球杆系统的网络化控制设计与实现

合集下载

基于球杆的控制系统分 析与设计实验教程

基于球杆的控制系统分 析与设计实验教程

实验一 实验二 实验三 实验四 实验五 小 结
第三章
球杆控制系统分析设计提高 ................................. 32
实验一 实验二 实验三 实验四 实验五
1


自动控制理论是自动控制及相关专业的必修专业基础课, 自动控制理论实验是学习和掌 握控制系统分析和设计方法最有效的途径之一。 机电控制系统分析设计是机电类相关专业学生的培养目标, 如何从机电系统总体设计的 角度出发,以性能指标为依据,深入分析机械结构、电气部分、控制算法对机电系统性能指 标影响的情况,是机电类控制系统分析设计的主要内容之一。 控制系统分析的标准是仿真与实际测试的性能指标满足误差范围。 控制系统设计的标准是通过分析机械结构、 电气部分的特性, 选择控制算法达到系统最 好的性能指标。并为改进机械、电气、控制算法提出依据。 球杆系统是典型的单输入单输出的机电类控制系统, 通过改变平衡杆与水平方向的夹角, 而控制平衡杆上的滚动的小球位置。球杆系统实验现象直观、明显,不仅可以表现出很多控 制系统的基本概念如:跟随特性,鲁棒性等,而且很吸引学生注意力,是不可多得的实验平 台。 本实验教程根据球杆系统的数学模型, 以性能指标为依据, 通过比较控制系统仿真与实 现的现象不同,分析影响球杆控制系统性能指标的机械、电气因素,并改进以提高系统性能 指标。使学生了解和掌握机电控制系统分析、设计的基本原理和基本方法。 通过若干次的反复实践, 学生可以深入理解机电类控制系统分析、 设计的基本过程和概 念。 本教程不仅是一个关于自动控制的实验教程, 还是一个机电系统设计的实验教程, 主要 包含以下内容: 第一章,介绍机电控制系统的几个基本概念理解,在长期的教学中,控制系统概念主要 是不理解因而不会用。这几个概念会在后面的设计中用到。 第二章,球杆控制系统分析设计入门,从推导简化模型入手,设计控制器。通过分析实 际测试的性能指标和仿真的不同,引申出影响系统性能的因素。 第三章,通过深入分析影响球杆控制系统性能的因素,加入到仿真模型中,在和实际控 制系统模型比较后,设计出性能优异的控制系统。 本实验教程实验项目包括:系统建模和稳定性分析、PID 校正、根轨迹校正、频域法校 正、状态反馈共五个实验。 其中综合性实验 1 个,为 PID 校正;设计性实验 3 个,为根轨迹校正、频域法校正、 状态反馈;验证性实验 1 个,为系统建模和稳定性分析。综合性、设计性试验占全部实验的 比例为 80%。 经典控制理论实验为 4 个,系统建模和稳定性分析、PID 校正、根轨迹校正、频域法校 正。综合型设计性实验比例为 75%.现代控制理论实验为 1 个,状态反馈, 综合型设计性实 验比例为 100%。 本实验教材适用于机电类控制专业的本科学习自动控制理论应用和机电控制系统分析 设计课程,以及非机电类控制专业的研究生学习自动控制理论之用。

球杆控制系统设计与仿真XS07012040禹志

球杆控制系统设计与仿真XS07012040禹志

控制系统实践大作业球杆控制系统设计与仿真学号:XS07012040姓名:禹志球杆控制系统设计与仿真一球杆系统的数学模型球杆系统的物理模型如下图所示:图1:球杆系统模型在这个模型里,我们假设球在杆上只有纯滚动而没有滑动并且我们忽略球和杆之间的摩擦力。

我们定义这个模型中的变量和常量如下:m 球的质量0.1 kgR 球的半径0.02 md 轮的半径0.05 mg 重力加速度9.8 m/s^2L 杆长 1.0 mJ 球的转动惯量 1.0e-5 kgm^2r 球的位置α杆与水平的夹角θ伺服机构与水平的夹角表1:模型的变量和常量球杆系统的数学建模:系统的动能:222])r L [(m 21rm 21)R r(J 21T α-++= 系统的势能:α-=sin mgr U该系统的拉格朗日方程为:0rUr T )r T (dt d =∂∂+∂∂-∂∂ 通过拉格朗日法得到球的运动方程:0))(r L (m sin mg r)m RJ(22=α-+α-+ 若我们假设杆与水平的夹角是小角度且0≈α ,对上面的方程进行线性化,我们得到:α=+mg r)m RJ(2 杆的角度与伺服机构的角度的关系可以近似的线性化为:θ=αLd综合上面几个方程我们得到:θ=+Ldmg r)m R J (2对方程两边做拉普拉斯变换:)s (Ld mg s )s (R )m R J (22Θ=+ 整理后我们得到系统线性化后的开环传递函数:22s1)mRJ(Lmgd)s()s(R+=Θ二控制器的设计在这里,我们采用普遍使用的PID控制器。

整个系统的闭环框图可以表达为:图2:线性化后的控制框图令)S()S(R)S(HΘ=,得:)S(R)s(HSKSKSK))S(R)S(r(IP2D=⋅++-我们取pK=21,IK=0,DK=14,将球稳定在杆的中点,仿真结果如下图所示:图3:仿真结果通过仿真结果表明将系统线性化后,该系统的超调量小于1%,上升时间3秒。

实验5--球杆系统的数字PID控制实验

实验5--球杆系统的数字PID控制实验

学生实验报告开课学院及实验室:学院机电年级、专业、班姓名学号实验课程名称计算机控制技术成绩实验项目名称实验5 球杆系统的数字PID控制实验指导教师一、实验目的1.熟悉Matlab\simulink软件;2.通过试凑法确定球杆系统的PID参数;3.在球杆系统上验证PID参数的控制效果。

