二次函数应用(拱桥问题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数综合应用题(拱桥问题)
适用学科数学适用年级初中三年级
适用区域全国课时时长(分钟)60
知识点二次函数解析式的确定、二次函数的性质和应用
教学目标 1.掌握二次函数解析式求法。
2学会用二次函数知识解决实际问题,掌握数学建模的思想,进一步熟悉,
点坐标和线段之间的转化。
3.进一步体验应用函数模型解决实际问题的过程,体会到数学来源于生活,
又服务于生活,感受数学的应用价值。
教学重点 1.从实际问题中抽象出相应的函数关系式,并能理解坐标系中点坐标和线段之间关系;
2.根据情景建立合适的直角坐标系,并将有关线段转化为坐标系中点的坐
标
教学难点如何根据情景建立合适的直角坐标系,并判断直角坐标系建立的优劣。
教学过程
一、复习预习
平时的时候我们能够看到小船可以从桥的下面通过,但是当夏天雨季到来,水平面上升,这时小船还能从桥的下面通过吗?对于这样的问题我们可以利用我们所学的二次函数来解决。这节我们就看二次函数解决拱桥问题。
二、知识讲解
考点/易错点1 :二次函数解析式的形式
1、一般式:y=ax 2+bx+c (a ≠0)
2、顶点式:y=a(x-h)2+k (a ≠0)
顶点坐标(h ,k )
直线x=h 为对称轴,k 为顶点坐标的纵坐标,也是二次函数的最值
3、双根式:y=a(x-1x )(x-2x )(a ≠0) (1x ,2x 是抛物线与x 轴交点的横坐标)
并不是什么时候都能用双根式,当抛物线与x 轴有交点时才行
4、 顶点在原点:)0(2≠=a ax y
5、过原点:)0(2≠+=a bx ax y
6、 顶点在y 轴:)0(2≠+=a c ax y
考点/易错点2:建立平面直角坐标系
1、在给定的直角坐标系,中会根据坐标描出点的位置
2、能建立适当的直角坐标系,描述物体的位置。
三、例题精析
【例题1】
【题干】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;
(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d 表示为h的函数表达式;
(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.
【答案】
(1)设抛物线的解析式为y=ax2,
且过点(10,-4)
∴-==-
410
1
25
2
a a
×,
故
y x
=-
1
25
2
(2)设水位上升h m时,水面与抛物线交于点(
d
h
2
4
,-
)则
h
d
-=-
4
1
254
2
×
∴d h
=-
104
(3)当d=18时,18104076
=-=
h h
,.
0762276
..
+=
∴当水深超过2.76m时会影响过往船只在桥下顺利航行。
【解析】顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.
【例题2】
【题干】如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶?
【答案】解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的 顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)
设抛物线为y=ax ²+k.
由B 、D 两点在抛物线上,有
解这个方程组,得 所以,
顶点的坐标为(0,) 则OE=÷0.1=(h )
所以,若洪水到来,水位以每小时0.1m 速度上升,经过
小时会达到拱顶.
【解析】 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,求出解析式
【例题3】
【题干】如图是抛物线拱桥,已知水位在AB 位置时,水面宽m 64,水位上升3m ,达到警戒线CD ,这时水面宽m 34.若洪水到来时,水位以每小时0.25m 的速度上升,求水过警戒线后几小时淹到拱桥顶?
O x
CX y D B A E
F
【答案】解:根据题意设抛物线解析式为:y =ax 2+h
又知B (26,0),D (23,3)
∴⎩⎨⎧=+⨯=+⨯3h )32(a 0h )62(a 22 解得:⎪⎩⎪⎨⎧=-=6
h 41a ∴y =-4
1x 2+6 ∴E (0,6) 即OE =6
EF =OE -OF =3 t =25.0EF =25
.03=12 (小时) 答:水过警戒线后12小时淹到拱桥顶.
【解析】建立直角坐标系,求出解析式
四、课堂运用
【基础】
1、心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系:y =-0.1x 2+2.6x +43 (0≤x ≤30).y 值越大,表示接受能力越强.
(1) x 在什么范围内,学生的接受能力逐步增加?x 在什么范围内,学生的接受能力逐步降低?
(2)第10分钟时,学生的接受能力是多少?
(3)第几分钟时,学生的接受能力最强?