夹角是()A.30°B.45°C.22.5°D.15°二、填空题10.一个正三角形至少绕其中心旋转________度,就能与本身重合,一个正六边形至少绕其中心旋转________度,就能与其自身重合.11.如图,可以看作是由一个三角形通过_______次旋转得到的,每次分别旋转了__________.12.如图,在梯形ABCD中,将AB平移至DE处,则四边形ABED是_______四边形.13.已知等边△ABC,以点A为旋转中心,将△ABC旋转60°,这时得到的图形应是一个_______,且它的最大内角是______度.14.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形的周长为30cm,则较大图形周长为________.15.将如左图所示,放置的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是右图所示四个图形中的_______(只填序号).16.如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是_______第16题图第17题图17.如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.三、解答题18.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.19.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,看看得到的图案是什么?20.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.21.如图所示,四边形ABCD是正方形,E点在边DE上,F点在线段CB•的延长线上,且∠EAF=90°.(1)试证明:△ADE≌△ABF.(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.(3)指出线段AE与AF之间的关系.22.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD 折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.23.如图,正方形ABCD内一点P,使得PA:PB:PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP绕点B顺时针旋转90°至△BCP′,连结PP′)。

2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题

2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题

2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。

初三数学总复习几何变换王浩

初三数学总复习几何变换王浩

初三数学总复习——平移、轴对称与旋转变换图形变换是对几何图形认识方法上的一种改变. 通过平移、轴对称、旋转变换达到复杂图形简单化、一般图形特殊化,分散条件集中化的目的. 从图形变换的角度思考问题,可以整体把握图形的性质,特别是可以帮助我们从更高的层次理解平行线、截长补短、倍长中线等常用辅助线的作用,使问题解决更加简洁明确.当图形运动变化的时候,从运动变换的角度更容易发现不变量和特殊图形.一、图形变换在考试中的呈现方式:显性:题目以图形变换的语言叙述或图形本身具有变换的特征.隐性:在解决动手操作问题或几何计算证明题时利用图形变换的观点分析和思考问题并能适当添加辅助线构造所需图形解决问题.二、对图形变换的认识过程:1•掌握图形变换的概念和性质;2•对已学图形和常用辅助线的再认识:(1)从图形的构成和图形特点分析图形的轴对称性、中心对称和旋转对称性,以及由图形变换决定的图形的特殊性质.(2)从图形变换的角度分析添加平行线、倍长中线、截长补短等辅助线后构造出的图形的变换性质,以及辅助线的添加条件.3.能根据特定条件或图形特点形成图形变换的条件反射:(1)中点、中线——中心对称——倍长中线;(2)等腰三角形、角平分线、垂直平分线一一轴对称一一截长补短一一(边+边=边);(3)平行四边形、梯形一一平移;(4)正多边形、共端点的相等线段一一旋转;(5)半角一一轴对称或旋转一一角的截长补短.4•禾U用图形变换的观点分析和思考问题并能适当添加辅助线构造特殊图形.5•用变换的性质解决坐标系中的图形变换问题,用变换的观点研究函数的平移和对称.三、分类整理:(一)平移变换•中考题(07北京)如图,已知△ ABC .(1)请你在BC边上分别取两点D, E ( BC的中点除外),连结AD, AE ,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB AC AD AE .(11北京)阅读下面材料:小伟遇到这样一个问题:如图 1,在梯形 ABCD 中,AD // BC ,对角线AC 、BD 相交于点0 .若梯形ABCD 的面积为1,试求以AC 、BD 、AD BC 的长度为三边长的 三角形的面积.小伟是这样思考的: 要想解决这个问题,首先应想办法移动这些分散的线段,三角形,再计算其面积即可•他先后尝试了翻折、旋转、平移的方法,发现通过平移可 以解决这个问题•他的方法是过点 D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD AD BC 的长度为三边长的三角形(如图2). 请你回答:图2中厶BDE 的面积等于 __________ .参考小伟同学思考问题的方法,解决下列问题:如图3,A ABC 的三条中线分别为 AD 、BE 、CF .(1) 在图3中利用图形变换画出并指明以 AD 、BE 、CF 的长度为三边长的一个三角形 (保留画图痕迹);(2) 若厶ABC 的面积为1,则以 AD 、BE 、CF 的长度为三边 长的三角形的面积等 于 .构造一个图图•平移边,构造特殊图形1我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边 形•请解答下列问题:(1) 写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边 之和与其中一条对角线的大小关系,并证明你的结论.2•如图,线段 AB 、CD 相交于 0点,若AB=CD 且AB 丄CD •求证:AC BD V2AB4.在△ ABC 中,AB =AC , D 、E 是 AB 、AC 上的点且 AD=CE • 求证:2DE > BC.3.已知,正方形 (1) 求证:FG=DE⑵求证:FD+EG >v2FG ABCD 中,点E 是AB 上一点,G 是BC 上一点,FG 丄DE在氐AB C中”点P^BC的中点*m 如国—求证:九P<丄2(2)5S长朋剰6 使得BXC*延长:月C到。