二、使用仪器、材料1.球杆系统装置。

2.装有matlab2012b的计算机。

三、实验步骤1.现场实验前先用Matlab\simulink软件进行仿真。

给出球杆装置的理想传递函数(1)用Simulink设计出该系统的模型。

输入信号为阶跃信号,控制器选择PID。

(2)用试凑法确定出合适的PID参数。

(3)比较设置不同参数时系统的响应特性。

2.进行现场实验。

测试好现场装置后,试着将仿真后得出的几个PID参数输入到控制系统中,观察球杆装置的运行情况。

在现场调整参数使系统取得良好的控制效果。

(1)打开球杆系统电控箱上的电源按钮,在MATLAB/Current Folder 中打开文件系统自带程序“PID_ Control_Modify.slx”,会弹出如图所示的实时控制界面(2)双击“PID Controller”模块,设置Kp、Ki、Kd的参数,参数为仿真过程得出的参数。

双击“Step”模块,设置阶跃信号参数:step time=0,initial value=0,final value=0.25。

(3) 点击编译程序,待编译成功后,点击连接程序,点击运行程序,观察球杆和小球的运动现象。

待小球静止后,点击停止程序,打开示波器scope观察响应曲线的超调量,调节时间。

若能达到理想的控制效果,说明所设置的PID参数合理。

否则,根据波形呈现的超调量,调节时间,以及最终稳定后呈现的静差,调整PID参数,继续调试系统,最终达到理想的控制效果。

四、实验过程原始记录(程序、数据、图表、计算等)1.Simulink仿真程序框图如下:系统输入为阶跃信号,阶跃时间为0,初始值为0,终值定为1,采样时间为0.1。

1球杆系统

1球杆系统

球杆系统GBB1004实验报告一、球杆系统的数学模型一、实验目的1) 分析并推导系统的数学模型;2) 求解系统的状态空间方程和传递函数方程;3) 在Matlab 下建立系统的模型并进行阶跃响应仿真。

4) 完成实验报告二、实验步骤1. 球杆系统在Simulink 下的模型建立在Simulink 下建立系统的模型:仿真结果如下:二、球杆系统的数字控制器实验报告一、实验目的学习使用根轨迹法设计一个稳定的系统,进一步理解根轨迹的基本概念和根轨迹图所代表的含义,通过实验来验证增加零、极点以及开环增益对系统性能有何影响。

二、实验步骤1、开环根轨迹实验程序:m=0.028;R=0.0145;g=-9.8;L=0.40;d=0.045;J=0.4*m*R^2;K=(m*g*d)/(L*(J/R^2+m));num=[-K]; den=[1 0 0];plant=tf(num,den);rlocus(plant)运行结果:2、可以看到系统在原点有两个极点沿虚轴伸向无穷远处使用sgrid 命令可以将设计目标也显示在根轨迹上m=0.028;R=0.0145;g=-9.8;L=0.40;d=0.045;J=0.4*m*R^2;K=(m*g*d)/(L*(J/R^2+m));num=[-K];den=[1 0 0];plant=tf(num,den);rlocus(plant)sgrid(0.7,1.9)axis([-5 5 -2 2])运行结果:3、超前补偿器;在上面那个程序前添加以下程序:zo=0.01;po=5;contr=tf([1 zo],[1 po])rlocus(contr*plant)sgrid(0.7,1.9)运行结果:4、现在,根轨迹的分支已经在设计目标范围内。

使用rlocfind 命令来确定系统的增益。

在m文件中加入以下几行[k,poles]=rlocfind(contr*plant)到图形显示窗口选择用十字形光标一点。

自动控制球杆系统实验指导书-2016资料

自动控制球杆系统实验指导书-2016资料

自动控制综合实验2 实验指导书Part 1球杆系统GBB1004北京邮电大学自动化学院林雪燕2016.5.24前言自动控制是一门理论与实践并重的技术,在成功掌握了理论知识(经典控制、现代控制)的同时再配合做一些经典的自动控制实验,从而加深对自动控制的理解与掌握,为今后从事自动控制的设计和研究工作打下扎实的基础。

为了更好地配合理论教学,达到理论与实践完美的结合,将自动控制相关的实验独立设置成一门实验课:自动控制综合实验。

自动控制理论实验主要目的是通过实验进一步理解自动控制理论的基本概念,熟悉和掌握控制系统的分析方法和设计方法,掌握常用工程软件使用,如MATLAB、LabVIEW 等。

上学期开设的自动控制综合实验(1)主要内容为控制系统的Matlab/simulink 仿真和基于实验箱的硬件模拟,以电路系统为研究对象。

本学期开始的自动控制综合实验(2)的内容是基于典型控制理论实验设备(球杆系统和倒立摆系统),熟悉和掌握控制系统的分析和设计方法。

球杆系统机械简单,结构紧凑,安全性高,采用智能伺服驱动模块和Windows 程序界面,可用于教学或科研。

对于自动控制理论等课程来说,针对设备的非线性与不稳定性特点,设计有效的控制系统是项有意义的工作。

球杆系统要完成的实验有:实验一:小球位置的数据采集处理实验二:球杆系统的PID法控制实验三:球杆系统的根轨迹法控制实验四:球杆系统的频率响应法控制倒立摆是一个典型的不稳定系统,同时又具有多变量、非线性、强耦合的特性,是自动控制理论中的典型被控对象。

运用控制手段可使之具有一定的稳定性和良好的性能。

许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。

倒立摆系统要完成的实验有:实验五:倒立摆的数学建模及稳定性分析实验六:倒立摆的状态反馈控制实验七:不同状态下状态反馈控制效果比较实验八:倒立摆的LQR 控制同学们完成实验后,要完成相应的实验报告,并及时提交。

