二次函数应用(拱桥问题)
二次函数的应用--拱桥问题
1.复习利用二次函数解决实际问题的方法
问题1 解决上节课所讲的实际问题时,你用到了什么知识? 所用知识在解决生活中问题时,还应注意哪些问题?
1.复习利用二次函数解决实际问题的方法
归纳: 1.由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,当
3.应用新知, 巩固提高
问题5 有一座抛物线形拱桥,正常水位时桥下水面宽度为 20 m,拱顶距离水面 4 m. (1)如图所示的直角坐标系中,求出这条抛物线表 示的函数的解析式; (2)设正常水位时桥下的水深为 2 m,为保证过往 船只顺利航行,桥下水面的宽度不得小于 18 m.求水深超过多少 m 时就会影响过往船只在桥下顺利航行.
二次函数的应用--拱桥问题
课件说明
• 二次函数是单变量最优化问题的数学模型,如生活中 涉及的求最大利润,最大面积等.这体现了数学的实 用性,是理论与实践结合的集中体现.本节课主要研 究建立坐标系解决实际问题.
课件说明
• 学习目标: 能够分析和表示实际问题中变量之间的二次函数关系, 正确建立坐标系,并运用二次函数的图象、性质解决 实际问题.
2.探究“拱桥”问题
(1)求宽度增加多少需要什么数据? (2)表示水面宽的线段的端点在哪条曲线上? (3)如何求这组数据?需要先求什么? (4)图中还知道什么? (5)怎样求抛物线对应的函数的解析式?
2.探究“拱桥”问题 问题3 如何建立直角坐标系?
l
2.探究“拱桥”问题
问题4 解决本题的关键是什么?
时,二次函数 y = ax 2 + bx + c 有最小(大) 值
x b 2a
用二次函数解决抛物线型拱桥问题的教学思考
用二次函数解决抛物线型拱桥问题的教学思考
一、二次函数解决抛物线型拱桥问题
1. 抛物线型拱桥问题具有特殊的形式:抛物线型拱桥系统通常会出现
三维变形,其形态类似抛物线;
2. 二次函数可以用来解决抛物线型拱桥问题,因为它能够描述抛物线
型轮廓和大量的非线性关系;
3. 二次函数可以用来描述抛物线型拱桥的三维变形,可以进行模态变换,也可以完善抛物线型拱桥的结构模型,以便以最佳方式进行设计;
4. 通过使用二次函数,可以快速有效地解决复杂的抛物线型拱桥问题,用以描述拱桥的三维弧形特性,提高拱桥的稳定性;
5. 二次函数还可以与大量的有限元元素节点连接,以便更准确的表达
抛物线型构件的变形过程,便于拱桥本身的研究;
6. 二次函数还可以用来解决拱桥的非连续性,以提高拱桥的稳定性,
并达到最佳的结构性能。
二、二次函数解决抛物线型拱桥问题的步骤
1.首先对拱桥进行可靠的分析,实现拱桥几何图形模型的建立;
2. 建立起相关的参数模型,进行完整的原形映射,并分析拱桥的三维
变形特征;
3. 选择适当的二次函数来拟合抛物线型的拱桥特征,并结合参数模型,使拱桥获得最佳的状态;
4. 将拟合后的二次函数与有限元元素节点进行连接,实现对拱桥变形
过程的分析,以达到拱桥稳定性的最优解;
5. 最后,根据逐次考虑的设计要求,进行系统优化设计,直至抛物线型拱桥有力地满足设计要求,实现最优的结构实现。
三、总结
通过使用二次函数,可以对抛物线型拱桥采取有效的解决方案,在高效的设计过程中,更快更好的满足拱桥的设计要求,以保证拱桥的安全和有效解决拱桥的后续问题。
二次函数与实际问题(拱桥)
二次函数的运用拱桥问题学习过程:一、预备练习:1、如图所示的抛物线的解析式可设为 ,若AB ∥x 轴,且AB=4,OC=1,则点A 的坐标为 ,点B 的坐标为 ;代入解析式可得出此抛物线的解析式为 。
2、 某涵洞是抛物线形,它的截面如图所示。
现测得水面宽AB=4m ,涵洞顶点O 到水面的距离为1m ,于是你可推断点A 的坐标是 ,点B 的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。
二、新课导学:例1、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m ,河面距拱顶4m ,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
例2、某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?三、练习:1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=2251x ,当水位线在AB 位置时,水面宽 AB = 30米,这时水面离桥顶的高度h 是( )A 、5米B 、6米;C 、8米;D 、9米2、、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m 后,水面的宽度是多少?(结果精确到0.1m).3、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.5、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以用y=-41x 2+4表示. (1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?6.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA ,OA=1.25m ,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m .(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m )7.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9 m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m. ①问此球能否投中? (选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?8.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面 10又3分之3m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.(1)求这条抛物线的函数关系式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3又5分之3m,问此次跳水会不会失误?并通过计算说明理由.例1、例2:例3:第3题:第8题、。
二次函数---拱桥问题中能否通过问题
22.3(3.2)---拱桥问题中能否通过问题一.【知识要点】1.常用“定宽比高”法解决拱桥问题中能否通过问题。
二.【经典例题】1.一座拱桥的轮廓是抛物线型,拱高6m,跨度16m,为了安全起见,分别在桥的两侧安装如图1所示的不锈钢护栏(护栏包括支柱和衡量),相邻两支柱间的距离均为4m.(1)如图所示建立直角坐标系,求这条抛物线的函数表达式;(2)求安装护栏所需钢管的总长度;(3)拱桥下地平面是双向行车道,其中的一条行车道能否并排行驶宽2.4m,高3m的两辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.有一座抛物线形拱桥,正常水位时,桥下水面宽20m,拱顶距离水面4m.(1)在如图1所示的坐标系中,求抛物线的解析式;(2)在正常水位基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试写出用d表示h 的函数解析式;(3)设正常水位时桥下的水深2m,且桥下水面的宽度不得小于18m才能保证过往船只顺利通行,当水深超过多少米时,会影响过往船只在桥下通行?3.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,篮圈距地面3m,设篮球运行的轨迹为抛物线.(1)建立如图的平面直角坐标系,求此抛物线的解析式;(2)此球能否准确投中?(3)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?4.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如图,建立直角坐标系,求此抛物线的解析式;(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?、5.如图,有一个横截面是抛物线的运河,一次,运河管理员将一根长6m的钢管(AB)一端在运河底部A点,另一端露出水面并靠在运河边缘的B点,发现钢管4m浸没在水中(AC =4米),露出水面部分的钢管BC与水面部分的钢管BC与水面成30°的夹角(钢管与抛物线的横截面在同一平面内)(1)以水面所在直线为x轴,建立如图所示的直角坐标系,求该运河横截面的抛物线解析式;(2)若有一艘货船从当中通过,已知货船底部最宽处为12米,吃水深(即船底与水面的距离)为1米,此时货船是否能安全通过该运河?若能,请说明理由;若不能,则需上游开闸放水提高水位,当水位上升多少米时,货船能顺利通过运河?(船与河床之间的缝隙忽略不计)6.(2021年绵阳期末第22题)如图①是一条抛物线形状的拱桥,水面宽AB为6米,拱顶C离水面的距离为4米.(1)建立恰当的坐标系,并求出抛物线的解析式;(2)一艘货船的截面如图②所示,它是由一个正方形MNEF和一个梯形KLGH组成的轴对称图形,货船的宽度KH为5米,货物高度MN为3米.若船弦离水面的安全距离为0.25米,请问货船能否安全通过桥洞?说明理由.三.【题库】【A】1.地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时速度为0;②小球在空中经过的路程是40m;③小球的高度h=30m时,t=1.5s;④小球抛出3秒后,速度越来越快.其中正确的是()A.①④B.①② C.①②④D.②③【B】【C】1.如图,某菜农搭建了一个横截面为抛物线的大棚,大棚在地面上的宽为AB(单位:米),AB=10,以AB所在直线为x轴,以AB垂直平分线为y轴建立的平面直角坐标系,y轴与抛物线交于点C,抛物线解析式为y=﹣x2+h.(1)求点C坐标;(2)若菜农身高为米,则在她直立的情况下,在大棚内的横向活动范围有几米?【D】1.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起,据试验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C距守门员多少米?(取4=7)(3)运动员乙要抢到足球第二个落点D,他应再向前跑多少米?(取2=5)。