七年级图形的变换知识点

七年级图形的变换知识点

七年级图形的变换知识点图形的变换是数学中非常基础的概念,同时也是几何学中非常重要的部分之一。

在七年级的数学学习过程中,学生需要学习各种图形的变换,并在实际中应用。

本文将详细介绍七年级图形的变换知识点。

1. 平移变换平移变换是将图形沿着某个方向移动一段距离,保持图形原有形状和大小不变。

平移变换也称为平移、移动或位移。

图形进行平移变换的方式有两种:一种是通过向量的加法实现平移,另一种是通过指定平移量来实现平移。

当通过向量的加法实现平移时,平移变换的公式为:P’ = P + v其中,P表示图形上任意一点的坐标,v表示平移向量,P’表示平移后图形上对应点的坐标。

当通过指定平移量实现平移时,平移变换的公式为:P’(x’, y’)= P(x + a, y + b)其中,a和b表示平移量,P表示图形上任意一点的原始坐标,P’表示平移后图形上对应点的新坐标。

2. 翻折变换翻折变换又称为对称变换或映射变换,它是指将图形围绕某个轴线翻折后形成的新图形。

轴线称为对称轴。

图形进行翻折变换的方式有两种:一种是按照对称轴上的点对图形进行翻折,另一种是按照对称轴上的中垂线对图形进行翻折。

无论采用哪种方式,进行翻折变换后,被翻折的图形与原始图形的形状和大小保持不变。

在翻折变换中,被翻折的图形的每个顶点都沿着对称轴对称,即对于一个点(x,y),它的对称点为(-x,y)或(x,-y)。

3. 旋转变换旋转变换是将图形绕着某个点或某条线旋转一定角度,从而形成新图形的变换。

在旋转变换过程中,图形的形状和大小不变。

旋转变换的公式为:P’(x’, y’)= (x - a)cosθ - (y - b)sinθ + a, (x - a)sinθ +(y - b)cosθ + b其中,θ表示旋转的角度,(a,b)表示旋转的中心点,P表示图形上的任意一个点的坐标,P’表示旋转后的新坐标。

4. 放缩变换放缩变换是指将图形沿着x轴或y轴等比例缩小或扩大的变换。

初中数学中的图形变换

初中数学中的图形变换

图形变换是初中数学中的重要内容之一,它是指通过平移、旋转、翻转等操作,改变原有图形的位置、方向和形状。

图形变换不仅在数学中有着广泛的应用,而且在生活中也随处可见。

本文将详细介绍图形变换的基本概念、常见操作及其应用。

一、图形变换的基本概念图形变换是指将一个图形通过一系列操作,变成另一个新的图形。

常见的图形变换包括平移、旋转、翻转等。

其中,平移是指保持图形大小和形状不变,只改变其位置;旋转是指围绕一个中心点旋转图形;翻转则是将图形沿着某个轴对称翻转。

通过这些基本的变换操作,我们可以创建出各种各样的图形,并且可以通过组合这些变换操作,得到更复杂的图形。

二、平移的操作及应用平移是最基本也是最简单的图形变换操作之一。

它是指将一个图形沿着直线路径移动一个固定的距离,而不改变图形的形状和大小。

常见的平移操作包括沿横向或纵向平移、沿斜线平移等。

平移在生活中有着广泛的应用。

例如,在建筑设计中,我们常常需要将建筑物的平面图进行平移操作,以确定不同功能区域的位置;在地图制作中,我们也需要通过平移操作将地图上的各个地理要素放置到正确的位置上。