球杆系统控制器设计实验报告(北京理工大学)

球杆系统控制器设计实验报告(北京理工大学)

球杆系统控制器设计实验报告学院:自动化学院组号:5成员:球杆系统控制器设计实验一、实验目的和要求1.1 实验目的(1)通过本设计实验,加强对经典控制方法(PID控制器)和智能控制方法(神经网络、模糊控制、遗传算法等)在实际控制系统中的应用研究。

(2)提高学生有关控制系统控制器的程序设计、仿真和实际运行能力.(3)熟悉MATLAB语言以及在控制系统设计中的应用。

1.2 实验要求(1)每两人一组,完成球杆系统的开环系统仿真、控制器的设计与仿真以及实际运行结果;(2)认真理解设计内容,独立完成实验报告,实验报告要求:设计题目,设计的具体内容及实验运行结果,实验结果分析、个人收获和不足,参考资料。

程序清单文件。

二、实验内容本设计实验的主要内容是设计一个稳定的控制系统,其核心是设计控制器,并在MATLAB/SIMULINK环境下进行仿真实验,并在球杆实验平台上实际验证。

算法实现:设计模糊控制器控制球杆系统,达到要求目标。

三、实验原理3.1 球杆系统的特点球杆系统是一个典型的非线性系统,理论上而言,它是一个真正意义上的非线性系统,其执行机构还具有很多非线性特性,包括:死区,直流马达和带轮的传动非线性,位置测量的不连续性,导轨表面不是严格的光滑表面,产生非线性阻力,这些非线性因素对于传统意义上的测量和建模造成很大的影响,并对系统的控制性能造成非常大的影响,怎样去设计一个鲁棒的控制系统,是现代控制理论的一个重要问题。

因为系统机械结构的特点,球杆系统具有一个最重要的特性——不稳定性,对于传统的实验方法,存在一些实验的难处,不稳定的系统容易对实验人员产生危险或是不可预料的伤害,球杆系统相对而言,机械比较简单,结构比较紧凑,安全性也比较高,是一个可以避免这些危险和伤害的实验设备。

3.2 球杆系统的数学模型对小球在导轨上滚动的动态过程的完整描述是非常复杂的,设计者的目的是对于该控制系统给出一个相对简单的模型,如图3.1所示为实验使用球杆系统简化图。

球杆系统控制器设计及MATLAB仿真

球杆系统控制器设计及MATLAB仿真

摘要以球杆系统作为主体,系统中的小球作为被控对象,设计一个模糊控制器,控制小球在装置导轨上的运行状态,分析小球在导轨上的运行状态,以此来反映模糊控制器的控制性能。

设计首先对球杆系统组成结构及其基本原理进行分析之后,建立一个相对简化后的球杆系统模型;运用相关的模糊控制原理,建立球杆系统模糊控制规则,再对球杆系统进行模糊控制器设计。

并在MATLAB仿真环境下建立控制器的仿真模型,对球杆系统进行仿真,测试模糊控制器的控制性能。

针对球杆系统自身存在的不稳定特性,在进行仿真时加入闭环反馈控制环节,这样不但可以提高系统的稳定性,还可以提高控制的精度,相较于其他一般控制,它更具有独特优势,更符合人类思维。

球杆系统作为如今研究控制理论的经典案例,与模糊控制融合之后,能更好地表现模糊控制在自动控制方面的优良特性。

关键词:球杆系统;模糊控制;MATLAB建模ABSTRACTIn the ball and beam system as the main body, the ball as a controlled object,design a fuzzy controller , to control the ball in the guide rail device running status. Analysis the ball movement on the guide rail, in order to reflect the fuzzy controller performance. First,the design analysis the composition structure and the basic principle of the ball and beam system , then establish a relatively simplified of the ball and beam system model; using the principle of fuzzy control, to establish fuzzy control rules of the ball and beam system, design a fuzzy controller to the ball and beam system. And in the MATLAB simulation environment, establish the simulation model of the controller, simulate the club system and test the control performance of the fuzzy controller.For the ball and beam system own existence the instability characteristics, in the simulation by adding closed loop feedback control link, which can not only improve the system stability, but also can improve the control accuracy, compared with other general control, it is more unique advantages, more in line with human thinking.Club system as a classic case in study control theory, and after fusion with fuzzy control, can performance the excellent characteristics of fuzzy control in the automatic control .Key words: the ball and beam system;fuzzy control;MATLAB modeling目录1 绪论 (1)1.1 课题背景和研究意义 (1)1.1.1 课题背景 (1)1.1.2 课题的研究意义 (1)1.2 模糊控制的发展及研究状况 (2)1.2.1 模糊控制论的产生与发展 (2)1.2.2 模糊控制论的研究和现状 (3)2 球杆系统建模及仿真 (5)2.1 球杆系统介绍 (5)2.1.1 系统简述 (5)2.1.2 系统组成 (5)2.2 球杆系统建模 (6)2.2.1 球杆系统数学模型建立 (6)2.3 MATLAB建模 (7)2.3.1 MATLAB软件介绍 (7)2.3.2 球杆系统在MATLAB的模型建立 (7)3 模糊控制器设计 (13)3.1 模糊控制器概述及原理 (13)3.2 模糊控制器结构 (13)4 球杆系统的模糊控制器设计 (15)4.1 模糊控制的实现 (16)4.1.1 各个变量个论域 (16)4.1.2 隶属度划分 (16)4.1.3 模糊规则的建立 (18)4.2 模型仿真 (20)结束语 (22)参考文献 (23)致谢 (24)1 绪论1.1 课题背景和研究意义1.1.1 课题背景如今的世界已经迎来一场重要的信息革命了,而模糊理论的发展正好充分的印证了这次革命的必要。