二次函数与拱桥问题
建立二次函数模型解决建筑类实际问题的一般步骤:(1) 根据题意建立适当的 ________________________ ; (2) 把已知条件转化为 __________________ ; (3) 合理设出函数 ___________________ ; (4) 利用 _________________ 法求出函数解析式;(5) 根据求得的解析式进一步分析、判断并进行有关的计算. 知识点1 :二次函数在桥梁中的应用1. 有一座抛物线拱桥,正常水位时桥下水面宽度为 20米,拱顶距离水面4米.在如图所示 的直角坐标系中,该抛物线的解析式为 ________________________ .2.有一座抛物线形的立交桥拱 ,这个桥拱的最大高度为 16 m ,跨度为40 m ,现把它的图形放在坐标系中(如图).若在离跨度中心 M 点5 m 处垂直竖立一根铁柱支撑拱顶 ,则这根铁柱的长为 _____ m.3. 如图是一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于 A , B 两点,拱桥最高 点C 到AB 的距离为9 m , AB = 36 m , D , E 为拱桥底部的两点,且DE // AB ,点E 到直线 AB 的距离为7 m ,则DE 的长为 ___________ m .知识点2 :二次函数在隧道中的应用 4. 某隧道横断面由抛物线与矩形的三边组成,尺寸如图如示,以隧道横断面抛物线的顶点16为原点,以抛物线的对称轴为y 轴,建立直角坐标系,则该抛物线的解析式为 知识点3:二次函数在其他建筑问题中的应用5.如图,某工厂大门是抛物线形水泥建筑, 大门底部地面宽4米,顶部距地面的高度为 4.4 米,现有一辆满载货物的汽车欲通过大门,其装货宽度为 2.4米,该车要想通过此门, 装货 后的高度应小于( ) A. 2.80 米B . 2.816 米C . 2.82 米D. 2.826 米\比米L -4 棊_'6•如图,某建筑的屋顶设计成横截面为抛物线形(曲线AOB 的薄壳屋顶.它的拱宽AB 为4 m拱高CO 为0.8 m •建立如图的直角坐标系,则屋顶的轮廓线所在的抛物线的解析式为知识点4 :二次函数在运动中的应用7.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平 面直角坐标系,水在空中划出的曲线是抛物线 y = — x 2 + 4x(单位:米)的一部分,则水喷出 的最大高度是( )A . 4米B . 3米C . 2米D .1米----- 6m ----- ►A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒&军事演习在平坦的草原上进行 ,一门迫击炮发射的一发炮弹飞行的高度 y(m)与飞行时间 x(s)的关系满足y = — 5X 2 + 10x.经过 ________ 秒炮弹到达它的最高点,最高点的高度是________ 米,经过 ________ 秒炮弹落到地上爆炸了.9•竖直向上发射的小球的高度 h(m)关于运动时间t(s)的函数解析式为h = at + bt ,其图象如图所示.若小球在发射后第 2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是y(m)与滑行时间x(s)之间的函数关系式是 m 才能停下来.12.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y = — 3x 1 2+ 3x + 1的一部分.5 (1)求演员弹跳离地面的最大高度;⑵已知人梯高BC = 3.4米,在一次表演中,人梯到起跳点 A 的水平距离是4米,问这次表 演是否成功?请说明理由.13•如图,小河上有一座拱桥,拱桥及河道的截面轮廓线由抛物线的一部分 ACB 和矩形的三 边AE, ED, DB 组成.已知河底 ED 是水平的,ED = 16米,AE = 8米,抛物线的顶点 C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为 y 轴建立平面直角坐标系. (1) 求抛物线的解析式;(2) 已知从某时刻开始的 40小时内,水面与河底 ED 的距离h(单位:米)随时间t(单位:时) 的变化满足函数关系 h =- ±(t — 19)2+ 8(0 w tw 40),且当水面到顶点 C 的距离不大于5米 时,需禁止船只通行,请过计算说明:在这一时段内 ,需多少小时禁止船只通行?1 当h = 2.6时,求y 与x 的关系式;(不要求写出自变量 x 的取值范围)2 当h = 2.6时,球能否越过球网?球会不会出界?请说明理由?10.如图,有一座抛物线形拱桥 水面下降1 m 后,水面宽为( ,当水位线在AB 位置时,拱顶离水面2 m ,水面宽为4 m , ) A . 5 mB . 6 mC/, 6 mD . 2 6m11.某一型号飞机着陆后滑行的距离 1.5x 2,该型号飞机着陆后滑行 —y = 60x —14.如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y = a(x —6)2 + h.已知球网与O 点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.4、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
二次函数的实际应用(拱桥问题)教师
二次函数的实际应用(拱桥问题)教师work Information Technology Company.2020YEAR二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4)∴故 (2)设水位上升h m 时,水面与抛物线交于点()则∴ (3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
2023年中考数学专题复习:二次函数应用之拱桥问题(提优篇)
2023中考数学专题复习:二次函数应用之拱桥问题(提优篇)1.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4√3米B.5√2米C.2√13米D.7米2.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按x2+bx+c表示.在抛物线形拱壁上照如图所示的平面直角坐标系,抛物线可以用y=−16需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是( )A.2m B.4m C.4√2m D.4√3m3.【测试2】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面上升1.5m,水面宽度为( )A.1m B.2m C.√3m D.2√3m4.【例4】如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加( )A.1m B.2m C.3m D.6m5.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )的关系式为y=−125A.−20m B.20m C.10m D.−10m6.某大学的校门(如图所示)是抛物线形水泥建筑物,大门的宽度为8米,两侧距地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,那么校门的高是米.7.如图,一个横截面为抛物线形的隧道底部宽12米、高6米.车辆双向通行,若规定车辆必须米的空在中心线两侧、距离道路边缘2米的能围内行驶,并保持车辆顶部与隧道有不少于13隙,则通过隧道的车辆的高度限制应为米.8.闵行体育公园的圆形喷水池的水柱(如图1),如果曲线APB表示落点B离点O最远的一条水,流(如图2),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=−x2+4x+94那么圆形水池的半径至少为米时,才能使喷出的水流不落在水池外.9.中国石拱桥是我国古代人民建筑艺术上的智慧象征.如图所示,某桥拱是抛物线形,正常水位时,水面宽AB为20m,由于持续降雨,水位上升3m,若水面CD宽为10m,则此时水面距桥面距离OE的长为.10.