此外,平移还在计算机图形学中扮演着重要的角色,用于实现图像的移动和动画效果。

三、旋转的操作及应用旋转是指围绕一个中心点将图形旋转一定角度的操作。

在旋转过程中,图形的形状和大小保持不变,只是方向发生改变。

旋转可以按顺时针或逆时针方向进行,旋转角度通常以度为单位。

旋转在日常生活中也有着广泛的应用。

例如,在舞台设计中,演员常常需要绕着舞台中心点旋转,以展示出更加生动的表演效果;在游乐园中,旋转木马等游乐设施也是通过旋转操作带给游客欢乐和刺激。

此外,旋转还被广泛应用于计算机图形学、工程设计等领域。

四、翻转的操作及应用翻转是指将图形沿着某个轴对称翻转的操作。

在翻转过程中,图形的形状和大小保持不变,只是左右或上下方向发生改变。

常见的翻转操作包括水平翻转和垂直翻转。

翻转在日常生活中也有着丰富的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何专题五:图形变换问题一、旋转旋转变换:定义:将平面图形F绕这个平面内一定点O在这个平面内旋转(顺时针和逆时针)一个角α得到新图形F’,这种几何变换叫做旋转变换,定点O叫做旋转中心,定角α叫做旋转角,如图所示。

→①图形与图形是全等形。

②图形F与图形F’的对应线段相等。

③图形F与图形F’的对应线段上的对应点的顺序相同。

④若图形F上一点A在图形F上的对应点为A’,则∠AOA‘=α⑤图形F与图形F’的对应角相等。

⑥图形F与图形F’的任意一对对应线段(或延长线)的夹角都等于α(0°<α≤90°)或180°-α(90°<α<180°)[注]:旋转变换法是通过图形的旋转变换,借助图形各元素之间的新旧位置关系探索解题途径的一种方法,它的关键是选择适当的旋转中心,寻找合适的旋转角,正确运用旋转变换的六条性质去解题。

解题策略:图形的旋转是把图形的一部分或全部绕着一个确定的点从一个位置移动到另一个位置。

通过旋转可以把题目中一些不明朗的关系明朗化,它的最大特点是在旋转过程中旋转部分两点之间的距离不变、两直线间的夹角不变和对应直线的夹角等于旋转角。

它的使用范围一般是等腰三角形或中心对称图形。

有时再结合基本辅助线添加更能体现其在添加辅助线中的优势。

一、基本性质应用例1:如图所示,用一张半透明的薄纸覆盖在画有任意△AOB的纸上,在薄纸上画出与△AOB重合的一个三角形,然后用一板图钉在点O处固定。

将薄纸绕着图钉(即O点)转动一个角度450,薄纸上的三角形就旋转到了新的位置,标上A ˊ,O,Bˊ,我们可以认为△AOB旋转450后变为△AˊOBˊ,从图中我们可以发现点A旋转到点Aˊ,OA旋转OAˊ,∠AOB旋转到∠AˊOBˊ,这些都是相互对应的点,线段与角,请你再仔细观察图形回答。

(1)点B的对应点是哪一个点?线段OB的对应线段是哪一个线段?∠B的对应叫是哪个角?(2)在将△AOB旋转到△AˊOBˊ的位置时,旋转中心是哪一个点?旋转角度是多少°?(3)△AOB的边OB的中心D的对应点在哪里?解;根据图示可以发现:点B的对应点是Bˊ,线段OB的对应线段是OBˊ,∠B的对应角是∠Bˊ;旋转中心是点O ,旋转的角度是450;△AOB 的边OB 的中心D 的对应点为对应边线段OB 的中心D 二、旋转时对称图形的认识与区分如图所示:我们可以发现等边三角形,平行四边行,圆,它们都是一个共同点,这些图形能与自身重合像这种一个图形绕着某一点旋转一定角度后能与自身重合的图形是旋转对称图形。