自动控制球杆系统实验指导书-2016教材

自动控制球杆系统实验指导书-2016教材

自动控制综合实验2 实验指导书Part 1球杆系统GBB1004北京邮电大学自动化学院林雪燕2016.5.24前言自动控制是一门理论与实践并重的技术,在成功掌握了理论知识(经典控制、现代控制)的同时再配合做一些经典的自动控制实验,从而加深对自动控制的理解与掌握,为今后从事自动控制的设计和研究工作打下扎实的基础。

为了更好地配合理论教学,达到理论与实践完美的结合,将自动控制相关的实验独立设置成一门实验课:自动控制综合实验。

自动控制理论实验主要目的是通过实验进一步理解自动控制理论的基本概念,熟悉和掌握控制系统的分析方法和设计方法,掌握常用工程软件使用,如MATLAB、LabVIEW 等。

上学期开设的自动控制综合实验(1)主要内容为控制系统的Matlab/simulink 仿真和基于实验箱的硬件模拟,以电路系统为研究对象。

本学期开始的自动控制综合实验(2)的内容是基于典型控制理论实验设备(球杆系统和倒立摆系统),熟悉和掌握控制系统的分析和设计方法。

球杆系统机械简单,结构紧凑,安全性高,采用智能伺服驱动模块和Windows 程序界面,可用于教学或科研。

对于自动控制理论等课程来说,针对设备的非线性与不稳定性特点,设计有效的控制系统是项有意义的工作。

球杆系统要完成的实验有:实验一:小球位置的数据采集处理实验二:球杆系统的PID法控制实验三:球杆系统的根轨迹法控制实验四:球杆系统的频率响应法控制倒立摆是一个典型的不稳定系统,同时又具有多变量、非线性、强耦合的特性,是自动控制理论中的典型被控对象。

运用控制手段可使之具有一定的稳定性和良好的性能。

许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。

倒立摆系统要完成的实验有:实验五:倒立摆的数学建模及稳定性分析实验六:倒立摆的状态反馈控制实验七:不同状态下状态反馈控制效果比较实验八:倒立摆的LQR 控制同学们完成实验后,要完成相应的实验报告,并及时提交。

自动控制实验报告——球杆系统-倒立摆-bupt概要

自动控制实验报告——球杆系统-倒立摆-bupt概要

球杆系统实验实验一小球位置的数据采集处理一、实验目的:学会用Simulink仿真与硬件连接并获得小球位置。

二、实验任务:1、在MatLab Simulink中通过添加功能模块完成球杆系统模型的建立;2、正确获得小球位置数据;三、实验原理:小球的位置通过电位计的输出电压来检测,它和IPM100的AD转换通道AD5相连,AD5(16位)的范围为0-65535,对应的电压为0-5V,相应的小球位置为0-400mm。

MatLab Simulink环境下的数据采集处理工具箱提供了强大的功能。

可以编写扩展名为mdl的图形文件,采集小球的位置信号,并进行数字滤波。

四、实验设备及仪器:1、球杆系统;2、计算机MATLAB平台;五、实验步骤:将MatLab主窗口的Current Directory文本框设置为球杆控制程序的系统文件夹;在MatLab主窗口点击进入Simulink Library Brower窗口,打开工具箱Googol Education Products\4. Ball & Beam\A. Data Collection and Filter Design,运行Data Collection and Filter Design程序,确认串行口COM Port为1后,双击Start Real Control模块,打开数据采集处理程序界面;已有的模块不需再编辑设置,其中Noise Filter1模块是专门设计的滤波器,用来抑制扰动。

请参考以下步骤完成剩余部分:1、添加、设置模块:添加User-Defined Functions组中的S-Function模块,双击图标,设置name为AD5;parameters为20.添加Math Operations组中的Gain模块,双击图标,设置Gain为0.4/65535.0.添加Sinks组中的Scope模块,双击图标,打开窗口,点击(Parameters),设置General 页中的Number of axes为2,Time Range为20000,点击OK退出,示波器屏成双;分别右击双屏,选Axes properties,设置Y-min为0,Y-max为0.4.2、连接模块:顺序连接AD5、Gain、Noise Filter1、Scope模块,完成后的程序界面如图所示:图1.1.1 完成后的数据采集处理程序界面点击运行程序,双击Scope模块,显示滤波前后的小球位置-时间图,拨动小球在横杆上往返滚动,可得如下实验结果:图1.1.2 小球位置的数据采集处理六、实验总结通过这个实验、我学会了球杆系统模型的建立以及小球位置的获取。

自动控制实验报告——球杆系统倒立摆bupt概要

自动控制实验报告——球杆系统倒立摆bupt概要

球杆系统实验实验一小球位置的数据采集处理一、实验目的:学会用Simulink仿真与硬件连接并获得小球位置。

二、实验任务:1、在MatLab Simulink中通过添加功能模块完成球杆系统模型的建立;2、正确获得小球位置数据;三、实验原理:小球的位置通过电位计的输出电压来检测,它和IPM100的AD转换通道AD5相连,AD5(16位)的范围为0-65535,对应的电压为0-5V,相应的小球位置为0-400mm。

MatLab Simulink环境下的数据采集处理工具箱提供了强大的功能。

可以编写扩展名为mdl的图形文件,采集小球的位置信号,并进行数字滤波。

四、实验设备及仪器:1、球杆系统;2、计算机MATLAB平台;五、实验步骤:将MatLab主窗口的Current Directory文本框设置为球杆控制程序的系统文件夹;在MatLab主窗口点击进入Simulink Library Brower窗口,打开工具箱Googol Education Products\4. Ball & Beam\A. Data Collection and Filter Design,运行Data Collection and Filter Design程序,确认串行口COM Port为1后,双击Start Real Control模块,打开数据采集处理程序界面;已有的模块不需再编辑设置,其中Noise Filter1模块是专门设计的滤波器,用来抑制扰动。