如图,这是一传媒公司寓意为“大鹏展翅”的大门建筑截面图,它是两条关于线段AB的中垂线对称的抛物线,开口朝向左右,顶点是边长为4米的正方形中心,且分别过正方形的两个顶点.若入口水平宽BE为10.5米,则最高点F到地面的高度FE为米.11.一个拱形桥架可以近似看做是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成的.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45∘,AC1=4米,点D2的坐标为(−13,−1.69),则桥架的拱高OH=米.12.有一抛物线形拱桥,其最大高度为16米,跨度为40米,现将它的示意图放在平面直角坐标系中,如图,则抛物线的解析式是.13.如图,某广场设计的一座建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无须证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时,点O,P之间的距离是多少?(请写出求解过程)14.如图①,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=110x2−45x+3的绳子.(1) 求绳子最低点离地面的距离.(2) 因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图②),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长.(3) 将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,数始终为14求m的取值范围.15.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图(1)所示建立直角坐标系),抛物线顶点为点B.(1) 求该抛物线的函数表达式.(2) 当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3),东东起跳后所持球离地面高度ℎ1(m)(传球前)与东东起跳后时间t(s)满足函数关系式ℎ1=−2(t−0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度ℎ2(m)与东东起跳后时间t(s)的函数关系如图(2)所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中运动时间忽略不计).16.如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x−6)2+ℎ.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.(1) 当ℎ=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);(2) 当ℎ=2.6时,球能否越过球网?球会不会出界?请说明理由;(3) 若球一定能越过球网,又不出边界,求ℎ的取值范围.17.在水平的地面BD上有两根与地面垂直且长度相等的电线杆AB,CD,以点B为坐标原点,直线BD为x轴建立平面直角坐标系,得到图1.已知电线杆之间的电线可近似地看成抛物线y=1100x2−45x+30.(1) 求电线杆AB和线段BD的长.(2) 因实际需要,电力公司在距离AB为30米处增设了一根电线杆MN(如图2),左边抛物线F1的最低点离MN为10米,离地面18米,求MN的长.(3) 将电线杆MN的长度变为30米,调整电线杆MN在线段BD上的位置,使右边抛物线F2的二次项系数始终是140,设电线杆MN距离AB为m米,抛物线F2的最低点离地面的距离为k米,当20≤k≤25时,求m的取值范围.18.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:(1) 以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2) 一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?19.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,以AB的中点O为原点,按如图②所示建立平面直角坐标系.(1) 求该抛物线对应的函数关系式;(2) 通过计算说明该货车能安全通过的最大高度.20.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示x2+bx+c表示,且抛物线上的点C到OB的水平的平面直角坐标系,抛物线可以用y=−16m.距离为3m,到地面OA的距离为172(1) 求抛物线的函数表达式,并计算出拱顶D到地面OA的距离.(2) 一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3) 在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少?21.秋风送爽,学校组织同学们去颐和园秋游,昆明湖西堤六桥中的玉带桥非常令人喜爱,如图所示,玉带桥的桥拱是抛物线形,水面宽度AB=10m,桥拱最高点C到水面的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式;(2) 现有一艘游船高度是4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,通过计算说明这艘游船能否安全通过玉带桥.22.如图1,某穿山隧道纵截面为半圆形,圆心O的左右两边各有一条宽为3.75m的机动车道(OC,OD)和宽为1.25m的非机动车道(AC,BD).(备注:机动车与非机动车通行时都只能在各自车道行驶,不能越线)(1) 若有一辆宽3.3m的卡车载物从该隧道通行,则其最大高度不能超过多少米?(结果精确到0.1m)(2) 为改善通行条件,地方政府另外修建了一条单向隧道,并打算将如图1所示的隧道改建成如图2所示的抛物线形隧道,并要求:①隧道宽度AB及最大高度均保持不变;②只需保留一条单向机动车道(MN);③两条非机动车道(AM,BN)均拓宽为2m.问:改建后,若有一辆宽3.8m的卡车载物从该隧道通行,则其最大高度不能超过多少米?(结果精确到0.1m)23.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的坐标系中始于原点O的一段抛物线,图中数据为已知条件.在跳某个规定动作时,正常米,入水处距池边的距离为4米,同时,运情况下,这个运动员在空中的最高处距水面1023动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1) 求这段抛物线的表达式.(2) 在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中米,问此次跳水是否会失误,为什么?调整好入水姿势时,距池边的距离为33524.校园景观设计:如图1,学校计划在流经校园的小河上建造一座桥孔为抛物线的小桥,桥孔的跨径为8m,拱高为5m.(1) 把该桥拱看作一个二次函数的图象,建立适当的平面直角坐标系,写出这个二次函数的表达式;(2) 施工时,工人师傅先要制作如图2的桥孔模型,请你帮助工人师傅设计计算模型中左侧第二根立柱的高.25.如图是立交路上方一座抛物线型拱桥的示意图,桥的跨度AB=12米,拱高OM=4米.按规定,汽车通过桥下时,车顶与桥拱之间的距离CD不小于0.5米.(1) 以AB为x轴,以OM为y轴建立平面直角坐标系,求拱桥所在抛物线的表达式.(2) 一辆宽4米、高2.5米(车顶与地面AB的距离)的平顶货车能否通过拱桥?为什么?。
二次函数拱桥应用题doc
二次函数拱桥应用题.doc 二次函数拱桥应用题拱桥是一种常见的建筑结构,在城市和乡村中都可以见到。
它不仅能够承载重量,还可以美化环境。
在设计和建造拱桥时,数学是一个重要的工具。
其中二次函数在解决与拱桥相关的问题时起到了重要的作用。
二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是实数,且a不等于0。
二次函数的图像是一个抛物线,具有对称轴和顶点。
在拱桥的设计中,二次函数可以用来描述桥梁的曲线形状。
例如,我们可以用二次函数来描述一座拱桥的高度与横轴距离之间的关系。
假设我们要设计一座拱桥,使得拱桥的高度在横轴距离的不同位置上都能达到最大值,那么我们可以使用二次函数来描述这个关系。
首先,我们需要确定二次函数的顶点位置。
顶点是二次函数的最高点或最低点,它位于对称轴上。
对于拱桥来说,我们希望拱桥的高度在横轴距离的不同位置上都能达到最大值,因此我们需要找到二次函数的最高点。
假设拱桥的起点为原点(0,0),终点为坐标为(x,y)的点。
我们可以通过求解二次函数的顶点来确定拱桥的最高点。
顶点的横坐标可以通过求解二次函数的对称轴方程得到,对称轴方程为x=-b/(2a)。
将这个值代入二次函数的表达式中,我们可以求得顶点的纵坐标。
拱桥的高度与横轴距离之间的关系可以用二次函数来描述。
这个二次函数的顶点就是拱桥的最高点,拱桥的形状由这个二次函数的图像来表示。
在实际的拱桥设计中,我们需要考虑到许多因素,如桥梁的承重能力、材料的强度、施工的成本等。
因此,我们需要在满足这些要求的前提下,选择一个合适的二次函数来描述拱桥的形状。
例如,我们可以选择一个顶点为(0,0)的二次函数y=ax^2来描述拱桥的形状。