例1:在上述三个基本平面图形中,他们的旋转中心是哪一点,旋转角度是多少?对于这三个旋转图形的旋转方式是不是只有一种呢?解析:等边三角形的旋转中心是其三边垂直平分线(三个内角平分线)的交点;它围绕其中心旋转1200后能与自身重合,平行四边行的旋转中心是对角线交点,它围绕其旋转中心旋转1800后能与自身重合,而圆的旋转中心是其圆心,它围绕其圆心旋转任意一个角度都能与自身重合。

例2:如图在△ABC 的斜边AB 上取两点E ,F ,使∠FCE=450。

若AE=a ,EF=b ,FB=c 。

则以 a ,b ,c 为边的三角形是什么三角形? 研究对象:确定三角形的类型 角度:旋转解析:将△ACE 绕点C 逆时针旋转900,得到△BCD ,连接DF 。

显然△AC E ≌△BCD ,∴AE=BD=a,CE=CD ,∠ACE=∠BCD,易得∠DCF=450.所以△ECF ≌△DCF,所以DF=EF=b,再由旋转的性质可得AB ⊥BD.所以△FBD 是直角三角形,所以a,b,c 为边的三角形是直角三角形. 三、旋转思想的应用例1:如图,正方形ABCD 中,E 为BC 边上一点,∠EAD 的平分线交DC 与F 。

求证:B E +DF=AE 研究对象:B E +DF=AE 角度: 旋转解析:把△ADF 绕点A 顺时针旋转900到△ABG 的位置,由BG=DF 知。

只需证EG=EA 即可。

因而需要证∠G=∠EAG 。

证明:把△ADF 绕点A 顺时针旋转900到△ABG 的位置,则BG=DF 。

∠G=∠DFA 。

∠1=∠4。

因为DC ∥AB 。

所以∠DFA=∠FAB 。

因为∠1=∠2。

所以∠2=∠4所以∠2+∠3=∠4+∠3。

即∠FAB=∠EAG 所以∠EAG=∠G 所以EA=EG=BE+GB=BE+FD 。

FE NMCBDA例2:如图:分别以△ABC 的边AB 、AC 和BC 为边作等边△ABD 、等边△ACF 、等边△BCE ,求证:ADEF 是平行四边形。

证明:如图以B 为旋转中心,将△CAB 按逆时针旋转60°,∵BC=BE,BA=BD,∠CBA=∠EBD,∴△CBA 按逆时针方向旋转60°后恰好与△EBD 重合,于是,由旋转变换的性质6可知,CA 的延长线与DE 的延长线的夹角为60°,又∠CAF=60°,∴AF ∥DE ,又DE=AC=AF,∴ADEF 是一个平行四边形。

例3:如图,已知△ABC 中,点M 是BC 边上的中点,过M 作∠BAC 的平分线AD 的平行线交AB 于E ,交CA 的延长线于F 点。

求证:BE=CF分析:这一题的已知条件中有M 是线段BC 的中点, 即点M 为线段BC 的对称中心,同时考虑到相似三角 形中的基本图形“8”字形,故可将△FMC 绕中点 M 旋转180°,这时线段CF 也由原来的位置移动到线段 BN 位置,而BN 、E 同在△BEN 中,只要证明△BEN为等腰三角形即可。

而∠N=∠F,∠BEM=∠FEA ,只要证明∠FEA=∠F 。

又∠F=∠CAD ,∠FEA=∠BAD ,AD 又是角平分线,从而此题可证。

此题的解题关键在于将线段CF 旋转到线段BN ,从而将要证明相等的两条线段集中到一个三角形中,而这一考虑正是基于点M 为线段BC 的中点(对称中心),因此,有中心对称图形的几何题的辅助线添加不妨仿此一试。

二、轴对称轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形对称变换法:定义:把一个平面图形F 沿着某一条直线l 翻转180°,得到另一图形F 1,(如图所示),这种几何变换叫做轴对称变换,这时我们说图形F 与F 1关于直线l 对称,他们的对应点叫做关于直线l 的对称点,直线l 叫做对称轴。