请参考以下步骤完成剩余部分:1、添加、设置模块:添加User-Defined Functions组中的S-Function模块,双击图标,设置name为AD5;parameters为20.添加Math Operations组中的Gain模块,双击图标,设置Gain为0.4/65535.0.添加Sinks组中的Scope模块,双击图标,打开窗口,点击(Parameters),设置General 页中的Number of axes为2,Time Range为20000,点击OK退出,示波器屏成双;分别右击双屏,选Axes properties,设置Y-min为0,Y-max为0.4.2、连接模块:顺序连接AD5、Gain、Noise Filter1、Scope模块,完成后的程序界面如图所示:图1.1.1 完成后的数据采集处理程序界面点击运行程序,双击Scope模块,显示滤波前后的小球位置-时间图,拨动小球在横杆上往返滚动,可得如下实验结果:图1.1.2 小球位置的数据采集处理六、实验总结通过这个实验、我学会了球杆系统模型的建立以及小球位置的获取。

球杆系统控制器设计及matlab仿真

球杆系统控制器设计及matlab仿真

球杆系统控制器设计及matlab仿真本文旨在讨论《球杆系统控制器设计及matlab仿真》的主要内容和目标。

图论主要是介绍球杆系统控制器的设计原理和matlab仿真的应用,以及探索如何在该系统中实现强大的控制功能。

通过理论分析和数值模拟,我们将展示该系统的稳定性和性能优势。

这篇文档将提供给工程师和研究人员一个深入探讨球杆系统控制器设计与matlab仿真的指南。

通过这些工作,我们的目标是进一步推动该领域的发展,并提供实用、可靠的解决方案。

目标:球杆系统控制器的设计原理Matlab仿真在球杆系统控制中的应用探索如何实现强大的控制功能展示球杆系统的稳定性和性能优势提供工程师和研究人员指南引言本文旨在介绍球杆系统控制器设计及Matlab仿真的研究背景和目的。

球杆系统是指用于击球的高尔夫球杆,而控制器是指控制球杆运动和力量输出的设备。

设计合适的控制器可以帮助高尔夫球手提高球杆的稳定性和精准度。

高尔夫球运动具有一定的技术要求,其中球杆的使用对于取得高分尤为重要。

然而,球杆击球时的运动状态及力量输出是一个相对复杂的控制过程,需要综合考虑多个因素,如包括杆身材料、空气阻力、击球力量等。

为了改善球杆的控制性能,减少误差并提高击球精度,研究人员开始关注球杆系统的控制器设计及Matlab仿真。

Matlab是一种强大的数学建模和仿真工具,可以帮助工程师进行系统分析和设计。

通过Matlab仿真,可以模拟球杆系统的运动状态及力量输出,根据不同的参数和控制策略进行优化。

因此,利用Matlab进行球杆系统控制器设计及仿真,可以辅助研究人员深入了解球杆系统的控制原理,并提供有效的设计方案。

本文的目的是为了探讨球杆系统控制器设计及Matlab仿真的可行性和优势。

通过系统地分析和仿真,我们希望能够指导高尔夫球杆控制器的改进和优化,提高球手的击球技术和成绩。

同时,本文也为后续相关研究提供了理论基础和方法参考。

综上所述,本文将通过研究和分析球杆系统的控制器设计及Matlab仿真,为高尔夫球杆控制技术的发展做出贡献,并为相关研究提供参考和启示。

4-球杆控制系统课程设计解答

4-球杆控制系统课程设计解答

4-球杆控制系统课程设计解答
由于缺乏具体题目,无法给出具体的解答。

但是,以下为球杆控制系统课程设计的一般步骤:
1. 系统需求分析:对需要设计的球杆控制系统进行需求分析,确定系统的功能、性能指标、工作环境等。

2. 模块划分:根据需求分析结果,将系统模块进行划分,确定各模块之间的关系。

3. 模块设计:分别对各个模块进行详细的设计,包括算法设计、逻辑设计、电路设计等。

4. 系统集成:将各个模块进行集成,对整个系统进行调试和测试。

5. 系统优化:对系统进行优化和改进,提高其性能指标、可靠性和稳定性。

6. 文档撰写:按照规定格式撰写课程设计报告,详细介绍系统设计过程、实现方法和结果分析等。

7. 实验演示:进行实验演示,展示球杆控制系统的功能和性能,同时回答师生们提出的问题。

8. 评审:进行评审,对课程设计的设计过程和结果进行评价和打分。

9. 反思总结:对课程设计过程进行总结,找出问题和不足之处,为今后的工作提供借鉴和改进。

自动控制原理实验报告——球杆系统

自动控制原理实验报告——球杆系统

1系统建模连线(连杆和同步带轮的连接点与齿轮中心的连线)和水平线的夹角为(的角度存在一定的限制,在最小和最大的范围之间),它作为连杆的输入,横杆的倾斜角和之间的有如下的数学关系:角度和电机轴之间存在一个减速比n=4的同步带,控制器设计的任务是通过调整齿轮的角度,使得小球在某一位置平衡。

小球在横杆上滚动的加速度如下式:其中:小球在横杆上的位置r为输出小球的质量m = 0.11kg;小球的半径R = 0.015m;重力加速度g = -9.8m/s2;横杆长L = 0.4m;连杆和齿轮的连接点与齿轮中心的距离为d = 0.04(m);小球的转动惯量J = 2*m*R^2/5(N/m2)。

我们假设小球在横杆上的运动为滚动,且摩擦力可以忽略不计。

因为我们期望角度在0附近,因此我们可以在0附近对其进行线性化,得到近似的线性方程:Laplace变换得:2实验步骤【主要方法】:通过球杆系统仿真,与理想传递函数下的反馈系统的对比,深刻理解系统的调节以及稳定性特征。