在确定a的值时,我们需要考虑到桥梁的承重能力。
如果a的值过大,那么拱桥的曲线将会很陡峭,不利于行人和车辆的通行。
如果a的值过小,那么拱桥的曲线将会很平缓,可能无法承受桥梁的重量。
因此,我们需要在满足这些要求的前提下,选择一个合适的a的值。
专题07 二次函数与实际应用(拱桥问题)-2024年中考数学之二次函数重点题型专题(全国通用版)(原
专题07 二次函数与实际应用(拱桥问题)一、填空题1.(2024·安徽肥东·中考二模)如图,一座悬索桥的桥面OA 与主悬钢索MN 之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM 与AN 相等.小强骑自行车从桥的一端O 沿直线匀速穿过桥面到达另一端A ,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA 共需_____________秒.2.(2024·江苏工业园区·中考一模)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州历史文化.如图②,“东方之门”的内侧轮廓是由两条抛物线组成的,已知其底部宽度均为80m ,高度分别为300m 和225m ,则在内侧抛物线顶部处的外侧抛物线的水平宽度(AB 的长)为_________m .第1题图 第2题图3.(2024·浙江·温州市中考一模)2024年1月12日世界最大跨度铁路拱桥——贵州北盘江特大桥主体成功合拢.如图2所示,已知桥底呈抛物线,主桥底部跨度400OA =米,以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,桥面//BF OA ,抛物线最高点离路面距离10EF =米,120BC =米,CD BF ⊥,O ,D ,B 三点恰好在同一直线上,则CD =________米.第3题图 第4题图4.(2024·江苏工业园区·中考二模)如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,拱桥最高点C 到AB 的距离为8m ,24m AB =,D ,E 为拱桥底部的两点,且//DE AB ,若DE 的长为36m ,则点E 到直线AB 的距离为______.二、解答题5.(2024·浙江衢州·中考真题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.6.如图,某水库上游有一单孔抛物线型拱桥,它的跨度AB为100米.最低水位(与AB在同一平面)时桥面CD距离水面25米,桥拱两端有两根25米高的水泥柱BC和AD,中间等距离竖立9根钢柱支撑桥面,拱顶正上方的钢柱EF长5米.(1)建立适当的直角坐标系,求抛物线型桥拱的解析式;(2)在最低水位时,能并排通过两艘宽28米,高16米的游轮吗?(假设两游轮之间的安全间距为4米)(3)由于下游水库蓄水及雨季影响导致水位上涨,水位最高时比最低水位高出13米,请问最高水位时没在水面以下的钢柱总长为多少米?7.(2024·山西·长治市实验中学九年级期末)景德桥,俗称西关大桥,是我国一座著名的古代石拱桥.景德桥位于山西省东南部的晋城西门外,横跨沁水河,过去,它是晋城通往沁水河阳城地区交通干道上的一座重要桥梁,故曾又名沁阳桥.桥下水面宽度AB是20米,拱高CD是4米,若水面上升3米至EF处.(1)把拱桥看作抛物线的一部分,建立如图1所示的平面直角坐标系,求水面宽度EF.(2)把拱桥看作圆的一部分,则可构造如图2所示的图形,求水面宽度EF.8.(2024·山东即墨·中考一模)即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?9.(·山东青岛·中考真题)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长4AD m =,宽3AB m =,抛物线的最高点E 到BC 的距离为4m .(1)按如图①所示的直角坐标系,抛物线可以用()20y kx m k =+≠表示,求该抛物线的函数表达式;(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元2/m .已知2GM m =,求每个B 型活动板房的成本是多少?(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本) (3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少?10.施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM 为16米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x 的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A .D 点在抛物线上.B 、C 点在地面OM 线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.11.(2024·辽宁海城·九年级月考)如图,隧道的横截面由抛物线形和矩形OABC 构成.矩形一边OA 的长是12m ,另一边OC 的长是1m .抛物线上的最高点D 到地面OA 的距离为7m .以OA 所在直线为x 轴,以OC所在直线为y 轴,建立平面直角坐标系.(1)求该抛物线所对应的函数表达式;(2)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为5m ,求两排灯之间的水平距离;(3)隧道内车辆双向通行,规定车辆必须在中心线两侧行驶,并保持车辆顶部与隧道有不少于1m 3的空隙.现有一辆货运汽车,在隧道内距离道路边缘2m 处行驶,求这辆货运汽车载物后的最大高度.12.(·陕西·子长县齐家湾中学九年级期末)小明将他家乡的抛物线型彩虹桥按比例缩小后,绘制成如下图所示的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x 轴表示桥面,y 轴经过中间抛物线的最高点,左右两条抛物线关于y 轴对称,经过测算,右边抛物线的表达式为21(30)520y x =--+. (1)直接写出左边抛物线的解析式; (2)求抛物线彩虹桥的总跨度AB 的长;(3)若三条钢梁的顶点M 、E 、N 与原点O 连成的四边形OMEN 是菱形,你能求出钢梁最高点离桥面的高度OE 的长吗?如果能,请写出过程;如果不能,请说明理由.13.(2024·山东黄岛·九年级期末)为促进经济发展,方便居民出行.某施工队要修建一个横断面为抛物线的公路隧道.抛物线的最高点P离路面OM的距离为6m,宽度OM为12m.(1)按如图所示的平面直角坐标系,求表示该抛物线的函数表达式;(2)一货运汽车装载某大型设备后高为4m,宽为3.5m.如果该隧道内设双向行车道(正中间是一条宽1m 的隔离带),那么这辆货车能否安全通过?(3)施工队计划在隧道口搭建一个矩形“脚手架”ABCD,使A,D点在抛物线上.B,C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根支杆AB,AD,DC的长度之和的最大值是多少?请你帮施工队计算一下.14.(2024·福建厦门·九年级期末)某海湾有一座抛物线形拱桥,正常水位时桥下的水面宽为100m(如图所示).由于潮汐变化,该海湾涨潮5h后达到最高潮位,此最高潮位维持1h,之后开始退潮.如:某日16时开始涨潮,21时达到最高潮位,22时开始退潮.该桥的桥下水位相对于正常水位上涨的高度随涨潮时间t 变化的情况大致如表所示.(在涨潮的5h 内,该变化关系近似于一次函数) 涨潮时间t (单位:h )1 2 3 4 5 6桥下水位上涨的高度(单位:m )4585 1251654 4 (1)求桥下水位上涨的高度(单位:m )关于涨潮时间t (06t ≤≤,单位:h )的函数解析式; (2)某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表所示: 涨潮时间t (单位:h ) 5452 154桥下水面宽(单位:m )202420232022现有一艘满载集装箱的货轮,水面以上部分高15m ,宽20m ,在涨潮期间能否安全从该桥下驶过?请说明理由.15.(·河北·中考一模)有一座抛物线型拱桥,在正常水位时水面AB 的宽为18米,拱顶O 离水面AB 的距离OM 为9米,建立如图所示的平面直角坐标系. (1)求此抛物线的解析式;(2)一艘货船在水面上的部分的横断面是矩形CDEF .①如果限定矩形的长CD 为12米,那么要使船通过拱桥,矩形的高DE 不能超过多少米? ②若点E ,F 都在抛物线上,设L EF DE CF =++,当L 的值最大时,求矩形CDEF 的高.16.(·安徽无为·九年级期末)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.17.(2024·贵州安顺·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.。
专题11 二次函数的实际应用-九年级数学上册(解析版)
专题11二次函数的实际应用考点1:拱桥问题;考点2:抛球、喷泉问题;考点3:面积问题;考点4:利润问题。