→①关于某条直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么它们的对应点连线被对称轴垂直平分。

③两个图形关于某条直线对称,如果他们的对应线段(或其延长线)相交,那么交点必在对称轴上。

解题策略:通过翻折可以构造出轴对称图形并充分利用轴对称图形的性质进行解题。

例如等腰三角形、等腰梯形等等,它的基本特点是各个对称点到对称轴的距离相等。

A B C D E实际应用问题:在阅读理解题意的基础上,把实际问题抽象成数学问题 (1)设计轴对称图案:给出基本图形,设计对称图案,并说明含义 (2)平面镜成像问题,镜里和镜外两个物体或是图形关于镜面成轴对称(3)剪纸对折的次数N 与要剪的轴对称图形的对称轴的条数M 之间的关系是M=2? 例1: 从轴对称的角度看,你觉得哪两个图形比较独特,简单说明理由对象:五个图形 角度:轴对称的特点分析:第一角度:从定义的角度。

我们可以E 是不同的,因为它不是对称的图形;从对称轴的条数的角度,我们知道C 是不同的,因为它有无数条对称轴例2 :标号A 、B 、C 、D 正方形沿虚线剪开后,得到标号为P 、Q 、M 、N 关系的图形填空:A 与()对应,B 与()对应,C 与()对应,D 与()对应 对象:图形 角度:对称分析:第一角度:沿图中交出图形的特征,即两个对称的图形必然全等的特征,去寻找图中的组成图形,例如A 剪出三个三角形,而三个三角形组成的是M 。

因而A 与M 对应,以后依次类推例3 :把一个三角形对折三次后,沿虚线剪下,则所得到的图形是上折 右折 右下折 剪下分析:在解答图形折叠问题时,一般先作出折叠前后的图形形状及位置,然后再利用轴对称变换的性质解题。

通过实物演示与操作和空间想象,易选出正确答案。

解C 。

例4:一次幽默晚会上,主持人出了一道题目,“如何把2+3=8变成一道真正的等式”很长时间没有人答出,小英仅仅拿了一面方的镜子,很快解决了答题板上的这道题目,你知道她是怎样做的么?解:镜子起到了一个对称的作用,把镜子按图所示的样子放置,镜子里面的等式就是一个真正的等式镜里镜子 镜外例5: 在△ABC 中,2ABC ACB ∠=∠,AD 是角平分线,求证:AB+BD=AC 注:本解法的实质是作△ACD 关于AD 的对称图形,△AED 这表明若题设中没有角平分线,有时以角平分线为对称轴做对称变换,可使已知条件集中起来,便于解题。

例6: 如图正方形ABCD 中,M 、N 是AD 、BC 中点,把点C 沿BE 对折使点C 落在MN 上的F 点,问此时EBC ∠的度数是多少?解析:要确定EBC ∠的度数就是要考虑EBC ∠形成的原因,根据已知条件EBC ∠的形成是因沿BE 对折使点C 落在MN 的F 点,那么这种对折的关系就相当于利用了轴对称的知识,同时又因为MN 是正方形的对称轴的一部分,故又可形成新的轴对称的关系,所以这是轴对称关系应用的问题。

例7:如图,已知:△ABC 中,AD 为∠BAC 的平分线,EF 为AD 的垂直平分线 ,EF 、BC 交于F ,求证:DF 2=FC ×FB 。

分析:这个题目中既有角平分线又有线段的垂直平分线,它们分别是这两个基本图形的对称轴,若要翻折将那一部分翻折?结合结论中的线段DF 、FC 、FB都在一条直线上证明起来很不方便,因此考虑到将△DFE沿着直线EF(EF为线段AD的对称轴)翻折。

故连结A、F。

这时,只要证明AF2=FC×FB,只要证明△ACF∽△ABF,只要证明∠FAC=∠FBA。

由于FA=FD,所以∠FAD=∠FDA,∠ADF=∠B+∠BAD,∠FAD=∠FAD+∠CAD,而∠BAD=∠CAD为已知,故命题得证。

例8:如图,在等腰直角三角形ABC中,E、F分别是底边BC上的两点,且∠EAF=45°求证:以BE、EF、FC 为边的三角形为直角三角形。

分析:线段BE、EF、FC在一条直线上,要证明它们能组成直角三角形,关键是将它们移到一个三角形中以便于找到其边或角之间的关系。

所以将△ACF沿着直线AF翻折得到△ADF,这时DF=CF,考虑到移动的目的,连结DE并期望着DE=BE。

故想到证明△ABE≌△ADE。

相关文档
最新文档