2.1PID控制法2.1.1P控制1.含有控制器、球杆系统结构和小球位置反馈的系统框图如下所示:其中,Xd(s)为小球目标位置的拉普拉斯变换,P控制器为:GP(s)=K P 闭环系统的传递函数为:其中,。

2.MATLAB仿真程序代码:m=0.11; R=0.015; g=-9.8; L=0.4; d=0.04;J=2*m*R^2/5;K=(m*g*d)/(L*(J/R^2+m));num=[-K]; den=[1 0 0];plant=tf(num,den);kp=3;sys_cl=feedback(kp*plant,1);step(0.2*sys_cl)(1)当Kp=3时(2)当Kp=6时(3)当Kp=10时3.在Simulink环境下仿真(1)当Kp=3时(2)当Kp=6时(3)当Kp=10时分析:从仿真图和实验图中可以看出,他们的大致波形是一致的,但由于实验受环境影响,如用手抓取小球,桌面收到碰撞震荡等,使波形出现很多毛刺,但系统是不稳定的,出现等幅振荡。

基于CAN总线的球杆系统的控制系统设计

基于CAN总线的球杆系统的控制系统设计

基于CAN总线的球杆系统的控制系统设计林雪燕;单栋梁;张伟亮;王飞【摘要】In order to improve the extendibility of ball & beam system,a controlling system based on CAN bus by using one PC to control several ball & beam systems is designed.The hardware of controlling system included three modules,including PC controlling,ball position signal acquisition and driving circuit.The three modules can connect to the nodes of the CAN bus.The software is divided into information acquisition,circuit drive and PID control.One PC is able to control several ball & beam systems by just adding corresponding nodes and modules to CAN bus.%为改善球杆系统的扩展性,实现以1台计算机控制多台球杆系统的控制效果,该文设计了1套基于CAN总线的控制系统.控制系统的硬件包括上位机控制模块、小球位置信号采集模块以及驱动电路模块等3个模块,这3个模块可以连接CAN总线的节点;软件部分分为信息采集、电路驱动和PID控制.只需在CAN总线增加小球位置信号采集模块和驱动电路模块的节点,就能够实现以一控多的控制效果.【期刊名称】《自动化与仪表》【年(卷),期】2017(032)012【总页数】6页(P27-32)【关键词】球杆系统;控制系统;CAN总线;PID算法【作者】林雪燕;单栋梁;张伟亮;王飞【作者单位】北京邮电大学自动化学院,北京100876;北京邮电大学自动化学院,北京100876;北京邮电大学自动化学院,北京100876;北京邮电大学自动化学院,北京100876【正文语种】中文【中图分类】TP273球杆系统是广泛应用于自动控制课程的试验教具,其原理是通过不断采集小球所在位置,并传送到上位机,上位机经过数据处理后控制电机转动,电机带动球杆运动,使小球动态的稳定在球杆上的某个位置。

自动控制原理实验报告——球杆系统

自动控制原理实验报告——球杆系统

自动控制原理实验报告——球杆系统一、实验目的1、了解自动控制中的反馈控制原理。

2、通过对球杆系统的建模,实现对球杆运动的自动控制。

3、了解PID控制器的基本原理及其参数调节方法。

二、实验器材1、单轴直线滚动导轨2、步进电机3、直流电机5、万用表6、电脑三、实验原理反馈控制是控制系统中的一种常见方法。

其工作过程是测量输出量,与设定值进行比较,然后用输出的误差信号来调整控制器,从而控制输入量,使输出量达到设定值。

这种工作方式的主要特点是能够在一定程度上处理外部干扰和系统变化。

2、控制对象球杆系统具有非线性和时变特点,建模时常用的方法是状态空间法,即用矩阵方程来描述系统的状态和动态特性,从而实现系统的控制。

其中,球杆系统的状态向量可以表示为:式中,α和θ分别表示球杆的角度和倾斜角度,u则是系统的输入。

3、PID控制器PID控制器是一种基本的反馈控制器,其主要特点是能够在一定程度上克服系统的非线性和时变性。

其控制策略是将误差信号经Proportional、Integral、Derivative三个环节处理后再输出控制信号。

具体来说,PID控制器的输出可以表示为:式中,e表示当前误差,T为采样时间,Kp、Ki和Kd分别为比例系数、积分系数和微分系数。

这些系数是PID控制器的重要参数,在控制实际物理系统时需要进行合理调节。

四、实验过程1、球杆系统建模根据上述原理,我们采用模型参数估计法,对球杆系统的状态方程进行求解和建模。

下图为球杆系统的实物模型:其中,Θ为球杆的倾斜角度,α为球杆相对于竖直方向的偏角。

此外,球杆的长度为L,质量为m,转动惯量为I。

考虑到系统的非线性和时变性,我们采用状态空间法进行建模,得到以下的状态方程:根据系统的动态特性,我们选择PID控制器进行调节,以使球杆系统达到平衡状态。

首先我们需要调节PID控制器的三个系数,通过试验寻找较为合适的值。

其中,Kp控制系统的快速性,Ki控制系统的稳定性,Kd则是控制系统的抗干扰性。

球杆系统控制器设计实验报告(北京理工大学).

球杆系统控制器设计实验报告(北京理工大学).