1.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=−125x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=−125x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.答案:C.2.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=−1400(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC ⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16940米B.174米C.16740米D.154米题型01拱桥问题解:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=−1400(x﹣80)2+16=−1400(﹣10﹣80)2+16=−174,∴C(﹣10,−174),∴桥面离水面的高度AC为174m.答案:B.3.(易错题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43米B.52米C.213米D.7米解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=−350,∴大孔所在抛物线解析式为y=−350x2+32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,−3625),∴−3625b)2,∴x1=b,x2=−b,∴MN=4,+b﹣(b)|=4∴m=−925,∴顶点为A的小孔所在抛物线的解析式为y=−925(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=−92,∴−92925(x﹣b)2,∴x1=b,x2∴单个小孔的水面宽度=|+b)﹣(+b)|=52(米),答案:B.4.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需36秒.解:如图,设从O到A花10秒,从O到B花26秒,则由对称性可知OA=BC,故从B到C也花10秒,故从O到C一共花26+10=36(秒),答案:36.5.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±6,所以水面宽度增加到26米,答案:26米.6.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,2=1222,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.解:(1)由题意知,方案一中抛物线的顶点P(6,4),设抛物线的函数表达式为y=a(x﹣6)2+4,把O(0,0)代入得:0=a(0﹣6)2+4,解得:a=−19,∴y=−19(x﹣6)2+4=−19x2+43x;∴方案一中抛物线的函数表达式为y=−19x2+43x;(2)在y=−19x2+43x中,令y=3得:3=−19x2+43x;解得x=3或x=9,∴BC=9﹣3=6(m),∴S1=AB•BC=3×6=18(m2);∵18>122,∴S1>S2.7.(易错题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求一条彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1,求得a1=−124,∴y1=−124x2,当x=12时,y1=−124×122=﹣6,∴桥拱顶部离水面高度为6m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1,将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=112,∴右边钢缆所在抛物线表达式为:y2=112(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=112(x+6)2+1②设彩带的长度为Lm,则L=y2﹣y1=112(x﹣6)2+1﹣(−124x2)=182−+4=18(−4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2m.8.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为()A.9m B.10m C.11m D.12m解:根据题意,设抛物线解析式为y=a(x﹣2)2+k,将点C(0,8)、B(8,0)代入,得:4+=836+=0,解得=−14=9,∴抛物线解析式为y=−14(x﹣2)2+9,所以当x=2时,y=9,即AD=9m,答案:A.9.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面403米,则水流下落点B离墙距离OB是()题型02抛球、喷泉问题A.2米B.3米C.4米D.5米解:设抛物线解析式:y=a(x﹣1)2+403,把点A(0,10)代入抛物线解析式得:a=−103,∴抛物线解析式:y=−103(x﹣1)2+403.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3米.答案:B.10.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A.23.5m B.22.5m C.21.5m D.20.5m解:由题意可得,h=﹣5t2+20t+1.5=﹣5(t﹣2)2+21.5,因为a=﹣5<0,故当t=2时,h取得最大值,此时h=21.5,答案:C.11.(易错题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点4m.解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=−23,b=23,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=−23x2+23x+h,将(4,0)代入可得−23×42+23×4+h=0,解得h=8.答案:8.12.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=2s.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答案:2.13.某学生在一平地上推铅球,铅球出手时离地面的高度为53米,出手后铅球在空中运动的高度y(米)与水平距离x(米)之间的函数关系式为y=−112x2+bx+c,当铅球运行至与出手高度相等时,与出手点水平距离为8米,则该学生推铅球的成绩为10米.解:设铅球出手点为点A,当铅球运行至与出手高度相等时为点B,根据题意建立平面直角坐标系,如图:由题意可知,点A(0,53),点B(8,53),代入y=−112x2+bx+c,得:==−112×82+8+,解得=23=53.∴y=−112x2+23x+53,当y=0时,0=−112x2+23x+53,解得x1=10,x2=﹣2(不符合题意,舍去).∴该学生推铅球的成绩为10m.答案:10.14.一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a=−112,∴抛物线的函数表达式为y=−112(x﹣2)2+3;当x=0时,y=−112×4+3=83>2.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=−112(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25=−112(0﹣2﹣m)2+3,解得m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.15.(易错题)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为66;(2)①若运动员落地点恰好到达K点,且此时a=−150,b=910,求基准点K的高度h;②若a=−150时,运动员落地点要超过K点,则b的取值范围为b>910;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,答案:66;(2)①∵a=−150,b=910,∴y=−150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=−150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=−150,∴y=−150x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即−150×752+75b+66>21,解得b>910,答案:b>910;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=−2125,∴抛物线解析式为y=−2125(x﹣25)2+76,当x=75时,y=−2125×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.16.(易错题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?