球杆系统控制器设计实验报告学院:自动化学院组号:5成员:球杆系统控制器设计实验一、实验目的和要求1.1 实验目的(1)通过本设计实验,加强对经典控制方法(PID控制器)和智能控制方法(神经网络、模糊控制、遗传算法等)在实际控制系统中的应用研究。

(2)提高学生有关控制系统控制器的程序设计、仿真和实际运行能力.(3)熟悉MATLAB语言以及在控制系统设计中的应用。

1.2 实验要求(1)每两人一组,完成球杆系统的开环系统仿真、控制器的设计与仿真以及实际运行结果;(2)认真理解设计内容,独立完成实验报告,实验报告要求:设计题目,设计的具体内容及实验运行结果,实验结果分析、个人收获和不足,参考资料。

程序清单文件。

二、实验内容本设计实验的主要内容是设计一个稳定的控制系统,其核心是设计控制器,并在MATLAB/SIMULINK环境下进行仿真实验,并在球杆实验平台上实际验证。

算法实现:设计模糊控制器控制球杆系统,达到要求目标。

三、实验原理3.1 球杆系统的特点球杆系统是一个典型的非线性系统,理论上而言,它是一个真正意义上的非线性系统,其执行机构还具有很多非线性特性,包括:死区,直流马达和带轮的传动非线性,位置测量的不连续性,导轨表面不是严格的光滑表面,产生非线性阻力,这些非线性因素对于传统意义上的测量和建模造成很大的影响,并对系统的控制性能造成非常大的影响,怎样去设计一个鲁棒的控制系统,是现代控制理论的一个重要问题。

因为系统机械结构的特点,球杆系统具有一个最重要的特性——不稳定性,对于传统的实验方法,存在一些实验的难处,不稳定的系统容易对实验人员产生危险或是不可预料的伤害,球杆系统相对而言,机械比较简单,结构比较紧凑,安全性也比较高,是一个可以避免这些危险和伤害的实验设备。

3.2 球杆系统的数学模型对小球在导轨上滚动的动态过程的完整描述是非常复杂的,设计者的目的是对于该控制系统给出一个相对简单的模型,如图3.1所示为实验使用球杆系统简化图。

西安工业大学实验三 球杆系统建模分析与控制

西安工业大学实验三 球杆系统建模分析与控制

实验三:球杆系统建模、分析与控制实验(综合实验)一.实验目的:1、建立球杆系统的数学模型,掌握系统建模的一般方法及在Matlab中对系统进行建模的方法;2、对球杆系统进行性能分析,在Matalab Simulink中对系统进行仿真;3、理解PID控制的原理和方法,进行系统控制;4、掌握如何设计和调整PID参数,使系统达到设计的要求。

二.实验内容:1、对球杆系统进行受力分析,建立球杆系统的数学模型2、在Matlab下建立球杆系统的数学模型,3、对球杆系统进行性能分析与仿真4、P控制器的设计5、PD控制器的设计6、PID控制器的设计三.实验设备:1 固高科技球杆机械传动系统2 球杆系统运动控制箱3 计算机四.实验原理:1. PID 简介任何闭环控制系统的首要任务是要稳(稳定)、快(快速)、准(准确)的响应命令。

PID调整的主要工作就是如何实现这一任务。

增大比例系数P将加快系统的响应,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现,过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。

积分能在比例的基础上消除余差,它能对稳定后有累积误差的系统进行误差修整,减小稳态误差。

微分具有超前作用,对于具有容量滞后的控制通道,引入微分参与控制,在微分项设置得当的情况下,对于提高系统的动态性能指标,有着显著效果,它可以使系统超调量减小,稳定性增加,动态误差减小。

综上所述,P---比例控制系统的响应快速性好,快速作用于输出;I---积分控制系统的准确性好,消除过去的累积误差;D---微分控制系统的稳定性好,具有超前控制作用。

在调整的时候,你所要做的任务就是在系统结构允许的情况下,在这三个参数之间权衡调整,达到最佳控制效果,实现稳、快、准的控制特点。

根据要求添加PID控制器后,闭环系统的结构图如下:PID 控制器闭环结构图PID 控制器的传递函数为:)1()(sK s K K s G I D P PID ++=, K D 和 K I 对应于积分和微分控制,K P 为比例增益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 9)
相应的有:
u( k - τsc + 1 | k - τsc) = ( 1 - C( z - 1 ) ) u( k - τsc +
1 | k - τsc) + D( z - 1 ) ( r( k - τsc + 1) - y( k - τsc +
1 | k - τsc) )
( 10)
依此可得递归算法:
1→u( k - τsc + 1 | k - τsc) 2→u( k - τsc + 2 | k - τsc)
图 1 网络化控制系统结构
Fig. 1 The networked control system
1) 预测控制序列生成器 考虑如下的 SISO 系
统:
y( k + 1)
=
B( A(
z z
-1) -1)
u(
k)
( 4)
式中,A( z - 1 ) = 1 + a1 z - 1 + a2 z - 2 + … + aan z - an ; B( z -1 ) = b0 + b1 z -1 + b2 z -2 + … + bbn z - bn 为系数多项
Abstract: Random time delay and packet dropout can degrade the performance of networked control systems and even cause system instability,especially for the Ball - Beam System of some natures such as instability in open - loop,and nonlinearity. To solve this problem,this paper adopts the networked predictive control ( NPC) method to design the ball - beam system networked control system. The principle of NPC is described,the modeling of the ball - beam system with identification method is explained,and the simulation and experiment results are provided to verify the effectiveness of the proposed design scheme. Key words: networked control systems; ball - beam system; predictive control; nonlinear systems; model identification
τsc) + D( z - 1 ) ( r( k - τsc + i) - y( k - τsc + i | k - τsc) )
( 12)
式中,i = 1,2,3,…,N - 1。
通过计算可以得到 N 步预测控制序列:
U = { u( k - τsc | k - τsc) ,u( k - τsc + 1 | k - τsc) ,…,
( 1. School of Information Science and Engineering,Central South University,Changsha 410083,China; 2. Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
1引言
由于在远程及分布式环境下的巨大应用潜力, 网络化控制系统( Networked Control Systems,NCSs) 已经成为国际控制界的一个热点研究领域。在传统 控制系统中引入通信网络带来了许多便利,同时也 带来了一些缺陷,主要包括网络诱导时延、数据包 丢失、数据包错序等。这些新的特性使 NCSs 与传 统控制系统有了很大的差别,在大多数情况下,会 降低控制效果,甚至造成系统不稳定。为了分析和 解决这些问题,控制、通信、计算机等各个领域的 研究者提出了一些新的方法,如随机最优控制、模 糊逻辑控制、基于事件的控制、增益调度、数据包 丢失分析和混合控制等[1-9]。另外,Liu 等提出并发 展了网络化预测控制( Networked Predictive Control, NPC) 的思想,作者考虑了数据包丢失的情况,所 获得的预测控制器实现了对随机网络诱导时延的补 偿[10-12]。
式; u( k) 为控制器输出; y( k) 为控制对象输出。
令控制器的离散传递函数,如下所示:
u( k)
=
D( C(
z z
-1) -1)

r(
k)
- y( k) )
( 5)
式 中,C ( z - 1 ) = 1 + c1 z - 1 + c2 z - 2 + … + ccn z - cn , D( z -1 ) = d0 + d1 z -1 + d2 z -2 + … + ddn z - dn 为系数多 项式; r( k) 为参考输入; y( k) 为对象输出反馈; u( k) τsc) = ( 1 - A( z - 1 ) ) y( k - τsc + i | k -
τsc) + B( z - 1 ) u( k - τsc + i - 1 | k - τsc)
( 11)
u( k - τsc + i | k - τsc) = ( 1 - C( z - 1 ) ) u( k - τsc + i | k -
Step 1 接收预测控制序列。
Step 2 Step 3
计算 RTT 时延:
τ
=
τsc
+
τca
=

t
- ts) Ts

选择控制量 控制量应选择接收到的
预测控制序列中的第 τ 个控制量。例如执行器端接
收到的 N 步预测控制序列为
0→u( k - τsc | k - τsc)
·690·
控制工程
第 18 卷
( 3) 式中,0 < α < 1,为遗忘因子; θ^ N 为参数向量估计 值; φTN + 1 为 观 测 输 出 值 与 观 测 输 入 值 组 成 的 矩 阵[13]。
传感器端获得 yN + 1 和 φTN + 1 后,发送至控制器 端的辨识模块选择出参数 θ^ N = [a1 ,a2 ,b0 ,b1 ,b2]T 送入控制器中用来计算预测控制序列[13]。
本文的整个系统由中国科学院研发的 NetCon 网络化控制器,深圳德普施公司生产的球杆系统, 和 PC 构成。球杆系统包括伺服驱动器,伺服电机 和球杆 机 械 部 分。软 件 环 境 为 Matlab / Simulink 和 NetConTop 网络化控制组态软件。
网络化预测控制的控制效果与被控对象模型的 准确性有极为重要的关系。而球杆系统的准确建模 是一个比较困难的问题。本文通过实验,发现球在 球杆某一点 1. 5 cm 的邻域内运动时,若用一个二

要: 网络诱导时延和数据包丢失、错序等问题会严重影响网络化控制系统的性能甚
至使系统不稳定。对于球杆系统这样具有开环不稳定和典型的非线性特征的系统来说尤其明
显。为了解决这一问题,采用网络化预测控制算法( Networked Predictive Control,NPC) 来设计球
杆网络化控制系统。介绍了网络化预测控制算法的设计,球杆对象的辨识建模,并通过仿真与
2011 年9 月 第18卷第5期
控制工程 Control Engineering of China
Sep . 2 0 1 1 Vol. 18,No. 5
文章编号: 1671-7848( 2011) 05-0688-04
球杆系统的网络化控制设计与实现
罗浩铭1 ,刘国平2 ,桂卫华1
( 1. 中南大学 信息科学与工程学院,湖南 长沙 410083; 2. 中国科学院 自动化研究所,北京 100190)
为控制器输出。
令 u( k + i | k) 表示基于 k 时刻之前的输入输出
做出的对 ( k + i) 时刻的预测控制量。令 τca,τsc 分别代表控制器端到执行器端的时延,和传感器端
到控制器端的时延。可知在 k 时刻,控制器端收到
从传感器端传过来的对象输入输出数据应为
U( k - τsc) = { u( k - τsc) ,u( k - τsc - 1) ,…
D( z - 1 ) ( r( k - τsc) - y( k - τsc | k - τsc) )
( 8)
根据对象模型,可知:
y( k - τsc + 1 | k - τsc) = ( 1 - A( z - 1 ) ) y( k - τsc +
1 | k - τsc) + B( z - 1 ) u( k - τsc | k - τsc)
第5 期
罗浩铭等: 球杆系统的网络化控制设计与实现
·689·
阶离散传递函数来表示此点的球杆模型,可以很好
地吻合小球在此该点附近的实际运行轨迹。所以在
球杆的输出为 4,6,8 V 处辨识出模型,然后在球
杆运行到相应位置时,进行模型切换,可以保证球
杆模型的准确性。具体的辨识算法为如下的带遗忘
因子的递推最小二乘法:
3 网络化预测控制系统设计
系统可分为控制器端和执行器端。控制器端主 要是网络化预测控制序列生成器; 执行器端主要是 网络补偿器和数据缓存器。传感器端将采集到的过 去的对象输入信号和对象输出信号送到数据缓存器 中,由网络发 送 至 控 制 器 端, 控 制 器 接 收 到 数 据 后,计算出未来 N 步预测控制量,打包发送到执行 器端,由网络补偿器根据时延与丢包情况从中选择 出某一步预测控制量,输入到控制对象中,由于此 控制量生成时已考虑到时延等作用,所以可以有效 地补偿网络的影响。一个完整的网络化预测控制框 图,如图 1 所示。
相关文档
最新文档