解:(1)设y1与x之间的函数关系式为y1=kx+b,∵函数图象过点(0,30)和(1,35),则+=35=30,解得:=5=30,∴y1与x之间的函数关系式为y1=5x+30;(2)∵x=6时,y1=5×6+30=60,∵y2的图象是过原点的抛物线,设y2=ax2+bx,∴点(1.35),(6.60)在抛物线y2=ax2+bx上,∴+=3536+6=60,解得:=−5=40,∴y2=﹣5x2+40x,答:y2与x的函数关系式为y2=﹣5x2+40x;(3)设小钢球和无人机的高度差为y米,由﹣5x2+40x=0得,x=0或x=8,①1<x≤6时,y=y2﹣y1=﹣5x2+40x﹣5x﹣30=﹣5x2+35x﹣30=﹣5(x−72)2+1254∵a=﹣5<0,∴抛物线开口向下,又∵1<x≤6,∴当x=72时,y的最大值为1254;②6<x≤8时,y=y1﹣y2=5x+30+5x2﹣40x=5x2﹣35x+30=5(x−72)2−1254,∵a=5>0,∴抛物线开口向上,又∵对称轴是直线x=72,∴当x>72时,y随x的增大而增大,∵6<x≤8,∴当x=8时,y的最大值为70,∵1254<70,∴高度差的最大值为70米.题型03面积问题17.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方)案是(A.方案1B.方案2C.方案3D.方案1或方案2解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:如图,过点B作BH⊥AC于H,则BH≤AB=4,=12•AC•BH,∵S△ABC;∴当BH=4时,△ABC的面积最大为12×4×4=8方案3:半圆的半径=8米,∴此时菜园最大面积=H(8)22=32米2>8米2;答案:C.18.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为()A.193B.194C.195D.196解:∵AB=m米,∴BC=(28﹣m)米.则S=AB•BC=m(28﹣m)=﹣m2+28m.即S=﹣m2+28m(0<m<28).由题意可知,≥628−≥15,解得6≤m≤13.∵在6≤m≤13内,S随m的增大而增大,∴当m=13时,S=195,最大值即花园面积的最大值为195m2.答案:C.19.(易错题)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.183m2C.243m2D.4532m2解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,∴CD=AE,∠DCE=∠CEB=90°,设CD=AE=xm,则∠BCE=∠BCD﹣∠DCE=30°,BC=(12﹣x)m,在Rt△CBE中,∵∠CEB=90°,∴BE=12BC=(6−12x)m,∴AD=CE=3BE=(63−32x)m,AB=AE+BE=x+6−12x=(12x+6)m,∴梯形ABCD面积S=12(CD+AB)•CE=12(x+12x+6)•(63−32x)338x2+33x+183=−338(x﹣4)2+243,=243.∴当x=4时,S最大即CD长为4m时,使梯形储料场ABCD的面积最大为243m2;答案:C.20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75m2.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,答案:75.21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=150m时,矩形土地ABCD的面积最大.解:设AB=xm,则BC=12(900﹣3x),由题意可得,S=AB×BC=x×12(900﹣3x)=−32(x2﹣300x)=−32(x﹣150)2+33750∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,答案:150.22.(易错题)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是300m2.解:如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=−14x+10,3a=−34x+30,∴矩形区域ABCD的面积S=(−34x+30)x=−34x2+30x,∵a=−14x+10>0,∴x<40,则S=−34x2+30x(0<x<40);∵S=−34x2+30x=−34(x﹣20)2+300(0<x<40),且二次项系数为−34<0,∴当x=20时,S有最大值,最大值为300m2.答案:300.23.为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m 长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?解:(1)∵(21﹣12)÷3=3(m),∴Ⅰ、Ⅱ两块矩形的面积为12×3=36(m2),设水池的长为am,则水池的面积为a×1=a(m2),∴36﹣a=32,解得a=4,∴DG=4m,∴CG=CD﹣DG=12﹣4=8(m),即CG的长为8m、DG的长为4m;(2)设BC长为xm,则CD长度为21﹣3x,∴总种植面积为(21﹣3x)•x=﹣3(x2﹣7x)=﹣3(x−72)2+1474,∵﹣3<0,∴当x =72时,总种植面积有最大值为1474m 2,即BC 应设计为72m 总种植面积最大,此时最大面积为1474m 2.24.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A .5元B .10元C .0元D .36元解:设每件需降价的钱数为x 元,每天获利y 元,则y =(135﹣x ﹣100)(100+4x )即:y =﹣4(x ﹣5)2+3600∵﹣4<0∴当x =5元时,每天获得的利润最大.答案:A .25.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A .252元/间B .256元/间C .258元/间D .260元/间解:设每天的利润为W 元,根据题意,得:W =(x ﹣28)(80﹣y )﹣5000=(x ﹣28)[80﹣(14x ﹣42)]﹣5000=−14x 2+129x ﹣8416=−14(x ﹣258)2+8225,∵当x =258时,y =14×258﹣42=22.5,不是整数,∴x =258舍去,∴当x =256或x =260时,函数取得最大值,最大值为8224元,题型04利润问题又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元.答案:B.26.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P=at2+bt+c中,9+3+=0.816+4+=0.925+5+=0.6,解得=−0.2=1.5=−1.9,所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−2=−1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.答案:C.27.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是1264元.解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解得a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.答案:1264.28.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为121元(利润=总销售额﹣总成本).解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:10+=2020+=10,解得=−1=30,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,答案:121.29.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.解:设未来30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴−260−42×(−4)>29.5,解得,a<6,又∵a>0,即a的取值范围是:0<a<6.30.(易错题)某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:时间:第x(天)1≤x≤3031≤x≤60日销售价(元/件)0.5x+3550日销售量(件)124﹣2x(1≤x≤60,x为整数)设该商品的日销售利润为w元.(1)直接写出w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?解:(1)当1≤x≤30时,w=(0.5x+35﹣30)•(﹣2x+124)=﹣x2+52x+620,当31≤x≤60时,w=(50﹣30)•(﹣2x+124)=﹣40x+2480,∴w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60),答案:w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)当1≤x≤30时,w=﹣x2+52x+620=﹣(x﹣26)2+1296,∵﹣1<0,∴当x=26时,w有最大值,最大值为1296;当31≤x≤60时,w=﹣40x+2480,∵﹣40<0,∴当x=31时,w有最大值,最大值为﹣40×31+2480=1240,∵1296>1240,∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.31.(易错题)某工厂计划从A,B两种产品中选择一种生产并销售,每日产销x件.已知A产品成本价m元/件(m 为常数,且4≤m≤6,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y元,y(元)与每日产销x(件)满足关系式y =80+0.01x2.(1)若产销A,B两种产品的日利润分别为w1元,w2元,请分别写出w1,w2与x的函数关系式,并写出x的取值范围;(2)分别求出产销A,B两种产品的最大日利润.(A产品的最大日利润用含m的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价﹣成本)×产销数量﹣专利费】解:(1)根据题意,得w1=(8﹣m)x﹣30,(0≤x≤500).w2=(20﹣12)x﹣(80+0.01x2)=﹣0.01x2+8x﹣80,(0≤x≤300).(2)∵8﹣m>0,∴w1随x的增大而增大,又0≤x≤500,∴当x=500时,w1有最大值,即w最大=﹣500m+3970(元).∵w2=﹣0.01x2+8x﹣80=﹣0.01(x﹣400)2+1520.又∵﹣0.01<0.对称轴x=400.∴当0≤x≤300时,w2随x的增大而增大,∴当x=300时,w2最大=﹣0.01×(300﹣400)2+1520=1420(元).(3)①若w1最大=w2最大,即﹣500m+3970=1420,解得m=5.1,②若w1最大>w2最大,即﹣500m+3970>1420,解得m<5.1,③若w1最大<w2最大,即﹣500m+3970<1420,解得m>5.1.又4≤m≤6,综上可得,为获得最大日利润:当m=5.1时,选择A,B产品产销均可;当4≤m<5.1时,选择A种产品产销;当5.1<m≤6时,选择B种产品产销.答:当A产品成本价为5.1元时,工厂选择A或B产品产销日利润一样大,当A产品4≤m<5.1时,工厂选择A 产品产销日利润最大,当5.1<m≤6时,工厂选择B产品产销日利润最大.。
二次函数实际问题之拱桥问题
二次函数实际问题之拱桥问题
拱桥问题是二次函数实际问题的典型案例之一。
拱桥是一种常见的设计结构,
常见于公路、铁路和人行通道等建筑中。
在解决拱桥问题时,使用二次函数可以帮助我们计算并优化拱桥的设计。
拱桥问题的关键在于确定拱桥的形状,使之能够承受最大的荷载。
假设我们要
设计一座高度为h、跨度为d的拱桥,该拱桥的横截面呈现出一个拱形。
为了简化
问题,我们假设拱桥是对称的。
利用二次函数,我们可以建立拱桥的高度h和距离桥中心的距离x之间的关系。
一般来说,拱桥的高度曲线可以表示为:h = ax^2 + bx + c,其中a,b和c是常数。
为了确定拱桥的形状,我们需要满足以下条件:拱桥的高度在两个支撑点处为0,即h(0) = h(d) = 0。
另外,我们还可以设置一些额外的条件,例如拱桥的最大高
度或者其他特定要求。
通过求解这些条件,我们可以得到拱桥的二次函数方程。
进一步地,我们可以
使用二次函数的性质来优化拱桥的设计,例如确定最佳的拱桥高度,使得荷载分布在拱桥结构上最为均衡。
总而言之,拱桥问题是通过二次函数来解决的实际问题之一。
通过建立二次函
数方程并利用二次函数的性质,我们可以设计出最优化的拱桥结构,以满足特定的要求和荷载要求。
这个问题的解决方法不仅有助于工程师们设计出更优秀的拱桥,也有利于我们更好地理解和应用二次函数。
二次函数实际问题之拱桥问题
二次函数实际问题之拱桥问题拱桥是一种常见而美丽的建筑形式,它不仅具备实用功能,还能展示人类的工程智慧和美感。
在数学中,我们可以通过二次函数来研究拱桥的形状和特性。
在本文中,我将探讨二次函数在拱桥问题中的应用,并深入分析拱桥的建设、维护和设计过程。
1. 什么是二次函数?二次函数是一种常见的函数形式,它的一般表达式为f(x) = ax^2 +bx + c,其中a、b、c为常数。
二次函数的图像呈现出拱形或倒U形,其特点是在抛物线的顶点处有极值,也就是最高点或最低点。
这个性质使得二次函数在拱桥的研究中十分有用。
2. 拱桥问题的背景拱桥是一种由石头、混凝土等材料构成的桥梁,它通常被用于跨越河流、道路等障碍物。
拱桥在建筑和土木工程领域中扮演着重要的角色,因为它具备良好的承重能力和抗压性能。
为了确保拱桥的稳定和安全,工程师需要对其结构进行精确的设计和分析。
3. 拱桥的建设和维护拱桥的建设需要考虑许多因素,包括地理条件、基础设施、荷载等。
为了使拱桥具备足够的承重能力,工程师需要合理地确定拱的形状和高度。
在这个过程中,二次函数可以帮助我们建立与拱桥形状相关的方程。
通过研究这个方程,我们可以了解拱桥的强度和稳定性,并做出相应的调整和改进。
4. 二次函数在拱桥设计中的应用在拱桥设计中,二次函数可以帮助我们确定拱桥的最高点、最低点和抛物线的形状。
通过调整二次函数的参数,工程师可以得到不同形状和高度的拱桥。
二次函数还可以帮助我们计算拱桥的支持点位置、曲率和承重能力。
通过分析二次函数的图像和方程,我们可以预测拱桥在不同荷载下的行为,并为拱桥的设计提供指导。
5. 个人观点和理解作为一个写手,我对拱桥问题有着浓厚的兴趣。
通过研究二次函数在拱桥设计中的应用,我深刻意识到数学在工程中的重要性。
二次函数不仅能描述拱桥的形状和特性,还可以帮助我们预测和优化拱桥的结构。
在今后的工作中,我希望能继续深入研究拱桥问题,并与工程师们合作,为建设更安全、美观的拱桥贡献自己的力量。
拱桥问题
2.4 二次函数的应用
一 利用二次函数解决拱桥问题 例1 要使运动员坐着船从圣火的拱形桥下穿过入场,现 知拱形底座顶部离水面2 m,水面宽4 m,为了船能顺利通 过,需要把水面下降1 m,问此时水面宽度增加多少?
y
O
x
(-2,-2) ●
4米 -3
● (2,-2)
y O
解:建立如图所示坐标系, 2 y ax . 设二次函数解析式为
池的半径至少要多少米,才能使喷出的水流不落到池外?
A
1.25米 O
解:建立如图坐标系,设抛物线顶点 y B 为B,水流落水处与x轴交于C点.
由题意可知A( 0,1.25)、
A 1.25 O C x B( 1,2.25 )、C(x0,0). 设抛物线为y=a(x-1)2+2.25 (a≠0),
把点A坐标代入,得a= - 1; ∴抛物线为y=-(x-1)2+2.25. 当y= 0时, x1= - 0.5(舍去), x2=2.5 ∴水池的半径至少要2.5米.
抛物线经过点(450,81.5),代入上式,得
81.5=a•4502+0.5.
解得
y
a 81 1 4502 2500
y
故所求表达式为
1 x 2 0.5(450 x 450) 2500
-450
O
450
x
(2)计算距离桥两端主塔分别为100m,50m处垂直钢索
的长. 解:当x=450-100=350(m)时,得
y 1 3502 0.5 49.5(m) 2500
当x=450-50=400(m)时,得
y 1 4002 0.5 64.5( x
知识要点 解决拱桥问题的一般步骤
22.3.3二次函数的应用拱桥问题
二次函数的应用(拱桥、桥洞问题)赵州桥圣路易斯拱门玉带桥拱桥造型美,应用广,遍布全国各地。
常见的桥孔形状除半圆形、椭圆形、马蹄形外,还有抛物线形。
抛物线形桥孔的水位涨落是汛期常见的现象,水位上涨后,桥孔下的水面宽变为多少?另外,“水涨船高”,涨水后,船能否从桥下安全通过?这些都是汛期常见的现象及具有现实意义的问题。
本节课我们将探索这些问题。
拱桥问题引例:一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m后,水面的宽度是多少?●A(2,-2)●B(X,-3)如图,某公司的大门呈抛物线型,大门地面宽AB 为4米,顶部C 距地面的高度为4.4米。
(1)在离门角A1米处垂直于地面立起一根木杆,其顶端恰好顶在抛物线型大门上的点D 处,求木杆的高度。
(2)一辆满载货物的汽车欲通过大门,货物顶部距地面2.65度为2.4米,那么这辆汽车能否顺利通过大门?(3)如果装货宽度为2.4米的汽车能顺利通过大门,那么货物顶部距地面的最大高度是多少?(精确到0.01)(4)如果大门内的路面为双车道,那么一辆宽为1米、高为1.5米的汽车能否通过?O A B D E C如图,公园要建造一个圆形喷水池,在水池中央O 处安装一根垂直于水面的柱子OA ,OA =1.25米,水流由柱子顶端A 处的喷头向外喷出,从各个方面呈完全相同的抛物线形状落下。
为使水流形状看起来较为美观,设计要求水流与柱子OA 的距离为1米处到最高点,这时距水面的最大高度为2.25米。
如果不计其他因素,那么水池的半径至少是多少米时,才能使喷出的水流不落到池外?O AB C这节课你有哪些收获1.通过建立适当的坐标系求函数关系式.转化实际问题数学问题2.解决,应用。
拱桥中的二次函数解析式问题.doc
例1如图为一座拱桥的示意图,当水面宽为12ni时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,要求该抛物线的函数解析式,你认为首先要作的工作是什么?以水平方向为x 轴,取以下三个不同点为坐标原点建立直角坐标系
(1) 点A (2)点B (3)抛物线的顶点C
所得的函数表达式相同吗?请试一试,哪一种取法求得的函数表达式最简单?
练习1:(2014绍兴)如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知
桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物
变式如图是抛物线拱桥,已知水位在AB位置吋,水面宽4®加,水位上升3m, 达到警戒线CD,这时水面宽°卩加.若洪水到来时,水位以每小时0. 25m的速度上升,求水过警戒线后几小时淹到拱桥顶?
变式2:
如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同,正常水位吋,大孔水面宽度AB二20米,顶点M距离水面6米(即MO二6米),小孔顶点N距水面45米(即NC
二45 米)。
当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此吋大孔的水面宽度EF。
链接中考
一块边缘呈抛物线型的铁片如图放置,测得AB=20cm,抛物线的顶点到AB边的距离为
25cm。
现要沿AB边向上依次截取宽度均为4cm的矩形铁皮(如图所示),若截得的铁皮中有一块是止方形,则这块止方形铁皮是()
A.第七块
B.第六块
C.第五块
D.第四块。
二次函数中抛物线形拱桥及答案
二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d (m),求出将d表示为h的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y=ax2,且过点(10,-4)∴故(2)设水位上升h m时,水面与抛物线交于点()则∴(3)当d=18时,∴当水深超过2.76m时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶?解:以AB所在的直线为x轴,AB中点为原点,建立直角坐标系,则抛物线的顶点E在y轴上,且B 、D两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗?(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数综合应用题(拱桥问题)
适用学科数学适用年级初中三年级
适用区域全国课时时长(分钟)60
知识点二次函数解析式的确定、二次函数的性质和应用
教学目标 1.掌握二次函数解析式求法。
2学会用二次函数知识解决实际问题,掌握数学建模的思想,进一步熟悉,
点坐标和线段之间的转化。
3.进一步体验应用函数模型解决实际问题的过程,体会到数学来源于生活,
又服务于生活,感受数学的应用价值。
教学重点 1.从实际问题中抽象出相应的函数关系式,并能理解坐标系中点坐标和线段之间关系;
2.根据情景建立合适的直角坐标系,并将有关线段转化为坐标系中点的坐
标
教学难点如何根据情景建立合适的直角坐标系,并判断直角坐标系建立的优劣。
教学过程
一、复习预习
平时的时候我们能够看到小船可以从桥的下面通过,但是当夏天雨季到来,水平面上升,这时小船还能从桥的下面通过吗?对于这样的问题我们可以利用我们所学的二次函数来解决。
这节我们就看二次函数解决拱桥问题。
二、知识讲解
考点/易错点1 :二次函数解析式的形式
1、一般式:y=ax 2+bx+c (a ≠0)
2、顶点式:y=a(x-h)2+k (a ≠0)
顶点坐标(h ,k )
直线x=h 为对称轴,k 为顶点坐标的纵坐标,也是二次函数的最值
3、双根式:y=a(x-1x )(x-2x )(a ≠0) (1x ,2x 是抛物线与x 轴交点的横坐标)
并不是什么时候都能用双根式,当抛物线与x 轴有交点时才行
4、 顶点在原点:)0(2≠=a ax y
5、过原点:)0(2≠+=a bx ax y
6、 顶点在y 轴:)0(2≠+=a c ax y
考点/易错点2:建立平面直角坐标系
1、在给定的直角坐标系,中会根据坐标描出点的位置
2、能建立适当的直角坐标系,描述物体的位置。
三、例题精析
【例题1】
【题干】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;
(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d 表示为h的函数表达式;
(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.
【答案】
(1)设抛物线的解析式为y=ax2,
且过点(10,-4)
∴-==-
410
1
25
2
a a
×,
故
y x
=-
1
25
2
(2)设水位上升h m时,水面与抛物线交于点(
d
h
2
4
,-
)则
h
d
-=-
4
1
254
2
×
∴d h
=-
104
(3)当d=18时,18104076
=-=
h h
,.
0762276
..
+=
∴当水深超过2.76m时会影响过往船只在桥下顺利航行。
【解析】顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.
【例题2】
【题干】如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶?
【答案】解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的 顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)
设抛物线为y=ax ²+k.
由B 、D 两点在抛物线上,有
解这个方程组,得 所以,
顶点的坐标为(0,) 则OE=÷0.1=(h )
所以,若洪水到来,水位以每小时0.1m 速度上升,经过
小时会达到拱顶.
【解析】 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,求出解析式
【例题3】
【题干】如图是抛物线拱桥,已知水位在AB 位置时,水面宽m 64,水位上升3m ,达到警戒线CD ,这时水面宽m 34.若洪水到来时,水位以每小时0.25m 的速度上升,求水过警戒线后几小时淹到拱桥顶?
O x
CX y D B A E
F
【答案】解:根据题意设抛物线解析式为:y =ax 2+h
又知B (26,0),D (23,3)
∴⎩⎨⎧=+⨯=+⨯3h )32(a 0h )62(a 22 解得:⎪⎩⎪⎨⎧=-=6
h 41a ∴y =-4
1x 2+6 ∴E (0,6) 即OE =6
EF =OE -OF =3 t =25.0EF =25
.03=12 (小时) 答:水过警戒线后12小时淹到拱桥顶.
【解析】建立直角坐标系,求出解析式
四、课堂运用
【基础】
1、心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系:y =-0.1x 2+2.6x +43 (0≤x ≤30).y 值越大,表示接受能力越强.
(1) x 在什么范围内,学生的接受能力逐步增加?x 在什么范围内,学生的接受能力逐步降低?
(2)第10分钟时,学生的接受能力是多少?
(3)第几分钟时,学生的接受能力最强?
【巩固】
1、有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.
(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗?
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行
驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
【拔高】
1、一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m。
这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?
.
五、课程小结
(1)用函数的观点来认识问题,从实际问题中抽象出数学问题;
(2)根据题意建立直角坐标系,建立数学模型,解决实际问题;
(3)找到两个变量之间的关系;掌握数形结合思想;
(4)从拱桥问题中体会到函数模型对解决实际问题的价值.感受数学在生活实际中使用
六、课后作业
【基础】
1、如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).求此抛物线的解析式。
【巩固】
1、如图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施?
【拔高】
1、有一座抛物线型拱桥,其水面宽AB为18米,拱顶O离水面AB的距离OM为8米,货船在水面上的部分的横断面是矩形CDEF,如图建立平面直角坐标系.
(1)求此抛物线的解析式;
(2)如果限定矩形的长CD为9米,那么矩形的高DE不能超过多少米,才能使船通过拱桥?
(3)若设EF=a,请将矩形CDEF的面积S用含a的代数式表示,并指出a的取值范围.
;。